Improved Sensitivity of a Sensor Based on Metallic Nano-cylinder Coated with Graphene

This paper introduces a highly sensitive biosensor based on a plasmonic nanostructure-enhanced resonance effect. The sensor exploits a hexagonal photonic crystal composed of plasmonic nano-cylinders, including a graphene nano-cylinder as a defect, which can considerably increase the concentration of...

Full description

Saved in:
Bibliographic Details
Published inPlasmonics (Norwell, Mass.) Vol. 19; no. 4; pp. 2053 - 2060
Main Authors Hedhy, Manel, Ouerghi, Faouzi, Zeng, Shuwen, AbdelMalek, Fathi
Format Journal Article
LanguageEnglish
Published New York Springer US 01.08.2024
Springer Nature B.V
Springer Verlag
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper introduces a highly sensitive biosensor based on a plasmonic nanostructure-enhanced resonance effect. The sensor exploits a hexagonal photonic crystal composed of plasmonic nano-cylinders, including a graphene nano-cylinder as a defect, which can considerably increase the concentration of electric fields. This amplification enables the detection of tiny variations in refractive indices linked to a laser source for plasmonic excitation. Each defect consists of a hollow metallic cylinder surrounded by graphene, all within a metallic matrix. During the sensing process, surface plasmon polaritons interact with the core-guided modes of the patterns, which are subsequently filled with the analytes to be measured. The nano-cylinders’ width is optimized to take advantage of their unique optical properties in nanoscale confinement, resulting in high sensitivity. The sensor achieves an impressive sensitivity of 17,750 nm/RIU (refractive index unit) and a FoM of 2218 (RIU −1 ) for n  = 1.456 at the optimum value of Δ R  = ( R out  −  R in ) = 200 nm. These metallic cylindrical channels exhibit distinct responses to different analytes across a wide range of Δ R , enabling simultaneous detection of various types of biomolecules. These exceptional properties make the sensor suitable for a broad range of applications, including real-time chemical and biological sensing. Furthermore, it offers the potential to create compact devices for measuring different refractive indices.
AbstractList This paper introduces a highly sensitive biosensor based on a plasmonic nanostructure-enhanced resonance effect. The sensor exploits a hexagonal photonic crystal composed of plasmonic nano-cylinders, including a graphene nano-cylinder as a defect, which can considerably increase the concentration of electric fields. This amplification enables the detection of tiny variations in refractive indices linked to a laser source for plasmonic excitation. Each defect consists of a hollow metallic cylinder surrounded by graphene, all within a metallic matrix. During the sensing process, surface plasmon polaritons interact with the core-guided modes of the patterns, which are subsequently filled with the analytes to be measured. The nano-cylinders’ width is optimized to take advantage of their unique optical properties in nanoscale confinement, resulting in high sensitivity. The sensor achieves an impressive sensitivity of 17,750 nm/RIU (refractive index unit) and a FoM of 2218 (RIU−1) for n = 1.456 at the optimum value of ΔR = (Rout − Rin) = 200 nm. These metallic cylindrical channels exhibit distinct responses to different analytes across a wide range of ΔR, enabling simultaneous detection of various types of biomolecules. These exceptional properties make the sensor suitable for a broad range of applications, including real-time chemical and biological sensing. Furthermore, it offers the potential to create compact devices for measuring different refractive indices.
This paper introduces a highly sensitive biosensor based on a plasmonic nanostructure-enhanced resonance effect. The sensor exploits a hexagonal photonic crystal composed of plasmonic nano-cylinders, including a graphene nano-cylinder as a defect, which can considerably increase the concentration of electric fields. This amplification enables the detection of tiny variations in refractive indices linked to a laser source for plasmonic excitation. Each defect consists of a hollow metallic cylinder surrounded by graphene, all within a metallic matrix. During the sensing process, surface plasmon polaritons interact with the core-guided modes of the patterns, which are subsequently filled with the analytes to be measured. The nano-cylinders’ width is optimized to take advantage of their unique optical properties in nanoscale confinement, resulting in high sensitivity. The sensor achieves an impressive sensitivity of 17,750 nm/RIU (refractive index unit) and a FoM of 2218 (RIU^−1) for n = 1.456 at the optimum value of ΔR = (Rout − Rin) = 200 nm. These metallic cylindrical channels exhibit distinct responses to different analytes across a wide range of ΔR, enabling simultaneous detection of various types of biomolecules. These exceptional properties make the sensor suitable for a broad range of applications, including real-time chemical and biological sensing. Furthermore, it offers the potential to create compact devices for measuring different refractive indices.
