Improved Sensitivity of a Sensor Based on Metallic Nano-cylinder Coated with Graphene
This paper introduces a highly sensitive biosensor based on a plasmonic nanostructure-enhanced resonance effect. The sensor exploits a hexagonal photonic crystal composed of plasmonic nano-cylinders, including a graphene nano-cylinder as a defect, which can considerably increase the concentration of...
Saved in:
Published in | Plasmonics (Norwell, Mass.) Vol. 19; no. 4; pp. 2053 - 2060 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.08.2024
Springer Nature B.V Springer Verlag |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper introduces a highly sensitive biosensor based on a plasmonic nanostructure-enhanced resonance effect. The sensor exploits a hexagonal photonic crystal composed of plasmonic nano-cylinders, including a graphene nano-cylinder as a defect, which can considerably increase the concentration of electric fields. This amplification enables the detection of tiny variations in refractive indices linked to a laser source for plasmonic excitation. Each defect consists of a hollow metallic cylinder surrounded by graphene, all within a metallic matrix. During the sensing process, surface plasmon polaritons interact with the core-guided modes of the patterns, which are subsequently filled with the analytes to be measured. The nano-cylinders’ width is optimized to take advantage of their unique optical properties in nanoscale confinement, resulting in high sensitivity. The sensor achieves an impressive sensitivity of 17,750 nm/RIU (refractive index unit) and a FoM of 2218 (RIU
−1
) for
n
= 1.456 at the optimum value of Δ
R
= (
R
out
−
R
in
) = 200 nm. These metallic cylindrical channels exhibit distinct responses to different analytes across a wide range of Δ
R
, enabling simultaneous detection of various types of biomolecules. These exceptional properties make the sensor suitable for a broad range of applications, including real-time chemical and biological sensing. Furthermore, it offers the potential to create compact devices for measuring different refractive indices. |
---|---|
AbstractList | This paper introduces a highly sensitive biosensor based on a plasmonic nanostructure-enhanced resonance effect. The sensor exploits a hexagonal photonic crystal composed of plasmonic nano-cylinders, including a graphene nano-cylinder as a defect, which can considerably increase the concentration of electric fields. This amplification enables the detection of tiny variations in refractive indices linked to a laser source for plasmonic excitation. Each defect consists of a hollow metallic cylinder surrounded by graphene, all within a metallic matrix. During the sensing process, surface plasmon polaritons interact with the core-guided modes of the patterns, which are subsequently filled with the analytes to be measured. The nano-cylinders’ width is optimized to take advantage of their unique optical properties in nanoscale confinement, resulting in high sensitivity. The sensor achieves an impressive sensitivity of 17,750 nm/RIU (refractive index unit) and a FoM of 2218 (RIU−1) for n = 1.456 at the optimum value of ΔR = (Rout − Rin) = 200 nm. These metallic cylindrical channels exhibit distinct responses to different analytes across a wide range of ΔR, enabling simultaneous detection of various types of biomolecules. These exceptional properties make the sensor suitable for a broad range of applications, including real-time chemical and biological sensing. Furthermore, it offers the potential to create compact devices for measuring different refractive indices. This paper introduces a highly sensitive biosensor based on a plasmonic nanostructure-enhanced resonance effect. The sensor exploits a hexagonal photonic crystal composed