Advances in Nonprecious Metal Homogeneously Catalyzed Formic Acid Dehydrogenation

Formic acid (FA) possesses a high volumetric concentration of H2 (53 g L−1). Moreover, it can be easily prepared, stored, and transported. Therefore, FA stands out as a potential liquid organic hydrogen carrier (LOHC), which allows storage and transportation of hydrogen in a safe way. The dehydrogen...

Full description

Saved in:
Bibliographic Details
Published inCatalysts Vol. 11; no. 11; p. 1288
Main Authors Iglesias, Manuel, Fernández-Alvarez, Francisco J.
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.11.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Formic acid (FA) possesses a high volumetric concentration of H2 (53 g L−1). Moreover, it can be easily prepared, stored, and transported. Therefore, FA stands out as a potential liquid organic hydrogen carrier (LOHC), which allows storage and transportation of hydrogen in a safe way. The dehydrogenation to produce H2 and CO2 competes with its dehydration to give CO and H2O. For this reason, research on selective catalytic FA dehydrogenation has gained attention in recent years. Several examples of highly active homogenous catalysts based on precious metals effective for the selective dehydrogenation of FA have been reported. Among them are the binuclear iridium-bipyridine catalysts described by Fujita and Himeda et al. (TOF = 228,000 h−1) and the cationic species [IrClCp*(2,2′-bi-2-imidazoline)]Cl (TOF = 487,500 h−1). However, examples of catalytic systems effective for the solventless dehydrogenation of FA, which is of great interest since it allows to reduce the reaction volume and avoids the use of organic solvents that could damage the fuel cell, are scarce. In this context, the development of transition metal catalysts based on cheap and easily available nonprecious metals is a subject of great interest. This work contains a summary on the state of the art of catalytic dehydrogenation of FA in homogeneous phase, together with an account of the catalytic systems based on non-precious metals so far reported.
AbstractList Formic acid (FA) possesses a high volumetric concentration of H2 (53 g L−1). Moreover, it can be easily prepared, stored, and transported. Therefore, FA stands out as a potential liquid organic hydrogen carrier (LOHC), which allows storage and transportation of hydrogen in a safe way. The dehydrogenation to produce H2 and CO2 competes with its dehydration to give CO and H2O. For this reason, research on selective catalytic FA dehydrogenation has gained attention in recent years. Several examples of highly active homogenous catalysts based on precious metals effective for the selective dehydrogenation of FA have been reported. Among them are the binuclear iridium-bipyridine catalysts described by Fujita and Himeda et al. (TOF = 228,000 h−1) and the cationic species [IrClCp*(2,2′-bi-2-imidazoline)]Cl (TOF = 487,500 h−1). However, examples of catalytic systems effective for the solventless dehydrogenation of FA, which is of great interest since it allows to reduce the reaction volume and avoids the use of organic solvents that could damage the fuel cell, are scarce. In this context, the development of transition metal catalysts based on cheap and easily available nonprecious metals is a subject of great interest. This work contains a summary on the state of the art of catalytic dehydrogenation of FA in homogeneous phase, together with an account of the catalytic systems based on non-precious metals so far reported.
Author Iglesias, Manuel
Fernández-Alvarez, Francisco J.
Author_xml – sequence: 1
  givenname: Manuel
  surname: Iglesias
  fullname: Iglesias, Manuel
– sequence: 2
  givenname: Francisco J.
  orcidid: 0000-0002-0497-1969
  surname: Fernández-Alvarez
  fullname: Fernández-Alvarez, Francisco J.