This paper introduces a highly sensitive biosensor based on a plasmonic nanostructure-enhanced resonance effect. The sensor exploits a hexagonal photonic crystal composed of plasmonic nano-cylinders, including a graphene nano-cylinder as a defect, which can considerably increase the concentration of electric fields. This amplification enables the detection of tiny variations in refractive indices linked to a laser source for plasmonic excitation. Each defect consists of a hollow metallic cylinder surrounded by graphene, all within a metallic matrix. During the sensing process, surface plasmon polaritons interact with the core-guided modes of the patterns, which are subsequently filled with the analytes to be measured. The nano-cylinders’ width is optimized to take advantage of their unique optical properties in nanoscale confinement, resulting in high sensitivity. The sensor achieves an impressive sensitivity of 17,750 nm/RIU (refractive index unit) and a FoM of 2218 (RIU −1 ) for n  = 1.456 at the optimum value of Δ R  = ( R out  −  R in ) = 200 nm. These metallic cylindrical channels exhibit distinct responses to different analytes across a wide range of Δ R , enabling simultaneous detection of various types of biomolecules. These exceptional properties make the sensor suitable for a broad range of applications, including real-time chemical and biological sensing. Furthermore, it offers the potential to create compact devices for measuring different refractive indices.
Author AbdelMalek, Fathi
Hedhy, Manel
Zeng, Shuwen
Ouerghi, Faouzi
Author_xml – sequence: 1
  givenname: Manel
  surname: Hedhy
  fullname: Hedhy, Manel
  organization: Faculty of Sciences, Laboratory of Advanced Materials and Quantum Phenomena
– sequence: 2
  givenname: Faouzi
  surname: Ouerghi
  fullname: Ouerghi, Faouzi
  organization: Faculty of Sciences, Laboratory of Advanced Materials and Quantum Phenomena
– sequence: 3
  givenname: Shuwen
  surname: Zeng
  fullname: Zeng, Shuwen
  email: shuwen.zeng@cnrs.fr
  organization: Light, Nanomaterials and Nanotechnologies (L2n), CNRS-EMR 7004, Université de Technologie de Troyes, XLIM Research Institute, UMR 7252 CNRS/University of Limoges
– sequence: 4
  givenname: Fathi
  surname: AbdelMalek
  fullname: AbdelMalek, Fathi
  organization: National Institute of Applied Science and Technology, University of Carthage
BackLink https://hal.science/hal-04800702$$DView record in HAL
BookMark eNp9kMFPwjAYxRuDiYj-A56aePIw_bp23XZEokCCelDOTTdaKRkttgPDf29hBm8emjavv_fyfe8S9ayzCqEbAvcEIH8IhDBeJJDSeAgtk_wM9UmW5QkpOe2d3ll2gS5DWAEwxjjro_l0vfFupxb4XdlgWrMz7R47jeVRcB4_yhB_ncUvqpVNY2r8Kq1L6n1j7EJ5PHKyjcC3aZd47OVmqay6QudaNkFd_94DNH9--hhNktnbeDoazpKaAmsTJhnNIQ6ldZVywssFJzVlvGQVLauaKKajKjOleV7IgqcgK62JrgvJUsY0HaC7LncpG7HxZi39XjhpxGQ4EwcNWBHrgXRHInvbsXHfr60KrVi5rbdxPEGh4EAhyyFSaUfV3oXglT7FEhCHqkVXtYhVi2PVIo8m2plChO2n8n_R_7h-AA_mgVU
Cites_doi 10.1016/j.rinp.2021.104795
10.1007/s11468-016-0351-x
10.1038/nphoton.2010.315
10.1109/JLT.2005.863333
10.1016/j.sbsr.2021.100440
10.1021/acs.nanolett.7b01082
10.1039/C4AN01079E
10.1109/JSEN.2020.3016570
10.1103/PhysRevB.6.4370
10.1007/s11468-010-9149-4
10.1016/j.optcom.2022.128429
10.1021/cr200061k
10.3390/s110706856
10.1126/science.1253213
10.1364/OE.442954
10.1364/OE.23.015716
10.1364/OE.18.013529
10.1016/j.ijleo.2022.169551
10.1038/nmat3839
10.1038/s41467-018-03434-2
10.1117/12.2264068
10.1364/OE.439974
10.1016/j.snb.2014.10.066
10.1109/JPHOT.2016.2630308
10.1364/OL.28.002506
10.1117/12.388073
10.1109/JSEN.2020.2983545
10.1007/s11468-017-0570-9
10.1364/OE.15.011413
10.1126/science.1232009
10.1103/PhysRevLett.97.157406
10.1109/JLT.2009.2021488
