Bayesian test of independence and conditional independence of two ordinal variables
For analysis of contingency tables with large sample size, classical approaches using approximate methods have high power. However, when the sample size is small or some cells have frequencies less than 5, classical approaches are so conservative. Also asymptotic behavior may be poor when the table...
Saved in:
Published in | Journal of statistical theory and applications Vol. 14; no. 2; pp. 156 - 168 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.06.2015
Springer Nature B.V Springer |
Subjects | |
Online Access | Get full text |
ISSN | 1538-7887 2214-1766 1538-7887 |
DOI | 10.2991/jsta.2015.14.2.4 |
Cover
Loading…
Abstract | For analysis of contingency tables with large sample size, classical approaches using approximate methods have high power. However, when the sample size is small or some cells have frequencies less than 5, classical approaches are so conservative. Also asymptotic behavior may be poor when the table contains small counts. So, Bayesian test of independence for two-way contingency tables with ordinal variables is considered. The conditional independence of two ordinal variables given values of a controlling variable is also considered. To do these tests, gamma and partial gamma are used as association parameters for ordinal variables. Since gamma has a complex posterior form, it is intractable to compute directly the necessary inferential measures. So, a Dirichlet distribution is used as a prior distribution for the vector of cell probabilities, then the use of computational methods such as the Monte Carlo algorithm is introduced to generate samples from posterior distribution of gamma. Also, the Bayesian P-value and Bayes factor are obtained. In a simulation study, the choice of appropriate prior distribution for gamma is discussed and also the performance of gamma is compared to that of kappa. It is shown that, in contingency tables with ordinal variables, it is better to apply gamma as a measure of association. Some sensitivity analysis to the choice of prior are also performed on real applications. |
---|---|
AbstractList | For analysis of contingency tables with large sample size, classical approaches using approximate methods have high power. However, when the sample size is small or some cells have frequencies less than 5, classical approaches are so conservative. Also asymptotic behavior may be poor when the table contains small counts. So, Bayesian test of independence for two-way contingency tables with ordinal variables is considered. The conditional independence of two ordinal variables given values of a controlling variable is also considered. To do these tests, gamma and partial gamma are used as association parameters for ordinal variables. Since gamma has a complex posterior form, it is intractable to compute directly the necessary inferential measures. So, a Dirichlet distribution is used as a prior distribution for the vector of cell probabilities, then the use of computational methods such as the Monte Carlo algorithm is introduced to generate samples from posterior distribution of gamma. Also, the Bayesian P-value and Bayes factor are obtained. In a simulation study, the choice of appropriate prior distribution for gamma is discussed and also the performance of gamma is compared to that of kappa. It is shown that, in contingency tables with ordinal variables, it is better to apply gamma as a measure of association. Some sensitivity analysis to the choice of prior are also performed on real applications. |
