Shrinkage estimates for multi-level heteroscedastic hierarchical normal linear models

Empirical Bayes approach is an attractive method for estimating hyperparameters in hierarchical models. But, under the assumption of normality for a multi-level heteroscedastic hierarchical model, which involves several explanatory variables, the analyst may often wonder whether the shrinkage estima...

Full description

Saved in:
Bibliographic Details
Published inJournal of statistical theory and applications Vol. 14; no. 2; pp. 204 - 213
Main Authors Ghoreishi, S. K., Mostafavinia, A.
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.06.2015
Springer Nature B.V
Springer
Subjects
Online AccessGet full text
ISSN1538-7887
2214-1766
1538-7887
DOI10.2991/jsta.2015.14.2.8

Cover

Abstract Empirical Bayes approach is an attractive method for estimating hyperparameters in hierarchical models. But, under the assumption of normality for a multi-level heteroscedastic hierarchical model, which involves several explanatory variables, the analyst may often wonder whether the shrinkage estimators have efficient asymptotic properties in spite of the fact they involve numerous hyperparameters. In this work, we propose a methodology for estimating the hyperparameters whenever one deals with multi-level heteroscedastic hierarchical normal model with several explanatory variables. we investigate the asymptotic properties of the shrinkage estimators when the shrinkage location hyperparameter lies within a suitable interval based on the sample range of the data. Moreover, we show our methodology performs much better in real data sets compared to available approaches.
AbstractList Empirical Bayes approach is an attractive method for estimating hyperparameters in hierarchical models. But, under the assumption of normality for a multi-level heteroscedastic hierarchical model, which involves several explanatory variables, the analyst may often wonder whether the shrinkage estimators have efficient asymptotic properties in spite of the fact they involve numerous hyperparameters. In this work, we propose a methodology for estimating the hyperparameters whenever one deals with multi-level heteroscedastic hierarchical normal model with several explanatory variables. we investigate the asymptotic properties of the shrinkage estimators when the shrinkage location hyperparameter lies within a suitable interval based on the sample range of the data. Moreover, we show our methodology performs much better in real data sets compared to available approaches.
Author Ghoreishi, S. K.
Mostafavinia, A.
Author_xml – sequence: 1
  givenname: S. K.
  surname: Ghoreishi
  fullname: Ghoreishi, S. K.
  email: atty_ghoreishi@yahoo.com
  organization: Department of Statistics, Faculty of Sciences, University of Qom
– sequence: 2
  givenname: A.
  surname: Mostafavinia
  fullname: Mostafavinia, A.
  organization: PhD student of Anatomy, Medical Faculty, Shahid Beheshti University
BookMark eNpFkc1r3DAQxUVJoJuPe4-Gnu1q9GXpWEKbBgI5JDmLsTza9dZrpZK30P--2m4hpwfDb9485l2xiyUtxNgn4J1wDr7sy4qd4KA7UJ3o7Ae2EQJUC70xF2wDWtq2t7b_yG5LmQaulZPQS7dhr8-7PC0_cUsNlXU64EqliSk3h-O8Tu1Mv2ludrRSTiXQiJUJzW6ijDnspoBzs6R8qDJPC2FdSyPN5YZdRpwL3f7Xa_by_dvL3Y_28en-4e7rYxskV2urewwhOkQd4iAArQsRJICxUSsjBy5IG2tUDDqCU4h2QKXsaNyAZhzlNXs4244J9_4t1_j5j084-X-DlLcecw08k489Bc2VHEChwojOwjDKUQsjQWI_VK_PZ6-3nH4d6y_8Ph3zUtN74YBzpXslKwVnqtRry5byOwXcn7rwpy78qQsPygtv5V-ZdYDT
ContentType Journal Article
Copyright the authors 2015
the authors 2015. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: the authors 2015
– notice: the authors 2015. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOA
DOI 10.2991/jsta.2015.14.2.8
DatabaseName Springer Nature OA Free Journals
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DOAJ Directory of Open Access Journals
DatabaseTitle Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2214-1766
1538-7887
EndPage 213
ExternalDocumentID oai_doaj_org_article_f7ec5043b14a4afa981bd3d526313a7b
10_2991_jsta_2015_14_2_8
GroupedDBID AAFWJ
AAJSJ
AAKKN
AAYZJ
ABEEZ
ACACY
ACULB
ADBBV
AFGXO
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
EBLON
EBS
FRP
GROUPED_DOAJ
HCIFZ
J9A
K7-
OK1
P2P
PIMPY
RSV
SOJ
8FE
8FG
AASML
ABUWG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PUEGO
ID FETCH-LOGICAL-c304t-57accf9aa5cfb21a89cf131168f5463b02e56864fc5f194aa8ba448d69ba6dd3