10.1103/PhysRevB.62.R7683
10.1143/JJAP.29.L698
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
DOI 10.1007/s11468-023-02139-7
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1557-1963
EndPage 2060
ExternalDocumentID oai_HAL_hal_04800702v1
10_1007_s11468_023_02139_7
GroupedDBID -58
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
123
1N0
203
29O
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
5VS
67Z
6NX
875
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG5
HG6
HLICF
HMJXF
HRMNR
HVGLF
HZ~
I-F
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
N2Q
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P9N
PF0
PT4
QOR
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
YLTOR
Z45
Z7V
Z7X
Z7Y
Z83
Z85
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
1XC
ID FETCH-LOGICAL-c304t-4a4370955ffb26169d61c34694b39bc1e4f616a5ef678a8620abff1fc8a4244f3
IEDL.DBID U2A
ISSN 1557-1955
IngestDate Thu Aug 28 06:33:03 EDT 2025
Sat Jul 26 03:04:14 EDT 2025
Tue Jul 01 02:01:18 EDT 2025
Fri Feb 21 02:39:51 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Biomolecules
Graphene nano-cylinder
Surface plasmon
High sensitivity
surface Plasmon. I
High sensitivity biomolecules graphene nano-cylinder surface Plasmon. I
graphene nano-cylinder
biomolecules
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c304t-4a4370955ffb26169d61c34694b39bc1e4f616a5ef678a8620abff1fc8a4244f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2188-7213
PQID 3086030570
PQPubID 2044107
PageCount 8
ParticipantIDs hal_primary_oai_HAL_hal_04800702v1
proquest_journals_3086030570
crossref_primary_10_1007_s11468_023_02139_7
springer_journals_10_1007_s11468_023_02139_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Plasmonics (Norwell, Mass.)
PublicationTitleAbbrev Plasmonics
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Springer Verlag
Publisher_xml – name: Springer US
– name: Springer Nature B.V
– name: Springer Verlag
References (2022) A highly sensitive plasmonic refractive index sensor based on concentric triple ring resonator for cancer biomarker and chemical concentration detection. Opt Commun  519(15):128429
ChenRTranT-TNgKWKoWSChuangLCSedgwickFHasnainCNanolasers grown on siliconNat Photonics201151701:CAS:528:DC%2BC3MXisFWqsrc%3D10.1038/nphoton.2010.315
HalasNJLalSChangW-SLinkSNordlanderPPlasmons in strongly coupled metallic nanostructuresChem Rev2011111391339611:CAS:528:DC%2BC3MXls1eks78%3D10.1021/cr200061k21542636
KwonMSTheoretical investigation of an interferometer-type plasmonic biosensor using a metal-insulator-silicon waveguidePlasmonics2010543471:CAS:528:DC%2BC3cXhsV2gurjE10.1007/s11468-010-9149-4
Sell D, Yang J, Doshay S, Yang R, Fan JA (2017) Large-Angle, multifunctional metagratings based on freeform multimode geometries. Nano Lett 17:3752–3757
YuNCapassoFFlat optics with designer metasurfacesNat Mater2014131391501:CAS:528:DC%2BC2cXhtVymsr4%3D10.1038/nmat383924452357
ZhouLSunXLiXChenJMiniature microring resonator sensor based on a hybrid plasmonic waveguideSensors201111768561:CAS:528:DC%2BC3MXovVygtLs%3D10.3390/s110706856221639893231671
Yun JG, Kim J, Lee K, Lee Y, Lee B (2017) Numerical study on refractive index sensor based on hybrid-plasmonic mode. Proc SPIE 10323:103236U
GauvreauBHassaniAFehriMFKabashinASkorobogatiyMPhotonic bandgap fiber-based surface plasmon resonance sensorsOpt Express200715114131:CAS:528:DC%2BD2sXhsVWhtL%2FN10.1364/OE.15.01141319547499
Zhao H, Miao P, Teimourpour MH, Malazard S, El-Ghanainy R, Schomerus H, Feng L (2018) Topological hybrid silicon microlasers. Nat Commun 9:981
