An Algebraic Approach to Light–Matter Interactions

A theoretical and computational framework for the study and engineering of light–matter interactions is reviewed in here. The framework rests on the invariance properties of electromagnetism, and is formalized in a Hilbert space whose conformally invariant scalar product provides connections to phys...

Full description

Saved in:
Bibliographic Details
Published inAdvanced Physics Research Vol. 4; no. 1
Main Author Fernandez‐Corbaton, Ivan
Format Journal Article
LanguageEnglish
Published Edinburgh John Wiley & Sons, Inc 01.01.2025
Wiley-VCH
Subjects
Online AccessGet full text
ISSN2751-1200
2751-1200
DOI10.1002/apxr.202400088

Cover

Loading…
Abstract A theoretical and computational framework for the study and engineering of light–matter interactions is reviewed in here. The framework rests on the invariance properties of electromagnetism, and is formalized in a Hilbert space whose conformally invariant scalar product provides connections to physical quantities, such as the energy or momentum of a given field, or the outcome of measurements. The light–matter interaction is modeled by the polychromatic scattering operator, which establishes a natural connection to a popular computational formalism, the transition matrix, or T‐matrix. This review contains a succinct yet comprehensive description of the main theoretical ideas, and illustrates some of the practical benefits of the approach. This is a review of an algebraic approach to light–matter interactions that is theoretically powerful and computationally friendly. Theoretical expressions can be developed and manipulated conveniently thanks to the generality of the basis on which the approach rests, and a compact notation. The tight connections to popular computational tools allow one to readily perform numerical calculations.
AbstractList Abstract A theoretical and computational framework for the study and engineering of light–matter interactions is reviewed in here. The framework rests on the invariance properties of electromagnetism, and is formalized in a Hilbert space whose conformally invariant scalar product provides connections to physical quantities, such as the energy or momentum of a given field, or the outcome of measurements. The light–matter interaction is modeled by the polychromatic scattering operator, which establishes a natural connection to a popular computational formalism, the transition matrix, or T‐matrix. This review contains a succinct yet comprehensive description of the main theoretical ideas, and illustrates some of the practical benefits of the approach.
A theoretical and computational framework for the study and engineering of light–matter interactions is reviewed in here. The framework rests on the invariance properties of electromagnetism, and is formalized in a Hilbert space whose conformally invariant scalar product provides connections to physical quantities, such as the energy or momentum of a given field, or the outcome of measurements. The light–matter interaction is modeled by the polychromatic scattering operator, which establishes a natural connection to a popular computational formalism, the transition matrix, or T‐matrix. This review contains a succinct yet comprehensive description of the main theoretical ideas, and illustrates some of the practical benefits of the approach.
A theoretical and computational framework for the study and engineering of light–matter interactions is reviewed in here. The framework rests on the invariance properties of electromagnetism, and is formalized in a Hilbert space whose conformally invariant scalar product provides connections to physical quantities, such as the energy or momentum of a given field, or the outcome of measurements. The light–matter interaction is modeled by the polychromatic scattering operator, which establishes a natural connection to a popular computational formalism, the transition matrix, or T‐matrix. This review contains a succinct yet comprehensive description of the main theoretical ideas, and illustrates some of the practical benefits of the approach.
A theoretical and computational framework for the study and engineering of light–matter interactions is reviewed in here. The framework rests on the invariance properties of electromagnetism, and is formalized in a Hilbert space whose conformally invariant scalar product provides connections to physical quantities, such as the energy or momentum of a given field, or the outcome of measurements. The light–matter interaction is modeled by the polychromatic scattering operator, which establishes a natural connection to a popular computational formalism, the transition matrix, or T‐matrix. This review contains a succinct yet comprehensive description of the main theoretical ideas, and illustrates some of the practical benefits of the approach. This is a review of an algebraic approach to light–matter interactions that is theoretically powerful and computationally friendly. Theoretical expressions can be developed and manipulated conveniently thanks to the generality of the basis on which the approach rests, and a compact notation. The tight connections to popular computational tools allow one to readily perform numerical calculations.
Author Fernandez‐Corbaton, Ivan
Author_xml – sequence: 1
  givenname: Ivan
  orcidid: 0000-0003-2834-5572
  surname: Fernandez‐Corbaton
  fullname: Fernandez‐Corbaton, Ivan
  email: ivan.fernandez-corbaton@kit.edu
  organization: Karlsruhe Institute of Technology
BookMark eNqFkE1Lw0AQhhdRsNZePQc8p85-ZTfHUPwoVBRR8LZsNrttSszGTYr25n_wH_pLTI0Ub15mhuGZd2beE3RY-9oidIZhigHIhW7ew5QAYQAg5QEaEcFxjAnA4Z_6GE3adt0jRKaYMjxCLKujrFraPOjSRFnTBK_NKup8tCiXq-7r4_NWd50N0bzuozZd6ev2FB05XbV28pvH6Onq8nF2Ey_uruezbBEbCkzE0qRSYicA5ymkhDiaJNIkQEELkDlg53KCWeGkLMBgZ63THItC6oI5Igo6RvNBt_B6rZpQvuiwVV6X6qfhw1Lp0JWmssoZk-YF59Jhx0ye55Ybwx2nhFtaMNprnQ9a_YevG9t2au03oe7PVxRLQXlKheyp6UCZ4Ns2WLffikHtjFY7o9Xe6H6ADwNvZWW3_9Aqu39-wIQkgn4DDMKCiQ
Cites_doi 10.1016/j.jqsrt.2023.108853
10.1364/OE.21.029885
10.1103/PhysRevB.102.035432
10.1103/PhysRevA.92.023813