Author | Saberi, Zahra Ganjali, Mojtab |
Author_xml | – sequence: 1 givenname: Zahra surname: Saberi fullname: Saberi, Zahra email: z_saberi@cc.iut.ac.ir organization: Department of Mathematical Sciences, Isfahan University of Technology – sequence: 2 givenname: Mojtab surname: Ganjali fullname: Ganjali, Mojtab organization: Department of Statistics, Faculty of Mathematical Sciences, Shahid Beheshti University |
BookMark | eNpVUcFqHDEMNSWFbra59zjQ80wtjzy2j0lo0kAgh-RuNLYneNnaG3uSkr-vt1sovUjo6fHE0ztnZymnwNgX4IMwBr7t6kqD4CAHwEEM-IFthADsQU3TGduAHHWvtFaf2EWtceYSzQhqNBv2eEXvoUZK3Rrq2uWli8mHQ2gludBR8p3Lycc15kT7_5eNvP7KXS4-HndvVCLN-1A_s48L7Wu4-Nu37Onm-9P1j_7-4fbu-vK-dyPHtUc1EXopFucwiAA6SOKaJo6mmTIwO6cREGZCBd5My9gQMysvF0dajVt2d5L1mXb2UOJPKu82U7R_gFyeLZU1un2wQk3Sey9GpwVKvcxCY5i4F94p38am9fWkdSj55bV9wu7ya2muqhUGOEfZHtZYcGLVdi09h_KPBdwek7DHJOwxCQtohcXxN0FJfyE |
ContentType | Journal Article |
Copyright | the authors 2015 the authors 2015. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: the authors 2015 – notice: the authors 2015. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI DOA |
DOI | 10.2991/jsta.2015.14.2.4 |
DatabaseName | SpringerOpen Free (Free internet resource, activated by CARLI) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database (ProQuest) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition DOAJ Directory of Open Access Journals |
DatabaseTitle | Publicly Available Content Database Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2214-1766 1538-7887 |
EndPage | 168 |
ExternalDocumentID | oai_doaj_org_article_2765ddd23c82458fb284e60d2dc7d8fb 10_2991_jsta_2015_14_2_4 |
GroupedDBID | AAFWJ AAJSJ AAKKN AAYZJ ABEEZ ACACY ACULB ADBBV AFGXO AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ C24 C6C CCPQU EBLON EBS FRP GROUPED_DOAJ HCIFZ J9A K7- OK1 P2P PIMPY RSV SOJ 8FE 8FG AASML ABUWG AZQEC DWQXO GNUQQ JQ2 P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PUEGO |
ID | FETCH-LOGICAL-c304t-476a4d52fcc4e2e18e5a08a604929991bcc84141ba471d96f3bcc9b7d5fca873 |
IEDL.DBID | 8FG |
ISSN | 1538-7887 |
IngestDate | Wed Aug 27 01:12:21 EDT 2025 Fri Jul 25 23:26:28 EDT 2025 Fri Feb 21 02:40:46 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | 62H15 Gamma 2000 Mathematics Subject Classification 62H17 Sensitivity Analysis Association parameters Bayesian P-value 62F03 62F15 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c304t-476a4d52fcc4e2e18e5a08a604929991bcc84141ba471d96f3bcc9b7d5fca873 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/2910045931?pq-origsite=%requestingapplication% |
PQID | 2910045931 |
PQPubID | 5642901 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2765ddd23c82458fb284e60d2dc7d8fb proquest_journals_2910045931 springer_journals_10_2991_jsta_2015_14_2_4 |
PublicationCentury | 2000 |
PublicationDate | 2015-06-01 |
PublicationDateYYYYMMDD | 2015-06-01 |
PublicationDate_xml | – month: 06 year: 2015 text: 2015-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht – name: Melbourne |
PublicationTitle | Journal of statistical theory and applications |
PublicationTitleAbbrev | J Stat Theory Appl |
PublicationYear | 2015 |
Publisher | Springer Netherlands Springer Nature B.V Springer |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V – name: Springer |
