Bayesian test of independence and conditional independence of two ordinal variables

For analysis of contingency tables with large sample size, classical approaches using approximate methods have high power. However, when the sample size is small or some cells have frequencies less than 5, classical approaches are so conservative. Also asymptotic behavior may be poor when the table...

Full description

Saved in:
Bibliographic Details
Published inJournal of statistical theory and applications Vol. 14; no. 2; pp. 156 - 168
Main Authors Saberi, Zahra, Ganjali, Mojtab
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.06.2015
Springer Nature B.V
Springer
Subjects
Online AccessGet full text
ISSN1538-7887
2214-1766
1538-7887
DOI10.2991/jsta.2015.14.2.4

Cover

Loading…
Abstract For analysis of contingency tables with large sample size, classical approaches using approximate methods have high power. However, when the sample size is small or some cells have frequencies less than 5, classical approaches are so conservative. Also asymptotic behavior may be poor when the table contains small counts. So, Bayesian test of independence for two-way contingency tables with ordinal variables is considered. The conditional independence of two ordinal variables given values of a controlling variable is also considered. To do these tests, gamma and partial gamma are used as association parameters for ordinal variables. Since gamma has a complex posterior form, it is intractable to compute directly the necessary inferential measures. So, a Dirichlet distribution is used as a prior distribution for the vector of cell probabilities, then the use of computational methods such as the Monte Carlo algorithm is introduced to generate samples from posterior distribution of gamma. Also, the Bayesian P-value and Bayes factor are obtained. In a simulation study, the choice of appropriate prior distribution for gamma is discussed and also the performance of gamma is compared to that of kappa. It is shown that, in contingency tables with ordinal variables, it is better to apply gamma as a measure of association. Some sensitivity analysis to the choice of prior are also performed on real applications.
AbstractList For analysis of contingency tables with large sample size, classical approaches using approximate methods have high power. However, when the sample size is small or some cells have frequencies less than 5, classical approaches are so conservative. Also asymptotic behavior may be poor when the table contains small counts. So, Bayesian test of independence for two-way contingency tables with ordinal variables is considered. The conditional independence of two ordinal variables given values of a controlling variable is also considered. To do these tests, gamma and partial gamma are used as association parameters for ordinal variables. Since gamma has a complex posterior form, it is intractable to compute directly the necessary inferential measures. So, a Dirichlet distribution is used as a prior distribution for the vector of cell probabilities, then the use of computational methods such as the Monte Carlo algorithm is introduced to generate samples from posterior distribution of gamma. Also, the Bayesian P-value and Bayes factor are obtained. In a simulation study, the choice of appropriate prior distribution for gamma is discussed and also the performance of gamma is compared to that of kappa. It is shown that, in contingency tables with ordinal variables, it is better to apply gamma as a measure of association. Some sensitivity analysis to the choice of prior are also performed on real applications.
Author Saberi, Zahra
Ganjali, Mojtab
Author_xml – sequence: 1
  givenname: Zahra
  surname: Saberi
  fullname: Saberi, Zahra
  email: z_saberi@cc.iut.ac.ir
  organization: Department of Mathematical Sciences, Isfahan University of Technology
– sequence: 2
  givenname: Mojtab
  surname: Ganjali
  fullname: Ganjali, Mojtab
  organization: Department of Statistics, Faculty of Mathematical Sciences, Shahid Beheshti University
BookMark eNpVUcFqHDEMNSWFbra59zjQ80wtjzy2j0lo0kAgh-RuNLYneNnaG3uSkr-vt1sovUjo6fHE0ztnZymnwNgX4IMwBr7t6kqD4CAHwEEM-IFthADsQU3TGduAHHWvtFaf2EWtceYSzQhqNBv2eEXvoUZK3Rrq2uWli8mHQ2gludBR8p3Lycc15kT7_5eNvP7KXS4-HndvVCLN-1A_s48L7Wu4-Nu37Onm-9P1j_7-4fbu-vK-dyPHtUc1EXopFucwiAA6SOKaJo6mmTIwO6cREGZCBd5My9gQMysvF0dajVt2d5L1mXb2UOJPKu82U7R_gFyeLZU1un2wQk3Sey9GpwVKvcxCY5i4F94p38am9fWkdSj55bV9wu7ya2muqhUGOEfZHtZYcGLVdi09h_KPBdwek7DHJOwxCQtohcXxN0FJfyE
ContentType Journal Article
Copyright the authors 2015