10.1364/PRJ.475616
10.1103/PhysRevA.85.063810
10.1112/plms/s2-8.1.77
10.1109/PROC.1965.4058
10.1038/ncomms6713
10.1016/S0079-6638(08)70316-0
10.37188/lam.2021.017
10.1103/PhysRevD.8.3661
10.1016/0003-4916(67)90201-1
10.1364/OL.43.003249
10.1021/acsphotonics.0c00555
10.1038/nnano.2015.159
10.1103/PhysRevB.103.054406
10.1103/PhysRevD.13.1592
10.1002/andp.19624640706
10.1016/j.physleta.2017.05.042
10.1088/2040-8978/16/1/015708
10.1103/PhysRevA.65.043801
10.1016/j.jqsrt.2019.04.004
10.1038/nnano.2013.243
10.3390/sym11101191
10.1126/sciadv.adh2353
10.1021/acsphotonics.1c00336
10.1063/1.1704120
10.1017/9781108891066
10.1016/j.jqsrt.2007.11.008
10.1088/1361-648X/ac533d
10.1103/PhysRevLett.99.047601
10.1088/2040-8978/18/7/075007
10.1103/PhysRevA.109.043506
10.1088/0253-6102/68/4/405
10.1016/0550-3213(91)90139-O
10.3390/sym15101839
10.1103/PhysRevA.107.013508
10.1103/PhysRevD.92.125031
10.1039/C6NR00676K
10.1016/j.jqsrt.2017.05.010
10.1007/JHEP10(2019)142
10.1038/s41598-018-27496-w
10.1364/OE.19.000933
10.1002/cphc.202000072
10.1049/SBEW524E
10.1364/JOSAB.419645
10.1103/PhysRevB.100.035311
10.1073/pnas.44.6.489
10.1016/j.cpc.2011.09.009
10.1103/PhysRevLett.118.111301
10.1088/2040-8986/ab387c
10.2307/1968455
10.1103/PhysRevLett.116.113601
10.1063/1.881480
10.1088/1367-2630/abcb2d
10.1088/1751-8121/aad521
10.1103/PhysRevLett.51.39
10.1007/BF02731014
10.1007/BF02341691
10.1016/j.physletb.2016.01.048
10.1016/j.cpc.2023.109076
10.1103/PhysRevD.98.125001
10.1007/JHEP05(2020)100
10.1088/0143-0807/13/2/003
10.1021/ph500084b
10.1103/PhysRevA.95.053829
10.1007/978-3-642-36494-5
10.1073/pnas.0905337106
10.1038/nature23006
10.1103/PhysRevA.108.043510
10.1016/j.cam.2021.113769
10.1364/JOSAB.36.000F32
10.1112/plms/s2-8.1.223
10.1021/ar50050a002
10.1063/1.524828
10.1103/RevModPhys.53.385
10.1016/j.jqsrt.2024.109015
10.1103/PhysRevA.8.1710
10.1103/PhysRevLett.105.061602
10.1016/j.jqsrt.2021.107846
10.1103/PhysRevLett.121.173901
10.1039/b200393g
10.1002/anie.200501734
10.1002/andp.200852009-1005
10.1103/PhysRevB.98.174437
10.1088/1464-4258/9/8/S12
10.2528/PIER10102901
10.1038/ncomms4821
10.1209/0295-5075/25/7/004
10.1016/j.jqsrt.2009.01.023
10.1103/PhysRevB.99.075150
10.1103/PhysRevB.75.125119
10.1016/j.cpc.2024.109218
10.1002/lpor.202000516
10.1016/j.jqsrt.2019.106692
10.1088/1367-2630/15/3/033026
10.1142/0270
10.1016/j.cpc.2022.108337
10.1088/0741-3335/41/12B/312
10.1038/s41598-017-13405-0
10.1016/j.jqsrt.2022.108455
10.1002/adma.201807742
10.1038/s41467-021-21846-5
10.1088/0143-0807/17/3/008
10.13182/FST89-1
10.1117/12.2209551
10.1088/1367-2630/14/5/053050
10.1103/PhysRevA.60.R3331
10.4208/cicp.OA-2020-0136
10.1364/OE.443656
10.1088/1402-4896/acf4cc
10.1016/j.jqsrt.2019.06.001
10.3390/sym10070298
10.1007/BF01883768
10.1103/PhysRev.89.1072
10.1088/1361-6463/aa7573
10.1002/chem.200400869
10.1103/PhysRevLett.111.060401
10.1364/OE.23.007190
10.1119/1.1971089
10.1007/BF01164847
10.1063/1.1664804
10.1038/ncomms11183
10.1139/v99-223
10.1103/PhysRevLett.121.043901
10.1103/PhysRevA.82.043845
10.1103/PhysRevA.84.021803
10.1063/1.1704766
10.3390/e5030271
10.1103/PhysRevA.96.033822
10.1103/PhysRevLett.124.191604
10.1364/JOSAA.34.000270
10.1038/35048537
10.1103/PhysRev.140.B183
10.1103/PhysRevD.82.065003
10.1017/S0022112069000991
10.3390/sym11091113
10.1088/1367-2630/ac57e8
10.1016/j.ccr.2015.09.013
10.1063/1.1704847
10.1103/PhysRevD.69.063006
10.1103/PhysRevLett.76.4250
10.1142/9789812812100
10.1088/2399-6528/aada25
10.1088/0253-6102/65/4/423
10.1364/JOSAA.36.000686
10.1142/0097
10.1364/OE.27.035750
10.1016/0370-2693(67)90551-5
10.1103/PhysRevA.93.052331
10.1021/acsphotonics.9b00369
10.1121/10.0003958
10.1063/1.1704353
10.1038/srep11538
10.1016/j.jqsrt.2014.04.003
10.1021/acs.nanolett.1c03325
10.1103/PhysRevB.92.205420
10.1021/ja00041a016
10.1103/PhysRevB.99.075425
10.1016/j.physleta.2019.06.002
10.1021/acsphotonics.0c00304
10.1364/OPTICA.6.000061
10.1364/JOSAB.432984
10.1126/science.1257671
10.1364/OL.41.000444
10.1103/PhysRevLett.87.251302
10.1016/0003-4916(72)90130-3
10.1109/TAP.1965.1138542
10.1364/OPN.30.10.000028
10.1103/PhysRevLett.121.187201
10.1063/1.1704164
10.3390/sym11111427
10.1103/PhysRev.176.1489
10.1103/PhysRevA.86.013845
ContentType Journal Article
Copyright 2024 The Author(s). Advanced Physics Research published by Wiley‐VCH GmbH
2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Author(s). Advanced Physics Research published by Wiley‐VCH GmbH
– notice: 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
3V.
7XB
88I
8FE
8FG
8FK
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
D1I
DWQXO
GNUQQ
HCIFZ
KB.
M2P
PCBAR
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.1002/apxr.202400088
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Materials Science Database
Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2751-1200
EndPage n/a
ExternalDocumentID oai_doaj_org_article_fcc9bd558f1f4cbbbe5cc5f5325e3d43
10_1002_apxr_202400088
APXR12267
Genre reviewArticle
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft
  funderid: 258734477 – SFB 1173
– fundername: Helmholtz‐Gemeinschaft
GroupedDBID 0R~
24P
88I
ABJCF
ABUWG
ACCMX
AEUYN
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AVUZU
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
EBS
GNUQQ
GROUPED_DOAJ
HCIFZ
KB.
M2P
PCBAR
PDBOC
PIMPY
AAFWJ
AAYXX
AFPKN
CITATION
M~E
PHGZM
PHGZT
3V.
7XB
8FE
8FG
8FK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
ARCSS
D1I
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
PUEGO
WIN
ID FETCH-LOGICAL-c3047-8c9881f701b90922f3668c6030a708b01ffb214df88d0c1feefa517d8ad4f27d3
IEDL.DBID 24P
ISSN 2751-1200
IngestDate Wed Aug 27 01:24:55 EDT 2025
Fri Jul 25 11:50:16 EDT 2025
Tue Jul 01 02:33:01 EDT 2025
Wed Jan 22 17:11:08 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3047-8c9881f701b90922f3668c6030a708b01ffb214df88d0c1feefa517d8ad4f27d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2834-5572
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fapxr.202400088
PQID 3187359378
PQPubID 6852862
PageCount 21
ParticipantIDs doaj_primary_oai_doaj_org_article_fcc9bd558f1f4cbbbe5cc5f5325e3d43
proquest_journals_3187359378