of plasmonic nano-cylinders, including a graphene nano-cylinder as a defect, which can considerably increase the concentration of electric fields. This amplification enables the detection of tiny variations in refractive indices linked to a laser source for plasmonic excitation. Each defect consists of a hollow metallic cylinder surrounded by graphene, all within a metallic matrix. During the sensing process, surface plasmon polaritons interact with the core-guided modes of the patterns, which are subsequently filled with the analytes to be measured. The nano-cylinders’ width is optimized to take advantage of their unique optical properties in nanoscale confinement, resulting in high sensitivity. The sensor achieves an impressive sensitivity of 17,750 nm/RIU (refractive index unit) and a FoM of 2218 (RIU^−1) for n = 1.456 at the optimum value of ΔR = (Rout − Rin) = 200 nm. These metallic cylindrical channels exhibit distinct responses to different analytes across a wide range of ΔR, enabling simultaneous detection of various types of biomolecules. These exceptional properties make the sensor suitable for a broad range of applications, including real-time chemical and biological sensing. Furthermore, it offers the potential to create compact devices for measuring different refractive indices. This paper introduces a highly sensitive biosensor based on a plasmonic nanostructure-enhanced resonance effect. The sensor exploits a hexagonal photonic crystal composed of plasmonic nano-cylinders, including a graphene nano-cylinder as a defect, which can considerably increase the concentration of electric fields. This amplification enables the detection of tiny variations in refractive indices linked to a laser source for plasmonic excitation. Each defect consists of a hollow metallic cylinder surrounded by graphene, all within a metallic matrix. During the sensing process, surface plasmon polaritons interact with the core-guided modes of the patterns, which are subsequently filled with the analytes to be measured. The nano-cylinders’ width is optimized to take advantage of their unique optical properties in nanoscale confinement, resulting in high sensitivity. The sensor achieves an impressive sensitivity of 17,750 nm/RIU (refractive index unit) and a FoM of 2218 (RIU −1 ) for n = 1.456 at the optimum value of Δ R = ( R out − R in ) = 200 nm. These metallic cylindrical channels exhibit distinct responses to different analytes across a wide range of Δ R , enabling simultaneous detection of various types of biomolecules. These exceptional properties make the sensor suitable for a broad range of applications, including real-time chemical and biological sensing. Furthermore, it offers the potential to create compact devices for measuring different refractive indices. |
Author | AbdelMalek, Fathi Hedhy, Manel Zeng, Shuwen Ouerghi, Faouzi |
Author_xml | – sequence: 1 givenname: Manel surname: Hedhy fullname: Hedhy, Manel organization: Faculty of Sciences, Laboratory of Advanced Materials and Quantum Phenomena – sequence: 2 givenname: Faouzi surname: Ouerghi fullname: Ouerghi, Faouzi organization: Faculty of Sciences, Laboratory of Advanced Materials and Quantum Phenomena – sequence: 3 givenname: Shuwen surname: Zeng fullname: Zeng, Shuwen email: shuwen.zeng@cnrs.fr organization: Light, Nanomaterials and Nanotechnologies (L2n), CNRS-EMR 7004, Université de Technologie de Troyes, XLIM Research Institute, UMR 7252 CNRS/University of Limoges – sequence: 4 givenname: Fathi surname: AbdelMalek fullname: AbdelMalek, Fathi organization: National Institute of Applied Science and Technology, University of Carthage |
BackLink | https://hal.science/hal-04800702$$DView record in HAL |