the authors 2015. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: the authors 2015
– notice: the authors 2015. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOA
DOI 10.2991/jsta.2015.14.2.4
DatabaseName SpringerOpen Free (Free internet resource, activated by CARLI)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DOAJ Directory of Open Access Journals
DatabaseTitle Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2214-1766
1538-7887
EndPage 168
ExternalDocumentID oai_doaj_org_article_2765ddd23c82458fb284e60d2dc7d8fb
10_2991_jsta_2015_14_2_4
GroupedDBID AAFWJ
AAJSJ
AAKKN
AAYZJ
ABEEZ
ACACY
ACULB
ADBBV
AFGXO
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
EBLON
EBS
FRP
GROUPED_DOAJ
HCIFZ
J9A
K7-
OK1
P2P
PIMPY
RSV
SOJ
8FE
8FG
AASML
ABUWG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PUEGO
ID FETCH-LOGICAL-c304t-476a4d52fcc4e2e18e5a08a604929991bcc84141ba471d96f3bcc9b7d5fca873
IEDL.DBID 8FG
ISSN 1538-7887
IngestDate Wed Aug 27 01:12:21 EDT 2025
Fri Jul 25 23:26:28 EDT 2025
Fri Feb 21 02:40:46 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords 62H15
Gamma
2000 Mathematics Subject Classification
62H17
Sensitivity Analysis
Association parameters
Bayesian P-value
62F03
62F15
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c304t-476a4d52fcc4e2e18e5a08a604929991bcc84141ba471d96f3bcc9b7d5fca873
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2910045931?pq-origsite=%requestingapplication%
PQID 2910045931
PQPubID 5642901
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_2765ddd23c82458fb284e60d2dc7d8fb
proquest_journals_2910045931
springer_journals_10_2991_jsta_2015_14_2_4
PublicationCentury 2000
PublicationDate 2015-06-01
PublicationDateYYYYMMDD 2015-06-01
PublicationDate_xml – month: 06
  year: 2015
  text: 2015-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
– name: Melbourne
PublicationTitle Journal of statistical theory and applications
PublicationTitleAbbrev J Stat Theory Appl
PublicationYear 2015
Publisher Springer Netherlands
Springer Nature B.V
Springer
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
– name: Springer
References GonzalezRNelsonTOMeasuring Ordinal Association in Situations That Contain Tied ScoresPsychological Bulletin1996119159165
EdwardsDIntroduction to graphical modelling1995New YorkSpringer
CoxDRWermuthNMultivariate dependencies models, analysis and interpretation1996LondonChapman & Hall
AgrestiAHitchcockDBBayesian inference for categorical data analysisStat. Methods Appl.200514297330
GoodmanLAKruskalWHMeasures of Association for Cross Classifications III: Approximate Sampling TheoryJournal of the American Statistical Association196358310364
BroemelingLDBayesian Methods for Measures of Agreement2009New YorkChapman & Hall/CRC press
N. Wermuth, Graphical Markov models. In S. Kotz, C. Read and D. Banks (eds), Encyclopedia of Statistical Sciences, 2(1998) 284–300, New York: Wiley.
GoodmanLAKruskalWHMeasures of Association for Cross Classifications II: Further Discussion and ReferencesJournal of the American Statistical Association195954123163
GanjaliMRezaeeZA transition model for analysis of repeated measure ordinal response data to identify the effects of different treatmentsDrug information journal200741527534
MehtaCRPatelNRA network algorithm for performing Fishers exact test in r×c contingency tablesJ. Amer. Statist. Assoc.198378427434
AgrestiAAnalysis of Ordinal Categorical Data1984New YorkWiley
FrancomSFChuang-SteinCLandisJRA log-linear model for ordinal data to characterize differential change among treatmentsStatist. Med.19988571582
WermuthNCoxDROn association models defined over independence graphsBernoulli19984477495
CohenJA coefficient of agreement for nominal scalesEducational and Psychological Measurement1960203746
LauritzenSLGraphical models1996Oxford, United KingdomClarendon Press
GoodmanLAKruskalWHMeasures of Association for Cross ClassificationsJournal of the American Statistical Association195449732764
AgrestiACategorical Data Analysis2002New YorkWiley
McCullaghPNelderJAGeneralized Linear Models1989LondonChapman and Hall
CloggCCShihadehEIStatistical models for ordinal data1994LondonSage
FreemanLCOrder-Based Statistics and Monotonicity: A Family of Ordinal Measures of AssociationJournal of Mathematical Sociology1986124969
GoodmanLAKruskalWHMeasures of Association for Cross Classifications IV: Simplification of Asymptotic VariancesJournal of the American Statistical Association197267415421
Statistical dependence and independence. Encyclopedia of Biostatistics, P. Armitage and T. Colton (eds), New York: Wiley, (1998a)4260–4264.