crossref_primary_10_1002_apxr_202400088
wiley_primary_10_1002_apxr_202400088_APXR12267
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2025
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: January 2025
PublicationDecade 2020
PublicationPlace Edinburgh
PublicationPlace_xml – name: Edinburgh
PublicationTitle Advanced Physics Research
PublicationYear 2025
Publisher John Wiley & Sons, Inc
Wiley-VCH
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley-VCH
References 2019; 2019
1993; 23
1991; 356
1965; 13
2016; 307
2019; 11
2019; 99
2010; 105
1936; 37
2024; 109
1965; 140
2008; 109
2009; 110
1975
2019; 16
2022; 24
1969; 35
1999; 41
2023; 108
1967; 26
2024
2023; 107
2022; 22
2012; 14
2007; 75
2013; 8
2018; 43
2011; 112
1996; 76
2000; 408
2018; 8
2018; 2
2023; 296
2019; 21
1965; 6
1992; 114
1958; 44
2022; 34
2007; 9
2013; 111
2019; 27
1985
2016; 41
2022; 30
5
1982
2021; 273
1988
2012; 183
1962; 464
1965; 33
1996; 17
2019; 6
2019; 31
2019; 30
2021; 149
2011; 84
2017; 68
1965; 163
1969; 10
2004; 45
1967; 41
2019; 36
1998
1994
2016; 93
1993
2008; 520
2016; 18
2007; 99
2019; 100
2003; 32
1981; 22
2017; 50
2016; 6
2016; 7
2020; 2020
2000; 78
1995; 48
1910; s2‐8
1918; 1918
1968; 176
2002; 65
1972; 71
2017; 381
2020; 22
2020; 21
2005; 16
2018; 98
2018; 10
1973; 8
1953; 89
2016; 8
2022; 16
2014; 146
2009; 106
2017; 547
2017; 7
1965; 53
2018; 121
1996; 109
2013; 21
2020; 242
2004; 69
1964; 5
2023; 9
1983; 51
1994; 25
1992; 13
2020; 124
2024; 301
1996; 36
2017; 199
2011; 19
2021; 30
2017; 118
2001; 87
2014; 1
2020; 7
2021; 38
2014; 5
1997; 95
2013; 15
2013; 16
2001
2024; 314
2017; 34
2019; 234
2003; 5
2016; 755
2016; 116
2022; 401
2019; 230
2022; 276
2023; 98
2021; 8
2016; 9756
2015; 5
2023; 11
2021; 2
2012
1995; 17
2015; 92
2023; 15
2021; 103
2015; 10
2024; 322
2020; 102
1999; 60
2019; 383
2005; 44
2010; 82
2017; 95
2004; 10
2012; 93
2015; 23
2017; 96
1976; 13
2021; 12
2022
2021
2016; 65
2024; 297
2016
2018; 51
2014
1904; 6
1989; 15
2014; 346
1981; 53
2012; 86
2012; 85
e_1_2_10_40_1
e_1_2_10_109_1
R. G. N. (auth.) (e_1_2_10_83_1) 1982
Bishop D. (e_1_2_10_159_1) 1993
e_1_2_10_158_1
e_1_2_10_74_1
e_1_2_10_97_1
e_1_2_10_150_1
e_1_2_10_6_1
e_1_2_10_135_1
e_1_2_10_173_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_112_1
e_1_2_10_196_1
e_1_2_10_13_1
e_1_2_10_51_1
e_1_2_10_147_1
Sakurai J. J. (e_1_2_10_134_1) 1993
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_124_1
e_1_2_10_162_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_101_1
e_1_2_10_185_1
e_1_2_10_41_1
e_1_2_10_90_1
e_1_2_10_52_1
e_1_2_10_75_1
e_1_2_10_113_1
e_1_2_10_136_1
e_1_2_10_151_1
e_1_2_10_174_1
e_1_2_10_197_1
e_1_2_10_38_1
e_1_2_10_98_1
e_1_2_10_7_1
e_1_2_10_15_1
Acebal P. (e_1_2_10_142_1) 2024
e_1_2_10_148_1
e_1_2_10_64_1
e_1_2_10_102_1
e_1_2_10_125_1
e_1_2_10_140_1
e_1_2_10_163_1
e_1_2_10_186_1
e_1_2_10_49_1
e_1_2_10_87_1
e_1_2_10_26_1
Jackson J. D. (e_1_2_10_123_1) 1998
e_1_2_10_42_1
e_1_2_10_190_1
e_1_2_10_91_1
e_1_2_10_4_1
e_1_2_10_53_1
e_1_2_10_137_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_99_1
e_1_2_10_114_1
e_1_2_10_152_1
e_1_2_10_198_1
e_1_2_10_175_1
e_1_2_10_30_1
e_1_2_10_80_1
e_1_2_10_149_1
e_1_2_10_126_1
e_1_2_10_27_1
e_1_2_10_88_1
e_1_2_10_103_1
e_1_2_10_141_1
e_1_2_10_187_1
Todorov I. (e_1_2_10_81_1) 2019; 16
e_1_2_10_164_1
e_1_2_10_43_1
e_1_2_10_20_1
Piechulla P. M. (e_1_2_10_146_1) 2021
e_1_2_10_130_1
e_1_2_10_92_1
e_1_2_10_115_1
e_1_2_10_138_1
e_1_2_10_191_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_77_1
Noether E. (e_1_2_10_143_1) 1918; 1918
e_1_2_10_153_1
e_1_2_10_176_1
e_1_2_10_31_1
e_1_2_10_188_1
e_1_2_10_104_1
e_1_2_10_127_1
e_1_2_10_180_1
e_1_2_10_28_1
e_1_2_10_66_1
e_1_2_10_165_1
e_1_2_10_89_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_131_1
e_1_2_10_177_1
e_1_2_10_70_1
e_1_2_10_93_1
e_1_2_10_2_1
e_1_2_10_139_1
e_1_2_10_18_1
e_1_2_10_116_1
e_1_2_10_192_1
e_1_2_10_55_1
e_1_2_10_78_1
e_1_2_10_154_1
e_1_2_10_32_1
Bialynicki‐Birula I. (e_1_2_10_79_1) 1975
e_1_2_10_120_1
e_1_2_10_166_1
e_1_2_10_189_1
e_1_2_10_82_1
e_1_2_10_128_1
e_1_2_10_29_1
e_1_2_10_105_1
e_1_2_10_181_1
e_1_2_10_67_1
e_1_2_10_22_1
Fuschchich W. (e_1_2_10_65_1) 1994
e_1_2_10_132_1
e_1_2_10_155_1
e_1_2_10_178_1
e_1_2_10_71_1
e_1_2_10_117_1
e_1_2_10_170_1
e_1_2_10_193_1
e_1_2_10_94_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_56_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_121_1
e_1_2_10_144_1
e_1_2_10_167_1
e_1_2_10_60_1
e_1_2_10_106_1
e_1_2_10_129_1
e_1_2_10_182_1
e_1_2_10_68_1
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
Pinto D. A. Y. (e_1_2_10_34_1) 2001
Lorentz H. A. (e_1_2_10_61_1) 1904; 6
e_1_2_10_110_1
e_1_2_10_156_1
e_1_2_10_179_1
Fowler P. W. (e_1_2_10_160_1) 2005; 16
e_1_2_10_72_1
e_1_2_10_95_1
e_1_2_10_118_1
e_1_2_10_194_1
e_1_2_10_171_1
e_1_2_10_8_1
e_1_2_10_57_1
e_1_2_10_133_1
e_1_2_10_58_1
e_1_2_10_11_1
e_1_2_10_119_1
Fernandez‐Corbaton I. (e_1_2_10_45_1) 2016; 6
e_1_2_10_145_1
e_1_2_10_168_1
e_1_2_10_107_1
e_1_2_10_183_1
e_1_2_10_122_1
e_1_2_10_24_1
e_1_2_10_108_1
e_1_2_10_157_1
e_1_2_10_1_1
e_1_2_10_73_1
e_1_2_10_172_1
e_1_2_10_96_1
e_1_2_10_111_1
e_1_2_10_195_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_50_1
Colton D. (e_1_2_10_84_1) 2012
e_1_2_10_169_1
e_1_2_10_62_1
e_1_2_10_161_1
e_1_2_10_85_1
e_1_2_10_100_1
e_1_2_10_184_1
e_1_2_10_47_1
References_xml – volume: 8
  start-page: 3661
  year: 1973
  publication-title: Phys. Rev. D
– volume: 2020
  start-page: 100
  year: 2020
  publication-title: J. High Energy Phys.
– volume: 121
  year: 2018
  publication-title: Phys. Rev. Lett.
– volume: 381
  start-page: 2375
  year: 2017
  publication-title: Phys. Lett. A
– volume: 1
  start-page: 762
  year: 2014
  publication-title: ACS Photonics
– volume: 547
  start-page: 328
  year: 2017
  publication-title: Nature
– volume: 5
  start-page: 3821
  year: 2014
  publication-title: Nat. Commun.
– volume: 34
  year: 2022
  publication-title: J. Phys.: Condens. Matter
– volume: 15
  year: 2013
  publication-title: New J. Phys.
– year: 1975
– volume: 22
  start-page: 896
  year: 2022
  publication-title: Nano Lett.
– volume: 16
  year: 2013
  publication-title: J. Opt.