References | GonzalezRNelsonTOMeasuring Ordinal Association in Situations That Contain Tied ScoresPsychological Bulletin1996119159165 EdwardsDIntroduction to graphical modelling1995New YorkSpringer CoxDRWermuthNMultivariate dependencies models, analysis and interpretation1996LondonChapman & Hall AgrestiAHitchcockDBBayesian inference for categorical data analysisStat. Methods Appl.200514297330 GoodmanLAKruskalWHMeasures of Association for Cross Classifications III: Approximate Sampling TheoryJournal of the American Statistical Association196358310364 BroemelingLDBayesian Methods for Measures of Agreement2009New YorkChapman & Hall/CRC press N. Wermuth, Graphical Markov models. In S. Kotz, C. Read and D. Banks (eds), Encyclopedia of Statistical Sciences, 2(1998) 284–300, New York: Wiley. GoodmanLAKruskalWHMeasures of Association for Cross Classifications II: Further Discussion and ReferencesJournal of the American Statistical Association195954123163 GanjaliMRezaeeZA transition model for analysis of repeated measure ordinal response data to identify the effects of different treatmentsDrug information journal200741527534 MehtaCRPatelNRA network algorithm for performing Fishers exact test in r×c contingency tablesJ. Amer. Statist. Assoc.198378427434 AgrestiAAnalysis of Ordinal Categorical Data1984New YorkWiley FrancomSFChuang-SteinCLandisJRA log-linear model for ordinal data to characterize differential change among treatmentsStatist. Med.19988571582 WermuthNCoxDROn association models defined over independence graphsBernoulli19984477495 CohenJA coefficient of agreement for nominal scalesEducational and Psychological Measurement1960203746 LauritzenSLGraphical models1996Oxford, United KingdomClarendon Press GoodmanLAKruskalWHMeasures of Association for Cross ClassificationsJournal of the American Statistical Association195449732764 AgrestiACategorical Data Analysis2002New YorkWiley McCullaghPNelderJAGeneralized Linear Models1989LondonChapman and Hall CloggCCShihadehEIStatistical models for ordinal data1994LondonSage FreemanLCOrder-Based Statistics and Monotonicity: A Family of Ordinal Measures of AssociationJournal of Mathematical Sociology1986124969 GoodmanLAKruskalWHMeasures of Association for Cross Classifications IV: Simplification of Asymptotic VariancesJournal of the American Statistical Association197267415421 Statistical dependence and independence. Encyclopedia of Biostatistics, P. Armitage and T. Colton (eds), New York: Wiley, (1998a)4260–4264. L.A. Goodman and W.H. Kruskal, (Measures of Association for Cross Classifications, Springer-Verlag, New York, 1979). WermuthNCoxDROn the application of conditional independence to ordinal dataInternational Statistical Review199866181199 C. P. Robert, (The Bayesian Choice, 2ed, Springer-Verlag, New York, 2007). |
References_xml | – reference: FrancomSFChuang-SteinCLandisJRA log-linear model for ordinal data to characterize differential change among treatmentsStatist. Med.19988571582 – reference: L.A. Goodman and W.H. Kruskal, (Measures of Association for Cross Classifications, Springer-Verlag, New York, 1979). – reference: CohenJA coefficient of agreement for nominal scalesEducational and Psychological Measurement1960203746 – reference: LauritzenSLGraphical models1996Oxford, United KingdomClarendon Press – reference: GoodmanLAKruskalWHMeasures of Association for Cross Classifications II: Further Discussion and ReferencesJournal of the American Statistical Association195954123163 – reference: GonzalezRNelsonTOMeasuring Ordinal Association in Situations That Contain Tied ScoresPsychological Bulletin1996119159165 – reference: AgrestiAHitchcockDBBayesian inference for categorical data analysisStat. Methods Appl.200514297330 – reference: BroemelingLDBayesian Methods for