BookMark | eNp9kMFPwjAYxRuDiYj-A56aePIw_bp23XZEokCCelDOTTdaKRkttgPDf29hBm8emjavv_fyfe8S9ayzCqEbAvcEIH8IhDBeJJDSeAgtk_wM9UmW5QkpOe2d3ll2gS5DWAEwxjjro_l0vfFupxb4XdlgWrMz7R47jeVRcB4_yhB_ncUvqpVNY2r8Kq1L6n1j7EJ5PHKyjcC3aZd47OVmqay6QudaNkFd_94DNH9--hhNktnbeDoazpKaAmsTJhnNIQ6ldZVywssFJzVlvGQVLauaKKajKjOleV7IgqcgK62JrgvJUsY0HaC7LncpG7HxZi39XjhpxGQ4EwcNWBHrgXRHInvbsXHfr60KrVi5rbdxPEGh4EAhyyFSaUfV3oXglT7FEhCHqkVXtYhVi2PVIo8m2plChO2n8n_R_7h-AA_mgVU |
Cites_doi | 10.1016/j.rinp.2021.104795 10.1007/s11468-016-0351-x 10.1038/nphoton.2010.315 10.1109/JLT.2005.863333 10.1016/j.sbsr.2021.100440 10.1021/acs.nanolett.7b01082 10.1039/C4AN01079E 10.1109/JSEN.2020.3016570 10.1103/PhysRevB.6.4370 10.1007/s11468-010-9149-4 10.1016/j.optcom.2022.128429 10.1021/cr200061k 10.3390/s110706856 10.1126/science.1253213 10.1364/OE.442954 10.1364/OE.23.015716 10.1364/OE.18.013529 10.1016/j.ijleo.2022.169551 10.1038/nmat3839 10.1038/s41467-018-03434-2 10.1117/12.2264068 10.1364/OE.439974 10.1016/j.snb.2014.10.066 10.1109/JPHOT.2016.2630308 10.1364/OL.28.002506 10.1117/12.388073 10.1109/JSEN.2020.2983545 10.1007/s11468-017-0570-9 10.1364/OE.15.011413 10.1126/science.1232009 10.1103/PhysRevLett.97.157406 10.1109/JLT.2009.2021488 10.1103/PhysRevB.62.R7683 10.1143/JJAP.29.L698 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 1XC |
DOI | 10.1007/s11468-023-02139-7 |
DatabaseName | CrossRef Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1557-1963 |
EndPage | 2060 |
ExternalDocumentID | oai_HAL_hal_04800702v1 10_1007_s11468_023_02139_7 |
GroupedDBID | -58 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 123 1N0 203 29O 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5VS 67Z 6NX 875 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HF~ HG5 HG6 HLICF HMJXF HRMNR HVGLF HZ~ I-F IHE IJ- IKXTQ ITM IWAJR IXC IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ KDC KOV LLZTM M4Y MA- N2Q NPVJJ NQJWS NU0 O9- O93 O9J P9N PF0 PT4 QOR QOS R89 R9I ROL RPX RSV S16 S1Z S27 S3B SAP SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 YLTOR Z45 Z7V Z7X Z7Y Z83 Z85 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ 1XC |
ID | FETCH-LOGICAL-c304t-4a4370955ffb26169d61c34694b39bc1e4f616a5ef678a8620abff1fc8a4244f3 |
IEDL.DBID | U2A |
ISSN | 1557-1955 |
IngestDate | Thu Aug 28 06:33:03 EDT 2025 Sat Jul 26 03:04:14 EDT 2025 Tue Jul 01 02:01:18 EDT 2025 Fri Feb 21 02:39:51 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Biomolecules Graphene nano-cylinder Surface plasmon High sensitivity surface Plasmon. I High sensitivity biomolecules graphene nano-cylinder surface Plasmon. I graphene nano-cylinder biomolecules |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c304t-4a4370955ffb26169d61c34694b39bc1e4f616a5ef678a8620abff1fc8a4244f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2188-7213 |
PQID | 3086030570 |
PQPubID | 2044107 |
PageCount | 8 |
ParticipantIDs | hal_primary_oai_HAL_hal_04800702v1 proquest_journals_3086030570 crossref_primary_10_1007_s11468_023_02139_7 springer_journals_10_1007_s11468_023_02139_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-08-01 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Plasmonics (Norwell, Mass.) |
PublicationTitleAbbrev | Plasmonics |
PublicationYear | 2024 |
Publisher | Springer US Springer Nature B.V Springer Verlag |
Publisher_xml | – name: Springer US – name: Springer Nature B.V – name: Springer Verlag |