BookMark eNp1UEtLw0AQXqSCtfbofcFzdF9pssdSrRWqIug57GOiW9LdupsK8debqAcV_C4zDN9j-I7RyAcPCJ1Scs65JBdGtaqhA1hZHqAxIwXPBBdi9GM_QtOUNqSHpLyk-Rg9zO2b8gYSdh7fBb-LYFzYJ3wLvR9ehW14Bg_9penwYsjo3sHiZYhbZ_DcOIsv4aWzcaCp1gV_gg5r1SSYfs8JelpePS5W2fr--mYxX2eGE9FmvBalJDXQcqYNBZ0zyxQUeQ6yLota59qoHJTQslBEQF1YbghVWhhhtWSMT9DZl-8uhtc9pLbahH30fWTFZoQRKoWY9Sz-xTIxpBShroxrP_9so3JNRUk11Ff9qq9XZX9Uu-i2Knb_8D8A69N1PA
CitedBy_id crossref_primary_10_1002_cctc_202400393
crossref_primary_10_1021_acscatal_3c00476
crossref_primary_10_1021_acs_inorgchem_2c02540
crossref_primary_10_1021_acscatal_4c04109
crossref_primary_10_1021_acs_iecr_4c03344
crossref_primary_10_1021_acs_organomet_3c00302
crossref_primary_10_1039_D2DT04079D
crossref_primary_10_1021_acscatal_3c02060
crossref_primary_10_1021_acs_inorgchem_3c03125
crossref_primary_10_3390_ma16020472
crossref_primary_10_1039_D1DT04335H
crossref_primary_10_1021_acsomega_2c03996
crossref_primary_10_1016_j_ijhydene_2024_04_106
crossref_primary_10_1039_D3CY00512G
crossref_primary_10_1016_j_ijhydene_2022_01_184
crossref_primary_10_1038_s41467_023_39309_4
crossref_primary_10_1039_D3DT00744H
crossref_primary_10_1021_acsami_4c10391
crossref_primary_10_1002_cctc_202300740
crossref_primary_10_1016_j_ijhydene_2024_12_237
crossref_primary_10_1016_j_tgchem_2023_100020
Cites_doi 10.1021/acscatal.7b02482
10.1126/science.1206613
10.1021/ar500463r
10.1002/cctc.201900346
10.1126/science.abc3183
10.1021/cs501998t
10.1021/acs.inorgchem.1c02132
10.1016/0304-5102(93)85073-3
10.1039/D0CY00769B
10.1039/C4SC02555E
10.1002/er.713
10.1039/D1CP00236H
10.1021/ja505241x
10.1039/D0CS00296H
10.3390/en13030733
10.1021/acsenergylett.6b00574
10.1021/acscatal.7b01068
10.1021/jacs.9b03532
10.1021/acs.organomet.8b00534
10.2533/chimia.2015.348
10.1021/acs.organomet.6b00274
10.1039/C2CS35272A
10.1039/C8OB01895B
10.1002/cctc.201402716
10.1039/C9GC02453K
10.1039/C6DT01499B
10.1021/acscatal.6b00564
10.1021/acs.inorgchem.0c00812
10.1021/acs.organomet.0c00777
10.1039/C4SC01035C
10.1002/ejic.201800159
10.1021/acs.organomet.8b00289
10.1002/chem.201705201
10.1021/acs.inorgchem.1c00563
10.1021/ja100925n
10.1039/C4RA11031E
10.1002/asia.201901676
10.1002/chem.201901177
10.1021/acs.inorgchem.1c00757
10.1039/C5SC00394F
10.1021/acs.chemrev.7b00182
10.1021/om5010379
10.1021/acs.accounts.5b00385
10.1002/chem.201805612
10.1021/ar500345f
10.1002/cssc.201301414
10.1016/j.ica.2017.06.043
10.1039/c2ee21928j
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SR
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.3390/catal11111288
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Research Database
Materials Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
METADEX
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2073-4344
ExternalDocumentID 10_3390_catal11111288
GroupedDBID 5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
D1I
ESX
HCIFZ
IAO
ITC
KB.