IEDL.DBID 8FG
ISSN 1538-7887
IngestDate Wed Aug 27 01:25:17 EDT 2025
Sat Aug 23 14:22:11 EDT 2025
Fri Feb 21 02:40:46 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords 2000 Mathematics Subject Classification
Shrinkage estimators
Stein’s unbiased risk estimate(SURE)
62F30
Asymptotic optimality
Multiple linear regression
62F15
Heteroscedasticity
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c304t-57accf9aa5cfb21a89cf131168f5463b02e56864fc5f194aa8ba448d69ba6dd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2910045743?pq-origsite=%requestingapplication%
PQID 2910045743
PQPubID 5642901
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_f7ec5043b14a4afa981bd3d526313a7b
proquest_journals_2910045743
springer_journals_10_2991_jsta_2015_14_2_8
PublicationCentury 2000
PublicationDate 2015-06-01
PublicationDateYYYYMMDD 2015-06-01
PublicationDate_xml – month: 06
  year: 2015
  text: 2015-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
– name: Melbourne
PublicationTitle Journal of statistical theory and applications
PublicationTitleAbbrev J Stat Theory Appl
PublicationYear 2015
Publisher Springer Netherlands
Springer Nature B.V
Springer
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
– name: Springer
References LiKCAsymptotic optimality of CL and Generalized Cross Validation in Ridge Regression with Application to Spline SmoothingeAnnals of Statistics19861411011112
MorrisCParametric empirical Bayes inference: Theory and applicationsJ. Amer. Statist. Assoc.1983784765
BergerJStrawdermanWEChoice of Hierarchical Priors:Admissibility in Estimation of Normal MeansAnnals of Statistics199624931951
XieXKouSCBrownLDSURE Estimates for a Heteroscedastic Hierarchical ModelJ. Amer. Statist. Assoc.201210714651479
BrownLDIn-Season Prediction of Batting Average: A Field Test of Empirical Bayes and Bayes MethodologiesAnnals of Applied Statistics20082113152
BrownLDGreenshteinENonparametric Empirical Bayes and Compound Decision Approaches to Estimation of a High-Dimensional Vector of MeansAnnals of Statistics20093716851704
W. James and C.M. Stein, Estimation With Quadratic Loss, Proceedings of the 4th Berkeley Symposium on Probability and StatisticsI (1961) 367–379.
GhoreishiSKMeshkaniMROn SURE estimates in hierarchical models assuming heteroscedasticity for both levels of a two-level normal hierarchical modelJ. of Multivariate Analysis2014132129137
BergerJOStatistical decision theory and Bayesian analysis1985New YorkSpringer
SteinCMConfidence Sets for the Mean of a Multivariate Normal Distribution (with discussion)J. Roy. Statist. Soc. Ser. B196224265296
References_xml – reference: LiKCAsymptotic optimality of CL and Generalized Cross Validation in Ridge Regression with Application to Spline SmoothingeAnnals of Statistics19861411011112
– reference: GhoreishiSKMeshkaniMROn SURE estimates in hierarchical models assuming heteroscedasticity for both levels of a two-level normal hierarchical modelJ. of Multivariate Analysis2014132129137
– reference: BrownLDIn-Season Prediction of Batting Average: A Field Test of Empirical Bayes and Bayes MethodologiesAnnals of Applied Statistics20082113152
– reference: BergerJOStatistical decision theory and Bayesian analysis1985New YorkSpringer
– reference: BergerJStrawdermanWEChoice of Hierarchical Priors:Admissibility in Estimation of Normal MeansAnnals of Statistics199624931951
– reference: XieXKouSCBrownLDSURE Estimates for a Heteroscedastic Hierarchical ModelJ. Amer. Statist. Assoc.201210714651479
– reference: W. James and C.M. Stein, Estimation With Quadratic Loss, Proceedings of the 4th Berkeley Symposium on Probability and StatisticsI (1961) 367–379.
– reference: MorrisCParametric empirical Bayes inference: Theory and applicationsJ. Amer. Statist. Assoc.1983784765
– reference: SteinCMConfidence Sets for the Mean of a Multivariate Normal Distribution (with discussion)J. Roy. Statist. Soc. Ser. B196224265296
– reference: BrownLDGreenshteinENonparametric Empirical Bayes and Compound Decision Approaches to Estimation of a High-Dimensional Vector of MeansAnnals of Statistics20093716851704
SSID ssib054931739
ssj0000800523
Score 1.9286454
Snippet Empirical Bayes approach is an attractive method for estimating hyperparameters in hierarchical models. But, under the assumption of normality for a...