– volume: 92
  year: 2015
  publication-title: Phys. Rev. A
– volume: 95
  start-page: 63
  year: 1997
  publication-title: Theoret. Chim. Acta
– year: 2014
– volume: 36
  start-page: 245
  year: 1996
  publication-title: Prog. Optics
– year: 1998
– volume: 34
  start-page: 270
  year: 2017
  publication-title: J. Opt. Soc. Am. A
– volume: 307
  start-page: 391
  year: 2016
  publication-title: Coord. Chem. Rev.
– volume: 7
  start-page: 2682
  year: 2020
  publication-title: ACS Photonics
– volume: 176
  start-page: 1489
  year: 1968
  publication-title: Phys. Rev.
– volume: 30
  start-page: 357
  year: 2021
  publication-title: Commun. Computat. Physics
– volume: 99
  year: 2019
  publication-title: Phys. Rev. B
– volume: 30
  start-page: 6846
  year: 2022
  publication-title: Opt. Express
– volume: 11
  start-page: 1113
  year: 2019
  publication-title: Symmetry
– volume: 51
  start-page: 39
  year: 1983
  publication-title: Phys. Rev. Lett.
– year: 2022
– volume: 41
  start-page: 444
  year: 2016
  publication-title: Opt. Lett.
– volume: 9
  year: 2023
  publication-title: Sci. Adv.
– start-page: 1
  year: 2024
  publication-title: IEEE Trans. Antenn. Propag.
– volume: 146
  start-page: 59
  year: 2014
  publication-title: J. Quant. Spectrosc. Radiat. Transfer
– volume: 230
  start-page: 247
  year: 2019
  publication-title: J. Quant. Spectrosc. Radiat. Transfer
– volume: 140
  start-page: B183
  year: 1965
  publication-title: Phys. Rev.
– volume: 69
  year: 2004
  publication-title: Phys. Rev. D
– year: 1993
– volume: 87
  year: 2001
  publication-title: Phys. Rev. Lett.
– volume: 92
  year: 2015
  publication-title: Phys. Rev. D
– volume: 356
  start-page: 3
  year: 1991
  publication-title: Nucl. Phys. B
– volume: 2019
  start-page: 142
  year: 2019
  publication-title: J. High Energy Phys.
– volume: 183
  start-page: 370
  year: 2012
  publication-title: Comput. Phys. Commun.
– volume: 755
  start-page: 1
  year: 2016
  publication-title: Phys. Lett. B
– volume: 6
  start-page: 2231
  year: 2019
  publication-title: ACS Photonics
– volume: 48
  start-page: 46
  year: 1995
  publication-title: Phys. Today
– volume: 16
  year: 2022
  publication-title: Laser Photonics Rev.
– volume: 22
  year: 2020
  publication-title: New J. Phys.
– volume: 11
  start-page: 10
  year: 2019
  publication-title: Symmetry
– volume: 75
  year: 2007
  publication-title: Phys. Rev. B
– volume: 68
  start-page: 405
  year: 2017
  publication-title: Commun. Theor. Phys.
– volume: 25
  start-page: 497
  year: 1994
  publication-title: EPL (Europhys. Lett.)
– volume: 10
  start-page: 775
  year: 2015
  publication-title: Nat. Nanotechnol.
– volume: 346
  start-page: 67
  year: 2014
  publication-title: Science
– volume: 16
  start-page: 321
  year: 2005
  publication-title: Symmetry: Culture and Science
– volume: 9
  start-page: S196
  year: 2007
  publication-title: J. Opt. A: Pure Appl. Opt.
– volume: 106
  year: 2009
  publication-title: Proc. Natl. Acad. Sci.
– volume: s2‐8
  start-page: 223
  year: 1910
  publication-title: Proc. London Mathemat. Soc.
– volume: 108
  year: 2023
  publication-title: Phys. Rev. A
– volume: 23
  start-page: 599
  year: 1993
  publication-title: Found. Phys.
– volume: 6
  start-page: 1244
  year: 1965
  publication-title: J. Math. Phys.
– volume: 102
  year: 2020
  publication-title: Phys. Rev. B
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 234
  start-page: 40
  year: 2019
  publication-title: J. Quant. Spectrosc. Radiat. Transfer
– volume: 15
  start-page: 10
  year: 2023
  publication-title: Symmetry
– volume: 520
  start-page: 631
  year: 2008
  publication-title: Ann. Phys.
– volume: 5
  year: 2015
  publication-title: Sci. Rep.
– volume: 383
  start-page: 3180
  year: 2019
  publication-title: Phys. Lett. A
– year: 2016
– volume: 98
  year: 2023
  publication-title: Phys. Scr.
– volume: 65
  year: 2002
  publication-title: Phys. Rev. A
– volume: 71
  start-page: 519
  year: 1972
  publication-title: Ann. Phys.
– start-page: 211
  year: 2001
  publication-title: Enantiomer
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 23
  start-page: 7190
  year: 2015
  publication-title: Opt. Express
– volume: 99
  year: 2007
  publication-title: Phys. Rev. Lett.
– volume: 21
  year: 2013
  publication-title: Opt. Express
– volume: 14
  year: 2012
  publication-title: New J. Phys.
– volume: 21
  year: 2019
  publication-title: J. Opt.
– volume: 6
  year: 2016
  publication-title: Phys. Rev. X
– volume: 15
  start-page: 7
  year: 1989
  publication-title: Fusion Technol.
– volume: 401
  year: 2022
  publication-title: J. Computat. Appl. Math.
– volume: 37
  start-page: 429
  year: 1936
  publication-title: Ann. Math.
– volume: 12
  start-page: 1562
  year: 2021
  publication-title: Nat. Commun.
– volume: 10
  start-page: 6575
  year: 2004
  publication-title: Chem.: Eur. J
– volume: 5
  start-page: 1
  year: 2014
  publication-title: Nat. Commun.
– volume: 149
  start-page: 2179
  year: 2021
  publication-title: J. Acoust. Soc. Am.
– volume: 297
  year: 2024
  publication-title: Comput. Phys. Commun.
– volume: 78
  start-page: 41
  year: 2000
  publication-title: Can. J. Chem.
– volume: 38
  start-page: 1782
  year: 2021
  publication-title: J. Opt. Soc. Am. B
– volume: 314
  year: 2024
  publication-title: JQSRT
– volume: 19
  start-page: 933
  year: 2011
  publication-title: Opt. Express
– volume: 82
  year: 2010
  publication-title: Phys. Rev. A
– volume: 118
  year: 2017
  publication-title: Phys. Rev. Lett.
– volume: 53
  start-page: 805
  year: 1965
  publication-title: Proc. IEEE
– volume: 114
  start-page: 6006
  year: 1992
  publication-title: J. Am. Chem. Soc.
– volume: 92
  year: 2015
  publication-title: Phys. Rev. B
– volume: 116
  year: 2016
  publication-title: Phys. Rev. Lett.
– volume: 44
  start-page: 489
  year: 1958
  publication-title: PNAS
– volume: 5
  start-page: 271
  year: 2003
  publication-title: Entropy
– volume: 103
  year: 2021
  publication-title: Phys. Rev. B
– year: 1985
– volume: 84
  year: 2011
  publication-title: Phys. Rev. A
– volume: 109
  start-page: 1536
  year: 2008
  publication-title: J. Quant. Spectrosc. Radiat. Transfer
– volume: 2
  year: 2018
  publication-title: J. Phys. Commun.
– volume: 51
  year: 2018
  publication-title: J. Phys. A: Math. Theor.
– volume: 17
  start-page: 185
  year: 1995
  publication-title: J. Math. Chem.
– volume: 45
  start-page: 1887
  year: 2004
  publication-title: J. Math. Phys.
– volume: 21
  start-page: 878
  year: 2020
  publication-title: ChemPhysChem
– volume: 89
  start-page: 1072
  year: 1953
  publication-title: Phys. Rev.
