Porous covalent triazine piperazine polymer (CTPP)/PEBAX mixed matrix membranes for CO2/N2 and CO2/CH4 separations
Mixed Matrix Membranes (MMMs) made from a porous covalent triazine piperazine polymer (CTPP) as filler embedded in poly ether-block-amide (PEBAX® 1657) were studied for the separation of CO2/N2 and CO2/CH4 gas systems. At a loading rate of 0.025 wt%, significant improvement was achieved for both CO2...
Saved in:
Published in | Journal of membrane science Vol. 591; p. 117348 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Mixed Matrix Membranes (MMMs) made from a porous covalent triazine piperazine polymer (CTPP) as filler embedded in poly ether-block-amide (PEBAX® 1657) were studied for the separation of CO2/N2 and CO2/CH4 gas systems. At a loading rate of 0.025 wt%, significant improvement was achieved for both CO2 permeability (from 53 to 73 barrer) and selectivity (from 51 to 79 for CO2/N2 and from 17 to 25 for CO2/CH4) that were measured at 293 K and 3 bars. Results of FTIR, DSC, WAXS, and SEM revealed a strong interaction between CTPP and PEBAX due to the high density of hydrogen bonding in CTPP, which led to chain rigidification of PEBAX at very low loading rate compared to other literature reported systems. On the other hand, CTPP contains rich nitrogen in the framework, which favourites the adsorption of CO2 more than N2 and CH4. Hence, although the chain rigidification decreased the CO2 adsorption sites in PEBAX matrix, the intrinsic porosity and high surface area of CTPP compensated the diffusivity and solubility which in turn improved the overall permeability and selectivity at a very low loading rate. CTPP is highly stable in acid, base, and high temperature up to 400 °C. Hence, this novel type material is a very promising filler for preparation of mixed matrix membranes for the separation of CO2/N2 and CO2/CH4 systems.
[Display omitted]
•MMMs prepared from a covalent porous polymer filler CTPP in polymer PEBAX.•Strong interactions between CTPP and PEBAX were discovered.•Multiple effects in CTPP/PEBAX MMMs were discovered.•Enhancement in both permeability and selectivity was achieved at very low loading. |
---|---|
AbstractList | Mixed Matrix Membranes (MMMs) made from a porous covalent triazine piperazine polymer (CTPP) as filler embedded in poly ether-block-amide (PEBAX® 1657) were studied for the separation of CO2/N2 and CO2/CH4 gas systems. At a loading rate of 0.025 wt%, significant improvement was achieved for both CO2 permeability (from 53 to 73 barrer) and selectivity (from 51 to 79 for CO2/N2 and from 17 to 25 for CO2/CH4) that were measured at 293 K and 3 bars. Results of FTIR, DSC, WAXS, and SEM revealed a strong interaction between CTPP and PEBAX due to the high density of hydrogen bonding in CTPP, which led to chain rigidification of PEBAX at very low loading rate compared to other literature reported systems. On the other hand, CTPP contains rich nitrogen in the framework, which favourites the adsorption of CO2 more than N2 and CH4. Hence, although the chain rigidification decreased the CO2 adsorption sites in PEBAX matrix, the intrinsic porosity and high surface area of CTPP compensated the diffusivity and solubility which in turn improved the overall permeability and selectivity at a very low loading rate. CTPP is highly stable in acid, base, and high temperature up to 400 °C. Hence, this novel type material is a very promising filler for preparation of mixed matrix membranes for the separation of CO2/N2 and CO2/CH4 systems.
[Display omitted]
•MMMs prepared from a covalent porous polymer filler CTPP in polymer PEBAX.•Strong interactions between CTPP and PEBAX were discovered.•Multiple effects in CTPP/PEBAX MMMs were discovered.•Enhancement in both permeability and selectivity was achieved at very low loading. |
ArticleNumber | 117348 |
Author | Das, Swapan K. Li, Xiang Lai, Zhiping Thankamony, Roshni L. Ostwal, Mayur M. |
Author_xml | – sequence: 1 givenname: Roshni L. surname: Thankamony fullname: Thankamony, Roshni L. – sequence: 2 givenname: Xiang surname: Li fullname: Li, Xiang – sequence: 3 givenname: Swapan K. surname: Das fullname: Das, Swapan K. – sequence: 4 givenname: Mayur M. surname: Ostwal fullname: Ostwal, Mayur M. – sequence: 5 givenname: Zhiping surname: Lai fullname: Lai, Zhiping email: zhiping.lai@kaust.edu.sa |
BookMark | eNqFkLtOwzAUhi0EEm3hDRg8wpDUlzQXBqQSFYpU0QxFYrMc50RylcSRHaqWpydtOjHAdP7hfOfyjdFlYxpA6I4SnxIaTrd-DbVT2meEJj6lEQ_iCzSiccQ9Thm_RCPCo9CLeBxfo7FzW0JoROJkhGxmrPlyWJmdrKDpcGe1_NYN4Fa3YM_RVIcaLL5PN1n2MM0Wz_NPXOs9FLiWPbDH_f7cygYcLo3F6ZpN3xmWTXGK6TLADlppZadN427QVSkrB7fnOkEfL4tNuvRW69e3dL7yFCdB7DEVQJLknEkWBownBQ9LRbgqYgJhKROlilIqnhOgs4jMwhlTuSwjJsOYs4IAn6DHYa6yxjkLpVC6O53QWakrQYk42hNbMdgTR3tisNfDwS-4tbqW9vAf9jRg0D-202BF3wGNgkJbUJ0ojP57wA8OR42O |