SourceID doaj
proquest
springer
SourceType Open Website
Aggregation Database
Publisher
StartPage 204
SubjectTerms Asymptotic optimality; Heteroscedasticity; Multiple linear regression; Shrinkage estimators; Stein’s unbiased risk estimate(SURE)
Asymptotic properties
Empirical analysis
Estimators
Normality
Research Article
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJxgQn6JQkAcmpLT5suOMgKgqpLLQSt2ss2OrKiVFpPx_7pIUCgsLaxI71j3n8k53fsfYtfUKMOwQQYZRTpBCqgIFRgYukbifhM2KlA4nj5_kaJo-zsRsq9UX1YQ18sCN4QY-c5ZUtkyEE4GHHHlWkRQilkmUQGbI-4Z5uBVMLVoehC9v8pLocaPBAskWVXIJ9A39uK9ajf4fxPJXLrT-xQwP2H7LDflts6ZDtuPKI7Y3_hJWrY7Z9HmOY1_QCXCSx3glpsiRd_K6MDBYUgkQn1OJy6qyrgBSYebU7rpOGCAevCSSuuTELgGHUSOc6oRNhg-T-1HQdkYIbBKm60BkYK3PAYT1Jo5A5daTbo5UnuTtTRg7IZVMvRU-ylMAZQDjsELmBmRRJKesU65Kd8a4cAJoDuGkTREzk-FTRWJzr6LMh77L7shM-q3RvtCkRl1fQIx0i5H-C6Mu622MrNtPpNJxTmJ1AhlMl91sDP99G4MTwk0TbppwwyBFx1qd_8eCLtguTdmUfPVYZ_3-4S6RXKzNVb2PPgHlT88-
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagLDAgnqJQkAcmJJfmYccZoaKqkMpCK3Wzzo6tqkCLSPn_3CUpL7EwJrETyd_Z_i53_o6xSxc0oNshRYZejkgh1UKDVcInCu1JuqxI6XDy6EENJ-n9VE6b_x10FuZb_B4Xyuh6jhyJErAkTulu3NWbbEtGiarCsqq_thz8Gu6Djb7lvOFBsqrtVs1oSpmrY5R_vrTR6_9BMn_FRavtZrDHdhueyG9qYPfZhl8csJ3Rp8hqecgmjzPs-4QLAiepjBdijRw5KK-SBMUzpQPxGaW7LEvnCyBFZk6lr6vgAWLDF0RYnzkxTcBuVBSnPGLjwd24PxRNlQThkl66EjID50IOIF2wcQQ6d4E0dJQOJHVve7GXSqs0OBmiPAXQFtAnK1RuQRVFcsxai-XCnzAuvQR6h_TKpYifzbBVkbg86CgLvdBmtzRM5rXWwTCkTF3dQMBMY-gmZN6RKpqNEHgIkCMvLpJCxiqJEshsm3XWg2ya6VKaOCfhOolsps2u1gP_9RgdFcLNEG6GcEOHxcRGn_6n8Rnbpqs6zavDWqu3d3-OhGJlLypb-gBz_sVv
  priority: 102
  providerName: Springer Nature
Title Shrinkage estimates for multi-level heteroscedastic hierarchical normal linear models
URI https://link.springer.com/article/10.2991/jsta.2015.14.2.8
https://www.proquest.com/docview/2910045743
https://doaj.org/article/f7ec5043b14a4afa981bd3d526313a7b
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxsxELYoXOihorSI0BD5wKmSIfuw13tCJCJFSKCKh8TNGr9APBJg0__fGccB0UOPu2uvVp7xzDee2W8Y23NRA4YdUjQY5Ygaai00WCVCpVCfpGt8TT8nn52rk-v69Ebe5AO3LpdVLm1iMtR-5uiM_KBsidtMosM7fH4R1DWKsqu5hcYntlagpyE915NfS33Cb0DvmFkv7zM6kqnjW9rnVEi3yFyiTS4O7hGOUa2XROuxX-7rzOL_AXr-ky1NTmiywb5k9MiPFuL-ylbCdJN9PnujXu2-sevLO5z7gGaCE4HGE2FJjsiUp9JB8UhFQvyOimBmnQseiKeZU0PslFJAifEpwdhHTvgTcBq1yum-s6vJ8dX4ROTeCcJVw3ouZAPOxRZAumjLAnTrIjHrKB2JAN8OyyCVVnV0MhZtDaAtYKTmVWtBeV9tsdXpbBq2GZdBAr1DBuVqlKptcJSvXBt10cRh7LERLZN5XrBjGOKrTjdmr7cmq7-JTXDElWYLVAeI0CJa9pWXpaqKChrbY_3lIpu8iTrzLvIe-7lc-PfHGL6Q3AzJzZDcMIwxpdE7_3_XD7ZOgxflXn22On_9E3YRWMztIGnPgK2Njs9_X-DVWI0HKUj_C8W5z0c
