Advances in Nonprecious Metal Homogeneously Catalyzed Formic Acid Dehydrogenation
Formic acid (FA) possesses a high volumetric concentration of H2 (53 g L−1). Moreover, it can be easily prepared, stored, and transported. Therefore, FA stands out as a potential liquid organic hydrogen carrier (LOHC), which allows storage and transportation of hydrogen in a safe way. The dehydrogen...
Saved in:
Published in | Catalysts Vol. 11; no. 11; p. 1288 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.11.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Formic acid (FA) possesses a high volumetric concentration of H2 (53 g L−1). Moreover, it can be easily prepared, stored, and transported. Therefore, FA stands out as a potential liquid organic hydrogen carrier (LOHC), which allows storage and transportation of hydrogen in a safe way. The dehydrogenation to produce H2 and CO2 competes with its dehydration to give CO and H2O. For this reason, research on selective catalytic FA dehydrogenation has gained attention in recent years. Several examples of highly active homogenous catalysts based on precious metals effective for the selective dehydrogenation of FA have been reported. Among them are the binuclear iridium-bipyridine catalysts described by Fujita and Himeda et al. (TOF = 228,000 h−1) and the cationic species [IrClCp*(2,2′-bi-2-imidazoline)]Cl (TOF = 487,500 h−1). However, examples of catalytic systems effective for the solventless dehydrogenation of FA, which is of great interest since it allows to reduce the reaction volume and avoids the use of organic solvents that could damage the fuel cell, are scarce. In this context, the development of transition metal catalysts based on cheap and easily available nonprecious metals is a subject of great interest. This work contains a summary on the state of the art of catalytic dehydrogenation of FA in homogeneous phase, together with an account of the catalytic systems based on non-precious metals so far reported. |
---|---|
AbstractList | Formic acid (FA) possesses a high volumetric concentration of H2 (53 g L−1). Moreover, it can be easily prepared, stored, and transported. Therefore, FA stands out as a potential liquid organic hydrogen carrier (LOHC), which allows storage and transportation of hydrogen in a safe way. The dehydrogenation to produce H2 and CO2 competes with its dehydration to give CO and H2O. For this reason, research on selective catalytic FA dehydrogenation has gained attention in recent years. Several examples of highly active homogenous catalysts based on precious metals effective for the selective dehydrogenation of FA have been reported. Among them are the binuclear iridium-bipyridine catalysts described by Fujita and Himeda et al. (TOF = 228,000 h−1) and the cationic species [IrClCp*(2,2′-bi-2-imidazoline)]Cl (TOF = 487,500 h−1). However, examples of catalytic systems effective for the solventless dehydrogenation of FA, which is of great interest since it allows to reduce the reaction volume and avoids the use of organic solvents that could damage the fuel cell, are scarce. In this context, the development of transition metal catalysts based on cheap and easily available nonprecious metals is a subject of great interest. This work contains a summary on the state of the art of catalytic dehydrogenation of FA in homogeneous phase, together with an account of the catalytic systems based on non-precious metals so far reported. |