CitedBy_id | crossref_primary_10_1016_j_ccr_2024_215700 crossref_primary_10_3389_frmst_2025_1541236 crossref_primary_10_1021_acsomega_3c04800 crossref_primary_10_1088_2399_1984_ad4fd5 crossref_primary_10_1002_slct_202100664 crossref_primary_10_1016_j_cej_2022_137047 crossref_primary_10_1016_j_cej_2021_133001 crossref_primary_10_1007_s41061_021_00336_8 crossref_primary_10_1016_j_seppur_2024_131274 crossref_primary_10_1039_D4TA01357C crossref_primary_10_1016_j_jngse_2021_103947 crossref_primary_10_1039_D0PY01615B crossref_primary_10_1016_j_cej_2023_146075 crossref_primary_10_1007_s40843_024_3133_1 crossref_primary_10_1016_j_seppur_2020_118190 crossref_primary_10_1021_acsami_0c03246 crossref_primary_10_1016_j_cherd_2020_09_033 crossref_primary_10_1016_j_mtsust_2024_100672 crossref_primary_10_1016_j_cej_2023_146547 crossref_primary_10_1016_j_seppur_2020_117200 crossref_primary_10_1002_pen_26732 crossref_primary_10_1016_j_jtice_2023_105067 crossref_primary_10_1080_00032719_2022_2071433 crossref_primary_10_1134_S0965544124020051 crossref_primary_10_1002_asia_202100390 crossref_primary_10_1016_j_micromeso_2021_110941 crossref_primary_10_1016_j_seppur_2023_124073 crossref_primary_10_1002_adfm_202210091 crossref_primary_10_1016_j_apsusc_2021_150738 crossref_primary_10_1016_j_seppur_2022_120857 crossref_primary_10_1002_smll_202202651 crossref_primary_10_1016_j_molliq_2022_119793 crossref_primary_10_3390_polym13152539 crossref_primary_10_3390_sym12071102 crossref_primary_10_1002_adfm_202406603 crossref_primary_10_1016_j_seppur_2021_119015 crossref_primary_10_1016_j_matdes_2023_111715 crossref_primary_10_4028_p_ooa299 crossref_primary_10_1016_j_memsci_2023_121537 crossref_primary_10_1016_j_seppur_2021_119930 crossref_primary_10_1016_j_jwpe_2022_102874 crossref_primary_10_1002_sstr_202100061 crossref_primary_10_1016_j_jclepro_2022_131468 crossref_primary_10_1016_j_ceja_2022_100315 crossref_primary_10_1002_mame_202100568 crossref_primary_10_1021_acsanm_3c03505 crossref_primary_10_1007_s11814_021_0991_1 crossref_primary_10_1016_j_seppur_2021_120007 crossref_primary_10_1016_j_memsci_2020_118850 crossref_primary_10_1016_j_seppur_2019_116457 crossref_primary_10_1016_j_ccst_2023_100178 crossref_primary_10_1016_j_seppur_2022_121287 crossref_primary_10_1016_j_memsci_2020_118691 crossref_primary_10_3390_ma15082807 crossref_primary_10_1021_acs_energyfuels_4c03305 crossref_primary_10_1039_D2YA00346E crossref_primary_10_1039_D1NJ00122A crossref_primary_10_1016_j_cej_2022_135651 crossref_primary_10_1016_j_memsci_2021_120140 crossref_primary_10_1021_acs_iecr_0c01017 crossref_primary_10_1021_acs_iecr_0c03432 crossref_primary_10_1016_j_jece_2021_105877 crossref_primary_10_1016_j_chemosphere_2023_139478 crossref_primary_10_1016_j_cjche_2021_09_003 crossref_primary_10_1016_j_seppur_2021_120336 |
Cites_doi | 10.1016/j.memsci.2005.08.015 10.1039/C2CS35072F 10.1016/j.seppur.2014.03.017 10.1002/app.10998 10.1002/anie.201000167 10.1016/j.micromeso.2009.11.035 10.1016/j.memsci.2009.12.019 10.1021/ma901950u 10.1016/j.memsci.2007.09.023 10.1126/science.1228032 10.1016/j.memsci.2008.04.030 10.1016/j.molstruc.2004.05.043 10.1016/j.memsci.2017.12.063 10.1016/j.ijggc.2013.08.012 10.1016/j.memsci.2005.03.019 10.1002/chem.201602999 10.1016/j.memsci.2011.05.041 10.1039/c3ee42548g 10.1016/0376-7388(95)00265-0 10.1016/j.seppur.2008.01.001 10.1021/la104827p 10.1016/j.memsci.2012.09.006 10.1039/c2dt31550e 10.1002/polb.1989.090270908 10.1021/acs.chemmater.5b02902 10.1021/ie990799r 10.1039/C4RA14168G 10.1016/j.memsci.2011.05.039 10.1002/(SICI)1099-0488(19990901)37:17<2463::AID-POLB18>3.0.CO;2-H 10.1016/j.seppur.2013.05.002 10.1016/j.ces.2016.02.007 10.1002/app.42624 10.1016/j.memsci.2014.06.026 10.1016/j.progpolymsci.2014.01.003 10.1016/j.coche.2018.03.002 10.1016/j.seppur.2012.02.041 10.1002/marc.201000775 10.1039/C4TA00298A 10.1002/adma.201400020 10.1016/j.cej.2015.04.080 10.1016/j.progpolymsci.2007.01.008 10.1021/ie801008j 10.1039/c2cs35157a 10.1021/cr3003888 10.1016/j.memsci.2011.11.024 10.1016/j.seppur.2017.07.051 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. |
Copyright_xml | – notice: 2019 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.memsci.2019.117348 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3123 |
ExternalDocumentID | 10_1016_j_memsci_2019_117348 S0376738819308671 |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABJNI ABMAC ABNUV ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX7 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSG SSM SSZ T5K XPP Y6R ZMT ~G- 29L AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION FEDTE FGOYB HLY HVGLF HZ~ NDZJH R2- SCE SEW SSH VH1 WUQ |
ID | FETCH-LOGICAL-c3048-2c4e99b32a264239d36fc03cd80e6fa9ccdfac3b0e15705652cbaf72a6832d0e3 |
IEDL.DBID | .~1 |
ISSN | 0376-7388 |
IngestDate | Tue Jul 01 02:49:34 EDT 2025 Thu Apr 24 23:01:09 EDT 2025 Fri Feb 23 02:28:48 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Covalent organic framework Trazine PEBAX Mixed matrix membranes Chain rigidification |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3048-2c4e99b32a264239d36fc03cd80e6fa9ccdfac3b0e15705652cbaf72a6832d0e3 |