L.A. Goodman and W.H. Kruskal, (Measures of Association for Cross Classifications, Springer-Verlag, New York, 1979).
WermuthNCoxDROn the application of conditional independence to ordinal dataInternational Statistical Review199866181199
C. P. Robert, (The Bayesian Choice, 2ed, Springer-Verlag, New York, 2007).
References_xml – reference: FrancomSFChuang-SteinCLandisJRA log-linear model for ordinal data to characterize differential change among treatmentsStatist. Med.19988571582
– reference: L.A. Goodman and W.H. Kruskal, (Measures of Association for Cross Classifications, Springer-Verlag, New York, 1979).
– reference: CohenJA coefficient of agreement for nominal scalesEducational and Psychological Measurement1960203746
– reference: LauritzenSLGraphical models1996Oxford, United KingdomClarendon Press
– reference: GoodmanLAKruskalWHMeasures of Association for Cross Classifications II: Further Discussion and ReferencesJournal of the American Statistical Association195954123163
– reference: GonzalezRNelsonTOMeasuring Ordinal Association in Situations That Contain Tied ScoresPsychological Bulletin1996119159165
– reference: AgrestiAHitchcockDBBayesian inference for categorical data analysisStat. Methods Appl.200514297330
– reference: BroemelingLDBayesian Methods for Measures of Agreement2009New YorkChapman & Hall/CRC press
– reference: N. Wermuth, Graphical Markov models. In S. Kotz, C. Read and D. Banks (eds), Encyclopedia of Statistical Sciences, 2(1998) 284–300, New York: Wiley.
– reference: Statistical dependence and independence. Encyclopedia of Biostatistics, P. Armitage and T. Colton (eds), New York: Wiley, (1998a)4260–4264.
– reference: AgrestiAAnalysis of Ordinal Categorical Data1984New YorkWiley
– reference: GoodmanLAKruskalWHMeasures of Association for Cross Classifications III: Approximate Sampling TheoryJournal of the American Statistical Association196358310364
– reference: EdwardsDIntroduction to graphical modelling1995New YorkSpringer
– reference: WermuthNCoxDROn association models defined over independence graphsBernoulli19984477495
– reference: GanjaliMRezaeeZA transition model for analysis of repeated measure ordinal response data to identify the effects of different treatmentsDrug information journal200741527534
– reference: C. P. Robert, (The Bayesian Choice, 2ed, Springer-Verlag, New York, 2007).
– reference: McCullaghPNelderJAGeneralized Linear Models1989LondonChapman and Hall
– reference: GoodmanLAKruskalWHMeasures of Association for Cross Classifications IV: Simplification of Asymptotic VariancesJournal of the American Statistical Association197267415421
– reference: MehtaCRPatelNRA network algorithm for performing Fishers exact test in r×c contingency tablesJ. Amer. Statist. Assoc.198378427434
– reference: FreemanLCOrder-Based Statistics and Monotonicity: A Family of Ordinal Measures of AssociationJournal of Mathematical Sociology1986124969
– reference: CoxDRWermuthNMultivariate dependencies models, analysis and interpretation1996LondonChapman & Hall
– reference: AgrestiACategorical Data Analysis2002New YorkWiley
– reference: WermuthNCoxDROn the application of conditional independence to ordinal dataInternational Statistical Review199866181199
– reference: CloggCCShihadehEIStatistical models for ordinal data1994LondonSage
– reference: GoodmanLAKruskalWHMeasures of Association for Cross ClassificationsJournal of the American Statistical Association195449732764
SSID ssib054931739
ssj0000800523
Score 1.9140366
Snippet For analysis of contingency tables with large sample size, classical approaches using approximate methods have high power. However, when the sample size is...