KQ8
MODMG
M~E
OK1
PDBOC
PHGZM
PHGZT
PIMPY
PROAC
7SR
8BQ
8FD
ABUWG
AZQEC
DWQXO
JG9
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c304t-3f4890fe186bc1eb52d2ae755e9f87fb5bca5ea4b97a04ef7d3c01ab4c4db9223
IEDL.DBID BENPR
ISSN 2073-4344
IngestDate Fri Jul 25 11:53:39 EDT 2025
Thu Apr 24 23:01:39 EDT 2025
Tue Jul 01 01:12:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c304t-3f4890fe186bc1eb52d2ae755e9f87fb5bca5ea4b97a04ef7d3c01ab4c4db9223
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0497-1969
OpenAccessLink https://www.proquest.com/docview/2602019446?pq-origsite=%requestingapplication%
PQID 2602019446
PQPubID 2032420
ParticipantIDs proquest_journals_2602019446
crossref_citationtrail_10_3390_catal11111288
crossref_primary_10_3390_catal11111288
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Catalysts
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Neary (ref_42) 2016; 45
Munarriz (ref_9) 2021; 60
Tamarany (ref_24) 2021; 23
ref_12
Bertini (ref_35) 2015; 5
Su (ref_3) 2015; 48
Hong (ref_49) 2020; 59
Zhou (ref_27) 2019; 25
Cohen (ref_14) 2017; 7
Tondreu (ref_36) 2016; 35
Liab (ref_25) 2015; 69
Sordakis (ref_19) 2018; 118
Chirik (ref_7) 2015; 48
Oldenhof (ref_18) 2015; 6
ref_23
Mravak (ref_45) 2019; 11
Gandeepan (ref_6) 2015; 48
Chauvier (ref_48) 2015; 6
Anderson (ref_37) 2019; 25
Junge (ref_28) 2018; 24
Li (ref_13) 2016; 6
Junge (ref_39) 2020; 10
Laurenczy (ref_20) 2014; 25
Thoi (ref_4) 2013; 42
Guan (ref_21) 2020; 15
Correa (ref_44) 2018; 470
Albrecht (ref_2) 2014; 33
Myers (ref_47) 2014; 5
Iturmendi (ref_15) 2018; 37
Curley (ref_34) 2018; 37
Scotti (ref_43) 2014; 4
Polidano (ref_5) 2019; 17
Cook (ref_30) 2021; 60
Wang (ref_17) 2014; 7
Agapova (ref_38) 2020; 22
Boddien (ref_32) 2011; 333
Onishi (ref_26) 1993; 80
Britto (ref_40) 2021; 60
Grasemann (ref_22) 2012; 5
Matsunami (ref_16) 2017; 7
Nakajima (ref_46) 2019; 141
Lentz (ref_29) 2021; 40
Eppinger (ref_8) 2017; 2
Haider (ref_10) 2021; 50
Bullock (ref_1) 2020; 369
Baschuk (ref_11) 2001; 25
Boddien (ref_31) 2010; 132
Enthaler (ref_41) 2015; 7
Bielinski (ref_33) 2014; 136
References_xml – volume: 7
  start-page: 8139
  year: 2017
  ident: ref_14
  article-title: Ir(III)-PC(sp3)P Bifunctional Catalysts for Production of H2 by Dehydrogenation of Formic Acid: Experimental and Theoretical Study
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b02482
– volume: 333
  start-page: 1733
  year: 2011
  ident: ref_32
  article-title: Efficient dehydrogenation of formic acid using an iron catalyst
  publication-title: Science
  doi: 10.1126/science.1206613
– volume: 48
  start-page: 1194
  year: 2015
  ident: ref_6
  article-title: Cobalt Catalysis Involving π Components in Organic Synthesis
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar500463r
– volume: 11
  start-page: 2443
  year: 2019
  ident: ref_45
  article-title: Models Facilitating the Design of a New Metal-Organic Framework Catalyst for the Selective Decomposition of Formic Acid into Hydrogen and Carbon Dioxide
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201900346
– volume: 369
  start-page: eabc3183
  year: 2020
  ident: ref_1
  article-title: Using nature’s blueprint to expand catalysis with Earth-abundant metals
  publication-title: Science
  doi: 10.1126/science.abc3183
– volume: 5
  start-page: 1254
  year: 2015
  ident: ref_35
  article-title: Iron(II) Complexes of the Linear rac-Tetraphos-1 Ligand as Efficient Homogeneous Catalysts for Sodium Bicarbonate Hydrogenation and Formic Acid Dehydrogenation
  publication-title: ACS Catal.