OpenAccessLink | http://hdl.handle.net/10754/660061 |
ParticipantIDs | crossref_citationtrail_10_1016_j_memsci_2019_117348 crossref_primary_10_1016_j_memsci_2019_117348 elsevier_sciencedirect_doi_10_1016_j_memsci_2019_117348 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-12-01 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Journal of membrane science |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Ding, Wang (bib15) 2013; 42 Adams, Carson, Ward, Tannenbaum, Koros (bib21) 2010; 131 Yave, Car, Peinemann (bib49) 2010; 350 Cheng, Ying, Japip, Jiang, Chung, Zhang, Zhao (bib17) 2018; 30 Vinoba, Bhagiyalakshmi, Alqaheem, Alomair, Pérez, Rana (bib5) 2017; 188 Thomas (bib13) 2010; 49 Babarao, Dai, Jiang (bib18) 2011; 27 Kharul, Banerjee, Biswal, Chaudhari (bib25) 2016; 22 Liu, Wu, Wang, Yu, Guan, Pan, Wang (bib37) 2014; 2 Gao, Zou, Ma, Meng, Zhu (bib24) 2014; 26 Pan, Li, Lestari, Lai (bib34) 2012; 390–391 Car, Stropnik, Yave, Peinemann (bib47) 2008; 307 Shao, Chen, Li, Ma (bib50) 2015; 276 Reijerkerk, Wessling, Nijmeijer (bib35) 2011; 378 Yave, Car, Funari, Nunes, Peinemann (bib48) 2009; 43 Feng, Ren, Hua, Li, Ren, Deng (bib44) 2013; 116 Surya Murali, Ismail, Rahman, Sridhar (bib31) 2014; 129 Rezakazemi, Ebadi Amooghin, Montazer-Rahmati, Ismail, Matsuura (bib4) 2014; 39 Lai (bib16) 2018; 20 Liu, Zeng, Pan, Lai (bib33) 2011; 379 Vinh-Thang, Kaliaguine (bib3) 2013; 113 Kang, Peng, Qian, Yuan, Addicoat, Heine, Hu, Tee, Guo, Zhao (bib26) 2016; 28 Car, Stropnik, Yave, Peinemann (bib30) 2008; 62 Ebewele (bib43) 2000 Robeson (bib6) 2008; 320 Li, Guan, Chung, Kulprathipanja (bib10) 2006; 275 Ostwal, Shinde, Wang, Gadwal, Lai (bib32) 2018; 550 Li, Chung, Cao, Kulprathipanja (bib9) 2005; 260 Du, Cin, Pinnau, Nicalek, Robertson, Guiver (bib19) 2011; 32 Stern, Mi, Yamamoto, Clair (bib38) 1989; 27 Husain, Koros (bib12) 2009; 48 Li, Pan, Peinemann, Lai (bib23) 2013; 425–426 Das, Wang, Ostwal, Zhao, Han, Lai (bib28) 2016; 145 Zhao, Ren, Qiu, Li, Hua, Li, Deng (bib39) 2015; 132 Kapantaidakis, Kaldis, Dabou, Sakellaropoulos (bib41) 1996; 110 Feng, Ren, Li, Li, Hua, Li, Deng (bib42) 2013; 19 Mahajan, Koros (bib7) 2000; 39 Zhao, Yao, Teng, Zhang, Han (bib36) 2013; 6 Feng, Ding, Jiang (bib14) 2012; 41 Tanh Jeazet, Staudt, Janiak (bib22) 2012; 41 Rabiee, Soltanieh, Mousavi, Ghadimi (bib46) 2014; 469 Khosravi, Omidkhah (bib40) 2015; 5 Bondar, Freeman, Pinnau (bib29) 1999; 37 Chung, Jiang, Li, Kulprathipanja (bib2) 2007; 32 Carta, Malpass-Evans, Croad, Rogan, Jansen, Bernardo, Bazzarelli, McKeown (bib20) 2013; 339 Mahajan, Burns, Schaeffer, Koros (bib8) 2002; 86 Shan, Seoane, Rozhko, Dikhtiarenko, Clet, Kapteijn, Gascon (bib27) 2016; 22 Zimmerman (bib1) 1998 Moore, Koros (bib11) 2005 Bernardo, Jansen, Bazzarelli, Tasselli, Fuoco, Friess, Izák, Jarmarová, Kačírková, Clarizia (bib45) 2012; 97 Mahajan (10.1016/j.memsci.2019.117348_bib7) 2000; 39 Zhao (10.1016/j.memsci.2019.117348_bib39) 2015; 132 Yave (10.1016/j.memsci.2019.117348_bib48) 2009; 43 Thomas (10.1016/j.memsci.2019.117348_bib13) 2010; 49 Du (10.1016/j.memsci.2019.117348_bib19) 2011; 32 Car (10.1016/j.memsci.2019.117348_bib47) 2008; 307 Rezakazemi (10.1016/j.memsci.2019.117348_bib4) 2014; 39 Adams (10.1016/j.memsci.2019.117348_bib21) 2010; 131 Pan (10.1016/j.memsci.2019.117348_bib34) 2012; 390–391 Tanh Jeazet (10.1016/j.memsci.2019.117348_bib22) 2012; 41 Shan (10.1016/j.memsci.2019.117348_bib27) 2016; 22 Feng (10.1016/j.memsci.2019.117348_bib44) 2013; 116 Stern (10.1016/j.memsci.2019.117348_bib38) 1989; 27 Carta (10.1016/j.memsci.2019.117348_bib20) 2013; 339 Khosravi (10.1016/j.memsci.2019.117348_bib40) 2015; 5 Babarao (10.1016/j.memsci.2019.117348_bib18) 2011; 27 Ebewele (10.1016/j.memsci.2019.117348_bib43) 2000 Rabiee (10.1016/j.memsci.2019.117348_bib46) 2014; 469 Feng (10.1016/j.memsci.2019.117348_bib14) 2012; 41 Kapantaidakis (10.1016/j.memsci.2019.117348_bib41) 1996; 110 Li (10.1016/j.memsci.2019.117348_bib10) 2006; 275 Kharul (10.1016/j.memsci.2019.117348_bib25) 2016; 22 Shao (10.1016/j.memsci.2019.117348_bib50) 2015; 276 Bondar (10.1016/j.memsci.2019.117348_bib29) 1999; 37 Ostwal (10.1016/j.memsci.2019.117348_bib32) 2018; 550 Zimmerman (10.1016/j.memsci.2019.117348_bib1) 1998 Reijerkerk (10.1016/j.memsci.2019.117348_bib35) 2011; 378 Vinh-Thang (10.1016/j.memsci.2019.117348_bib3) 2013; 113 Bernardo (10.1016/j.memsci.2019.117348_bib45) 2012; 97 Li (10.1016/j.memsci.2019.117348_bib23) 2013; 425–426 Car (10.1016/j.memsci.2019.117348_bib30) 2008; 62 Yave (10.1016/j.memsci.2019.117348_bib49) 2010; 350 Liu (10.1016/j.memsci.2019.117348_bib33) 2011; 379 Das (10.1016/j.memsci.2019.117348_bib28) 2016; 145 Liu (10.1016/j.memsci.2019.117348_bib37) 2014; 2 Li (10.1016/j.memsci.2019.117348_bib9) 2005; 260 Kang (10.1016/j.memsci.2019.117348_bib26) 2016; 28 Feng (10.1016/j.memsci.2019.117348_bib42) 2013; 19 Moore (10.1016/j.memsci.2019.117348_bib11) 2005 Gao (10.1016/j.memsci.2019.117348_bib24) 2014; 26 Vinoba (10.1016/j.memsci.2019.117348_bib5) 2017; 188 Chung (10.1016/j.memsci.2019.117348_bib2) 2007; 32 Lai (10.1016/j.memsci.2019.117348_bib16) 2018; 20 Husain (10.1016/j.memsci.2019.117348_bib12) 2009; 48 Ding (10.1016/j.memsci.2019.117348_bib15) 2013; 42 Zhao (10.1016/j.memsci.2019.117348_bib36) 2013; 6 Mahajan (10.1016/j.memsci.2019.117348_bib8) 2002; 86 Robeson (10.1016/j.memsci.2019.117348_bib6) 2008; 320 Surya Murali (10.1016/j.memsci.2019.117348_bib31) 2014; 129 Cheng (10.1016/j.memsci.2019.117348_bib17) 2018; 30 |