Measures of Agreement2009New YorkChapman & Hall/CRC press – reference: N. Wermuth, Graphical Markov models. In S. Kotz, C. Read and D. Banks (eds), Encyclopedia of Statistical Sciences, 2(1998) 284–300, New York: Wiley. – reference: Statistical dependence and independence. Encyclopedia of Biostatistics, P. Armitage and T. Colton (eds), New York: Wiley, (1998a)4260–4264. – reference: AgrestiAAnalysis of Ordinal Categorical Data1984New YorkWiley – reference: GoodmanLAKruskalWHMeasures of Association for Cross Classifications III: Approximate Sampling TheoryJournal of the American Statistical Association196358310364 – reference: EdwardsDIntroduction to graphical modelling1995New YorkSpringer – reference: WermuthNCoxDROn association models defined over independence graphsBernoulli19984477495 – reference: GanjaliMRezaeeZA transition model for analysis of repeated measure ordinal response data to identify the effects of different treatmentsDrug information journal200741527534 – reference: C. P. Robert, (The Bayesian Choice, 2ed, Springer-Verlag, New York, 2007). – reference: McCullaghPNelderJAGeneralized Linear Models1989LondonChapman and Hall – reference: GoodmanLAKruskalWHMeasures of Association for Cross Classifications IV: Simplification of Asymptotic VariancesJournal of the American Statistical Association197267415421 – reference: MehtaCRPatelNRA network algorithm for performing Fishers exact test in r×c contingency tablesJ. Amer. Statist. Assoc.198378427434 – reference: FreemanLCOrder-Based Statistics and Monotonicity: A Family of Ordinal Measures of AssociationJournal of Mathematical Sociology1986124969 – reference: CoxDRWermuthNMultivariate dependencies models, analysis and interpretation1996LondonChapman & Hall – reference: AgrestiACategorical Data Analysis2002New YorkWiley – reference: WermuthNCoxDROn the application of conditional independence to ordinal dataInternational Statistical Review199866181199 – reference: CloggCCShihadehEIStatistical models for ordinal data1994LondonSage – reference: GoodmanLAKruskalWHMeasures of Association for Cross ClassificationsJournal of the American Statistical Association195449732764 |
SSID | ssib054931739 ssj0000800523 |
Score | 1.9140366 |
Snippet | For analysis of contingency tables with large sample size, classical approaches using approximate methods have high power. However, when the sample size is... |
SourceID | doaj proquest springer |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 156 |
SubjectTerms | Algorithms Association parameters; Bayesian P-value; Gamma; Sensitivity Analysis Asymptotic properties Bayesian analysis Contingency Contingency tables Dirichlet problem Research Article Sensitivity analysis Variables |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27TsMwFLVQJxgQT1EoyAMTUtrErzgjRVQVUlkoUjfLT6kdUkQDiL_nOklLYWFhjJ1E0bnJ9TmxfS5C19Z55gnxCbGGJkxYkchChMRb7YKOdit1ubfJoxg_s4cZn22V-oprwhp74Aa4AckFd84RaiVhXAYD-dSL1BFncweHMfumRbolphYtDwKJ1cxLQsbNBgsgW3ElF4fc0Cd91nr0_yCWv-ZC6yFmdID2W26Ib5tnOkQ7vjxCe5ONserqGD0N9aeP-x4xUMQKLwOeb-rYWo916TAIXDdv_vD97ISTq48lBrUZK2Hhd1DJcd_U6gRNR_fTu3HS1kVILE1ZlbBcaOY4CdYCzj6TnutUagFkn0S-Z6yVLGOZ0TDyOECeQkthcseD1TKnp6hTLkt_hrCnuTWp8SGFK0wRNM0LAFf7HMZtSVwXDSNI6qVxvlDRi7pugAipNkLqrwh1UW8NsWo_kJUiRbSq4wXNuuhmDft3N0iTGDUVo6Zi1ECiKKLY-X880AXajbdsFnz1UKd6ffOXQC0qc1W_RV8LEM6a priority: 102 providerName: Directory of Open Access Journals – databaseName: SpringerOpen Free (Free internet resource, activated by