Cog-shaped refractive index sensor embedded with gold nanorods for temperature sensing of multiple analytes. Opt Exp 29(23):37541–37554
CentenoEFelbacqD“Optical bistability in finite-size nonlinear bidimensionnal photonic crystals doped by a microcavity’’ PhysRev B200062R7683R76861:CAS:528:DC%2BD3cXmslWksrs%3D10.1103/PhysRevB.62.R7683
TaliercioTNtsame GuilenguiVCeruttiLRodriguezJ-BTourniéEGaSb-based all-semiconductor mid-IR plasmonicsProc SPIE2013863186318672
AboketafAAElshaariAWPrebleSFOptical time division multiplexer on silicon chipOpt Express20101813529135351:CAS:528:DC%2BC3cXotFOmtrc%3D10.1364/OE.18.01352920588483
YanikMFFanSSoljacicMJoannopoulosJDOpt Lett200328250610.1364/OL.28.00250614690129
Omri M, Ouerghi F, Abdel Malek F, Haxha S (2020) Highly sensitive photonic sensor based on V-shaped channel mediated gold nanowire. IEEE Sens J 20(15):01
NyagiloJChangSHWuJHaoYD. P. Dave’, fiber-tip plasmonic resonators for label-free biosensingSens Actuators B20152122251:CAS:528:DC%2BC2cXitVWkt7zP10.1016/j.snb.2014.10.066
LiuBLuYYangXYaoJTunable surface plasmon resonance sensor based on photonic crystal fiber filled with gold nanoshellsPlasmonics2018137631:CAS:528:DC%2BC2sXlslehu7k%3D10.1007/s11468-017-0570-9
Gas-sensing and label-free detection of biomaterials employing multiple rings structured plasmonic nanosensor. Sens Bio-Sens Res 33:100440
ChaoCYJay GuoLDesign and optimization of microring resonators in biochemical sensing applicationsJ Lightwave Technol2006243139514021:CAS:528:DC%2BD28XjtlGjsbw%3D10.1109/JLT.2005.863333
Kildishev AV, Boltasseva A,  Shalaev VM (2013) Planar photonics with metasurfaces. Science 339
An optimized dielectric-metal-dielectric refractive index nanosensor. In IEEE Sens J 21(2):1461–1469
Rakhshani MR, Mansouri-Birjandi MA (2016) Utilizing the metallic nano-rods in hexagonal configuration to enhance sensitivity of plasmonic racetrack in resonator applications, Plasmonics
Lazarides N, Eleftheriou M, Tsironis GP (2006) Phys Rev Let 97:157406
LinDFanPHasmanEBrongersmaMLDielectric gradient metasurface optical elementsScience20143452981:CAS:528:DC%2BC2cXhtFCqs7nI10.1126/science.125321325035488
TokumitsuECorrelation between fermi level stabilization positions and maximum free carrier concentrations in III–V compound semiconductorsJpn J Appl Phys1990292L698L7011:CAS:528:DyaK3cXkvV2isLg%3D10.1143/JJAP.29.L698
OuerghiFAbdelMalekFHaxhaSAidRMejattyHDayoubINanophotonic sensor based on photonic crystal structure using negative refraction for effective light couplingJ Lightwave Technol20092715326932741:CAS:528:DC%2BD1MXhtFaks77J10.1109/JLT.2009.2021488
Ishizaka Y, Makino S, Fujisawa T, Saitoh K (2017) A metal-assisted silicon slot waveguide for highly sensitive gas detection. IEEE Photon J 9(1):6800609
Alternative material titanium nitride based refractive index sensor embedded with defects: an emerging solution in sensing arena. Results Phys 29:104795
RouxSBarritaultPLartigueOCeruttiLTourniéEGérardBGrisardAMid-infrared characterization of refractive indices and propagation losses in GaSb/ AlXGa1−XAsSb waveguides ApplPhys Lett2015107
(2021) Metal-insulator-metal waveguide-based optical pressure sensor embedded with arrays of silver nanorods. Opt Express 29:32365–32376
LiHLinIXieSRefractive Index of whole human blood with different types in visible and near-infrared rangesPrc SPIE2000361451710.1117/12.388073
Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6(12)
OtupiriRAkowuahEKHaxhaSMulti-channel SPR biosensor based on PCF for multi-analyte sensing applicationsOpt Express201523157161:CAS:528:DC%2BC2sXks1Wms7s%3D10.1364/OE.23.01571626193550
GusyninVPSharapovSGCarbotteJPMagneto-optical conductivity in grapheneJ Phys: Condens Matter2007192