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QE4IJ5ioYAPcEFy2zzsOAeEKLTa0u4KwVbqzRq_qErZLc0ixI_iPzKTBxUcuPWaxJYy_jLzTTz-BuC5TwYp7VCyoixHllgaadBpGQtNeFK-CiUfTp7O9OSofH-sjtfg13AWhssqB5_YOuqw9PyPfCuvWdtMUcB7ff5Nctco3l0dWmh0sDiIP39Qyta82n9H6_siz_d2528nsu8qID2l7iupKvQ-1YjKJ5dnaGqfWHNGm8TS8G47j0obXSavEmX4iMYh5TBB1w51CAVNew3WSz7QOoL1nd3Zh48DgOmlKRz3MpunPR1TbYu51rFw5V63VUpBINs6Jf7HxWWK3NVmvmn6tgF_cd1_tmfbqLd3G271dFW86fB1B9bi4i7cnP7Rem3uwdGnExr7hfySYMWOr0xeBVFh0dYqyjOuShInXHWzbHwMyMLQgjtwt3sYBBGxYN58JpjwIg3j3jzNfZhfhVkfwGixXMSHIFRUyHOoqH1JMHIVPRUKXyeTVWk7jWGHzWTPOzkOywLZ7YXlxWfbf282VdGzOJvLCH-YsCZ6Hoqgcl1kBVZuDBuDkW3_1Tb2EmNjeDkY_vI25Uu8bpbXzfK6Ud5kc2se_X-uZ3B9Mp8e2sP92cFjuMEDu1qzDRitLr7HJ8RqVu5pjyUB9orR-xvNMQq7
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbhQxEC2FICE4IFZlIIAPcEFyJr146QNCQBgSQiIkEik3q7wRhTAT0oMQn8bfUdULERy45drdttT26_J77fIrgKchWyTZoaQhlSNrrK206LVMlSY8qWBizYeT9_b19mH9_kgdrcCv8SwMp1WOMbEL1HER-B_5tGzY20zRgjfNQ1rEx63Zy7NvkitI8U7rWE6jh8hu-vmD5Fv7YmeL5vpZWc7eHrzZlkOFARlIxi-lMhhCbhBVyL4s0DYhs_-Mtplt4v1mmZS2us5BZVL7iNYj6ZmoG486xoq6vQJXTWUa1n129m6EMr0-LcyD4ebJQMxUV2yuCzGcw9dvmtJyUExPiAlympmiwLVRbtihgMBfrPefjdpu_ZvdgpsDcRWveqTdhpU0vwM39v64vrZ34fDTMbX9QhFKsHfHV6axgkix6LIW5SnnJ4ljzr9ZtCFFZItowbW4u90MAouYM4M-FUx9kZpxlZ72HhxcxqDeh9X5Yp7WQKikkPtQSYeaAOUNPRWr0GRbmLyZJ_Cah8md9cYcjq2yuwuL889u-PJcNimwTZsvCImYsSGiHquoSl0VFRo_gfVxkN3w_bbuAm0TeD4O_MVtUk48b47nzfG8kYJypbMP_t_XE7hGmHUfdvZ3H8J1btcnna3D6vL8e3pE9GbpH3dAEuAuGbi_AVSvDYs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shrinkage+estimates+for+multi-level+heteroscedastic+hierarchical+normal+linear+models&rft.jtitle=Journal+of+statistical+theory+and+applications&rft.au=Ghoreishi%2C+S.+K&rft.au=Mostafavinia%2C+A&rft.date=2015-06-01&rft.pub=Springer+Nature+B.V&rft.issn=1538-7887&rft.eissn=2214-1766&rft.volume=14&rft.issue=2&rft.spage=204&rft.epage=213&rft_id=info:doi/10.2991%2Fjsta.2015.14.2.8&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1538-7887&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1538-7887&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1538-7887&client=summon