CARLI) dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagLDAgnqJQkAcmpJTE8SsjragqpLJQpG6WX5HaoUU0gPj3nBO3UMTC6Ec83GfnvvOd7xC6ts5TT4hPiDV5QrnliSx4mXirXalDupW63NvokQ-f6cOETeJ9R3gL88N_Dz_K7HYGHCkEYDE40l3Spdtoh2U5r92yvL_aOWDkgB6M-S1nkQexurZbfaJDyFzjo_xz0Zivf4Nk_vKL1upmcID2I0_Edw2wh2jLz4_Q3midZHV5jJ56-tOHN5AY6GKFFyWermvaWo_13GEwdt20ue3bHITJ1ccCg-UZqmLhd7CYwxuq5QkaD-7H_WESayQkNk9plVDBNXWMlNaCzH0mPdOp1ByIPwncz1graUYzo0ELOUAhh57CCMdKq6XIT1Frvpj7M4R9LqxJjS9T-MIUpc5F4XmqvQAdLolro14QknppsmCokJe67gC4VNzmigjOnHMkt5JQJksD2g8WccRZ4aDZRp2ViFU8LEtFipC2jgGEbXSzEvv3MJgpATUVUFMBNTBXFFH0_D-TL9BuaDVBXh3Uql7f_CXQicpc1TvpC4HwxI8 priority: 102 providerName: Springer Nature |
Title | Bayesian test of independence and conditional independence of two ordinal variables |
URI | https://link.springer.com/article/10.2991/jsta.2015.14.2.4 https://www.proquest.com/docview/2910045931 https://doaj.org/article/2765ddd23c82458fb284e60d2dc7d8fb |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8QwDI54LDAgnuJ4nDIwIRXaNEnTCXEnDoQEQjwktiivIhiuwBUQ_x67zYFgYMxzsB3bX-LYhOw5H3hgLCTM2Tzh0slElbJKgjO-MphupS33dnEpz-74-b24jxdukxhWOdWJraL2tcM78kNWYm4zUebZ0fNLglWj8HU1ltCYJfMZWBqUczU6ncoTQB-wjjHr5VP0jkRb8a095xhI171cgk7ODp_AHcNYLwHa44Ad8JjF_5fr-ee1tDVCo2WyFL1Hetyxe4XMhPEqWbz4Tr06WSM3A_MZ8GckBSeyoXVFH78r3bpAzdhTgMD-sbsD_D0Ik5uPmgIexVpZ9B1wNP6smqyT29HJ7fAsiZUTEpenvEl4IQ33glXOASdCpoIwqTIS4ABDj9A6p3jGM2vANnngTQ49pS28qJxRRb5B5sb1OGwSGvLC2dSGKoUVtqxMXpRBpiYUQG_FfI8MkEj6ucuNoTFbddtRvz7oKPyaFVJ471nuFONCVRZsImzimXeFh2aP7ExJrOMRmugfhvfI_pTsP8MAXpBrGrmmkWsAYjTTfOv_vbbJAk7ugr12yFzz-hZ2wa1obL-VnT6ZH5xcXl1DayiH_RaifwHToM5t |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7BcoAeEI-iboHiA1yQAhvHzuOAqm4LWh67QnSRuFl-pVoOG8qmRfyo_kdm8gDRAzeOcWLHmhmPv7HnAbBrnReecx9wa6JAxDYO0izOA2-1yzWlW6nKvQ1H8eBanN3Imzn418bCkFtlqxMrRe0KS2fkhzyj3GYyi8Kvd78DqhpFt6ttCY1aLM794wOabLOj0x_I3z3OT47H3wdBU1UgsGi6l4FIYi2c5Lm1OEsfpl7qXqpjhMqc0JKxNhWhCI1Gve1w3hG2ZCZxMrc6TSIcdh4WBAW0dmChfzy6vGoFGG0t3I6bNJu3DRyTVYm5SrGQ5159VYp_Cg9vEf-Rc5lEdXXAD0RTNuAV1v3verba9U5WYLmBq-xbLV-rMOena_Bh-JzrdbYOP_v60VMoJkPUWrIiZ5Pn0rrWMz11DG1uN6kPHV-_xI_Lh4IhNak4F_uLhjuFcs0-wvg9iLoBnWkx9Z-A-Sixpmd83sMeJst1lGQ-7mmfIJRIuetCn4ik7upkHIrSY1cNxf0v1aw2xZNYOud4ZFMuZJob3IRxEMedTRw-dmGrJbFq1uxMvUhYF_Zbsr-8RmuJuKaIa4q4hlaT4kp8fnusHVgcjIcX6uJ0dL4JS9Sx9jTbgk55_8dvI6YpzZdGkhiod5bdJ4HTCSs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RkKr2gPpUF2jrQ3upFHbj2LFzQFUpXaAUVKlU4mb5WcFhQ9kA4qfx75jJA0QPvXGMEzvJeDz-xh7PB_DBhygi5zHj3hWZKH2Z6apMWfQ2JEvpVlq6t_2Dcue3-H4kjxbgejgLQ2GVg01sDXWoPa2Rj3lFuc1kVeTj1IdF_Nyafj79mxGDFO20DnQanYrsxatLdN_mG7tb2NcfOZ9-O_y6k_UMA5lHN77JhCqtCJIn7_GLY66jtBNtS4TNnJCT816LXOTOog0P-A8FllROBZm81arAZh_BkipURX6fnm4PqoxeF07MfcLNkx6YyZZsrjUxFMPXbZrie_LxCSJBCjOTaLjW-broCQTuod5_Nmrb-W_6DJZ74Mq-dJr2HBbi7AU83b_N-jp_Cb827VWkQ5kM8WvD6sSOb0l2fWR2Fhh63-G4W368fxMfbi5rhrIkmi52gS48Heqav4LDhxDpa1ic1bP4BlgslHcTF9MEa7gqWRRzLCc2KgQVmocRbJKQzGmXlsNQouy2oD77Y_pxZ7gqZQiBF15zIXVyOB1jI4EHrwJejmBtELHpR-_c3OnaCD4NYr-7jX4T9ZqhXjPUa-g_GW7Eyv_beg-PUWPNj92DvVV4QvW6kLM1WGzOzuNbBDeNe9eqEQPzwGp7Aw7iC_s |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+test+of+independence+and+conditional+independence+of+two+ordinal+variables&rft.jtitle=Journal+of+statistical+theory+and+applications&rft.au=Saberi%2C+Zahra&rft.au=Ganjali%2C+Mojtab&rft.date=2015-06-01&rft.pub=Springer+Nature+B.V&rft.issn=1538-7887&rft.eissn=2214-1766&rft.volume=14&rft.issue=2&rft.spage=156&rft.epage=168&rft_id=info:doi/10.2991%2Fjsta.2015.14.2.4&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1538-7887&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1538-7887&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1538-7887&client=summon |