Shrinkage estimates for multi-level heteroscedastic hierarchical normal linear models
Empirical Bayes approach is an attractive method for estimating hyperparameters in hierarchical models. But, under the assumption of normality for a multi-level heteroscedastic hierarchical model, which involves several explanatory variables, the analyst may often wonder whether the shrinkage estima...
Saved in:
Published in | Journal of statistical theory and applications Vol. 14; no. 2; pp. 204 - 213 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.06.2015
Springer Nature B.V Springer |
Subjects | |
Online Access | Get full text |
ISSN | 1538-7887 2214-1766 1538-7887 |
DOI | 10.2991/jsta.2015.14.2.8 |
Cover
Abstract | Empirical Bayes approach is an attractive method for estimating hyperparameters in hierarchical models. But, under the assumption of normality for a multi-level heteroscedastic hierarchical model, which involves several explanatory variables, the analyst may often wonder whether the shrinkage estimators have efficient asymptotic properties in spite of the fact they involve numerous hyperparameters. In this work, we propose a methodology for estimating the hyperparameters whenever one deals with multi-level heteroscedastic hierarchical normal model with several explanatory variables. we investigate the asymptotic properties of the shrinkage estimators when the shrinkage location hyperparameter lies within a suitable interval based on the sample range of the data. Moreover, we show our methodology performs much better in real data sets compared to available approaches. |
---|---|
AbstractList | Empirical Bayes approach is an attractive method for estimating hyperparameters in hierarchical models. But, under the assumption of normality for a multi-level heteroscedastic hierarchical model, which involves several explanatory variables, the analyst may often wonder whether the shrinkage estimators have efficient asymptotic properties in spite of the fact they involve numerous hyperparameters. In this work, we propose a methodology for estimating the hyperparameters whenever one deals with multi-level heteroscedastic hierarchical normal model with several explanatory variables. we investigate the asymptotic properties of the shrinkage estimators when the shrinkage location hyperparameter lies within a suitable interval based on the sample range of the data. Moreover, we show our methodology performs much better in real data sets compared to available approaches. |
Author | Ghoreishi, S. K. Mostafavinia, A. |
Author_xml | – sequence: 1 givenname: S. K. surname: Ghoreishi fullname: Ghoreishi, S. K. email: atty_ghoreishi@yahoo.com organization: Department of Statistics, Faculty of Sciences, University of Qom – sequence: 2 givenname: A. surname: Mostafavinia fullname: Mostafavinia, A. organization: PhD student of Anatomy, Medical Faculty, Shahid Beheshti University |
BookMark | eNpFkc1r3DAQxUVJoJuPe4-Gnu1q9GXpWEKbBgI5JDmLsTza9dZrpZK30P--2m4hpwfDb9485l2xiyUtxNgn4J1wDr7sy4qd4KA7UJ3o7Ae2EQJUC70xF2wDWtq2t7b_yG5LmQaulZPQS7dhr8-7PC0_cUsNlXU64EqliSk3h-O8Tu1Mv2ludrRSTiXQiJUJzW6ijDnspoBzs6R8qDJPC2FdSyPN5YZdRpwL3f7Xa_by_dvL3Y_28en-4e7rYxskV2urewwhOkQd4iAArQsRJICxUSsjBy5IG2tUDDqCU4h2QKXsaNyAZhzlNXs4244J9_4t1_j5j084-X-DlLcecw08k489Bc2VHEChwojOwjDKUQsjQWI_VK_PZ6-3nH4d6y_8Ph3zUtN74YBzpXslKwVnqtRry5byOwXcn7rwpy78qQsPygtv5V-ZdYDT |
