Some properties of state filters in state residuated lattices

We consider properties of state filters of state residuated lattices and prove that for every state filter $F$ of a state residuated lattice $X$: \begin{itemize} \item[(1)] $F$ is obstinate $\Leftrightarrow$ $L/F \cong\{0,1\}$; \item[(2)] $F$ is primary $\Leftrightarrow$ $L/F$ is a state local resid...

Full description

Saved in:
Bibliographic Details
Published inMathematica bohemica Vol. 146; no. 4; pp. 375 - 395
Main Author Michiro Kondo
Format Journal Article
LanguageEnglish
Published Institute of Mathematics of the Czech Academy of Science 01.12.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We consider properties of state filters of state residuated lattices and prove that for every state filter $F$ of a state residuated lattice $X$: \begin{itemize} \item[(1)] $F$ is obstinate $\Leftrightarrow$ $L/F \cong\{0,1\}$; \item[(2)] $F$ is primary $\Leftrightarrow$ $L/F$ is a state local residuated lattice; \end{itemize} and that every g-state residuated lattice $X$ is a subdirect product of $\{X/P_{\lambda} \}$, where $P_{\lambda}$ is a prime state filter of $X$. Moreover, we show that the quotient MTL-algebra $X/P$ of a state residuated lattice $X$ by a state prime filter $P$ is not always totally ordered, although the quotient MTL-algebra by a prime filter is totally ordered.
AbstractList We consider properties of state filters of state residuated lattices and prove that for every state filter $F$ of a state residuated lattice $X$: \begin{itemize} \item[(1)] $F$ is obstinate $\Leftrightarrow$ $L/F \cong\{0,1\}$; \item[(2)] $F$ is primary $\Leftrightarrow$ $L/F$ is a state local residuated lattice; \end{itemize} and that every g-state residuated lattice $X$ is a subdirect product of $\{X/P_{\lambda} \}$, where $P_{\lambda}$ is a prime state filter of $X$. Moreover, we show that the quotient MTL-algebra $X/P$ of a state residuated lattice $X$ by a state prime filter $P$ is not always totally ordered, although the quotient MTL-algebra by a prime filter is totally ordered.
Author Michiro Kondo
Author_xml – sequence: 1
  fullname: Michiro Kondo
BookMark eNotjktLAzEUhYNUsFX3LucPTL03z8nChRYfhYoLdT1kkhtJmTYlGRf-e4t2dQ7fB4ezYLN93hNjNwhLjij07evDkgOHJYCEFu0Zm3OpZWuObsbm0GneGqvsBVvUugXgwgDO2d173lFzKPlAZUpUmxybOrmJmpjGiUpt0v4ECtUUvo8tNKObpuSpXrHz6MZK16e8ZJ9Pjx-rl3bz9rxe3W9aL0BOrbSOhOzQyoHAWosKdVDcSzRec6-88J3FqAbpB4NSQGet0eSND-BJBXHJ1v-7Ibttfyhp58pPn13q_0AuX7073vcj9Ry1QWU6rhBloDg4gYai1iZijM6JXxaYWJw
ContentType Journal Article
DBID DOA
DOI 10.21136/MB.2020.0040-19
DatabaseName DOAJ Directory of Open Access Journals
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2464-7136
EndPage 395
ExternalDocumentID oai_doaj_org_article_2167157825114defba317ef667f1ffaa
GroupedDBID -~X
2WC
6HX
ACIPV
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
GROUPED_DOAJ
H~9
LO0
OK1
P2P
ID FETCH-LOGICAL-c304t-49ae348194be09991516d52c417c62c5c3c891f5b4cb7143089976ec7cd0ce5d3
IEDL.DBID DOA
ISSN 0862-7959
IngestDate Tue Oct 22 15:14:15 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c304t-49ae348194be09991516d52c417c62c5c3c891f5b4cb7143089976ec7cd0ce5d3
OpenAccessLink https://doaj.org/article/2167157825114defba317ef667f1ffaa
PageCount 21
ParticipantIDs doaj_primary_oai_doaj_org_article_2167157825114defba317ef667f1ffaa
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Mathematica bohemica
PublicationYear 2021
Publisher Institute of Mathematics of the Czech Academy of Science
Publisher_xml – name: Institute of Mathematics of the Czech Academy of Science
SSID ssj0023701
Score 2.228212
Snippet We consider properties of state filters of state residuated lattices and prove that for every state filter $F$ of a state residuated lattice $X$:...
SourceID doaj
SourceType Open Website
StartPage 375
SubjectTerms boolean state filter
local residuated lattice
obstinate state filter
primary state filter
prime state filter
residuated lattice
state filter
Title Some properties of state filters in state residuated lattices
URI https://doaj.org/article/2167157825114defba317ef667f1ffaa
Volume 146
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJxgQn-JbHlitJo4_4oGBIqoKKSxQqVvk2D6pEqRVG_4_PicgmFhYPUTxZXjvcu_eI-RWqtJHWLbMKAAmNDTMBHAMvAOZOdQz4r5z9axmc_G0kIsfUV-oCevtgfvCjXmudI6e65EZCB-gsRHxAiilIQewPTXKzFczNbRahU7Bx8jXGaZp9wNKjgEm42oS20KOii4ca5pfZv0JVaYHZH-gg_S-f41DshPaI7JXfXupbo_J3cvqPdA1_jTfoPspXQFNa0AUljjq3tJlOxzE1hl3qyKJpG-2Q1nb9oTMp4-vDzM2hB4wV2SiY8LYgMuxRjQhsTeZKy-5E7l2ijvpCleaHGQjXIPZ5Ti20yo47XzmgvTFKRm1qzacESo0jj29ly7itITClui2JbwEq0pu1DmZ4M3rde9rUaPTdDqI9a-H-td_1f_iPx5ySXY5akWSTOSKjLrNR7iOYN81N-m7fgI8W6Ut
link.rule.ids 315,783,787,867,2109,27936,27937
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Some+properties+of+state+filters+in+state+residuated+lattices&rft.jtitle=Mathematica+bohemica&rft.au=Michiro+Kondo&rft.date=2021-12-01&rft.pub=Institute+of+Mathematics+of+the+Czech+Academy+of+Science&rft.issn=0862-7959&rft.eissn=2464-7136&rft.volume=146&rft.issue=4&rft.spage=375&rft.epage=395&rft_id=info:doi/10.21136%2FMB.2020.0040-19&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_2167157825114defba317ef667f1ffaa
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0862-7959&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0862-7959&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0862-7959&client=summon