References_xml | – volume: 425–426 start-page: 235 year: 2013 end-page: 242 ident: bib23 article-title: Carbon dioxide selective mixed matrix composite membrane containing ZIF-7 nano-fillers publication-title: J. Membr. Sci. – volume: 131 start-page: 13 year: 2010 end-page: 20 ident: bib21 article-title: Metal organic framework mixed matrix membranes for gas separations publication-title: Microporous Mesoporous Mater. – volume: 307 start-page: 88 year: 2008 end-page: 95 ident: bib47 article-title: PEG modified poly(amide-b-ethylene oxide) membranes for CO publication-title: J. Membr. Sci. – volume: 378 start-page: 479 year: 2011 end-page: 484 ident: bib35 article-title: Pushing the limits of block copolymer membranes for CO publication-title: J. Membr. Sci. – volume: 6 start-page: 3684 year: 2013 end-page: 3692 ident: bib36 article-title: A perfluorinated covalent triazine-based framework for highly selective and water–tolerant CO publication-title: Energy Environ. Sci. – volume: 37 start-page: 2463 year: 1999 end-page: 2475 ident: bib29 article-title: Gas sorption and characterization of poly (ether‐b‐amide) segmented block copolymers publication-title: J. Polym. Sci. B Polym. Phys. – volume: 129 start-page: 1 year: 2014 end-page: 8 ident: bib31 article-title: Mixed matrix membranes of Pebax-1657 loaded with 4A zeolite for gaseous separations publication-title: Separ. Purif. Technol. – volume: 97 start-page: 73 year: 2012 end-page: 82 ident: bib45 article-title: Gas transport properties of Pebax®/room temperature ionic liquid gel membranes publication-title: Separ. Purif. Technol. – volume: 41 start-page: 6010 year: 2012 end-page: 6022 ident: bib14 article-title: Covalent organic frameworks publication-title: Chem. Soc. Rev. – volume: 39 start-page: 817 year: 2014 end-page: 861 ident: bib4 article-title: State-of-the-art membrane based CO publication-title: Prog. Polym. Sci. – volume: 49 start-page: 8328 year: 2010 end-page: 8344 ident: bib13 article-title: Functional materials: from hard to soft porous frameworks publication-title: Angew. Chem. Int. Ed. – volume: 27 start-page: 3451 year: 2011 end-page: 3460 ident: bib18 article-title: Functionalizing porous aromatic frameworks with polar organic groups for high-capacity and selective CO publication-title: Langmuir – volume: 379 start-page: 46 year: 2011 end-page: 51 ident: bib33 article-title: Synthesis of highly C-oriented ZIF-69 membranes by secondary growth and their gas permeation properties publication-title: J. Membr. Sci. – volume: 2 start-page: 7795 year: 2014 end-page: 7801 ident: bib37 article-title: Control of porosity of novel carbazole-modified polytriazine frameworks for highly selective separation of CO publication-title: J. Mater. Chem. – volume: 132 year: 2015 ident: bib39 article-title: Effect of graphene oxide on the behavior of poly (amide‐6‐b‐ethylene oxide)/graphene oxide mixed‐matrix membranes in the permeation process publication-title: J. Appl. Polym. Sci. – volume: 469 start-page: 43 year: 2014 end-page: 58 ident: bib46 article-title: Improvement in CO publication-title: J. Membr. Sci. – volume: 48 start-page: 2372 year: 2009 end-page: 2379 ident: bib12 article-title: Macrovoids in hybrid organic/inorganic hollow fiber membranes publication-title: Ind. Eng. Chem. Res. – volume: 116 start-page: 25 year: 2013 end-page: 34 ident: bib44 article-title: Poly (amide-12-b-ethylene oxide)/polyethylene glycol blend membranes for carbon dioxide separation publication-title: Separ. Purif. Technol. – volume: 43 start-page: 326 year: 2009 end-page: 333 ident: bib48 article-title: CO publication-title: Macromolecules – volume: 390–391 start-page: 93 year: 2012 end-page: 98 ident: bib34 article-title: Effective separation of propylene/propane binary mixtures by ZIF-8 membranes publication-title: J. Membr. Sci. – volume: 26 start-page: 3644 year: 2014 end-page: 3648 ident: bib24 article-title: Highly selective and permeable porous organic framework membrane for CO publication-title: Adv. Mater. – volume: 260 start-page: 45 year: 2005 end-page: 55 ident: bib9 article-title: The effects of polymer chain rigidification, zeolite pore size and pore blockage on polyethersulfone (PES)-zeolite A mixed matrix membranes publication-title: J. Membr. Sci. – volume: 275 start-page: 17 year: 2006 end-page: 28 ident: bib10 article-title: Effects of novel silane modification of zeolite surface on polymer chain rigidification and