ContentType | Journal Article |
Copyright | the authors 2015 the authors 2015. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: the authors 2015 – notice: the authors 2015. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI DOA |
DOI | 10.2991/jsta.2015.14.2.8 |
DatabaseName | Springer Nature OA Free Journals ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition DOAJ Directory of Open Access Journals |
DatabaseTitle | Publicly Available Content Database Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2214-1766 1538-7887 |
EndPage | 213 |
ExternalDocumentID | oai_doaj_org_article_f7ec5043b14a4afa981bd3d526313a7b 10_2991_jsta_2015_14_2_8 |
GroupedDBID | AAFWJ AAJSJ AAKKN AAYZJ ABEEZ ACACY ACULB ADBBV AFGXO AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ C24 C6C CCPQU EBLON EBS FRP GROUPED_DOAJ HCIFZ J9A K7- OK1 P2P PIMPY RSV SOJ 8FE 8FG AASML ABUWG AZQEC DWQXO GNUQQ JQ2 P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PUEGO |
ID | FETCH-LOGICAL-c304t-57accf9aa5cfb21a89cf131168f5463b02e56864fc5f194aa8ba448d69ba6dd3 |
IEDL.DBID | 8FG |
ISSN | 1538-7887 |
IngestDate | Wed Aug 27 01:25:17 EDT 2025 Sat Aug 23 14:22:11 EDT 2025 Fri Feb 21 02:40:46 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | 2000 Mathematics Subject Classification Shrinkage estimators Stein’s unbiased risk estimate(SURE) 62F30 Asymptotic optimality Multiple linear regression 62F15 Heteroscedasticity |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c304t-57accf9aa5cfb21a89cf131168f5463b02e56864fc5f194aa8ba448d69ba6dd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/2910045743?pq-origsite=%requestingapplication% |
PQID | 2910045743 |
PQPubID | 5642901 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f7ec5043b14a4afa981bd3d526313a7b proquest_journals_2910045743 springer_journals_10_2991_jsta_2015_14_2_8 |
PublicationCentury | 2000 |
PublicationDate | 2015-06-01 |
PublicationDateYYYYMMDD | 2015-06-01 |
PublicationDate_xml | – month: 06 year: 2015 text: 2015-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht – name: Melbourne |
PublicationTitle | Journal of statistical theory and applications |
PublicationTitleAbbrev | J Stat Theory Appl |
PublicationYear | 2015 |
Publisher | Springer Netherlands Springer Nature B.V Springer |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V – name: Springer |
References | LiKCAsymptotic optimality of CL and Generalized Cross Validation in Ridge Regression with Application to Spline SmoothingeAnnals of Statistics19861411011112 MorrisCParametric empirical Bayes inference: Theory and applicationsJ. Amer. Statist. Assoc.1983784765 BergerJStrawdermanWEChoice of Hierarchical Priors:Admissibility in Estimation of Normal MeansAnnals of Statistics199624931951 XieXKouSCBrownLDSURE Estimates for a Heteroscedastic Hierarchical ModelJ. Amer. Statist. Assoc.201210714651479 BrownLDIn-Season Prediction of Batting Average: A Field Test of Empirical Bayes and Bayes MethodologiesAnnals of Applied Statistics20082113152 BrownLDGreenshteinENonparametric Empirical Bayes and Compound Decision Approaches to Estimation of a High-Dimensional Vector of MeansAnnals of Statistics20093716851704 W. James and C.M. Stein, Estimation With Quadratic Loss, Proceedings of the 4th Berkeley Symposium on Probability and StatisticsI (1961) 367–379. GhoreishiSKMeshkaniMROn SURE estimates in hierarchical models assuming heteroscedasticity for both levels of a two-level normal hierarchical modelJ. of Multivariate Analysis2014132129137 BergerJOStatistical decision theory and Bayesian analysis1985New YorkSpringer SteinCMConfidence Sets for the Mean of a Multivariate Normal Distribution (with discussion)J. Roy. Statist. Soc. Ser. B196224265296 |