References | (2022) A highly sensitive plasmonic refractive index sensor based on concentric triple ring resonator for cancer biomarker and chemical concentration detection. Opt Commun 519(15):128429 ChenRTranT-TNgKWKoWSChuangLCSedgwickFHasnainCNanolasers grown on siliconNat Photonics201151701:CAS:528:DC%2BC3MXisFWqsrc%3D10.1038/nphoton.2010.315 HalasNJLalSChangW-SLinkSNordlanderPPlasmons in strongly coupled metallic nanostructuresChem Rev2011111391339611:CAS:528:DC%2BC3MXls1eks78%3D10.1021/cr200061k21542636 KwonMSTheoretical investigation of an interferometer-type plasmonic biosensor using a metal-insulator-silicon waveguidePlasmonics2010543471:CAS:528:DC%2BC3cXhsV2gurjE10.1007/s11468-010-9149-4 Sell D, Yang J, Doshay S, Yang R, Fan JA (2017) Large-Angle, multifunctional metagratings based on freeform multimode geometries. Nano Lett 17:3752–3757 YuNCapassoFFlat optics with designer metasurfacesNat Mater2014131391501:CAS:528:DC%2BC2cXhtVymsr4%3D10.1038/nmat383924452357 ZhouLSunXLiXChenJMiniature microring resonator sensor based on a hybrid plasmonic waveguideSensors201111768561:CAS:528:DC%2BC3MXovVygtLs%3D10.3390/s110706856221639893231671 Yun JG, Kim J, Lee K, Lee Y, Lee B (2017) Numerical study on refractive index sensor based on hybrid-plasmonic mode. Proc SPIE 10323:103236U GauvreauBHassaniAFehriMFKabashinASkorobogatiyMPhotonic bandgap fiber-based surface plasmon resonance sensorsOpt Express200715114131:CAS:528:DC%2BD2sXhsVWhtL%2FN10.1364/OE.15.01141319547499 Zhao H, Miao P, Teimourpour MH, Malazard S, El-Ghanainy R, Schomerus H, Feng L (2018) Topological hybrid silicon microlasers. Nat Commun 9:981 Cog-shaped refractive index sensor embedded with gold nanorods for temperature sensing of multiple analytes. Opt Exp 29(23):37541–37554 CentenoEFelbacqD“Optical bistability in finite-size nonlinear bidimensionnal photonic crystals doped by a microcavity’’ PhysRev B200062R7683R76861:CAS:528:DC%2BD3cXmslWksrs%3D10.1103/PhysRevB.62.R7683 TaliercioTNtsame GuilenguiVCeruttiLRodriguezJ-BTourniéEGaSb-based all-semiconductor mid-IR plasmonicsProc SPIE2013863186318672 AboketafAAElshaariAWPrebleSFOptical time division multiplexer on silicon chipOpt Express20101813529135351:CAS:528:DC%2BC3cXotFOmtrc%3D10.1364/OE.18.01352920588483 YanikMFFanSSoljacicMJoannopoulosJDOpt Lett200328250610.1364/OL.28.00250614690129 Omri M, Ouerghi F, Abdel Malek F, Haxha S (2020) Highly sensitive photonic sensor based on V-shaped channel mediated gold nanowire. IEEE Sens J 20(15):01 NyagiloJChangSHWuJHaoYD. P. Dave’, fiber-tip plasmonic resonators for label-free biosensingSens Actuators B20152122251:CAS:528:DC%2BC2cXitVWkt7zP10.1016/j.snb.2014.10.066 LiuBLuYYangXYaoJTunable surface plasmon resonance sensor based on photonic crystal fiber filled with gold nanoshellsPlasmonics2018137631:CAS:528:DC%2BC2sXlslehu7k%3D10.1007/s11468-017-0570-9 Gas-sensing and label-free detection of biomaterials employing multiple rings structured plasmonic nanosensor. Sens Bio-Sens Res 33:100440 ChaoCYJay GuoLDesign and optimization of microring resonators in biochemical sensing applicationsJ Lightwave Technol2006243139514021:CAS:528:DC%2BD28XjtlGjsbw%3D10.1109/JLT.2005.863333 Kildishev AV, Boltasseva A, Shalaev VM (2013) Planar photonics with metasurfaces. Science 339 An optimized dielectric-metal-dielectric refractive index nanosensor. In IEEE Sens J 21(2):1461–1469 Rakhshani MR, Mansouri-Birjandi MA (2016) Utilizing the metallic nano-rods in hexagonal configuration to enhance sensitivity of plasmonic racetrack in resonator applications, Plasmonics Lazarides N, Eleftheriou M, Tsironis GP (2006) Phys Rev Let 97:157406 LinDFanPHasmanEBrongersmaMLDielectric gradient metasurface optical elementsScience20143452981:CAS:528:DC%2BC2cXhtFCqs7nI10.1126/science.125321325035488 TokumitsuECorrelation between fermi level stabilization positions and maximum free carrier concentrations in III–V compound semiconductorsJpn J Appl Phys1990292L698L7011:CAS:528:DyaK3cXkvV2isLg%3D10.1143/JJAP.29.L698 OuerghiFAbdelMalekFHaxhaSAidRMejattyHDayoubINanophotonic sensor based on photonic crystal structure using negative refraction for effective light couplingJ Lightwave Technol20092715326932741:CAS:528:DC%2BD1MXhtFaks77J10.1109/JLT.2009.2021488 Ishizaka Y, Makino