Author | Iglesias, Manuel Fernández-Alvarez, Francisco J. |
Author_xml | – sequence: 1 givenname: Manuel surname: Iglesias fullname: Iglesias, Manuel – sequence: 2 givenname: Francisco J. orcidid: 0000-0002-0497-1969 surname: Fernández-Alvarez fullname: Fernández-Alvarez, Francisco J. |
BookMark | eNp1UEtLw0AQXqSCtfbofcFzdF9pssdSrRWqIug57GOiW9LdupsK8debqAcV_C4zDN9j-I7RyAcPCJ1Scs65JBdGtaqhA1hZHqAxIwXPBBdi9GM_QtOUNqSHpLyk-Rg9zO2b8gYSdh7fBb-LYFzYJ3wLvR9ehW14Bg_9penwYsjo3sHiZYhbZ_DcOIsv4aWzcaCp1gV_gg5r1SSYfs8JelpePS5W2fr--mYxX2eGE9FmvBalJDXQcqYNBZ0zyxQUeQ6yLota59qoHJTQslBEQF1YbghVWhhhtWSMT9DZl-8uhtc9pLbahH30fWTFZoQRKoWY9Sz-xTIxpBShroxrP_9so3JNRUk11Ff9qq9XZX9Uu-i2Knb_8D8A69N1PA |
CitedBy_id | crossref_primary_10_1002_cctc_202400393 crossref_primary_10_1021_acscatal_3c00476 crossref_primary_10_1021_acs_inorgchem_2c02540 crossref_primary_10_1021_acscatal_4c04109 crossref_primary_10_1021_acs_iecr_4c03344 crossref_primary_10_1021_acs_organomet_3c00302 crossref_primary_10_1039_D2DT04079D crossref_primary_10_1021_acscatal_3c02060 crossref_primary_10_1021_acs_inorgchem_3c03125 crossref_primary_10_3390_ma16020472 crossref_primary_10_1039_D1DT04335H crossref_primary_10_1021_acsomega_2c03996 crossref_primary_10_1016_j_ijhydene_2024_04_106 crossref_primary_10_1039_D3CY00512G crossref_primary_10_1016_j_ijhydene_2022_01_184 crossref_primary_10_1038_s41467_023_39309_4 crossref_primary_10_1039_D3DT00744H crossref_primary_10_1021_acsami_4c10391 crossref_primary_10_1002_cctc_202300740 crossref_primary_10_1016_j_ijhydene_2024_12_237 crossref_primary_10_1016_j_tgchem_2023_100020 |
Cites_doi | 10.1021/acscatal.7b02482 10.1126/science.1206613 10.1021/ar500463r 10.1002/cctc.201900346 10.1126/science.abc3183 10.1021/cs501998t 10.1021/acs.inorgchem.1c02132 10.1016/0304-5102(93)85073-3 10.1039/D0CY00769B 10.1039/C4SC02555E 10.1002/er.713 10.1039/D1CP00236H 10.1021/ja505241x 10.1039/D0CS00296H 10.3390/en13030733 10.1021/acsenergylett.6b00574 10.1021/acscatal.7b01068 10.1021/jacs.9b03532 10.1021/acs.organomet.8b00534 10.2533/chimia.2015.348 10.1021/acs.organomet.6b00274 10.1039/C2CS35272A 10.1039/C8OB01895B 10.1002/cctc.201402716 10.1039/C9GC02453K 10.1039/C6DT01499B 10.1021/acscatal.6b00564 10.1021/acs.inorgchem.0c00812 10.1021/acs.organomet.0c00777 10.1039/C4SC01035C 10.1002/ejic.201800159 10.1021/acs.organomet.8b00289 10.1002/chem.201705201 10.1021/acs.inorgchem.1c00563 10.1021/ja100925n 10.1039/C4RA11031E 10.1002/asia.201901676 10.1002/chem.201901177 10.1021/acs.inorgchem.1c00757 10.1039/C5SC00394F 10.1021/acs.chemrev.7b00182 10.1021/om5010379 10.1021/acs.accounts.5b00385 10.1002/chem.201805612 10.1021/ar500345f 10.1002/cssc.201301414 10.1016/j.ica.2017.06.043 10.1039/c2ee21928j |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7SR 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ JG9 KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
DOI | 10.3390/catal11111288 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Research Database Materials Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Central Korea Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection METADEX ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2073-4344 |