partial pore blockage in polyethersulfone (PES)–zeolite A mixed matrix membranes publication-title: J. Membr. Sci. – volume: 5 start-page: 12849 year: 2015 end-page: 12859 ident: bib40 article-title: Preparation of CO publication-title: RSC Adv. – volume: 22 start-page: 4695 year: 2016 end-page: 4699 ident: bib25 article-title: Chemically stable covalent organic framework (COF)‐Polybenzimidazole hybrid membranes: enhanced gas separation through pore modulation publication-title: Chem. Eng. J. – volume: 145 start-page: 21 year: 2016 end-page: 30 ident: bib28 article-title: Highly stabel porous covalent trizaine-piperazine linked nanoflower as A feasible adsorbent for flue gas CO publication-title: Chem. Eng. Sci. – volume: 32 start-page: 631 year: 2011 end-page: 636 ident: bib19 article-title: Azide‐based cross‐linking of polymers of intrinsic microporosity (PIMs) for condensable gas separation publication-title: Macromol. Rapid Commun. – volume: 350 start-page: 124 year: 2010 end-page: 129 ident: bib49 article-title: Nanostructured membrane material designed for carbon dioxide separation publication-title: J. Membr. Sci. – volume: 276 start-page: 51 year: 2015 end-page: 58 ident: bib50 article-title: Fabrication of novel porous carbon membrane/sintered metal fibers composite for isopropanol adsorption publication-title: Chem. Eng. J. – year: 1998 ident: bib1 article-title: Advanced Gas Separation Membrane Materials: Hyper Rigid Polymers and Molecular Sieve-Polymer Mixed Matrices – volume: 320 start-page: 390 year: 2008 end-page: 400 ident: bib6 article-title: The upper bound revisited publication-title: J. Membr. Sci. – volume: 188 start-page: 431 year: 2017 end-page: 450 ident: bib5 article-title: Recent progress of fillers in mixed matrix membranes for CO publication-title: Separ. Purif. Technol. – year: 2000 ident: bib43 article-title: Polymer Science and Technology – volume: 28 start-page: 1277 year: 2016 end-page: 1285 ident: bib26 article-title: Mixed matrix membranes (MMMs) comprising exfoliated 2D covalent organic frameworks (COFs) for efficient CO publication-title: Chem. Mater. – volume: 86 start-page: 881 year: 2002 end-page: 890 ident: bib8 article-title: Challenges in forming successful mixed matrix membranes with rigid polymeric materials publication-title: J. Appl. Polym. Sci. – volume: 110 start-page: 239 year: 1996 end-page: 247 ident: bib41 article-title: Gas permeation through PSF-PI miscible blend membranes publication-title: J. Membr. Sci. – volume: 22 start-page: 14467 year: 2016 end-page: 14470 ident: bib27 article-title: Azine-linked covalent organic framework (COF)-Based mixed-matrix membranes for CO publication-title: Chem. Eur J. – volume: 550 start-page: 145 year: 2018 end-page: 154 ident: bib32 article-title: Graphene oxide – molybdenum disulfide hybrid membranes for hydrogen separation publication-title: J. Membr. Sci. – volume: 19 start-page: 41 year: 2013 end-page: 48 ident: bib42 article-title: Poly(amide-12-b-ethylene oxide)/glycerol triacetate blend membranes for CO publication-title: Int. J. Greenh. Gas Contr. – volume: 27 start-page: 1887 year: 1989 end-page: 1909 ident: bib38 article-title: Structure/permeability relationships of polyimide membranes. Applications to the separation of gas mixtures publication-title: J. Polym. Sci. B Polym. Phys. – volume: 113 start-page: 4980 year: 2013 end-page: 5028 ident: bib3 article-title: Predictive models for mixed-matrix membrane performance: a review publication-title: Chem. Rev. – volume: 42 start-page: 548 year: 2013 end-page: 568 ident: bib15 article-title: Covalent organic frameworks (COFs): from design to applications publication-title: Chem. Soc. Rev. – volume: 339 start-page: 303 year: 2013 end-page: 307 ident: bib20 article-title: An efficient polymer molecular sieve for membrane gas separations publication-title: Science – volume: 32 start-page: 483 year: 2007 end-page: 507 ident: bib2 article-title: Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation publication-title: Prog. Polym. Sci. – volume: 39 start-page: 2692 year: 2000 end-page: 2696 ident: bib7 article-title: Factors controlling successful formation of mixed-matrix gas separation materials publication-title: Ind. Eng. Chem. Res. – volume: 41 start-page: 14003 year: 2012 end-page: 14027 ident: bib22 article-title: Metal-organic frameworks in mixed-matrix membranes for gas separation publication-title: Dalton Trans. – volume: 20 start-page: 78 year: 2018 end-page: 85 ident: bib16 article-title: Development of ZIF-8 membranes: opportunities and challenges for commercial applications publication-title: Curr. Opin. Chem. Eng. – volume: 62 start-page: 110 year: 2008 end-page: 117 ident: bib30 article-title: Pebax®/polyethylene glycol blend thin film composite membranes for CO publication-title: Separ. Purif. Technol. – volume: 30 year: 2018 ident: bib17 article-title: Advanced porous materials in mixed matrix membranes publication-title: Adv. Mater. – start-page: 87 year: 2005 end-page: 98 ident: bib11 article-title: Non-ideal effects in organic-inorganic materials for gas separation membranes publication-title: J. Mol. Struct. – volume: 275 start-page: 17 year: 2006 ident: 10.1016/j.memsci.2019.117348_bib10 article-title: Effects of novel silane modification of zeolite surface on polymer chain rigidification and partial pore blockage in polyethersulfone (PES)–zeolite A mixed matrix membranes publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2005.08.015 – volume: 42 start-page: 548 year: 2013 ident: 10.1016/j.memsci.2019.117348_bib15 article-title: Covalent organic frameworks (COFs): from design to applications publication-title: Chem. Soc. Rev. doi: 10.1039/C2CS35072F – volume: 22 start-page: 4695 year: 2016 ident: 10.1016/j.memsci.2019.117348_bib25 article-title: Chemically stable covalent organic framework (COF)‐Polybenzimidazole hybrid membranes: enhanced gas separation through pore modulation publication-title: Chem. Eng. J. – volume: 129 start-page: 1 year: 2014 ident: 10.1016/j.memsci.2019.117348_bib31 article-title: Mixed matrix membranes of Pebax-1657 loaded with 4A zeolite for gaseous separations publication-title: Separ. Purif. Technol. doi: 10.1016/j.seppur.2014.03.017 – volume: 86 start-page: 881 year: 2002 ident: 10.1016/j.memsci.2019.117348_bib8 article-title: Challenges in forming successful mixed matrix membranes with rigid polymeric materials publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.10998 – volume: 49 start-page: 8328 year: 2010 ident: 10.1016/j.memsci.2019.117348_bib13 article-title: Functional materials: from hard to soft porous frameworks publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201000167 – volume: 131 start-page: 13 year: 2010 ident: 10.1016/j.memsci.2019.117348_bib21 article-title: Metal organic framework mixed matrix membranes for gas separations publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2009.11.035 – volume: 350 start-page: 124 year: 2010 ident: 10.1016/j.memsci.2019.117348_bib49 article-title: Nanostructured membrane material designed for carbon dioxide separation publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2009.12.019 – volume: 43 start-page: 326 year: 2009 ident: 10.1016/j.memsci.2019.117348_bib48 article-title: CO2-philic polymer membrane with extremely high separation performance publication-title: Macromolecules doi: 10.1021/ma901950u – volume: 307 start-page: 88 year: 2008 ident: 10.1016/j.memsci.2019.117348_bib47 article-title: PEG modified poly(amide-b-ethylene oxide) membranes for CO2 separation publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2007.09.023 – volume: 339 start-page: 303 year: 2013 ident: 10.1016/j.memsci.2019.117348_bib20 article-title: An efficient polymer molecular sieve for membrane gas separations publication-title: Science doi: 10.1126/science.1228032 – volume: 320 start-page: 390 year: 2008 ident: 10.1016/j.memsci.2019.117348_bib6 article-title: The upper bound revisited publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2008.04.030 – start-page: 87 year: 2005 ident: 10.1016/j.memsci.2019.117348_bib11 article-title: Non-ideal effects in organic-inorganic materials for gas separation membranes publication-title: J. Mol. Struct. doi: 10.1016/j.molstruc.2004.05.043 – volume: 550 start-page: 145 year: 2018 ident: 10.1016/j.memsci.2019.117348_bib32 article-title: Graphene oxide – molybdenum disulfide hybrid membranes for hydrogen separation publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2017.12.063 – volume: 19 start-page: 41 year: 2013 ident: 10.1016/j.memsci.2019.117348_bib42 article-title: Poly(amide-12-b-ethylene oxide)/glycerol triacetate blend membranes for CO2 separation publication-title: Int. J. Greenh. Gas Contr. doi: 10.1016/j.ijggc.2013.08.012 – volume: 260 start-page: 45 year: 2005 ident: 10.1016/j.memsci.2019.117348_bib9 article-title: The effects of polymer chain rigidification, zeolite pore size and pore blockage on polyethersulfone (PES)-zeolite A mixed matrix membranes publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2005.03.019 – volume: 22 start-page: 14467 year: 2016 ident: 10.1016/j.memsci.2019.117348_bib27 article-title: Azine-linked covalent organic framework (COF)-Based mixed-matrix membranes for CO2/CH4 separation publication-title: Chem. Eur J. doi: 10.1002/chem.201602999 – volume: 379 start-page: 46 year: 2011 ident: 10.1016/j.memsci.2019.117348_bib33 article-title: Synthesis of highly C-oriented ZIF-69 membranes by secondary growth and their gas permeation properties publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2011.05.041 – volume: 30 year: 2018 ident: 10.1016/j.memsci.2019.117348_bib17 article-title: Advanced porous materials in mixed matrix membranes publication-title: Adv. Mater. – volume: 6 start-page: 3684 year: 2013 ident: 10.1016/j.memsci.2019.117348_bib36 article-title: A perfluorinated covalent triazine-based