S, Fujisawa T, Saitoh K (2017) A metal-assisted silicon slot waveguide for highly sensitive gas detection. IEEE Photon J 9(1):6800609 Alternative material titanium nitride based refractive index sensor embedded with defects: an emerging solution in sensing arena. Results Phys 29:104795 RouxSBarritaultPLartigueOCeruttiLTourniéEGérardBGrisardAMid-infrared characterization of refractive indices and propagation losses in GaSb/ AlXGa1−XAsSb waveguides ApplPhys Lett2015107 (2021) Metal-insulator-metal waveguide-based optical pressure sensor embedded with arrays of silver nanorods. Opt Express 29:32365–32376 LiHLinIXieSRefractive Index of whole human blood with different types in visible and near-infrared rangesPrc SPIE2000361451710.1117/12.388073 Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6(12) OtupiriRAkowuahEKHaxhaSMulti-channel SPR biosensor based on PCF for multi-analyte sensing applicationsOpt Express201523157161:CAS:528:DC%2BC2sXks1Wms7s%3D10.1364/OE.23.01571626193550 GusyninVPSharapovSGCarbotteJPMagneto-optical conductivity in grapheneJ Phys: Condens Matter2007192 LiMCushingSKWuNPlasmon-enhanced optical sensor, a reviewAnalyst20151403861:CAS:528:DC%2BC2cXhs1yhu7vM10.1039/C4AN01079E253658234274271 Hedh M, Ouerghi F, Kaabi L, Alwardi A, Haxha S, Ademgil H, Akowuah EK, Abdel Malek F (2022) Theoretical simulation of DNA hybridization based on cascaded plasmonic V-shaped channel biosensor. Optik 265:169551 R Otupiri (2139_CR19) 2015; 23 2139_CR18 AA Aboketaf (2139_CR9) 2010; 18 T Taliercio (2139_CR29) 2013; 8631 B Gauvreau (2139_CR20) 2007; 15 R Chen (2139_CR8) 2011; 5 H Li (2139_CR34) 2000; 3614 2139_CR30 VP Gusynin (2139_CR32) 2007; 19 2139_CR13 E Centeno (2139_CR7) 2000; 62 2139_CR11 L Zhou (2139_CR14) 2011; 11 2139_CR10 M Li (2139_CR12) 2015; 140 2139_CR37 2139_CR36 CY Chao (2139_CR35) 2006; 24 MS Kwon (2139_CR15) 2010; 5 E Tokumitsu (2139_CR28) 1990; 29 S Roux (2139_CR31) 2015; 107 2139_CR3 2139_CR4 2139_CR1 J Nyagilo (2139_CR16) 2015; 212 MF Yanik (2139_CR2) 2003; 28 D Lin (2139_CR6) 2014; 345 B Liu (2139_CR17) 2018; 13 2139_CR24 2139_CR23 2139_CR22 2139_CR21 N Yu (2139_CR5) 2014; 13 NJ Halas (2139_CR27) 2011; 111 2139_CR26 F Ouerghi (2139_CR33) 2009; 27 2139_CR25 |
References_xml | – reference: Cog-shaped refractive index sensor embedded with gold nanorods for temperature sensing of multiple analytes. Opt Exp 29(23):37541–37554 – reference: GauvreauBHassaniAFehriMFKabashinASkorobogatiyMPhotonic bandgap fiber-based surface plasmon resonance sensorsOpt Express200715114131:CAS:528:DC%2BD2sXhsVWhtL%2FN10.1364/OE.15.01141319547499 – reference: Gas-sensing and label-free detection of biomaterials employing multiple rings structured plasmonic nanosensor. Sens Bio-Sens Res 33:100440 – reference: LiMCushingSKWuNPlasmon-enhanced optical sensor, a reviewAnalyst20151403861:CAS:528:DC%2BC2cXhs1yhu7vM10.1039/C4AN01079E253658234274271 – reference: ChenRTranT-TNgKWKoWSChuangLCSedgwickFHasnainCNanolasers grown on siliconNat Photonics201151701:CAS:528:DC%2BC3MXisFWqsrc%3D10.1038/nphoton.2010.315 – reference: Zhao H, Miao P, Teimourpour MH, Malazard S, El-Ghanainy R, Schomerus H, Feng L (2018) Topological hybrid silicon microlasers. Nat Commun 9:981 – reference: YuNCapassoFFlat optics with designer metasurfacesNat Mater2014131391501:CAS:528:DC%2BC2cXhtVymsr4%3D10.1038/nmat383924452357 – reference: LiHLinIXieSRefractive Index of whole human blood with different types in visible and near-infrared rangesPrc SPIE2000361451710.1117/12.388073 – reference: Omri M, Ouerghi F, Abdel Malek F, Haxha S (2020) Highly sensitive photonic sensor based on V-shaped channel mediated gold nanowire. IEEE Sens J 20(15):01 – reference: Sell D, Yang J, Doshay S, Yang R, Fan JA (2017) Large-Angle, multifunctional metagratings based on freeform multimode