SourceID doaj
proquest
springer
SourceType Open Website
Aggregation Database
Publisher
StartPage 156
SubjectTerms Algorithms
Association parameters; Bayesian P-value; Gamma; Sensitivity Analysis
Asymptotic properties
Bayesian analysis
Contingency
Contingency tables
Dirichlet problem
Research Article
Sensitivity analysis
Variables
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27TsMwFLVQJxgQT1EoyAMTUtrErzgjRVQVUlkoUjfLT6kdUkQDiL_nOklLYWFhjJ1E0bnJ9TmxfS5C19Z55gnxCbGGJkxYkchChMRb7YKOdit1ubfJoxg_s4cZn22V-oprwhp74Aa4AckFd84RaiVhXAYD-dSL1BFncweHMfumRbolphYtDwKJ1cxLQsbNBgsgW3ElF4fc0Cd91nr0_yCWv-ZC6yFmdID2W26Ib5tnOkQ7vjxCe5ONserqGD0N9aeP-x4xUMQKLwOeb-rYWo916TAIXDdv_vD97ISTq48lBrUZK2Hhd1DJcd_U6gRNR_fTu3HS1kVILE1ZlbBcaOY4CdYCzj6TnutUagFkn0S-Z6yVLGOZ0TDyOECeQkthcseD1TKnp6hTLkt_hrCnuTWp8SGFK0wRNM0LAFf7HMZtSVwXDSNI6qVxvlDRi7pugAipNkLqrwh1UW8NsWo_kJUiRbSq4wXNuuhmDft3N0iTGDUVo6Zi1ECiKKLY-X880AXajbdsFnz1UKd6ffOXQC0qc1W_RV8LEM6a
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: SpringerOpen Free (Free internet resource, activated by CARLI)
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagLDAgnqJQkAcmpJTE8SsjragqpLJQpG6WX5HaoUU0gPj3nBO3UMTC6Ec83GfnvvOd7xC6ts5TT4hPiDV5QrnliSx4mXirXalDupW63NvokQ-f6cOETeJ9R3gL88N_Dz_K7HYGHCkEYDE40l3Spdtoh2U5r92yvL_aOWDkgB6M-S1nkQexurZbfaJDyFzjo_xz0Zivf4Nk_vKL1upmcID2I0_Edw2wh2jLz4_Q3midZHV5jJ56-tOHN5AY6GKFFyWermvaWo_13GEwdt20ue3bHITJ1ccCg-UZqmLhd7CYwxuq5QkaD-7H_WESayQkNk9plVDBNXWMlNaCzH0mPdOp1ByIPwncz1graUYzo0ELOUAhh57CCMdKq6XIT1Frvpj7M4R9LqxJjS9T-MIUpc5F4XmqvQAdLolro14QknppsmCokJe67gC4VNzmigjOnHMkt5JQJksD2g8WccRZ4aDZRp2ViFU8LEtFipC2jgGEbXSzEvv3MJgpATUVUFMBNTBXFFH0_D-TL9BuaDVBXh3Uql7f_CXQicpc1TvpC4HwxI8
  priority: 102
  providerName: Springer Nature
Title Bayesian test of independence and conditional independence of two ordinal variables
URI https://link.springer.com/article/10.2991/jsta.2015.14.2.4
https://www.proquest.com/docview/2910045931
https://doaj.org/article/2765ddd23c82458fb284e60d2dc7d8fb
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8QwDI54LDAgnuJ4nDIwIRXaNEnTCXEnDoQEQjwktiivIhiuwBUQ_x67zYFgYMxzsB3bX-LYhOw5H3hgLCTM2Tzh0slElbJKgjO-MphupS33dnEpz-74-b24jxdukxhWOdWJraL2tcM78kNWYm4zUebZ0fNLglWj8HU1ltCYJfMZWBqUczU6ncoTQB-wjjHr5VP0jkRb8a095xhI171cgk7ODp_AHcNYLwHa44Ad8JjF_5fr-ee1tDVCo2WyFL1Hetyxe4XMhPEqWbz4Tr06WSM3A_MZ8GckBSeyoXVFH78r3bpAzdhTgMD-sbsD_D0Ik5uPmgIexVpZ9B1wNP6smqyT29HJ7fAsiZUTEpenvEl4IQ33glXOASdCpoIwqTIS4ABDj9A6p3jGM2vANnngTQ49pS28qJxRRb5B5sb1OGwSGvLC2dSGKoUVtqxMXpRBpiYUQG_FfI8MkEj6ucuNoTFbddtRvz7oKPyaFVJ471nuFONCVRZsImzimXeFh2aP7ExJrOMRmugfhvfI_pTsP8MAXpBrGrmmkWsAYjTTfOv_vbbJAk7ugr12yFzz-hZ2wa1obL-VnT6ZH5xcXl1DayiH_RaifwHToM5t