  doi: 10.1021/cs501998t
– volume: 60
  start-page: 15497
  year: 2021
  ident: ref_9
  article-title: Impact of Green Cosolvents on the Catalytic Dehydrogenation of Formic Acid: The Case of Iridium Catalysts Bearing NHC-phosphane Ligands
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.1c02132
– volume: 80
  start-page: 145
  year: 1993
  ident: ref_26
  article-title: Decomposition of formic acid catalyzed by hydrido (phosphonite) cobalt (I) under photoirradiation
  publication-title: J. Molec. Catal.
  doi: 10.1016/0304-5102(93)85073-3
– volume: 10
  start-page: 3931
  year: 2020
  ident: ref_39
  article-title: Manganese(i) κ2-NN complex-catalyzed formic acid dehydrogenation
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/D0CY00769B
– volume: 6
  start-page: 1027
  year: 2015
  ident: ref_18
  article-title: Dehydrogenation of formic acid by Ir–bisMETAMORPhos complexes: Experimental and computational insight into the role of a cooperative ligand
  publication-title: Chem. Sci.
  doi: 10.1039/C4SC02555E
– volume: 25
  start-page: 695
  year: 2001
  ident: ref_11
  article-title: Carbon monoxide poisoning of proton exchange membrane fuel cells
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.713
– volume: 23
  start-page: 11515
  year: 2021
  ident: ref_24
  article-title: Formic acid dehydrogenation over PdNi alloys supported on N-doped carbon: Synergistic effect of Pd–Ni alloying on hydrogen release
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/D1CP00236H
– volume: 136
  start-page: 10234
  year: 2014
  ident: ref_33
  article-title: Lewis Acid-Assisted Formic Acid Dehydrogenation Using a Pincer-Supported Iron Catalyst
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja505241x
– volume: 25
  start-page: 2157
  year: 2014
  ident: ref_20
  article-title: Homogeneous Catalytic Dehydrogenation of Formic Acid: Progress Towards a Hydrogen-Based Economy
  publication-title: J. Braz. Chem. Soc.
– volume: 50
  start-page: 1138
  year: 2021
  ident: ref_10
  article-title: High temperature proton exchange membrane fuel cells: Progress in advanced materials and key technologies
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS00296H
– ident: ref_23
  doi: 10.3390/en13030733
– volume: 2
  start-page: 188
  year: 2017
  ident: ref_8
  article-title: Formic Acid as a Hydrogen Energy Carrier
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.6b00574
– volume: 7
  start-page: 4479
  year: 2017
  ident: ref_16
  article-title: A Bifunctional Iridium Catalyst Modified for Persistent Hydrogen Generation from Formic Acid: Understanding Deactivation via Cyclometalation of a 1,2-Diphenylethylenediamine Motif
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b01068
– volume: 141
  start-page: 8732
  year: 2019
  ident: ref_46
  article-title: Synergistic Cu2 Catalysts for Formic Acid Dehydrogenation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b03532
– volume: 37
  start-page: 3846
  year: 2018
  ident: ref_34
  article-title: Catalytic Formic Acid Dehydrogenation and CO2 Hydrogenation Using Iron PNRP Pincer Complexes with Isonitrile Ligands
  publication-title: Organometallics
  doi: 10.1021/acs.organomet.8b00534
– volume: 69
  start-page: 348
  year: 2015
  ident: ref_25
  article-title: Dehydrogenation of Formic Acid by Heterogeneous Catalysts
  publication-title: Chimia
  doi: 10.2533/chimia.2015.348
– volume: 35
  start-page: 2049
  year: 2016
  ident: ref_36
  article-title: 1,2-Addition of Formic or Oxalic Acid to −N{CH2CH2(PiPr2)}2-Supported Mn(I) Dicarbonyl Complexes and the Manganese-Mediated Decomposition of Formic Acid
  publication-title: Organometallics
  doi: 10.1021/acs.organomet.6b00274
– volume: 42
  start-page: 2388
  year: 2013
  ident: ref_4
  article-title: Complexes of earth-abundant metals for catalytic electrochemical hydrogen generation under aqueous conditions
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C2CS35272A
– volume: 17
  start-page: 1595
  year: 2019
  ident: ref_5
  article-title: Recent advances in homogeneous borrowing hydrogen catalysis using earth-abundant first row transition metals
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/C8OB01895B
– volume: 7
  start-page: 65
  year: 2015
  ident: ref_41
  article-title: Exploring the Reactivity of Nickel Pincer Complexes in the Decomposition of Formic Acid to CO2/H2 and the Hydrogenation of NaHCO3 to NaOOCH
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201402716
– volume: 22
  start-page: 913
  year: 2020
  ident: ref_38
  article-title: Hydrogen production from formic acid catalyzed by a phosphine free manganese complex: Investigation and mechanistic insights
  publication-title: Green Chem.