References_xml | – reference: LiKCAsymptotic optimality of CL and Generalized Cross Validation in Ridge Regression with Application to Spline SmoothingeAnnals of Statistics19861411011112 – reference: GhoreishiSKMeshkaniMROn SURE estimates in hierarchical models assuming heteroscedasticity for both levels of a two-level normal hierarchical modelJ. of Multivariate Analysis2014132129137 – reference: BrownLDIn-Season Prediction of Batting Average: A Field Test of Empirical Bayes and Bayes MethodologiesAnnals of Applied Statistics20082113152 – reference: BergerJOStatistical decision theory and Bayesian analysis1985New YorkSpringer – reference: BergerJStrawdermanWEChoice of Hierarchical Priors:Admissibility in Estimation of Normal MeansAnnals of Statistics199624931951 – reference: XieXKouSCBrownLDSURE Estimates for a Heteroscedastic Hierarchical ModelJ. Amer. Statist. Assoc.201210714651479 – reference: W. James and C.M. Stein, Estimation With Quadratic Loss, Proceedings of the 4th Berkeley Symposium on Probability and StatisticsI (1961) 367–379. – reference: MorrisCParametric empirical Bayes inference: Theory and applicationsJ. Amer. Statist. Assoc.1983784765 – reference: SteinCMConfidence Sets for the Mean of a Multivariate Normal Distribution (with discussion)J. Roy. Statist. Soc. Ser. B196224265296 – reference: BrownLDGreenshteinENonparametric Empirical Bayes and Compound Decision Approaches to Estimation of a High-Dimensional Vector of MeansAnnals of Statistics20093716851704 |
SSID | ssib054931739 ssj0000800523 |
Score | 1.9286454 |
Snippet | Empirical Bayes approach is an attractive method for estimating hyperparameters in hierarchical models. But, under the assumption of normality for a... |
SourceID | doaj proquest springer |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 204 |
SubjectTerms | Asymptotic optimality; Heteroscedasticity; Multiple linear regression; Shrinkage estimators; Stein’s unbiased risk estimate(SURE) Asymptotic properties Empirical analysis Estimators Normality Research Article |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJxgQn6JQkAcmpLT5suOMgKgqpLLQSt2ss2OrKiVFpPx_7pIUCgsLaxI71j3n8k53fsfYtfUKMOwQQYZRTpBCqgIFRgYukbifhM2KlA4nj5_kaJo-zsRsq9UX1YQ18sCN4QY-c5ZUtkyEE4GHHHlWkRQilkmUQGbI-4Z5uBVMLVoehC9v8pLocaPBAskWVXIJ9A39uK9ajf4fxPJXLrT-xQwP2H7LDflts6ZDtuPKI7Y3_hJWrY7Z9HmOY1_QCXCSx3glpsiRd_K6MDBYUgkQn1OJy6qyrgBSYebU7rpOGCAevCSSuuTELgGHUSOc6oRNhg-T-1HQdkYIbBKm60BkYK3PAYT1Jo5A5daTbo5UnuTtTRg7IZVMvRU-ylMAZQDjsELmBmRRJKesU65Kd8a4cAJoDuGkTREzk-FTRWJzr6LMh77L7shM-q3RvtCkRl1fQIx0i5H-C6Mu622MrNtPpNJxTmJ1AhlMl91sDP99G4MTwk0TbppwwyBFx1qd_8eCLtguTdmUfPVYZ_3-4S6RXKzNVb2PPgHlT88- priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagLDAgnqJQkAcmJJfmYccZoaKqkMpCK3Wzzo6tqkCLSPn_3CUpL7EwJrETyd_Z_i53_o6xSxc0oNshRYZejkgh1UKDVcInCu1JuqxI6XDy6EENJ-n9VE6b_x10FuZb_B4Xyuh6jhyJErAkTulu3NWbbEtGiarCsqq_thz8Gu6Djb7lvOFBsqrtVs1oSpmrY5R_vrTR6_9BMn_FRavtZrDHdhueyG9qYPfZhl8csJ3Rp8hqecgmjzPs-4QLAiepjBdijRw5KK-SBMUzpQPxGaW7LEvnCyBFZk6lr6vgAWLDF0RYnzkxTcBuVBSnPGLjwd24PxRNlQThkl66EjID50IOIF2wcQQ6d4E0dJQOJHVve7GXSqs0OBmiPAXQFtAnK1RuQRVFcsxai-XCnzAuvQR6h_TKpYifzbBVkbg86CgLvdBmtzRM5rXWwTCkTF3dQMBMY-gmZN6RKpqNEHgIkCMvLpJCxiqJEshsm3XWg2ya6VKaOCfhOolsps2u1gP_9RgdFcLNEG6GcEOHxcRGn_6n8Rnbpqs6zavDWqu3d3-OhGJlLypb-gBz_sVv priority: 102 providerName: Springer Nature |