LiMCushingSKWuNPlasmon-enhanced optical sensor, a reviewAnalyst20151403861:CAS:528:DC%2BC2cXhs1yhu7vM10.1039/C4AN01079E253658234274271
Hedh M, Ouerghi F, Kaabi L, Alwardi A, Haxha S, Ademgil H, Akowuah EK, Abdel Malek F (2022) Theoretical simulation of DNA hybridization based on cascaded plasmonic V-shaped channel biosensor. Optik 265:169551
R Otupiri (2139_CR19) 2015; 23
2139_CR18
AA Aboketaf (2139_CR9) 2010; 18
T Taliercio (2139_CR29) 2013; 8631
B Gauvreau (2139_CR20) 2007; 15
R Chen (2139_CR8) 2011; 5
H Li (2139_CR34) 2000; 3614
2139_CR30
VP Gusynin (2139_CR32) 2007; 19
2139_CR13
E Centeno (2139_CR7) 2000; 62
2139_CR11
L Zhou (2139_CR14) 2011; 11
2139_CR10
M Li (2139_CR12) 2015; 140
2139_CR37
2139_CR36
CY Chao (2139_CR35) 2006; 24
MS Kwon (2139_CR15) 2010; 5
E Tokumitsu (2139_CR28) 1990; 29
S Roux (2139_CR31) 2015; 107
2139_CR3
2139_CR4
2139_CR1
J Nyagilo (2139_CR16) 2015; 212
MF Yanik (2139_CR2) 2003; 28
D Lin (2139_CR6) 2014; 345
B Liu (2139_CR17) 2018; 13
2139_CR24
2139_CR23
2139_CR22
2139_CR21
N Yu (2139_CR5) 2014; 13
NJ Halas (2139_CR27) 2011; 111
2139_CR26
F Ouerghi (2139_CR33) 2009; 27
2139_CR25
References_xml – reference: Cog-shaped refractive index sensor embedded with gold nanorods for temperature sensing of multiple analytes. Opt Exp 29(23):37541–37554
– reference: GauvreauBHassaniAFehriMFKabashinASkorobogatiyMPhotonic bandgap fiber-based surface plasmon resonance sensorsOpt Express200715114131:CAS:528:DC%2BD2sXhsVWhtL%2FN10.1364/OE.15.01141319547499
– reference: Gas-sensing and label-free detection of biomaterials employing multiple rings structured plasmonic nanosensor. Sens Bio-Sens Res 33:100440
– reference: LiMCushingSKWuNPlasmon-enhanced optical sensor, a reviewAnalyst20151403861:CAS:528:DC%2BC2cXhs1yhu7vM10.1039/C4AN01079E253658234274271
– reference: ChenRTranT-TNgKWKoWSChuangLCSedgwickFHasnainCNanolasers grown on siliconNat Photonics201151701:CAS:528:DC%2BC3MXisFWqsrc%3D10.1038/nphoton.2010.315
– reference: Zhao H, Miao P, Teimourpour MH, Malazard S, El-Ghanainy R, Schomerus H, Feng L (2018) Topological hybrid silicon microlasers. Nat Commun 9:981
– reference: YuNCapassoFFlat optics with designer metasurfacesNat Mater2014131391501:CAS:528:DC%2BC2cXhtVymsr4%3D10.1038/nmat383924452357
– reference: LiHLinIXieSRefractive Index of whole human blood with different types in visible and near-infrared rangesPrc SPIE2000361451710.1117/12.388073
– reference: Omri M, Ouerghi F, Abdel Malek F, Haxha S (2020) Highly sensitive photonic sensor based on V-shaped channel mediated gold nanowire. IEEE Sens J 20(15):01
– reference: Sell D, Yang J, Doshay S, Yang R, Fan JA (2017) Large-Angle, multifunctional metagratings based on freeform multimode geometries. Nano Lett 17:3752–3757
– reference: Ishizaka Y, Makino S, Fujisawa T, Saitoh K (2017) A metal-assisted silicon slot waveguide for highly sensitive gas detection. IEEE Photon J 9(1):6800609
– reference: CentenoEFelbacqD“Optical bistability in finite-size nonlinear bidimensionnal photonic crystals doped by a microcavity’’ PhysRev B200062R7683R76861:CAS:528:DC%2BD3cXmslWksrs%3D10.1103/PhysRevB.62.R7683
– reference: HalasNJLalSChangW-SLinkSNordlanderPPlasmons in strongly coupled metallic nanostructuresChem Rev2011111391339611:CAS:528:DC%2BC3MXls1eks78%3D10.1021/cr200061k21542636
– reference: YanikMFFanSSoljacicMJoannopoulosJDOpt Lett200328250610.1364/OL.28.00250614690129
– reference: (2022) A highly sensitive plasmonic refractive index sensor based on concentric triple ring resonator for cancer biomarker and chemical concentration detection. Opt Commun  519(15):128429