geometries. Nano Lett 17:3752–3757 – reference: Ishizaka Y, Makino S, Fujisawa T, Saitoh K (2017) A metal-assisted silicon slot waveguide for highly sensitive gas detection. IEEE Photon J 9(1):6800609 – reference: CentenoEFelbacqD“Optical bistability in finite-size nonlinear bidimensionnal photonic crystals doped by a microcavity’’ PhysRev B200062R7683R76861:CAS:528:DC%2BD3cXmslWksrs%3D10.1103/PhysRevB.62.R7683 – reference: HalasNJLalSChangW-SLinkSNordlanderPPlasmons in strongly coupled metallic nanostructuresChem Rev2011111391339611:CAS:528:DC%2BC3MXls1eks78%3D10.1021/cr200061k21542636 – reference: YanikMFFanSSoljacicMJoannopoulosJDOpt Lett200328250610.1364/OL.28.00250614690129 – reference: (2022) A highly sensitive plasmonic refractive index sensor based on concentric triple ring resonator for cancer biomarker and chemical concentration detection. Opt Commun 519(15):128429 – reference: KwonMSTheoretical investigation of an interferometer-type plasmonic biosensor using a metal-insulator-silicon waveguidePlasmonics2010543471:CAS:528:DC%2BC3cXhsV2gurjE10.1007/s11468-010-9149-4 – reference: An optimized dielectric-metal-dielectric refractive index nanosensor. In IEEE Sens J 21(2):1461–1469 – reference: Kildishev AV, Boltasseva A, Shalaev VM (2013) Planar photonics with metasurfaces. Science 339 – reference: TokumitsuECorrelation between fermi level stabilization positions and maximum free carrier concentrations in III–V compound semiconductorsJpn J Appl Phys1990292L698L7011:CAS:528:DyaK3cXkvV2isLg%3D10.1143/JJAP.29.L698 – reference: Hedh M, Ouerghi F, Kaabi L, Alwardi A, Haxha S, Ademgil H, Akowuah EK, Abdel Malek F (2022) Theoretical simulation of DNA hybridization based on cascaded plasmonic V-shaped channel biosensor. Optik 265:169551 – reference: ChaoCYJay GuoLDesign and optimization of microring resonators in biochemical sensing applicationsJ Lightwave Technol2006243139514021:CAS:528:DC%2BD28XjtlGjsbw%3D10.1109/JLT.2005.863333 – reference: OuerghiFAbdelMalekFHaxhaSAidRMejattyHDayoubINanophotonic sensor based on photonic crystal structure using negative refraction for effective light couplingJ Lightwave Technol20092715326932741:CAS:528:DC%2BD1MXhtFaks77J10.1109/JLT.2009.2021488 – reference: GusyninVPSharapovSGCarbotteJPMagneto-optical conductivity in grapheneJ Phys: Condens Matter2007192 – reference: TaliercioTNtsame GuilenguiVCeruttiLRodriguezJ-BTourniéEGaSb-based all-semiconductor mid-IR plasmonicsProc SPIE2013863186318672 – reference: Rakhshani MR, Mansouri-Birjandi MA (2016) Utilizing the metallic nano-rods in hexagonal configuration to enhance sensitivity of plasmonic racetrack in resonator applications, Plasmonics – reference: (2021) Metal-insulator-metal waveguide-based optical pressure sensor embedded with arrays of silver nanorods. Opt Express 29:32365–32376 – reference: OtupiriRAkowuahEKHaxhaSMulti-channel SPR biosensor based on PCF for multi-analyte sensing applicationsOpt Express201523157161:CAS:528:DC%2BC2sXks1Wms7s%3D10.1364/OE.23.01571626193550 – reference: Alternative material titanium nitride based refractive index sensor embedded with defects: an emerging solution in sensing arena. Results Phys 29:104795 – reference: Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6(12) – reference: ZhouLSunXLiXChenJMiniature microring resonator sensor based on a hybrid plasmonic waveguideSensors201111768561:CAS:528:DC%2BC3MXovVygtLs%3D10.3390/s110706856221639893231671 – reference: RouxSBarritaultPLartigueOCeruttiLTourniéEGérardBGrisardAMid-infrared characterization of refractive indices and propagation losses in GaSb/ AlXGa1−XAsSb waveguides ApplPhys Lett2015107 – reference: LinDFanPHasmanEBrongersmaMLDielectric gradient metasurface optical elementsScience20143452981:CAS:528:DC%2BC2cXhtFCqs7nI10.1126/science.125321325035488 – reference: Lazarides N, Eleftheriou M, Tsironis GP (2006) Phys Rev Let 97:157406 – reference: AboketafAAElshaariAWPrebleSFOptical time division multiplexer on silicon chipOpt Express20101813529135351:CAS:528:DC%2BC3cXotFOmtrc%3D10.1364/OE.18.01352920588483 – reference: NyagiloJChangSHWuJHaoYD. P. Dave’, fiber-tip plasmonic resonators for label-free biosensingSens Actuators B20152122251:CAS:528:DC%2BC2cXitVWkt7zP10.1016/j.snb.2014.10.066 – reference: LiuBLuYYangXYaoJTunable surface plasmon resonance sensor based on photonic crystal fiber filled with gold nanoshellsPlasmonics2018137631:CAS:528:DC%2BC2sXlslehu7k%3D10.1007/s11468-017-0570-9 – reference: Yun JG, Kim J, Lee K, Lee Y, Lee B (2017) Numerical study on refractive index sensor based on hybrid-plasmonic mode. Proc SPIE 10323:103236U – ident: 2139_CR23 doi: 10.1016/j.rinp.2021.104795 – ident: 2139_CR11 doi: 10.1007/s11468-016-0351-x – volume: 5 start-page: 170 year: 2011 ident: 2139_CR8 publication-title: Nat Photonics doi: 10.1038/nphoton.2010.315 – volume: 24 start-page: 1395 issue: 3 year: 2006 ident: 2139_CR35 publication-title: J Lightwave Technol doi: 10.1109/JLT.2005.863333 – ident: 2139_CR25 doi: 10.1016/j.sbsr.2021.100440 – ident: 2139_CR3 doi: 10.1021/acs.nanolett.7b01082 – volume: 140 start-page: 386 year: 2015 ident: 2139_CR12 publication-title: Analyst doi: 10.1039/C4AN01079E – volume: 8631 start-page: 8631 year: 2013 ident: 2139_CR29 publication-title: Proc SPIE – ident: 2139_CR26 doi: 10.1109/JSEN.2020.3016570 – volume: 107 year: 2015 ident: 2139_CR31 publication-title: Phys Lett – ident: 2139_CR30 doi: 10.1103/PhysRevB.6.4370 – volume: 5 start-page: 347 issue: 4 year: 2010 ident: 2139_CR15 publication-title: Plasmonics doi: 10.1007/s11468-010-9149-4 – ident: 2139_CR21 doi: 10.1016/j.optcom.2022.128429 – volume: 111 start-page: 3913 year: 2011 ident: 2139_CR27 publication-title: Chem Rev doi: 10.1021/cr200061k – volume: 11 start-page: 6856 issue: 7 year: 2011 ident: 2139_CR14 publication-title: Sensors doi: 10.3390/s110706856 – volume: 345 start-page: 298 year: 2014 ident: 2139_CR6 publication-title: Science doi: 10.1126/science.1253213 – ident: 2139_CR24 doi: 10.1364/OE.442954 – volume: 23 start-page: 15716 year: 2015 ident: 2139_CR19 publication-title: Opt Express doi: 10.1364/OE.23.015716 – volume: 18 start-page: 13529 year: 2010 ident: 2139_CR9 publication-title: Opt Express doi: 10.1364/OE.18.013529 – ident: 2139_CR36 doi: 10.1016/j.ijleo.2022.169551 – volume: 13 start-page: 139 year: 2014 ident: 2139_CR5 publication-title: Nat Mater doi: 10.1038/nmat3839 – ident: 2139_CR10 doi: 10.1038/s41467-018-03434-2 – ident: 2139_CR18 doi: 10.1117/12.2264068 – ident: 2139_CR22 doi: 10.1364/OE.439974 – volume: 212 start-page: 225 year: 2015 ident: 2139_CR16 publication-title: Sens Actuators B doi: 10.1016/j.snb.2014.10.066 – ident: 2139_CR13 doi: 10.1109/JPHOT.2016.2630308 – volume: 28 start-page: 2506 year: 2003 ident: 2139_CR2 publication-title: Opt Lett doi: 10.1364/OL.28.002506 – volume: 3614 start-page: 517 year: 2000 ident: 2139_CR34 publication-title: Prc SPIE doi: 10.1117/12.388073 – ident: 2139_CR37 doi: 10.1109/JSEN.2020.2983545 – volume: 13 start-page: 763 year: 2018 ident: 2139_CR17 publication-title: Plasmonics doi: 10.1007/s11468-017-0570-9 – volume: 15 start-page: 11413 year: 2007 ident: 2139_CR20 publication-title: Opt Express doi: 10.1364/OE.15.011413 – ident: 2139_CR4 doi: 10.1126/science.1232009 – ident: 2139_CR1 doi: 10.1103/PhysRevLett.97.157406 – volume: 27 start-page: 3269 issue: 15 year: 2009 ident: 2139_CR33 publication-title: J Lightwave Technol doi: 10.1109/JLT.2009.2021488 – volume: 19 issue: 2 year: 2007 ident: 2139_CR32 publication-title: J Phys: Condens Matter – volume: 62 start-page: R7683 year: 2000 ident: 2139_CR7 publication-title: Rev B doi: 10.1103/PhysRevB.62.R7683 – volume: 29 start-page: L698 issue: 2 year: 1990 ident: 2139_CR28 publication-title: Jpn J Appl Phys doi: 10.1143/JJAP.29.L698 |