Title | Shrinkage estimates for multi-level heteroscedastic hierarchical normal linear models |
URI | https://link.springer.com/article/10.2991/jsta.2015.14.2.8 https://www.proquest.com/docview/2910045743 https://doaj.org/article/f7ec5043b14a4afa981bd3d526313a7b |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxsxELYoXOihorSI0BD5wKmSIfuw13tCJCJFSKCKh8TNGr9APBJg0__fGccB0UOPu2uvVp7xzDee2W8Y23NRA4YdUjQY5Ygaai00WCVCpVCfpGt8TT8nn52rk-v69Ebe5AO3LpdVLm1iMtR-5uiM_KBsidtMosM7fH4R1DWKsqu5hcYntlagpyE915NfS33Cb0DvmFkv7zM6kqnjW9rnVEi3yFyiTS4O7hGOUa2XROuxX-7rzOL_AXr-ky1NTmiywb5k9MiPFuL-ylbCdJN9PnujXu2-sevLO5z7gGaCE4HGE2FJjsiUp9JB8UhFQvyOimBmnQseiKeZU0PslFJAifEpwdhHTvgTcBq1yum-s6vJ8dX4ROTeCcJVw3ouZAPOxRZAumjLAnTrIjHrKB2JAN8OyyCVVnV0MhZtDaAtYKTmVWtBeV9tsdXpbBq2GZdBAr1DBuVqlKptcJSvXBt10cRh7LERLZN5XrBjGOKrTjdmr7cmq7-JTXDElWYLVAeI0CJa9pWXpaqKChrbY_3lIpu8iTrzLvIe-7lc-PfHGL6Q3AzJzZDcMIwxpdE7_3_XD7ZOgxflXn22On_9E3YRWMztIGnPgK2Njs9_X-DVWI0HKUj_C8W5z0c |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QE4IJ5ioYAPcEFy2zzsOAeEKLTa0u4KwVbqzRq_qErZLc0ixI_iPzKTBxUcuPWaxJYy_jLzTTz-BuC5TwYp7VCyoixHllgaadBpGQtNeFK-CiUfTp7O9OSofH-sjtfg13AWhssqB5_YOuqw9PyPfCuvWdtMUcB7ff5Nctco3l0dWmh0sDiIP39Qyta82n9H6_siz_d2528nsu8qID2l7iupKvQ-1YjKJ5dnaGqfWHNGm8TS8G47j0obXSavEmX4iMYh5TBB1w51CAVNew3WSz7QOoL1nd3Zh48DgOmlKRz3MpunPR1TbYu51rFw5V63VUpBINs6Jf7HxWWK3NVmvmn6tgF_cd1_tmfbqLd3G271dFW86fB1B9bi4i7cnP7Rem3uwdGnExr7hfySYMWOr0xeBVFh0dYqyjOuShInXHWzbHwMyMLQgjtwt3sYBBGxYN58JpjwIg3j3jzNfZhfhVkfwGixXMSHIFRUyHOoqH1JMHIVPRUKXyeTVWk7jWGHzWTPOzkOywLZ7YXlxWfbf282VdGzOJvLCH-YsCZ6Hoqgcl1kBVZuDBuDkW3_1Tb2EmNjeDkY_vI25Uu8bpbXzfK6Ud5kc2se_X-uZ3B9Mp8e2sP92cFjuMEDu1qzDRitLr7HJ8RqVu5pjyUB9orR-xvNMQq7 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbhQxEC2FICE4IFZlIIAPcEFyJr146QNCQBgSQiIkEik3q7wRhTAT0oMQn8bfUdULERy45drdttT26_J77fIrgKchWyTZoaQhlSNrrK206LVMlSY8qWBizYeT9_b19mH9_kgdrcCv8SwMp1WOMbEL1HER-B_5tGzY20zRgjfNQ1rEx63Zy7NvkitI8U7rWE6jh8hu-vmD5Fv7YmeL5vpZWc7eHrzZlkOFARlIxi-lMhhCbhBVyL4s0DYhs_-Mtplt4v1mmZS2us5BZVL7iNYj6ZmoG486xoq6vQJXTWUa1n129m6EMr0-LcyD4ebJQMxUV2yuCzGcw9dvmtJyUExPiAlympmiwLVRbtihgMBfrPefjdpu_ZvdgpsDcRWveqTdhpU0vwM39v64vrZ34fDTMbX9QhFKsHfHV6axgkix6LIW5SnnJ4ljzr9ZtCFFZItowbW4u90MAouYM4M-FUx9kZpxlZ72HhxcxqDeh9X5Yp7WQKikkPtQSYeaAOUNPRWr0GRbmLyZJ_Cah8md9cYcjq2yuwuL889u-PJcNimwTZsvCImYsSGiHquoSl0VFRo_gfVxkN3w_bbuAm0TeD4O_MVtUk48b47nzfG8kYJypbMP_t_XE7hGmHUfdvZ3H8J1btcnna3D6vL8e3pE9GbpH3dAEuAuGbi_AVSvDYs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shrinkage+estimates+for+multi-level+heteroscedastic+hierarchical+normal+linear+models&rft.jtitle=Journal+of+statistical+theory+and+applications&rft.au=Ghoreishi%2C+S.+K&rft.au=Mostafavinia%2C+A&rft.date=2015-06-01&rft.pub=Springer+Nature+B.V&rft.issn=1538-7887&rft.eissn=2214-1766&rft.volume=14&rft.issue=2&rft.spage=204&rft.epage=213&rft_id=info:doi/10.2991%2Fjsta.2015.14.2.8&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1538-7887&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1538-7887&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1538-7887&client=summon |