ExternalDocumentID | 10_3390_catal11111288 |
GroupedDBID | 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BGLVJ CCPQU CITATION D1I ESX HCIFZ IAO ITC KB. KQ8 MODMG M~E OK1 PDBOC PHGZM PHGZT PIMPY PROAC 7SR 8BQ 8FD ABUWG AZQEC DWQXO JG9 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c304t-3f4890fe186bc1eb52d2ae755e9f87fb5bca5ea4b97a04ef7d3c01ab4c4db9223 |
IEDL.DBID | BENPR |
ISSN | 2073-4344 |
IngestDate | Fri Jul 25 11:53:39 EDT 2025 Thu Apr 24 23:01:39 EDT 2025 Tue Jul 01 01:12:19 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c304t-3f4890fe186bc1eb52d2ae755e9f87fb5bca5ea4b97a04ef7d3c01ab4c4db9223 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0497-1969 |
OpenAccessLink | https://www.proquest.com/docview/2602019446?pq-origsite=%requestingapplication% |
PQID | 2602019446 |
PQPubID | 2032420 |
ParticipantIDs | proquest_journals_2602019446 crossref_citationtrail_10_3390_catal11111288 crossref_primary_10_3390_catal11111288 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-01 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Catalysts |
PublicationYear | 2021 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Neary (ref_42) 2016; 45 Munarriz (ref_9) 2021; 60 Tamarany (ref_24) 2021; 23 ref_12 Bertini (ref_35) 2015; 5 Su (ref_3) 2015; 48 Hong (ref_49) 2020; 59 Zhou (ref_27) 2019; 25 Cohen (ref_14) 2017; 7 Tondreu (ref_36) 2016; 35 Liab (ref_25) 2015; 69 Sordakis (ref_19) 2018; 118 Chirik (ref_7) 2015; 48 Oldenhof (ref_18) 2015; 6 ref_23 Mravak (ref_45) 2019; 11 Gandeepan (ref_6) 2015; 48 Chauvier (ref_48) 2015; 6 Anderson (ref_37) 2019; 25 Junge (ref_28) 2018; 24 Li (ref_13) 2016; 6 Junge (ref_39) 2020; 10 Laurenczy (ref_20) 2014; 25 Thoi (ref_4) 2013; 42 Guan (ref_21) 2020; 15 Correa (ref_44) 2018; 470 Albrecht (ref_2) 2014; 33 Myers (ref_47) 2014; 5 Iturmendi (ref_15) 2018; 37 Curley (ref_34) 2018; 37 Scotti (ref_43) 2014; 4 Polidano (ref_5) 2019; 17 Cook (ref_30) 2021; 60 Wang (ref_17) 2014; 7 Agapova (ref_38) 2020; 22 Boddien (ref_32) 2011; 333 Onishi (ref_26) 1993; 80 Britto (ref_40) 2021; 60 Grasemann (ref_22) 2012; 5 Matsunami (ref_16) 2017; 7 Nakajima (ref_46) 2019; 141 Lentz (ref_29) 2021; 40 Eppinger (ref_8) 2017; 2 Haider (ref_10) 2021; 50 Bullock (ref_1) 2020; 369 Baschuk (ref_11) 2001; 25 Boddien (ref_31) 2010; 132 Enthaler (ref_41) 2015; 7 Bielinski (ref_33) 2014; 136 |
References_xml | – volume: 7 start-page: 8139 year: 2017 ident: ref_14 article-title: Ir(III)-PC(sp3)P Bifunctional Catalysts for Production of H2 by Dehydrogenation of Formic Acid: Experimental and Theoretical Study publication-title: ACS Catal. doi: 10.1021/acscatal.7b02482 – volume: 333 start-page: 1733 year: 2011 ident: ref_32 article-title: Efficient dehydrogenation of formic acid using an iron catalyst publication-title: Science doi: 10.1126/science.1206613 – volume: 48 start-page: 1194 year: 2015 ident: ref_6 article-title: Cobalt Catalysis Involving π Components in Organic Synthesis publication-title: Acc. Chem. Res. doi: 10.1021/ar500463r – volume: 11 start-page: 2443 year: 2019 ident: ref_45 article-title: Models Facilitating the Design of a New Metal-Organic Framework Catalyst for the Selective Decomposition of Formic Acid into Hydrogen and Carbon Dioxide publication-title: ChemCatChem doi: 10.1002/cctc.201900346 – volume: 369 start-page: eabc3183 year: 2020 ident: ref_1 article-title: Using nature’s blueprint to expand catalysis with Earth-abundant metals publication-title: Science doi: 10.1126/science.abc3183 – volume: 5 start-page: 1254 year: 2015 ident: ref_35 article-title: Iron(II) Complexes of the Linear rac-Tetraphos-1 Ligand as Efficient Homogeneous Catalysts for Sodium Bicarbonate Hydrogenation and Formic Acid Dehydrogenation publication-title: ACS Catal. doi: 10.1021/cs501998t – volume: 60 start-page: 15497 year: 2021 ident: ref_9 article-title: Impact of Green Cosolvents on the Catalytic Dehydrogenation of Formic Acid: The Case of Iridium Catalysts Bearing NHC-phosphane Ligands publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.1c02132 – volume: 80 start-page: 145 year: 1993 ident: ref_26 article-title: Decomposition of formic acid catalyzed by hydrido (phosphonite) cobalt (I) under photoirradiation publication-title: J. Molec. Catal. doi: 10.1016/0304-5102(93)85073-3 – volume: 10 start-page: 3931 year: 2020 ident: ref_39 article-title: Manganese(i) κ2-NN complex-catalyzed formic acid dehydrogenation publication-title: Catal. Sci. Technol. doi: 10.1039/D0CY00769B – volume: 6 start-page: 1027 year: 2015 ident: ref_18 article-title: Dehydrogenation of formic acid by Ir–bisMETAMORPhos complexes: Experimental and computational insight into the role of a cooperative ligand publication-title: Chem. Sci. doi: 10.1039/C4SC02555E – volume: 25 start-page: 695 year: 2001 ident: ref_11 article-title: Carbon monoxide poisoning of proton exchange membrane fuel cells publication-title: Int. J. Energy Res. doi: 10.1002/er.713 – volume: 23 start-page: 11515 year: 2021 ident: ref_24 article-title: Formic acid dehydrogenation over PdNi alloys supported on N-doped carbon: Synergistic effect of Pd–Ni alloying on hydrogen release publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/D1CP00236H – volume: 136 start-page: 10234 year: 2014 ident: ref_33 article-title: Lewis Acid-Assisted Formic Acid Dehydrogenation Using a Pincer-Supported Iron Catalyst publication-title: J. Am. Chem. Soc. doi: 10.1021/ja505241x – volume: 25 start-page: 2157 year: 2014 ident: ref_20 article-title: Homogeneous Catalytic Dehydrogenation of Formic Acid: Progress Towards a Hydrogen-Based Economy publication-title: J. Braz. Chem. Soc. – volume: 50 start-page: 1138 year: 2021 ident: ref_10 article-title: High temperature proton exchange membrane fuel cells: Progress in advanced materials and key technologies publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS00296H – ident: ref_23 doi: 10.3390/en13030733 – volume: 2 start-page: 188 year: 2017 ident: ref_8 article-title: Formic Acid as a Hydrogen Energy Carrier publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.6b00574 – volume: 7 start-page: 4479 year: 2017 ident: ref_16 article-title: A Bifunctional Iridium Catalyst Modified for Persistent Hydrogen Generation from Formic Acid: Understanding Deactivation via Cyclometalation of a 1,2-Diphenylethylenediamine Motif publication-title: ACS Catal. doi: 10.1021/acscatal.7b01068 – volume: 141 start-page: 8732 year: 2019 ident: ref_46 article-title: Synergistic Cu2 Catalysts for Formic Acid Dehydrogenation publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b03532 – volume: 37 start-page: 3846 year: 2018 ident: ref_34 article-title: Catalytic Formic Acid Dehydrogenation and CO2 Hydrogenation Using Iron PNRP Pincer Complexes with Isonitrile Ligands publication-title: Organometallics doi: 10.1021/acs.organomet.8b00534 – volume: 69 start-page: 348 year: 2015 ident: ref_25 article-title: Dehydrogenation of Formic Acid by Heterogeneous Catalysts publication-title: Chimia doi: 10.2533/chimia.2015.348 – volume: 35 start-page: 2049 year: 2016 ident: ref_36 article-title: 1,2-Addition of Formic or Oxalic Acid to −N{CH2CH2(PiPr2)}2-Supported Mn(I) Dicarbonyl Complexes and the Manganese-Mediated Decomposition of Formic Acid publication-title: Organometallics doi: 10.1021/acs.organomet.6b00274 – volume: 42 start-page: 2388 year: 2013 ident: ref_4 article-title: Complexes of earth-abundant metals for catalytic electrochemical hydrogen generation under aqueous conditions publication-title: Chem. Soc. Rev. doi: 10.1039/C2CS35272A – volume: 17 start-page: 1595 year: 2019 ident: ref_5 article-title: Recent advances in homogeneous borrowing hydrogen catalysis using earth-abundant first row transition metals publication-title: Org. Biomol. Chem. doi: 10.1039/C8OB01895B – volume: 7 start-page: 65 year: 2015 ident: ref_41 article-title: Exploring the Reactivity of Nickel Pincer Complexes in the Decomposition of Formic Acid to CO2/H2 and the Hydrogenation of NaHCO3 to NaOOCH publication-title: ChemCatChem doi: 10.1002/cctc.201402716 – volume: 22 start-page: 913 year: 2020 ident: ref_38 article-title: Hydrogen production from formic acid catalyzed by a phosphine free manganese complex: Investigation and mechanistic insights publication-title: Green Chem. doi: 10.1039/C9GC02453K – volume: 45 start-page: 14645 year: 2016 ident: ref_42 article-title: Nickel-catalyzed release of H2 from formic acid and a new method for the synthesis of zerovalent Ni(PMe3)4 publication-title: Dalton Trans. doi: 10.1039/C6DT01499B – volume: 6 start-page: 4746 year: 2016 ident: ref_13 article-title: DFT Study on the Mechanism of Formic Acid Decomposition by a Well-Defined Bifunctional Cyclometalated Iridium(III) Catalyst: Self-Assisted Concerted Dehydrogenation via Long-Range Intermolecular Hydrogen Migration publication-title: ACS Catal. doi: 10.1021/acscatal.6b00564 – volume: 59 start-page: 11976 year: 2020 ident: ref_49 article-title: Cooperative Effects of Heterodinuclear IrIII−MII Complexes on Catalytic H2 Evolution from Formic Acid Dehydrogenation in Water publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.0c00812 – volume: 40 start-page: 565 year: 2021 ident: ref_29 article-title: Additive-Free Formic Acid Dehydrogenation Catalyzed by a Cobalt Complex publication-title: Organometallics doi: 10.1021/acs.organomet.0c00777 – volume: 5 start-page: 2771 year: 2014 ident: ref_47 article-title: Aluminium–ligand cooperation promotes selective dehydrogenation of formic acid to H2 and CO2 publication-title: Chem. Sci. doi: 10.1039/C4SC01035C – ident: ref_12 doi: 10.1002/ejic.201800159 – volume: 37 start-page: 3611 year: 2018 ident: ref_15 article-title: Impact of Protic Ligands in the Ir-Catalyzed Dehydrogenation of Formic Acid in Water publication-title: Organometallics doi: 