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7BcoAeEI-iboHiA1yQAhvHzuOAqm4LWh67QnSRuFl-pVoOG8qmRfyo_kdm8gDRAzeOcWLHmhmPv7HnAbBrnReecx9wa6JAxDYO0izOA2-1yzWlW6nKvQ1H8eBanN3Imzn418bCkFtlqxMrRe0KS2fkhzyj3GYyi8Kvd78DqhpFt6ttCY1aLM794wOabLOj0x_I3z3OT47H3wdBU1UgsGi6l4FIYi2c5Lm1OEsfpl7qXqpjhMqc0JKxNhWhCI1Gve1w3hG2ZCZxMrc6TSIcdh4WBAW0dmChfzy6vGoFGG0t3I6bNJu3DRyTVYm5SrGQ5159VYp_Cg9vEf-Rc5lEdXXAD0RTNuAV1v3verba9U5WYLmBq-xbLV-rMOena_Bh-JzrdbYOP_v60VMoJkPUWrIiZ5Pn0rrWMz11DG1uN6kPHV-_xI_Lh4IhNak4F_uLhjuFcs0-wvg9iLoBnWkx9Z-A-Sixpmd83sMeJst1lGQ-7mmfIJRIuetCn4ik7upkHIrSY1cNxf0v1aw2xZNYOud4ZFMuZJob3IRxEMedTRw-dmGrJbFq1uxMvUhYF_Zbsr-8RmuJuKaIa4q4hlaT4kp8fnusHVgcjIcX6uJ0dL4JS9Sx9jTbgk55_8dvI6YpzZdGkhiod5bdJ4HTCSs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RkKr2gPpUF2jrQ3upFHbj2LFzQFUpXaAUVKlU4mb5WcFhQ9kA4qfx75jJA0QPvXGMEzvJeDz-xh7PB_DBhygi5zHj3hWZKH2Z6apMWfQ2JEvpVlq6t_2Dcue3-H4kjxbgejgLQ2GVg01sDXWoPa2Rj3lFuc1kVeTj1IdF_Nyafj79mxGDFO20DnQanYrsxatLdN_mG7tb2NcfOZ9-O_y6k_UMA5lHN77JhCqtCJIn7_GLY66jtBNtS4TNnJCT816LXOTOog0P-A8FllROBZm81arAZh_BkipURX6fnm4PqoxeF07MfcLNkx6YyZZsrjUxFMPXbZrie_LxCSJBCjOTaLjW-broCQTuod5_Nmrb-W_6DJZ74Mq-dJr2HBbi7AU83b_N-jp_Cb827VWkQ5kM8WvD6sSOb0l2fWR2Fhh63-G4W368fxMfbi5rhrIkmi52gS48Heqav4LDhxDpa1ic1bP4BlgslHcTF9MEa7gqWRRzLCc2KgQVmocRbJKQzGmXlsNQouy2oD77Y_pxZ7gqZQiBF15zIXVyOB1jI4EHrwJejmBtELHpR-_c3OnaCD4NYr-7jX4T9ZqhXjPUa-g_GW7Eyv_beg-PUWPNj92DvVV4QvW6kLM1WGzOzuNbBDeNe9eqEQPzwGp7Aw7iC_s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+test+of+independence+and+conditional+independence+of+two+ordinal+variables&rft.jtitle=Journal+of+statistical+theory+and+applications&rft.au=Saberi%2C+Zahra&rft.au=Ganjali%2C+Mojtab&rft.date=2015-06-01&rft.pub=Springer+Nature+B.V&rft.issn=1538-7887&rft.eissn=2214-1766&rft.volume=14&rft.issue=2&rft.spage=156&rft.epage=168&rft_id=info:doi/10.2991%2Fjsta.2015.14.2.4&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1538-7887&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1538-7887&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1538-7887&client=summon