  doi: 10.1039/C9GC02453K
– volume: 45
  start-page: 14645
  year: 2016
  ident: ref_42
  article-title: Nickel-catalyzed release of H2 from formic acid and a new method for the synthesis of zerovalent Ni(PMe3)4
  publication-title: Dalton Trans.
  doi: 10.1039/C6DT01499B
– volume: 6
  start-page: 4746
  year: 2016
  ident: ref_13
  article-title: DFT Study on the Mechanism of Formic Acid Decomposition by a Well-Defined Bifunctional Cyclometalated Iridium(III) Catalyst: Self-Assisted Concerted Dehydrogenation via Long-Range Intermolecular Hydrogen Migration
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b00564
– volume: 59
  start-page: 11976
  year: 2020
  ident: ref_49
  article-title: Cooperative Effects of Heterodinuclear IrIII−MII Complexes on Catalytic H2 Evolution from Formic Acid Dehydrogenation in Water
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.0c00812
– volume: 40
  start-page: 565
  year: 2021
  ident: ref_29
  article-title: Additive-Free Formic Acid Dehydrogenation Catalyzed by a Cobalt Complex
  publication-title: Organometallics
  doi: 10.1021/acs.organomet.0c00777
– volume: 5
  start-page: 2771
  year: 2014
  ident: ref_47
  article-title: Aluminium–ligand cooperation promotes selective dehydrogenation of formic acid to H2 and CO2
  publication-title: Chem. Sci.
  doi: 10.1039/C4SC01035C
– ident: ref_12
  doi: 10.1002/ejic.201800159
– volume: 37
  start-page: 3611
  year: 2018
  ident: ref_15
  article-title: Impact of Protic Ligands in the Ir-Catalyzed Dehydrogenation of Formic Acid in Water
  publication-title: Organometallics
  doi: 10.1021/acs.organomet.8b00289
– volume: 24
  start-page: 1046
  year: 2018
  ident: ref_28
  article-title: Cobalt Pincer Complexes for Catalytic Reduction of Carboxylic Acid Esters
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201705201
– volume: 60
  start-page: 7372
  year: 2021
  ident: ref_30
  article-title: Insights into Formate Oxidation by a Series of Cobalt Piano-Stool Complexes Supported by Bis(phosphino)amine Ligands
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.1c00563
– volume: 132
  start-page: 8924
  year: 2010
  ident: ref_31
  article-title: Iron-Catalyzed Hydrogen Production from Formic Acid
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja100925n
– volume: 4
  start-page: 61514
  year: 2014
  ident: ref_43
  article-title: A new Cu-based system for formic acid dehydrogenation
  publication-title: RSC Adv.
  doi: 10.1039/C4RA11031E
– volume: 15
  start-page: 937
  year: 2020
  ident: ref_21
  article-title: An Update on Formic Acid Dehydrogenation by Homogeneous Catalysis
  publication-title: Chem. Asian J.