10.1021/acs.organomet.8b00289 – volume: 24 start-page: 1046 year: 2018 ident: ref_28 article-title: Cobalt Pincer Complexes for Catalytic Reduction of Carboxylic Acid Esters publication-title: Chem. Eur. J. doi: 10.1002/chem.201705201 – volume: 60 start-page: 7372 year: 2021 ident: ref_30 article-title: Insights into Formate Oxidation by a Series of Cobalt Piano-Stool Complexes Supported by Bis(phosphino)amine Ligands publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.1c00563 – volume: 132 start-page: 8924 year: 2010 ident: ref_31 article-title: Iron-Catalyzed Hydrogen Production from Formic Acid publication-title: J. Am. Chem. Soc. doi: 10.1021/ja100925n – volume: 4 start-page: 61514 year: 2014 ident: ref_43 article-title: A new Cu-based system for formic acid dehydrogenation publication-title: RSC Adv. doi: 10.1039/C4RA11031E – volume: 15 start-page: 937 year: 2020 ident: ref_21 article-title: An Update on Formic Acid Dehydrogenation by Homogeneous Catalysis publication-title: Chem. Asian J. doi: 10.1002/asia.201901676 – volume: 25 start-page: 10557 year: 2019 ident: ref_37 article-title: Manganese-Mediated Formic Acid Dehydrogenation publication-title: Chem. Eur. J. doi: 10.1002/chem.201901177 – volume: 60 start-page: 11038 year: 2021 ident: ref_40 article-title: Deciphering the Mechanistic Details of Manganese-Catalyzed Formic Acid Dehydrogenation: Insights from DFT Calculations publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.1c00757 – volume: 6 start-page: 2938 year: 2015 ident: ref_48 article-title: Metal-free dehydrogenation of formic acid to H2 and CO2 using boron-based catalysts publication-title: Chem. Sci. doi: 10.1039/C5SC00394F – volume: 118 start-page: 372 year: 2018 ident: ref_19 article-title: Homogeneous Catalysis for Sustainable Hydrogen Storage in Formic Acid and Alcohols publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00182 – volume: 33 start-page: 5619 year: 2014 ident: ref_2 article-title: Catalytic and Organometallic Chemistry of Earth-Abundant Metals publication-title: Organometallics doi: 10.1021/om5010379 – volume: 48 start-page: 2495 year: 2015 ident: ref_7 article-title: Getting Down to Earth: The Renaissance of Catalysis with Abundant Metals publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.5b00385 – volume: 25 start-page: 8459 year: 2019 ident: ref_27 article-title: Cobalt-Catalyzed Aqueous Dehydrogenation of Formic Acid publication-title: Chem. Eur. J. doi: 10.1002/chem.201805612 – volume: 48 start-page: 886 year: 2015 ident: ref_3 article-title: Exploration of Earth-Abundant Transition Metals (Fe, Co, and Ni) as Catalysts in Unreactive Chemical Bond Activations publication-title: Acc. Chem. Res. doi: 10.1021/ar500345f – volume: 7 start-page: 1976 year: 2014 ident: ref_17 article-title: Formic Acid Dehydrogenation with Bioinspired Iridium Complexes: A Kinetic Isotope Effect Study and Mechanistic Insight publication-title: ChemSusChem doi: 10.1002/cssc.201301414 – volume: 470 start-page: 290 year: 2018 ident: ref_44 article-title: Mechanistic insights into formic acid dehydrogenation promoted by Cu-amino based systems publication-title: Inorg. Chim. Acta. doi: 10.1016/j.ica.2017.06.043 – volume: 5 start-page: 8171 year: 2012 ident: ref_22 article-title: Formic acid as a hydrogen source—Recent developments and future trends publication-title: Energy Environ. Sci. doi: 10.1039/c2ee21928j |