– reference: KwonMSTheoretical investigation of an interferometer-type plasmonic biosensor using a metal-insulator-silicon waveguidePlasmonics2010543471:CAS:528:DC%2BC3cXhsV2gurjE10.1007/s11468-010-9149-4
– reference: An optimized dielectric-metal-dielectric refractive index nanosensor. In IEEE Sens J 21(2):1461–1469
– reference: Kildishev AV, Boltasseva A,  Shalaev VM (2013) Planar photonics with metasurfaces. Science 339
– reference: TokumitsuECorrelation between fermi level stabilization positions and maximum free carrier concentrations in III–V compound semiconductorsJpn J Appl Phys1990292L698L7011:CAS:528:DyaK3cXkvV2isLg%3D10.1143/JJAP.29.L698
– reference: Hedh M, Ouerghi F, Kaabi L, Alwardi A, Haxha S, Ademgil H, Akowuah EK, Abdel Malek F (2022) Theoretical simulation of DNA hybridization based on cascaded plasmonic V-shaped channel biosensor. Optik 265:169551
– reference: ChaoCYJay GuoLDesign and optimization of microring resonators in biochemical sensing applicationsJ Lightwave Technol2006243139514021:CAS:528:DC%2BD28XjtlGjsbw%3D10.1109/JLT.2005.863333
– reference: OuerghiFAbdelMalekFHaxhaSAidRMejattyHDayoubINanophotonic sensor based on photonic crystal structure using negative refraction for effective light couplingJ Lightwave Technol20092715326932741:CAS:528:DC%2BD1MXhtFaks77J10.1109/JLT.2009.2021488
– reference: GusyninVPSharapovSGCarbotteJPMagneto-optical conductivity in grapheneJ Phys: Condens Matter2007192
– reference: TaliercioTNtsame GuilenguiVCeruttiLRodriguezJ-BTourniéEGaSb-based all-semiconductor mid-IR plasmonicsProc SPIE2013863186318672
– reference: Rakhshani MR, Mansouri-Birjandi MA (2016) Utilizing the metallic nano-rods in hexagonal configuration to enhance sensitivity of plasmonic racetrack in resonator applications, Plasmonics
– reference: (2021) Metal-insulator-metal waveguide-based optical pressure sensor embedded with arrays of silver nanorods. Opt Express 29:32365–32376
– reference: OtupiriRAkowuahEKHaxhaSMulti-channel SPR biosensor based on PCF for multi-analyte sensing applicationsOpt Express201523157161:CAS:528:DC%2BC2sXks1Wms7s%3D10.1364/OE.23.01571626193550
– reference: Alternative material titanium nitride based refractive index sensor embedded with defects: an emerging solution in sensing arena. Results Phys 29:104795
– reference: Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6(12)
– reference: ZhouLSunXLiXChenJMiniature microring resonator sensor based on a hybrid plasmonic waveguideSensors201111768561:CAS:528:DC%2BC3MXovVygtLs%3D10.3390/s110706856221639893231671
– reference: RouxSBarritaultPLartigueOCeruttiLTourniéEGérardBGrisardAMid-infrared characterization of refractive indices and propagation losses in GaSb/ AlXGa1−XAsSb waveguides ApplPhys Lett2015107
– reference: LinDFanPHasmanEBrongersmaMLDielectric gradient metasurface optical elementsScience20143452981:CAS:528:DC%2BC2cXhtFCqs7nI10.1126/science.125321325035488
– reference: Lazarides N, Eleftheriou M, Tsironis GP (2006) Phys Rev Let 97:157406
– reference: AboketafAAElshaariAWPrebleSFOptical time division multiplexer on silicon chipOpt Express20101813529135351:CAS:528:DC%2BC3cXotFOmtrc%3D10.1364/OE.18.01352920588483
– reference: NyagiloJChangSHWuJHaoYD. P. Dave’, fiber-tip plasmonic resonators for label-free biosensingSens Actuators B20152122251:CAS:528:DC%2BC2cXitVWkt7zP10.1016/j.snb.2014.10.066
– reference: LiuBLuYYangXYaoJTunable surface plasmon resonance sensor based on photonic crystal fiber filled with gold nanoshellsPlasmonics2018137631:CAS:528:DC%2BC2sXlslehu7k%3D10.1007/s11468-017-0570-9
– reference: Yun JG, Kim J, Lee K, Lee Y, Lee B (2017) Numerical study on refractive index sensor based on hybrid-plasmonic mode. Proc SPIE 10323:103236U