  doi: 10.1002/asia.201901676
– volume: 25
  start-page: 10557
  year: 2019
  ident: ref_37
  article-title: Manganese-Mediated Formic Acid Dehydrogenation
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201901177
– volume: 60
  start-page: 11038
  year: 2021
  ident: ref_40
  article-title: Deciphering the Mechanistic Details of Manganese-Catalyzed Formic Acid Dehydrogenation: Insights from DFT Calculations
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.1c00757
– volume: 6
  start-page: 2938
  year: 2015
  ident: ref_48
  article-title: Metal-free dehydrogenation of formic acid to H2 and CO2 using boron-based catalysts
  publication-title: Chem. Sci.
  doi: 10.1039/C5SC00394F
– volume: 118
  start-page: 372
  year: 2018
  ident: ref_19
  article-title: Homogeneous Catalysis for Sustainable Hydrogen Storage in Formic Acid and Alcohols
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00182
– volume: 33
  start-page: 5619
  year: 2014
  ident: ref_2
  article-title: Catalytic and Organometallic Chemistry of Earth-Abundant Metals
  publication-title: Organometallics
  doi: 10.1021/om5010379
– volume: 48
  start-page: 2495
  year: 2015
  ident: ref_7
  article-title: Getting Down to Earth: The Renaissance of Catalysis with Abundant Metals
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.5b00385
– volume: 25
  start-page: 8459
  year: 2019
  ident: ref_27
  article-title: Cobalt-Catalyzed Aqueous Dehydrogenation of Formic Acid
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201805612
– volume: 48
  start-page: 886
  year: 2015
  ident: ref_3
  article-title: Exploration of Earth-Abundant Transition Metals (Fe, Co, and Ni) as Catalysts in Unreactive Chemical Bond Activations
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar500345f
– volume: 7
  start-page: 1976
  year: 2014
  ident: ref_17
  article-title: Formic Acid Dehydrogenation with Bioinspired Iridium Complexes: A Kinetic Isotope Effect Study and Mechanistic Insight
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201301414
– volume: 470
  start-page: 290
  year: 2018
  ident: ref_44
  article-title: Mechanistic insights into formic acid dehydrogenation promoted by Cu-amino based systems
  publication-title: Inorg. Chim. Acta.
  doi: 10.1016/j.ica.2017.06.043
– volume: 5
  start-page: 8171
  year: 2012
  ident: ref_22
  article-title: Formic acid as a hydrogen source—Recent developments and future trends
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee21928j
SSID ssj0000913815
Score 2.3511355
SecondaryResourceType review_article
Snippet Formic acid (FA) possesses a high volumetric concentration of H2 (53 g L−1). Moreover, it can be easily prepared, stored, and transported. Therefore, FA stands...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 1288
SubjectTerms Catalysis