SSID | ssj0000913815 |
Score | 2.3511355 |
SecondaryResourceType | review_article |
Snippet | Formic acid (FA) possesses a high volumetric concentration of H2 (53 g L−1). Moreover, it can be easily prepared, stored, and transported. Therefore, FA stands... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 1288 |
SubjectTerms | Catalysis Catalysts Chemical reactions Dehydration Dehydrogenation Formic acid Fuel cells Hydrogen bonds Hydrogenation Imidazoline Iridium Ligands Metals Noble metals Nuclear fuels System effectiveness Transition metals |
Title | Advances in Nonprecious Metal Homogeneously Catalyzed Formic Acid Dehydrogenation |
URI | https://www.proquest.com/docview/2602019446 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8JAEN4IHPRifEYUyR6MJxv72G23J4MIEhOIGkm4Nd3daSTBFgEP-Oud7QPDQa_tZNvM7M7MNzsPQq6UgsDzQ9dyQ8EtZspkpGLKMkPvYwcCVMsGKA5H_mDMniZ8UgbclmVaZaUTc0WtM2Vi5Lfod6OtChG93M0_LTM1ytyuliM0aqSBKlgg-Grc90bPr5soi-l6KRxeNNf0EN8XFeFGTyC92DZG27o4NzD9A7Jfeoa0U4jykOxAekR2u9VAtmPy0inu65d0mtJRls5NYwoE7nQI-DE6yD4y3A2AT2Zr2jU_sP4GTfvolU4V7aippg_wvtYLQ5YL5ISM-7237sAqJyJYyrPZyvISJkI7AUf4UjkguavdGALOIUxEkEguVcwhZjIMYptBEmhP2U4smWJahugJnJJ6mqVwRihXiUmZBh262rQ3il1pC43HE3yV4FJNclOxJlJlu3AztWIWIWwwnIy2ONkk1xvyedEn4y_CVsXnqDwuy-hXuOf_v74ge65JKsmLAVukvlp8wSV6BSvZJjXRf2yXG-AHQ2C7Pw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEF5FcAiXCmhRKSnsofRUC3u9G3sPVRUFQngkUiWQuBnv7lhESu00D1XhR_EbO2PHoBzgxtW7sq3Z2W9mdme-YeybtRCFbS08oWPlSSqTMVZaj5repwFECMsUKA6G7f6tvLxTdw32VNfCUFpljYklULvC0hn5CfrdaKs0Ri-_Jn896hpFt6t1C41KLa5g-Q9DttnPi1Nc32Mhemc33b636irgWQzd516YyVj7GQRx29gAjBJOpBApBTqLo8woY1MFqTQ6Sn0JWeRC6wepkVY6owURHSDkb8ow1LSj4t7585kOcWzGgaqoPHHcr-rPCZXQDMTrpm8d-Utz1ttmH1Z-KO9UirPDGpDvsma3bv_2kf3uVNkBMz7K-bDIJ0SDUSxmfAD4Md4v_hSoe4BPxkvepR9YPoLjPfSBR5Z37MjxU3hYuilNK5f_E7t9F0ntsY28yOEz48pmlKANTgtHZEqpMH7sEAygbTN81T77UYsmsStycuqRMU4wSCFJJmuS3Gffn6dPKlaO1ya2ajknq805S15U6cvbw0es2b8ZXCfXF8OrA7YlKJ2lLENssY35dAFf0R-Zm8NSCTi7f2-t-w-akPfR |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VqQRcUMtDFPrYA3DCqr32xt4DQmnSKCUkCohKvRnv7liNVOy0SYXCT-uv60xsp8oBbr3aK9saf57Heub7AN5bi3HY1tKTOlFexGMyxkbWY9H7LMCY3DIXiqNxe3Aefb1QF1tw18zCcFtl4xNXjtqVlvfIjynvplilqXo5zuu2iEmv_2V27bGCFP9pbeQ0KogMcfmHyrf557MevesPUvZPf3YHXq0w4Fkq4xdemEeJ9nMMkraxARolncwwVgp1nsS5UcZmCrPI6DjzI8xjF1o_yExkI2e0ZNIDcv_bMVVFfgu2T07Hkx_rHR5m3EwCVRF7hqH2q2l09lEUFJLNQLgZB1bBrb8Dz-usVHQqGO3CFhYv4Gm3EYN7Cd87Va_AXEwLMS6LGZNilLdzMUK6mRiUv0tCItKRq6Xo8gMs_6ITfcqIp1Z07NSJHl4u3Q0vW4HhFZw_iq1eQ6soC3wDQtmc27XRaemYWimTxk8cuQZs25wutQefGtOktqYqZ8WMq5RKFrZkumHJPfi4Xj6rODr-tXC_sXNaf6rz9AFYb_9_-gieEOLSb2fj4Tt4Jrm3ZTWTuA-txc0tHlBysjCHNQoE_Hps4N0Dwtz9Yw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advances+in+Nonprecious+Metal+Homogeneously+Catalyzed+Formic+Acid+Dehydrogenation&rft.jtitle=Catalysts&rft.au=Iglesias%2C+Manuel&rft.au=Fern%C3%A1ndez-Alvarez%2C+Francisco+J&rft.date=2021-11-01&rft.pub=MDPI+AG&rft.eissn=2073-4344&rft.volume=11&rft.issue=11&rft.spage=1288&rft_id=info:doi/10.3390%2Fcatal11111288&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4344&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4344&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4344&client=summon |