– volume: 6
  start-page: 928
  year: 1965
  publication-title: J. Math. Phys.
– year: 2021
– volume: 322
  year: 2024
  publication-title: J. Quant. Spectrosc. Radiat. Transfer
– year: 2024
– volume: 82
  year: 2010
  publication-title: Phys. Rev. D
– volume: 13
  start-page: 973
  year: 1965
  publication-title: IEEE Trans. Antennas Propagat.
– volume: 2
  start-page: 296
  year: 2021
  publication-title: Light: Adv. Mfg.
– volume: 98
  year: 2018
  publication-title: Phys. Rev. D
– volume: 93
  year: 2012
– volume: 7
  year: 2017
  publication-title: Sci. Rep.
– volume: 107
  year: 2023
  publication-title: Phys. Rev. A
– volume: 41
  start-page: B167
  year: 1999
  publication-title: Plasma Phys. Controll. Fusion
– volume: 76
  start-page: 4250
  year: 1996
  publication-title: Phys. Rev. Lett.
– year: 1994
– volume: 24
  year: 2022
  publication-title: New J. Phys.
– volume: 32
  start-page: 276
  year: 2003
  publication-title: Chem. Soc. Rev.
– volume: 163
  year: 1965
– volume: 408
  start-page: 839
  year: 2000
  publication-title: Nature
– volume: 7
  start-page: 1830
  year: 2020
  publication-title: ACS Photonics
– volume: 1918
  start-page: 235
  year: 1918
  publication-title: Nachr. v. d. Ges. d. Wiss. zu Göttingen
– volume: 26
  start-page: 75
  year: 1967
  publication-title: Phys. Lett. B
– year: 1982
– volume: 5
  start-page: 687
  year: 1964
  publication-title: J. Math. Phys.
– volume: 112
  start-page: 349
  year: 2011
  publication-title: Progr. Electromagn. Res.‐pier
– volume: 100
  year: 2019
  publication-title: Phys. Rev. B
– volume: 65
  start-page: 423
  year: 2016
  publication-title: Commun. Theor. Phys.
– volume: 8
  start-page: 899
  year: 2013
  publication-title: Nat. Nanotechnol.
– volume: 44
  start-page: 6810
  year: 2005
  publication-title: Angew. Chem., Int. Ed.
– volume: 199
  start-page: 103
  year: 2017
  publication-title: J. Quant. Spectrosc. Radiat. Transfer
– volume: 273
  year: 2021
  publication-title: J. Quant. Spectrosc. Radiat. Transfer
– volume: 95
  year: 2017
  publication-title: Phys. Rev. A
– volume: 8
  start-page: 9416
  year: 2018
  publication-title: Sci. Rep.
– volume: 17
  start-page: 141
  year: 1996
  publication-title: Eur. J. Phys.
– volume: 86
  year: 2012
  publication-title: Phys. Rev. A
– volume: 13
  start-page: 70
  year: 1992
  publication-title: Eur. J. Phys.
– volume: 109
  year: 2024
  publication-title: Phys. Rev. A
– volume: 10
  start-page: 2078
  year: 1969
  publication-title: J. Math. Phys.
– volume: 11
  start-page: 1427
  year: 2019
  publication-title: Symmetry
– volume: 41
  start-page: 158
  year: 1967
  publication-title: Ann. Phys.
– volume: 35
  start-page: 117
  year: 1969
  publication-title: J. Fluid Mechan.
– volume: 6
  start-page: 61
  year: 2019
  publication-title: Optica
– volume: 53
  start-page: 385
  year: 1981
  publication-title: Rev. Mod. Phys.
– volume: s2‐8
  start-page: 77
  year: 1910
  publication-title: Proc. London Mathemat. Soc.
– volume: 27
  year: 2019
  publication-title: Opt. Express
– volume: 8
  start-page: 1710
  year: 1973
  publication-title: Phys. Rev. A
– volume: 109
  start-page: 271
  year: 1996
  publication-title: Il Nuovo Cimento A (1971‐1996)
– volume: 43
  start-page: 3249
  year: 2018
  publication-title: Opt. Lett.
– volume: 11
  start-page: 252
  year: 2023
  publication-title: Photon. Res.
– volume: 13
  start-page: 1592
  year: 1976
  publication-title: Phys. Rev. D
– year: 2021
  publication-title: ACS Photonics
– volume: 276
  year: 2022
  publication-title: Comput. Phys. Commun.
– volume: 22
  start-page: 2530
  year: 1981
  publication-title: J. Math. Phys.
– volume: 111
  year: 2013
  publication-title: Phys. Rev. Lett.
– volume: 301
  year: 2024
  publication-title: Comput. Phys. Commun.
– volume: 36
  start-page: 686
  year: 2019
  publication-title: J. Opt. Soc. Am. A
– volume: 8
  start-page: 1522
  year: 2021
  publication-title: ACS Photonics
– volume: 8
  year: 2016
  publication-title: Nanoscale.
– volume: 38
  start-page: 3319
  year: 2021
  publication-title: J. Opt. Soc. Am. B
– volume: 93
  year: 2016
  publication-title: Phys. Rev. A
– volume: 98
  year: 2018
  publication-title: Phys. Rev. B
– volume: 60
  year: 1999
  publication-title: Phys. Rev. A
– volume: 33
  start-page: 958
  year: 1965
  publication-title: Am. J. Phys.
– volume: 96
  year: 2017
  publication-title: Phys. Rev. A
– volume: 296
  year: 2023
  publication-title: J. Quant. Spectrosc. Radiat. Transfer
– volume: 16
  start-page: 117
  year: 2019
  publication-title: Bulg. J. Phys.
– volume: 36
  start-page: F32
  year: 2019
  publication-title: J. Opt. Soc. Am. B
– volume: 6
  start-page: 809
  year: 1904
  publication-title: Proc. Royal Netherlands Acad. Arts Sci.
– year: 2012
– volume: 18
  year: 2016
  publication-title: J. Opt.
– volume: 9756
  year: 2016
– volume: 30
  start-page: 28
  year: 2019
  publication-title: Opt. Photon. News
– volume: 464
  start-page: 388
  year: 1962
  publication-title: Ann. Phys.
– year: 1988
– volume: 110
  start-page: 1511
  year: 2009
  publication-title: J. Quant. Spectrosc. Radiat. Transfer
– volume: 10
  start-page: 298
  year: 2018
  publication-title: Symmetry
– volume: 5
  start-page: 49
– volume: 85
  year: 2012
  publication-title: Phys. Rev. A
– volume: 124
  year: 2020
  publication-title: Phys. Rev. Lett.
– volume: 5
  start-page: 294
  year: 1964
  publication-title: J. Math. Phys.
– volume: 242
  year: 2020
  publication-title: J. Quant. Spectrosc. Radiat. Transfer
– volume: 50
  year: 2017
  publication-title: J. Phys. D: Appl. Phys.
– volume: 105
  year: 2010
  publication-title: Phys. Rev. Lett.
– ident: e_1_2_10_10_1
  doi: 10.1016/j.jqsrt.2023.108853
– ident: e_1_2_10_144_1
  doi: 10.1364/OE.21.029885
– ident: e_1_2_10_196_1
  doi: 10.1103/PhysRevB.102.035432
– ident: e_1_2_10_43_1
  doi: 10.1103/PhysRevA.92.023813
– ident: e_1_2_10_186_1
  doi: 10.1364/PRJ.475616
– start-page: 1
  year: 2024
  ident: e_1_2_10_142_1
  publication-title: IEEE Trans. Antenn. Propag.