– ident: 2139_CR23
  doi: 10.1016/j.rinp.2021.104795
– ident: 2139_CR11
  doi: 10.1007/s11468-016-0351-x
– volume: 5
  start-page: 170
  year: 2011
  ident: 2139_CR8
  publication-title: Nat Photonics
  doi: 10.1038/nphoton.2010.315
– volume: 24
  start-page: 1395
  issue: 3
  year: 2006
  ident: 2139_CR35
  publication-title: J Lightwave Technol
  doi: 10.1109/JLT.2005.863333
– ident: 2139_CR25
  doi: 10.1016/j.sbsr.2021.100440
– ident: 2139_CR3
  doi: 10.1021/acs.nanolett.7b01082
– volume: 140
  start-page: 386
  year: 2015
  ident: 2139_CR12
  publication-title: Analyst
  doi: 10.1039/C4AN01079E
– volume: 8631
  start-page: 8631
  year: 2013
  ident: 2139_CR29
  publication-title: Proc SPIE
– ident: 2139_CR26
  doi: 10.1109/JSEN.2020.3016570
– volume: 107
  year: 2015
  ident: 2139_CR31
  publication-title: Phys Lett
– ident: 2139_CR30
  doi: 10.1103/PhysRevB.6.4370
– volume: 5
  start-page: 347
  issue: 4
  year: 2010
  ident: 2139_CR15
  publication-title: Plasmonics
  doi: 10.1007/s11468-010-9149-4
– ident: 2139_CR21
  doi: 10.1016/j.optcom.2022.128429
– volume: 111
  start-page: 3913
  year: 2011
  ident: 2139_CR27
  publication-title: Chem Rev
  doi: 10.1021/cr200061k
– volume: 11
  start-page: 6856
  issue: 7
  year: 2011
  ident: 2139_CR14
  publication-title: Sensors
  doi: 10.3390/s110706856
– volume: 345
  start-page: 298
  year: 2014
  ident: 2139_CR6
  publication-title: Science
  doi: 10.1126/science.1253213
– ident: 2139_CR24
  doi: 10.1364/OE.442954
– volume: 23
  start-page: 15716
  year: 2015
  ident: 2139_CR19
  publication-title: Opt Express
  doi: 10.1364/OE.23.015716
– volume: 18
  start-page: 13529
  year: 2010
  ident: 2139_CR9
  publication-title: Opt Express
  doi: 10.1364/OE.18.013529
– ident: 2139_CR36
  doi: 10.1016/j.ijleo.2022.169551
– volume: 13
  start-page: 139
  year: 2014
  ident: 2139_CR5
  publication-title: Nat Mater
  doi: 10.1038/nmat3839
– ident: 2139_CR10
  doi: 10.1038/s41467-018-03434-2
– ident: 2139_CR18
  doi: 10.1117/12.2264068
– ident: 2139_CR22
  doi: 10.1364/OE.439974
– volume: 212
  start-page: 225
  year: 2015
  ident: 2139_CR16
  publication-title: Sens Actuators B
  doi: 10.1016/j.snb.2014.10.066
– ident: 2139_CR13
  doi: 10.1109/JPHOT.2016.2630308
– volume: 28
  start-page: 2506
  year: 2003
  ident: 2139_CR2
  publication-title: Opt Lett
  doi: 10.1364/OL.28.002506
– volume: 3614
  start-page: 517
  year: 2000
  ident: 2139_CR34
  publication-title: Prc SPIE
  doi: 10.1117/12.388073
– ident: 2139_CR37
  doi: 10.1109/JSEN.2020.2983545
– volume: 13
  start-page: 763
  year: 2018
  ident: 2139_CR17
  publication-title: Plasmonics
  doi: 10.1007/s11468-017-0570-9
– volume: 15
  start-page: 11413
  year: 2007
  ident: 2139_CR20
  publication-title: Opt Express
  doi: 10.1364/OE.15.011413
– ident: 2139_CR4
  doi: 10.1126/science.1232009
– ident: 2139_CR1
  doi: 10.1103/PhysRevLett.97.157406
– volume: 27
  start-page: 3269
  issue: 15
  year: 2009
  ident: 2139_CR33
  publication-title: J Lightwave Technol
  doi: 10.1109/JLT.2009.2021488
– volume: 19
  issue: 2
  year: 2007
  ident: 2139_CR32
  publication-title: J Phys: Condens Matter
– volume: 62
  start-page: R7683
  year: 2000
  ident: 2139_CR7
  publication-title: Rev B
  doi: 10.1103/PhysRevB.62.R7683
– volume: 29
  start-page: L698
  issue: 2
  year: 1990
  ident: 2139_CR28
  publication-title: Jpn J Appl Phys
  doi: 10.1143/JJAP.29.L698
SSID ssj0044464
Score 2.3455799
Snippet This paper introduces a highly sensitive biosensor based on a plasmonic nanostructure-enhanced resonance effect. The sensor exploits a hexagonal photonic...