SSID | ssj0044464 |
Score | 2.3455799 |
Snippet | This paper introduces a highly sensitive biosensor based on a plasmonic nanostructure-enhanced resonance effect. The sensor exploits a hexagonal photonic... |
SourceID | hal proquest crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 2053 |
SubjectTerms | Biochemistry Biological and Medical Physics Biological properties Biomolecules Biophysics Biosensors Biotechnology Chemistry Chemistry and Materials Science Crystal defects Cylinders Electric fields Engineering Sciences Graphene Measuring instruments Nanotechnology Optical properties Optics Photonic Photonic crystals Plasmonics Polaritons Real time Refractivity Sensitivity enhancement Sensors |
Title | Improved Sensitivity of a Sensor Based on Metallic Nano-cylinder Coated with Graphene |
URI | https://link.springer.com/article/10.1007/s11468-023-02139-7 https://www.proquest.com/docview/3086030570 https://hal.science/hal-04800702 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH64DdGL6FSszhHEmwbaJW3XYx37gTovWpin0qQNCqOVbQr-976krVPRg4de0tDCy-v33td87wXgXKUC3YRrdT9yE-7YkvbTIKWOQmfAAJRkShPF6Z03ifj1zJ1VRWHLWu1eb0kapF4Xu5kqIYwxeGHeQv0GtFzk7lrIFfXCGn85Ehyzl-y6PnUC161KZX5_xrdw1HjSYsgvmeaPzVETc0a7sFMliyQsV3cPNrK8DVuD-oy2NmwaAadc7kNU_h3IUnKvJenlmRCkUCQxA8WCXGG8SkmRk2mGCff8WRJE1oLK97numLgggwLTzpToH7NkrNtYIwoeQDQaPgwmtDoygUpm8xXlCWe-7iqnlEBu5AWp50iGFJgLFgjpZFzhaOJmCoNUgmzGToRSjpL9RFe8KXYIzbzIsyMg0pOSs54KfCG430v7iglkFz5CAsNldC24qC0Xv5SdMeJ1D2Rt5xjtHBs7x74FZ2jcz4m6qfUkvI31mK5qR-DpvTkWdGrbx9WntIwZki6NSr5twWW9Huvbf7_y-H_TT2AbnYmX4r4ONFeL1-wUE46V6EIrHD_eDLvGzz4APGXKIQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEB1sRfQiWhWjVRfxpoEku_k61mKN2vZiA70t2U0WhZJIWwX_vbP5sCp68JDLZklgdvLmvezMLMCFSgW6CdPZ_ahNmG1JM0jD1LQVOgMGoCRTWiiOxl4Us_upO62LwhZNtnuzJVki9arYrawSwhiDF_IW02_BOpKBQPty7PQa_GUocMq9ZNf1TTt03bpU5vdnfAtHrSedDPmFaf7YHC1jzmAHtmuySHrV6u7CWpZ3YLPfnNHWgY0ygVMu9iCu_g5kKXnUKenVmRCkUCQpB4o5ucZ4lZIiJ6MMCffsWRJE1sKU7zPdMXFO-gXSzpToH7PkVrexRhTch3hwM-lHZn1kgimpxZYmSxj1dVc5pQRqIy9MPVtSlMBM0FBIO2MKRxM3UxikElQzViKUspUMEl3xpugBtPMizw6BSE9KRh0V-kIw30kDRQWqCx8hgeIyugZcNpbjL1VnDL7qgaztzNHOvLQz9w04R-N-TtRNraPekOsxXdWOwOO82QZ0G9vz-lNacIqiS6OSbxlw1azH6vbfrzz63_Qz2IwmoyEf3o0fjmHLQfJSJfp1ob2cv2YnSD6W4rT0tQ-PCsuA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED7cxB8volNxOjWIb1q2Num6Ps7pnLoNQQt7C03SoDDasU3B_95Lf7gp-uBDX9LQwuV6933NfReAc60Eugkz1f3ITZjdkFZL-cqyNToDJqAw0oYoDobNXsDuR-5oScWfVrsXW5KZpsF0aYrn9YnS9YXwLVUMYb7BCzGM5ZVglRk1MHp04LSLWMyQ7KT7yq7rWbbvurls5vdnfEtNpRdTGLmEOn9slKb5p7sNWzlwJO1spXdgJYorsNEpzmurwFpazClnuxBkfwoiRZ5MeXp2PgRJNAnTgWRKrjB3KZLEZBAh-B6_SoJRNrHkx9h0T5ySToIQVBHzk5bcmpbWGBH3IOjePHd6Vn58giVpg80tFjLqmQ5zWgvkSU1fNW1JkQ4zQX0h7YhpHA3dSGPCCpHZNEKhta1lKzTqN033oRwncXQARDalZNTRvicE8xzV0lQg0_AwPFBcUrcKF4Xl-CTrksEX_ZCNnTnamad25l4VztC4XxNNg-teu8_NmFG4YxBy3u0q1Arb8_yzmnGKBMxEKK9RhctiPRa3_37l4f-mn8L643WX9--GD0ew6SCOyWr-alCeT9-iY8Qhc3GSutonpa3Psw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Sensitivity+of+a+Sensor+Based+on+Metallic+Nano-cylinder+Coated+with+Graphene&rft.jtitle=Plasmonics+%28Norwell%2C+Mass.%29&rft.au=Hedhy%2C+Manel&rft.au=Ouerghi%2C+Faouzi&rft.au=Zeng%2C+Shuwen&rft.au=Abdelmalek%2C+Fathi&rft.date=2024-08-01&rft.pub=Springer+Verlag&rft.issn=1557-1955&rft.eissn=1557-1963&rft.volume=19&rft.issue=4&rft.spage=2053&rft.epage=2060&rft_id=info:doi/10.1007%2Fs11468-023-02139-7&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_04800702v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1557-1955&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1557-1955&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1557-1955&client=summon |