framework for highly selective and water–tolerant CO2 capture publication-title: Energy Environ. Sci. doi: 10.1039/c3ee42548g – volume: 110 start-page: 239 year: 1996 ident: 10.1016/j.memsci.2019.117348_bib41 article-title: Gas permeation through PSF-PI miscible blend membranes publication-title: J. Membr. Sci. doi: 10.1016/0376-7388(95)00265-0 – volume: 62 start-page: 110 year: 2008 ident: 10.1016/j.memsci.2019.117348_bib30 article-title: Pebax®/polyethylene glycol blend thin film composite membranes for CO2 separation: performance with mixed gases publication-title: Separ. Purif. Technol. doi: 10.1016/j.seppur.2008.01.001 – volume: 27 start-page: 3451 year: 2011 ident: 10.1016/j.memsci.2019.117348_bib18 article-title: Functionalizing porous aromatic frameworks with polar organic groups for high-capacity and selective CO2 separation: a molecular simulation study publication-title: Langmuir doi: 10.1021/la104827p – volume: 425–426 start-page: 235 year: 2013 ident: 10.1016/j.memsci.2019.117348_bib23 article-title: Carbon dioxide selective mixed matrix composite membrane containing ZIF-7 nano-fillers publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2012.09.006 – volume: 41 start-page: 14003 year: 2012 ident: 10.1016/j.memsci.2019.117348_bib22 article-title: Metal-organic frameworks in mixed-matrix membranes for gas separation publication-title: Dalton Trans. doi: 10.1039/c2dt31550e – volume: 27 start-page: 1887 year: 1989 ident: 10.1016/j.memsci.2019.117348_bib38 article-title: Structure/permeability relationships of polyimide membranes. Applications to the separation of gas mixtures publication-title: J. Polym. Sci. B Polym. Phys. doi: 10.1002/polb.1989.090270908 – volume: 28 start-page: 1277 year: 2016 ident: 10.1016/j.memsci.2019.117348_bib26 article-title: Mixed matrix membranes (MMMs) comprising exfoliated 2D covalent organic frameworks (COFs) for efficient CO2 separation publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b02902 – volume: 39 start-page: 2692 year: 2000 ident: 10.1016/j.memsci.2019.117348_bib7 article-title: Factors controlling successful formation of mixed-matrix gas separation materials publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie990799r – volume: 5 start-page: 12849 year: 2015 ident: 10.1016/j.memsci.2019.117348_bib40 article-title: Preparation of CO2-philic polymeric membranes by blending poly (ether-b-amide-6) and PEG/PPG-containing copolymer publication-title: RSC Adv. doi: 10.1039/C4RA14168G – volume: 378 start-page: 479 year: 2011 ident: 10.1016/j.memsci.2019.117348_bib35 article-title: Pushing the limits of block copolymer membranes for CO2 separation publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2011.05.039 – volume: 37 start-page: 2463 year: 1999 ident: 10.1016/j.memsci.2019.117348_bib29 article-title: Gas sorption and characterization of poly (ether‐b‐amide) segmented block copolymers publication-title: J. Polym. Sci. B Polym. Phys. doi: 10.1002/(SICI)1099-0488(19990901)37:17<2463::AID-POLB18>3.0.CO;2-H – volume: 116 start-page: 25 year: 2013 ident: 10.1016/j.memsci.2019.117348_bib44 article-title: Poly (amide-12-b-ethylene oxide)/polyethylene glycol blend membranes for carbon dioxide separation publication-title: Separ. Purif. Technol. doi: 10.1016/j.seppur.2013.05.002 – volume: 145 start-page: 21 year: 2016 ident: 10.1016/j.memsci.2019.117348_bib28 article-title: Highly stabel porous covalent trizaine-piperazine linked nanoflower as A feasible adsorbent for flue gas CO2 capture publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2016.02.007 – volume: 132 year: 2015 ident: 10.1016/j.memsci.2019.117348_bib39 article-title: Effect of graphene oxide on the behavior of poly (amide‐6‐b‐ethylene oxide)/graphene oxide mixed‐matrix membranes in the permeation process publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.42624 – volume: 469 start-page: 43 year: 2014 ident: 10.1016/j.memsci.2019.117348_bib46 article-title: Improvement in CO2/H2 separation by fabrication of poly (ether-b-amide-6)/glycerol triacetate gel membranes publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2014.06.026 – volume: 39 start-page: 817 year: 2014 ident: 10.1016/j.memsci.2019.117348_bib4 article-title: State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): an overview on current status and future directions publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2014.01.003 – volume: 20 start-page: 78 year: 2018 ident: 10.1016/j.memsci.2019.117348_bib16 article-title: Development of ZIF-8 membranes: opportunities and challenges for commercial applications publication-title: Curr. Opin. Chem. Eng. doi: 10.1016/j.coche.2018.03.002 – volume: 97 start-page: 73 year: 2012 ident: 10.1016/j.memsci.2019.117348_bib45 article-title: Gas transport properties of Pebax®/room temperature ionic liquid gel membranes publication-title: Separ. Purif. Technol. doi: 10.1016/j.seppur.2012.02.041 – volume: 32 start-page: 631 