SourceID hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 2053
SubjectTerms Biochemistry
Biological and Medical Physics
Biological properties
Biomolecules
Biophysics
Biosensors
Biotechnology
Chemistry
Chemistry and Materials Science
Crystal defects
Cylinders
Electric fields
Engineering Sciences
Graphene
Measuring instruments
Nanotechnology
Optical properties
Optics
Photonic
Photonic crystals
Plasmonics
Polaritons
Real time
Refractivity
Sensitivity enhancement
Sensors
Title Improved Sensitivity of a Sensor Based on Metallic Nano-cylinder Coated with Graphene
URI https://link.springer.com/article/10.1007/s11468-023-02139-7
https://www.proquest.com/docview/3086030570
https://hal.science/hal-04800702
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH64DdGL6FSszhHEmwbaJW3XYx37gTovWpin0qQNCqOVbQr-976krVPRg4de0tDCy-v33td87wXgXKUC3YRrdT9yE-7YkvbTIKWOQmfAAJRkShPF6Z03ifj1zJ1VRWHLWu1eb0kapF4Xu5kqIYwxeGHeQv0GtFzk7lrIFfXCGn85Ehyzl-y6PnUC161KZX5_xrdw1HjSYsgvmeaPzVETc0a7sFMliyQsV3cPNrK8DVuD-oy2NmwaAadc7kNU_h3IUnKvJenlmRCkUCQxA8WCXGG8SkmRk2mGCff8WRJE1oLK97numLgggwLTzpToH7NkrNtYIwoeQDQaPgwmtDoygUpm8xXlCWe-7iqnlEBu5AWp50iGFJgLFgjpZFzhaOJmCoNUgmzGToRSjpL9RFe8KXYIzbzIsyMg0pOSs54KfCG430v7iglkFz5CAsNldC24qC0Xv5SdMeJ1D2Rt5xjtHBs7x74FZ2jcz4m6qfUkvI31mK5qR-DpvTkWdGrbx9WntIwZki6NSr5twWW9Huvbf7_y-H_TT2AbnYmX4r4ONFeL1-wUE46V6EIrHD_eDLvGzz4APGXKIQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEB1sRfQiWhWjVRfxpoEku_k61mKN2vZiA70t2U0WhZJIWwX_vbP5sCp68JDLZklgdvLmvezMLMCFSgW6CdPZ_ahNmG1JM0jD1LQVOgMGoCRTWiiOxl4Us_upO62LwhZNtnuzJVki9arYrawSwhiDF_IW02_BOpKBQPty7PQa_GUocMq9ZNf1TTt03bpU5vdnfAtHrSedDPmFaf7YHC1jzmAHtmuySHrV6u7CWpZ3YLPfnNHWgY0ygVMu9iCu_g5kKXnUKenVmRCkUCQpB4o5ucZ4lZIiJ6MMCffsWRJE1sKU7zPdMXFO-gXSzpToH7PkVrexRhTch3hwM-lHZn1kgimpxZYmSxj1dVc5pQRqIy9MPVtSlMBM0FBIO2MKRxM3UxikElQzViKUspUMEl3xpugBtPMizw6BSE9KRh0V-kIw30kDRQWqCx8hgeIyugZcNpbjL1VnDL7qgaztzNHOvLQz9w04R-N-TtRNraPekOsxXdWOwOO82QZ0G9vz-lNacIqiS6OSbxlw1azH6vbfrzz63_Qz2IwmoyEf3o0fjmHLQfJSJfp1ob2cv2YnSD6W4rT0tQ-PCsuA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED7cxB8volNxOjWIb1q2Num6Ps7pnLoNQQt7C03SoDDasU3B_95Lf7gp-uBDX9LQwuV6933NfReAc60Eugkz1f3ITZjdkFZL-cqyNToDJqAw0oYoDobNXsDuR-5oScWfVrsXW5KZpsF0aYrn9YnS9YXwLVUMYb7BCzGM5ZVglRk1MHp04LSLWMyQ7KT7yq7rWbbvurls5vdnfEtNpRdTGLmEOn9slKb5p7sNWzlwJO1spXdgJYorsNEpzmurwFpazClnuxBkfwoiRZ5MeXp2PgRJNAnTgWRKrjB3KZLEZBAh-B6_SoJRNrHkx9h0T5ySToIQVBHzk5bcmpbWGBH3IOjePHd6Vn58giVpg80tFjLqmQ5zWgvkSU1fNW1JkQ4zQX0h7YhpHA3dSGPCCpHZNEKhta1lKzTqN033oRwncXQARDalZNTRvicE8xzV0lQg0_AwPFBcUrcKF4Xl-CTrksEX_ZCNnTnamad25l4VztC4XxNNg-teu8_NmFG4YxBy3u0q1Arb8_yzmnGKBMxEKK9RhctiPRa3_37l4f-mn8L643WX9--GD0ew6SCOyWr-alCeT9-iY8Qhc3GSutonpa3Psw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Sensitivity+of+a+Sensor+Based+on+Metallic+Nano-cylinder+Coated+with+Graphene&rft.jtitle=Plasmonics+%28Norwell%2C+Mass.%29&rft.au=Hedhy%2C+Manel&rft.au=Ouerghi%2C+Faouzi&rft.au=Zeng%2C+Shuwen&rft.au=Abdelmalek%2C+Fathi&rft.date=2024-08-01&rft.pub=Springer+Verlag&rft.issn=1557-1955&rft.eissn=1557-1963&rft.volume=19&rft.issue=4&rft.spage=2053&rft.epage=2060&rft_id=info:doi/10.1007%2Fs11468-023-02139-7&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_04800702v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1557-1955&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1557-1955&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1557-1955&client=summon