– ident: e_1_2_10_37_1
  doi: 10.1103/PhysRevA.85.063810
– ident: e_1_2_10_63_1
  doi: 10.1112/plms/s2-8.1.77
– ident: e_1_2_10_86_1
  doi: 10.1109/PROC.1965.4058
– ident: e_1_2_10_148_1
  doi: 10.1038/ncomms6713
– ident: e_1_2_10_71_1
  doi: 10.1016/S0079-6638(08)70316-0
– ident: e_1_2_10_2_1
  doi: 10.37188/lam.2021.017
– ident: e_1_2_10_92_1
  doi: 10.1103/PhysRevD.8.3661
– ident: e_1_2_10_76_1
  doi: 10.1016/0003-4916(67)90201-1
– ident: e_1_2_10_131_1
  doi: 10.1364/OL.43.003249
– ident: e_1_2_10_145_1
  doi: 10.1021/acsphotonics.0c00555
– ident: e_1_2_10_149_1
  doi: 10.1038/nnano.2015.159
– ident: e_1_2_10_8_1
  doi: 10.1103/PhysRevB.103.054406
– ident: e_1_2_10_126_1
  doi: 10.1103/PhysRevD.13.1592
– ident: e_1_2_10_68_1
  doi: 10.1002/andp.19624640706
– ident: e_1_2_10_46_1
  doi: 10.1016/j.physleta.2017.05.042
– ident: e_1_2_10_41_1
  doi: 10.1088/2040-8978/16/1/015708
– ident: e_1_2_10_16_1
  doi: 10.1103/PhysRevA.65.043801
– ident: e_1_2_10_87_1
  doi: 10.1016/j.jqsrt.2019.04.004
– ident: e_1_2_10_118_1
  doi: 10.1038/nnano.2013.243
– ident: e_1_2_10_56_1
  doi: 10.3390/sym11101191
– ident: e_1_2_10_187_1
  doi: 10.1126/sciadv.adh2353
– ident: e_1_2_10_197_1
  doi: 10.1021/acsphotonics.1c00336
– ident: e_1_2_10_72_1
  doi: 10.1063/1.1704120
– ident: e_1_2_10_91_1
  doi: 10.1017/9781108891066
– ident: e_1_2_10_100_1
  doi: 10.1016/j.jqsrt.2007.11.008
– ident: e_1_2_10_171_1
  doi: 10.1088/1361-648X/ac533d
– ident: e_1_2_10_117_1
  doi: 10.1103/PhysRevLett.99.047601
– ident: e_1_2_10_172_1
  doi: 10.1088/2040-8978/18/7/075007
– ident: e_1_2_10_11_1
  doi: 10.1103/PhysRevA.109.043506
– ident: e_1_2_10_27_1
  doi: 10.1088/0253-6102/68/4/405
– ident: e_1_2_10_161_1
  doi: 10.1016/0550-3213(91)90139-O
– volume-title: Scattering Theory of Waves and Particles
  year: 1982
  ident: e_1_2_10_83_1
– ident: e_1_2_10_9_1
  doi: 10.3390/sym15101839
– ident: e_1_2_10_103_1
  doi: 10.1103/PhysRevA.107.013508
– ident: e_1_2_10_112_1
  doi: 10.1103/PhysRevD.92.125031
– ident: e_1_2_10_139_1
  doi: 10.1039/C6NR00676K
– ident: e_1_2_10_94_1
  doi: 10.1016/j.jqsrt.2017.05.010
– ident: e_1_2_10_115_1
  doi: 10.1007/JHEP10(2019)142
– ident: e_1_2_10_158_1
  doi: 10.1038/s41598-018-27496-w
– ident: e_1_2_10_14_1
  doi: 10.1364/OE.19.000933
– ident: e_1_2_10_93_1
  doi: 10.1002/cphc.202000072
– ident: e_1_2_10_90_1
  doi: 10.1049/SBEW524E
– ident: e_1_2_10_102_1
  doi: 10.1364/JOSAB.419645
– start-page: 211
  year: 2001
  ident: e_1_2_10_34_1
  publication-title: Enantiomer
– ident: e_1_2_10_151_1
  doi: 10.1103/PhysRevB.100.035311
– ident: e_1_2_10_104_1
  doi: 10.1073/pnas.44.6.489
– ident: e_1_2_10_140_1
  doi: 10.1016/j.cpc.2011.09.009
– volume: 6
  year: 2016
  ident: e_1_2_10_45_1
  publication-title: Phys. Rev. X
– ident: e_1_2_10_47_1
  doi: 10.1103/PhysRevLett.118.111301
– ident: e_1_2_10_53_1
  doi: 10.1088/2040-8986/ab387c
– ident: e_1_2_10_64_1
  doi: 10.2307/1968455
– ident: e_1_2_10_198_1
  doi: 10.1103/PhysRevLett.116.113601
– ident: e_1_2_10_59_1
  doi: 10.1063/1.881480
– ident: e_1_2_10_180_1
  doi: 10.1088/1367-2630/abcb2d
– ident: e_1_2_10_164_1
  doi: 10.1088/1751-8121/aad521
– ident: e_1_2_10_110_1
  doi: 10.1103/PhysRevLett.51.39
– ident: e_1_2_10_128_1
  doi: 10.1007/BF02731014
– ident: e_1_2_10_23_1
– ident: e_1_2_10_32_1
  doi: 10.1007/BF02341691
– ident: e_1_2_10_113_1
  doi: 10.1016/j.physletb.2016.01.048
– ident: e_1_2_10_99_1
  doi: 10.1016/j.cpc.2023.109076
– ident: e_1_2_10_48_1
  doi: 10.1103/PhysRevD.98.125001
– ident: e_1_2_10_191_1
  doi: 10.1007/JHEP05(2020)100
– ident: e_1_2_10_106_1
  doi: 10.1088/0143-0807/13/2/003
– ident: e_1_2_10_155_1
  doi: 10.1021/ph500084b
– ident: e_1_2_10_5_1
  doi: 10.1103/PhysRevA.95.053829
– ident: e_1_2_10_162_1
  doi: 10.1007/978-3-642-36494-5
– ident: e_1_2_10_22_1
  doi: 10.1073/pnas.0905337106
– ident: e_1_2_10_167_1
  doi: 10.1038/nature23006
– ident: e_1_2_10_20_1
  doi: 10.1103/PhysRevA.108.043510
– volume-title: Quantum Electrodynamics
  year: 1975
  ident: e_1_2_10_79_1
– ident: e_1_2_10_176_1
  doi: 10.1016/j.cam.2021.113769
– ident: e_1_2_10_184_1
  doi: 10.1364/JOSAB.36.000F32
– ident: e_1_2_10_62_1
  doi: 10.1112/plms/s2-8.1.223
– ident: e_1_2_10_29_1
  doi: 10.1021/ar50050a002
– ident: e_1_2_10_127_1
  doi: 10.1063/1.524828
– ident: e_1_2_10_157_1
  doi: 10.1103/RevModPhys.53.385
– ident: e_1_2_10_137_1
  doi: 10.1016/j.jqsrt.2024.109015
– ident: e_1_2_10_78_1
  doi: 10.1103/PhysRevA.8.1710
– volume-title: Modern Quantum Mechanics (Revised Edition)
  year: 1993
  ident: e_1_2_10_134_1
– ident: e_1_2_10_189_1
  doi: 10.1103/PhysRevLett.105.061602
– ident: e_1_2_10_96_1
  doi: 10.1016/j.jqsrt.2021.107846
– ident: e_1_2_10_70_1
– ident: e_1_2_10_179_1
  doi: 10.1103/PhysRevLett.121.173901
– ident: e_1_2_10_3_1
  doi: 10.1039/b200393g
– ident: e_1_2_10_166_1
  doi: 10.1002/anie.200501734
– ident: e_1_2_10_66_1
  doi: 10.1002/andp.200852009-1005
– volume-title: Group Theory and Chemistry
  year: 1993
  ident: e_1_2_10_159_1
– ident: e_1_2_10_168_1
  doi: 10.1103/PhysRevB.98.174437
– ident: e_1_2_10_12_1
  doi: 10.1088/1464-4258/9/8/S12
– ident: e_1_2_10_18_1
  doi: 10.2528/PIER10102901
– ident: e_1_2_10_24_1
  doi: 10.1038/ncomms4821
– ident: e_1_2_10_135_1
  doi: 10.1209/0295-5075/25/7/004
– ident: e_1_2_10_101_1
  doi: 10.1016/j.jqsrt.2009.01.023
– ident: e_1_2_10_120_1
  doi: 10.1103/PhysRevB.99.075150
– ident: e_1_2_10_165_1
  doi: 10.1103/PhysRevB.75.125119
– ident: e_1_2_10_58_1
– volume: 16
  start-page: 321
  year: 2005
  ident: e_1_2_10_160_1
  publication-title: Symmetry: Culture and Science
– volume: 6
  start-page: 809
  year: 1904
  ident: e_1_2_10_61_1
  publication-title: Proc. Royal Netherlands Acad. Arts Sci.