Catalysts
Chemical reactions
Dehydration
Dehydrogenation
Formic acid
Fuel cells
Hydrogen bonds
Hydrogenation
Imidazoline
Iridium
Ligands
Metals
Noble metals
Nuclear fuels
System effectiveness
Transition metals
Title Advances in Nonprecious Metal Homogeneously Catalyzed Formic Acid Dehydrogenation
URI https://www.proquest.com/docview/2602019446
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8JAEN4IHPRifEYUyR6MJxv72G23J4MIEhOIGkm4Nd3daSTBFgEP-Oud7QPDQa_tZNvM7M7MNzsPQq6UgsDzQ9dyQ8EtZspkpGLKMkPvYwcCVMsGKA5H_mDMniZ8UgbclmVaZaUTc0WtM2Vi5Lfod6OtChG93M0_LTM1ytyuliM0aqSBKlgg-Grc90bPr5soi-l6KRxeNNf0EN8XFeFGTyC92DZG27o4NzD9A7Jfeoa0U4jykOxAekR2u9VAtmPy0inu65d0mtJRls5NYwoE7nQI-DE6yD4y3A2AT2Zr2jU_sP4GTfvolU4V7aippg_wvtYLQ5YL5ISM-7237sAqJyJYyrPZyvISJkI7AUf4UjkguavdGALOIUxEkEguVcwhZjIMYptBEmhP2U4smWJahugJnJJ6mqVwRihXiUmZBh262rQ3il1pC43HE3yV4FJNclOxJlJlu3AztWIWIWwwnIy2ONkk1xvyedEn4y_CVsXnqDwuy-hXuOf_v74ge65JKsmLAVukvlp8wSV6BSvZJjXRf2yXG-AHQ2C7Pw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEF5FcAiXCmhRKSnsofRUC3u9G3sPVRUFQngkUiWQuBnv7lhESu00D1XhR_EbO2PHoBzgxtW7sq3Z2W9mdme-YeybtRCFbS08oWPlSSqTMVZaj5repwFECMsUKA6G7f6tvLxTdw32VNfCUFpljYklULvC0hn5CfrdaKs0Ri-_Jn896hpFt6t1C41KLa5g-Q9DttnPi1Nc32Mhemc33b636irgWQzd516YyVj7GQRx29gAjBJOpBApBTqLo8woY1MFqTQ6Sn0JWeRC6wepkVY6owURHSDkb8ow1LSj4t7585kOcWzGgaqoPHHcr-rPCZXQDMTrpm8d-Utz1ttmH1Z-KO9UirPDGpDvsma3bv_2kf3uVNkBMz7K-bDIJ0SDUSxmfAD4Md4v_hSoe4BPxkvepR9YPoLjPfSBR5Z37MjxU3hYuilNK5f_E7t9F0ntsY28yOEz48pmlKANTgtHZEqpMH7sEAygbTN81T77UYsmsStycuqRMU4wSCFJJmuS3Gffn6dPKlaO1ya2ajknq805S15U6cvbw0es2b8ZXCfXF8OrA7YlKJ2lLENssY35dAFf0R-Zm8NSCTi7f2-t-w-akPfR
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VqQRcUMtDFPrYA3DCqr32xt4DQmnSKCUkCohKvRnv7liNVOy0SYXCT-uv60xsp8oBbr3aK9saf57Heub7AN5bi3HY1tKTOlFexGMyxkbWY9H7LMCY3DIXiqNxe3Aefb1QF1tw18zCcFtl4xNXjtqVlvfIjynvplilqXo5zuu2iEmv_2V27bGCFP9pbeQ0KogMcfmHyrf557MevesPUvZPf3YHXq0w4Fkq4xdemEeJ9nMMkraxARolncwwVgp1nsS5UcZmCrPI6DjzI8xjF1o_yExkI2e0ZNIDcv_bMVVFfgu2T07Hkx_rHR5m3EwCVRF7hqH2q2l09lEUFJLNQLgZB1bBrb8Dz-usVHQqGO3CFhYv4Gm3EYN7Cd87Va_AXEwLMS6LGZNilLdzMUK6mRiUv0tCItKRq6Xo8gMs_6ITfcqIp1Z07NSJHl4u3Q0vW4HhFZw_iq1eQ6soC3wDQtmc27XRaemYWimTxk8cuQZs25wutQefGtOktqYqZ8WMq5RKFrZkumHJPfi4Xj6rODr-tXC_sXNaf6rz9AFYb_9_-gieEOLSb2fj4Tt4Jrm3ZTWTuA-txc0tHlBysjCHNQoE_Hps4N0Dwtz9Yw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advances+in+Nonprecious+Metal+Homogeneously+Catalyzed+Formic+Acid+Dehydrogenation&rft.jtitle=Catalysts&rft.au=Iglesias%2C+Manuel&rft.au=Fern%C3%A1ndez-Alvarez%2C+Francisco+J&rft.date=2021-11-01&rft.pub=MDPI+AG&rft.eissn=2073-4344&rft.volume=11&rft.issue=11&rft.spage=1288&rft_id=info:doi/10.3390%2Fcatal11111288&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4344&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4344&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4344&client=summon