year: 2011 ident: 10.1016/j.memsci.2019.117348_bib19 article-title: Azide‐based cross‐linking of polymers of intrinsic microporosity (PIMs) for condensable gas separation publication-title: Macromol. Rapid Commun. doi: 10.1002/marc.201000775 – volume: 2 start-page: 7795 year: 2014 ident: 10.1016/j.memsci.2019.117348_bib37 article-title: Control of porosity of novel carbazole-modified polytriazine frameworks for highly selective separation of CO2–N2 publication-title: J. Mater. Chem. doi: 10.1039/C4TA00298A – volume: 26 start-page: 3644 year: 2014 ident: 10.1016/j.memsci.2019.117348_bib24 article-title: Highly selective and permeable porous organic framework membrane for CO2 capture publication-title: Adv. Mater. doi: 10.1002/adma.201400020 – year: 1998 ident: 10.1016/j.memsci.2019.117348_bib1 – volume: 276 start-page: 51 year: 2015 ident: 10.1016/j.memsci.2019.117348_bib50 article-title: Fabrication of novel porous carbon membrane/sintered metal fibers composite for isopropanol adsorption publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.04.080 – year: 2000 ident: 10.1016/j.memsci.2019.117348_bib43 – volume: 32 start-page: 483 year: 2007 ident: 10.1016/j.memsci.2019.117348_bib2 article-title: Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2007.01.008 – volume: 48 start-page: 2372 year: 2009 ident: 10.1016/j.memsci.2019.117348_bib12 article-title: Macrovoids in hybrid organic/inorganic hollow fiber membranes publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie801008j – volume: 41 start-page: 6010 year: 2012 ident: 10.1016/j.memsci.2019.117348_bib14 article-title: Covalent organic frameworks publication-title: Chem. Soc. Rev. doi: 10.1039/c2cs35157a – volume: 113 start-page: 4980 year: 2013 ident: 10.1016/j.memsci.2019.117348_bib3 article-title: Predictive models for mixed-matrix membrane performance: a review publication-title: Chem. Rev. doi: 10.1021/cr3003888 – volume: 390–391 start-page: 93 year: 2012 ident: 10.1016/j.memsci.2019.117348_bib34 article-title: Effective separation of propylene/propane binary mixtures by ZIF-8 membranes publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2011.11.024 – volume: 188 start-page: 431 year: 2017 ident: 10.1016/j.memsci.2019.117348_bib5 article-title: Recent progress of fillers in mixed matrix membranes for CO2 separation: a review publication-title: Separ. Purif. Technol. doi: 10.1016/j.seppur.2017.07.051 |
SSID | ssj0017089 |
Score | 2.5502152 |
Snippet | Mixed Matrix Membranes (MMMs) made from a porous covalent triazine piperazine polymer (CTPP) as filler embedded in poly ether-block-amide (PEBAX® 1657) were... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 117348 |
SubjectTerms | Chain rigidification Covalent organic framework Mixed matrix membranes PEBAX Trazine |
Title | Porous covalent triazine piperazine polymer (CTPP)/PEBAX mixed matrix membranes for CO2/N2 and CO2/CH4 separations |
URI | https://dx.doi.org/10.1016/j.memsci.2019.117348 |
Volume | 591 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lD140EPMJrtNmmMNLVWxFmyht7DZ7EKlaUusUC_-dmfyKAqi4G0TZsIyOzvzLZn9hpBLowxTgIMtxZWxhBN7ViAFt5hxkE2dteK8f8rjwOuPxf2kNamRsLoLg2WVZewvYnoercs3dmlNezmd2s8MiUh4G1IaZ8jShjfYhY9efvOxKfNwfJa3wUNhC6Wr63N5jVeqU_g0FngF-PeSYxegn9LTl5TT2yO7JVaknWI6-6Sm5wdk5wuD4CHJhosMzu5ULcBjIH9Q7MKBhNF0OV3qrBwuZu-pzuhVOBoOr-1h97Yzoel0rROaIkP_msIM4dQMUY8ChqXhk2sPXCrnST4M-4K-6oIjHHz0iIx73VHYt8o2CmB_2J-Wq4QOgpi7EsCPy4OEe0YxrpI2056RgVKJkYrHTOPyAMBzVSyN70oPdnvCND8m9flirk8IDVpMGyVaJpGOMMLECeBJ48TceFx7vmwQXlkvUiXHOLa6mEVVMdlLVNg8QptHhc0bxNpoLQuOjT_k_Wphom--EkEa-FXz9N-aZ2Qbn4pClnNSX2Vv-gLgyCpu5v7WJFudu4f-4BNim97m |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90PqgP4id-mwcf9KE0a9rOPs6yUd2cAyfsraRpApN1G1VB_3vv-iEKouBbSHMlXC53v5DL7wDOjTJcIQ62lFDGcpuJbwXSFRY3TWJT515S1E-5G_jRo3s79sZLENZvYSitsvL9pU8vvHXVY1fatBeTif3AiYhEXGFIE5xY2pZhhdipvAastG960eDzMqHFi0p4NN4igfoFXZHmlekM_045XgFdYAoqBPRThPoSdbqbsFHBRdYuZ7QFS3q2DetfSAR3IB_Oczy-MzVHo8EQwqgQB3FGs8VkofOqOZ--ZzpnF-FoOLy0h53r9phlkzedsoxI-t8YzhAPzuj4GMJYFt479sBhcpYWzTBy2bMuacLRTHfhsdsZhZFVVVLAJcAtajnK1UGQCEci_nFEkArfKC5UesW1b2SgVGqkEgnXtEKI8RyVSNNypI8bPuVa7EFjNp_pfWCBx7VRrmdS2XSNa5IUIaVpJsL4QvsteQCi1l6sKppxqnYxjet8sqe41HlMOo9LnR-A9Sm1KGk2_hjfqhcm_mYuMUaCXyUP_y15BqvR6K4f928GvSNYoy9lXssxNF7yV32C6OQlOa2s7wMQOeGX |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Porous+covalent+triazine+piperazine+polymer+%28CTPP%29%2FPEBAX+mixed+matrix+membranes+for+CO2%2FN2+and+CO2%2FCH4+separations&rft.jtitle=Journal+of+membrane+science&rft.au=Thankamony%2C+Roshni+L.&rft.au=Li%2C+Xiang&rft.au=Das%2C+Swapan+K.&rft.au=Ostwal%2C+Mayur+M.&rft.date=2019-12-01&rft.pub=Elsevier+B.V&rft.issn=0376-7388&rft.eissn=1873-3123&rft.volume=591&rft_id=info:doi/10.1016%2Fj.memsci.2019.117348&rft.externalDocID=S0376738819308671 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0376-7388&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0376-7388&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0376-7388&client=summon |