– ident: e_1_2_10_121_1
– ident: e_1_2_10_98_1
  doi: 10.1016/j.cpc.2024.109218
– ident: e_1_2_10_147_1
  doi: 10.1002/lpor.202000516
– ident: e_1_2_10_88_1
  doi: 10.1016/j.jqsrt.2019.106692
– ident: e_1_2_10_40_1
  doi: 10.1088/1367-2630/15/3/033026
– ident: e_1_2_10_133_1
  doi: 10.1142/0270
– ident: e_1_2_10_141_1
  doi: 10.1016/j.cpc.2022.108337
– ident: e_1_2_10_109_1
  doi: 10.1088/0741-3335/41/12B/312
– ident: e_1_2_10_28_1
  doi: 10.1038/s41598-017-13405-0
– ident: e_1_2_10_177_1
  doi: 10.1016/j.jqsrt.2022.108455
– ident: e_1_2_10_51_1
  doi: 10.1002/adma.201807742
– volume-title: Symmetries of Equations of Quantum Mechanics
  year: 1994
  ident: e_1_2_10_65_1
– ident: e_1_2_10_170_1
  doi: 10.1038/s41467-021-21846-5
– ident: e_1_2_10_129_1
  doi: 10.1088/0143-0807/17/3/008
– ident: e_1_2_10_111_1
  doi: 10.13182/FST89-1
– ident: e_1_2_10_181_1
– ident: e_1_2_10_44_1
  doi: 10.1117/12.2209551
– ident: e_1_2_10_42_1
– ident: e_1_2_10_39_1
  doi: 10.1088/1367-2630/14/5/053050
– ident: e_1_2_10_130_1
  doi: 10.1103/PhysRevA.60.R3331
– ident: e_1_2_10_97_1
  doi: 10.4208/cicp.OA-2020-0136
– ident: e_1_2_10_194_1
  doi: 10.1364/OE.443656
– ident: e_1_2_10_57_1
  doi: 10.1088/1402-4896/acf4cc
– ident: e_1_2_10_173_1
  doi: 10.1016/j.jqsrt.2019.06.001
– ident: e_1_2_10_49_1
  doi: 10.3390/sym10070298
– ident: e_1_2_10_136_1
  doi: 10.1007/BF01883768
– ident: e_1_2_10_132_1
  doi: 10.1103/PhysRev.89.1072
– ident: e_1_2_10_119_1
  doi: 10.1088/1361-6463/aa7573
– ident: e_1_2_10_36_1
  doi: 10.1002/chem.200400869
– ident: e_1_2_10_38_1
  doi: 10.1103/PhysRevLett.111.060401
– ident: e_1_2_10_89_1
  doi: 10.1364/OE.23.007190
– ident: e_1_2_10_124_1
  doi: 10.1119/1.1971089
– ident: e_1_2_10_31_1
  doi: 10.1007/BF01164847
– ident: e_1_2_10_77_1
  doi: 10.1063/1.1664804
– ident: e_1_2_10_150_1
  doi: 10.1038/ncomms11183
– ident: e_1_2_10_33_1
  doi: 10.1139/v99-223
– ident: e_1_2_10_50_1
  doi: 10.1103/PhysRevLett.121.043901
– ident: e_1_2_10_17_1
  doi: 10.1103/PhysRevA.82.043845
– ident: e_1_2_10_15_1
  doi: 10.1103/PhysRevA.84.021803
– ident: e_1_2_10_75_1
  doi: 10.1063/1.1704766
– ident: e_1_2_10_35_1
  doi: 10.3390/e5030271
– ident: e_1_2_10_95_1
  doi: 10.1103/PhysRevA.96.033822
– ident: e_1_2_10_114_1
  doi: 10.1103/PhysRevLett.124.191604
– ident: e_1_2_10_19_1
  doi: 10.1364/JOSAA.34.000270
– ident: e_1_2_10_178_1
– ident: e_1_2_10_21_1
  doi: 10.1038/35048537
– ident: e_1_2_10_73_1
  doi: 10.1103/PhysRev.140.B183
– ident: e_1_2_10_188_1
  doi: 10.1103/PhysRevD.82.065003
– ident: e_1_2_10_105_1
  doi: 10.1017/S0022112069000991
– ident: e_1_2_10_55_1
  doi: 10.3390/sym11091113
– ident: e_1_2_10_122_1
  doi: 10.1088/1367-2630/ac57e8
– ident: e_1_2_10_4_1
  doi: 10.1016/j.ccr.2015.09.013
– ident: e_1_2_10_80_1
  doi: 10.1063/1.1704847
– ident: e_1_2_10_108_1
  doi: 10.1103/PhysRevD.69.063006
– ident: e_1_2_10_116_1
  doi: 10.1103/PhysRevLett.76.4250
– ident: e_1_2_10_85_1
  doi: 10.1142/9789812812100
– ident: e_1_2_10_82_1
– ident: e_1_2_10_6_1
  doi: 10.1088/2399-6528/aada25
– ident: e_1_2_10_25_1
  doi: 10.1088/0253-6102/65/4/423
– ident: e_1_2_10_193_1
  doi: 10.1364/JOSAA.36.000686
– ident: e_1_2_10_60_1
  doi: 10.1142/0097
– volume: 1918
  start-page: 235
  year: 1918
  ident: e_1_2_10_143_1
  publication-title: Nachr. v. d. Ges. d. Wiss. zu Göttingen
– ident: e_1_2_10_174_1
  doi: 10.1364/OE.27.035750
– ident: e_1_2_10_156_1
  doi: 10.1016/0370-2693(67)90551-5
– ident: e_1_2_10_26_1
  doi: 10.1103/PhysRevA.93.052331
– ident: e_1_2_10_152_1
  doi: 10.1021/acsphotonics.9b00369
– ident: e_1_2_10_175_1
  doi: 10.1121/10.0003958
– ident: e_1_2_10_74_1
  doi: 10.1063/1.1704353
– ident: e_1_2_10_190_1
  doi: 10.1038/srep11538
– ident: e_1_2_10_13_1
  doi: 10.1016/j.jqsrt.2014.04.003
– ident: e_1_2_10_185_1
  doi: 10.1021/acs.nanolett.1c03325
– ident: e_1_2_10_195_1
  doi: 10.1103/PhysRevB.92.205420
– ident: e_1_2_10_30_1
  doi: 10.1021/ja00041a016
– ident: e_1_2_10_183_1
  doi: 10.1103/PhysRevB.99.075425
– ident: e_1_2_10_54_1
  doi: 10.1016/j.physleta.2019.06.002
– volume: 16
  start-page: 117
  year: 2019
  ident: e_1_2_10_81_1
  publication-title: Bulg. J. Phys.
– ident: e_1_2_10_52_1
  doi: 10.1021/acsphotonics.0c00304
– ident: e_1_2_10_153_1
  doi: 10.1364/OPTICA.6.000061
– ident: e_1_2_10_192_1
  doi: 10.1364/JOSAB.432984
– ident: e_1_2_10_154_1
  doi: 10.1126/science.1257671
– ident: e_1_2_10_182_1
  doi: 10.1364/OL.41.000444
– volume-title: Inverse Acoustic and Electromagnetic Scattering Theory
  year: 2012
  ident: e_1_2_10_84_1
– ident: e_1_2_10_107_1
  doi: 10.1103/PhysRevLett.87.251302
– ident: e_1_2_10_67_1
  doi: 10.1016/0003-4916(72)90130-3
– ident: e_1_2_10_138_1
  doi: 10.1109/TAP.1965.1138542
– ident: e_1_2_10_1_1
  doi: 10.1364/OPN.30.10.000028
– ident: e_1_2_10_169_1
  doi: 10.1103/PhysRevLett.121.187201
– ident: e_1_2_10_69_1
  doi: 10.1063/1.1704164
– year: 2021
  ident: e_1_2_10_146_1
  publication-title: ACS Photonics
– ident: e_1_2_10_7_1
  doi: 10.3390/sym11111427
– ident: e_1_2_10_125_1
  doi: 10.1103/PhysRev.176.1489
– volume-title: Classical Electrodynamics
  year: 1998
  ident: e_1_2_10_123_1
– ident: e_1_2_10_163_1
  doi: 10.1103/PhysRevA.86.013845
SSID ssj0002891341
Score 2.285757
Snippet A theoretical and computational framework for the study and engineering of light–matter interactions is reviewed in here. The framework rests on the invariance...
Abstract A theoretical and computational framework for the study and engineering of light–matter interactions is reviewed in here. The framework rests on the...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Index Database
Publisher
SubjectTerms Algebra
conformal symmetry
Electromagnetism
Hilbert space
Light
light–matter interactions
Operators (mathematics)
Physics
Spacetime
Symmetry
Theoretical physics
Theory of relativity
T‐matrix
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1NS8MwGMeDePIiiorTKT0Inury2qTHKo4hTkQc7BbyKop0w03w6HfwG_pJTNJuztMuXkuhD_80yT95kt8DwBl0tlSau5wZFtOMzOXKaZ4boSB1BhUFj7eRh3fFYERvxmy8Uuornglr8MCNcD1vTKktY8IjT43W2jFjmGcEM0csTZzPMOetLKZemvRZJJUtKI0Q99T0I-I_45FJmMqs_M5CCdb_x2Gu-tQ00fR3wHbrELOqiWwXbLh6D9CqzqrXp5jlfTZZ1YLAs_kku42r6-_Pr2ECZWZph6-5rDDbB6P-9ePVIG8LHuQmZr9yYUohkOcQ6RKWGHtSFMIUoR8qDoWGyHuNEbVeCAsN8s55xRC3QlnqMbfkAGzWk9odggwFm-SUZ1xRQq3SihTUBbunCHPQedMB5wsB5LThWsiGYIxllEoupeqAy6jP8q3Io04PQivJtpXkulbqgO5CXdl2kpkMwwknLPij8I2LpPiaUGR1P35AwTDyo_8I6hhs4VjNN22odMHm_O3dnQSLMden6W_6ASepz6I
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LSwMxEA5qEbyIT6wv9iB4Ws1zkz3JVhQRFRGF3kKeIkhb2woe_Q_-Q3-JSZpWveh1WZZlMpn5MjP5PgAOoLO10tyVzLDYZmSuVE7z0ggFqTOoqni8jXx9U1080Msu6-aC2yiPVU5jYgrUtm9ijfw4-B4nLCRTcTJ4KaNqVOyuZgmNedAKIViEw1erc3ZzezersuDYhUvylZgzVKLgE1PmRoiP1eAtUoLGMUqYpFe-M1Mi8P-FOn9i15R8zlfAckaNRTNZ5lUw53prYDFNb5rROqBNr2ieH2MP-MkUTaYJL8b94iqevT_fP64TjWaR6n-TqwyjDfBwfnZ_elFmOYTSxN5YKUwtBPIcIl3DGmNPqkqYKuxSxaHQEHmvMaLWC2GhQd45rxjiVihLPeaWbIKFXr_ntkCBAohyyjOuKKFWaUUq6gIYVIQ56Lxpg8OpKeRgwnohJ_zGWEajyZnR2qATLTV7K7JVpwf94aPMzi-9MbW2jAmPPDVaa8eMYZ4RzByxlLTB7tTOMm-hkfxe8DY4Srb_51dkc9u9QwFO8u2_v7cDlnBU8U2FlF2wMB6-ur0ALcZ6P_vPFxwpy24
  priority: 102
  providerName: ProQuest
Title An Algebraic Approach to Light–Matter Interactions
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fapxr.202400088
https://www.proquest.com/docview/3187359378
https://doaj.org/article/fcc9bd558f1f4cbbbe5cc5f5325e3d43
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aL15EUbE-yh4ET4t5brLHVVqLWCmi0FvIUwRppa3gSfwP_kN_iUl2W-1JvOQQdjfLZCb5MpP5BoBT6GypNHc5MyyGGZnLldM8N0JB6gwqCh6zkQe3Rf-BXo_Y6FcWf80PsXS4RctI63U0cKVn5z-koerlLfJ5xjuQwVLWwUbMr43s-ZgOl14WHKNwqXwl5gzlKOjEgrkR4vPVT6zsTInAfwV1_sauafPpbYOtBjVmVT3NO2DNjXcBrcZZ9fwYI79PJqsacvBsPslu4on76-NzkMgzs-T1qxMYZnvgode9v-znTRGE3MSIWC5MKQTyHCJdwhJjT4pCmCLYpuJQaIi81xhR64Ww0CDvnFcMcSuUpR5zS_ZBazwZuwOQoQCdnPKMK0qoVVqRgroAARVhDjpv2uBsIQD5UnNdyJrVGMsoKrkUVRtcRPksn4oc1aljMn2UjcpLb0ypLWPCI0-N1toxY5hnBDNHLCVtcLyQrmwMZybDEsMJC5gpjFFP_x-_Iqvh6A4FEMkP__vCEdjEsZpvcqgcg9Z8-upOAsSY607SotCK3lUHbFx0b4d3nXRcD-3gvfsNSxvOjw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFL0qRQg2iKc6UCALEKtQP2NngarwGKZ0pkKolWZn_KyQ0MzQGQTs-g_9j34UX4LtJFPYwKrbKLKim3Pt43vtcwCeIu9qbYQvueWpzch9qb0RpZUaMW9xVYl0G3lyUI2O2Pspn27AeX8XJh2r7OfEPFG7uU018p2IPUF5XEzl7uJrmVyjUne1t9BoYbHvf36PW7bly7038f8-I2T49vD1qOxcBUqbWkyltLWUOAiETY1qQgKtKmmrCHYtkDQIh2AIZi5I6ZDFwfugORZOascCEY7Gca_AVUZpnTJKDt-tazok9fyyWSYRHJc4IrDXiURkRy9-JAHSdGgTZaOXi3Uw2wX8xXH_ZMp5qRvegpsdRy2aFlS3YcPP7sC1fFbULu8Ca2ZF8-U4dZw_26LpRMmL1bwYp53-r9OzSRbtLHK1sb04sbwHR5cSpvuwOZvP_BYUOFI2rwMXmlHmtNG0Yj5ST025Rz7YATzvQ6EWrcaGatWUiUpBU-ugDeBVitT6raSNnR_MT45Vl2oqWFsbx7kMODBrjPHcWh44JdxTx-gAtvs4qy5hl-oCXgN4kWP_n09RzYfpRxzJq3jw7_GewPXR4WSsxnsH-w_hBkn-wbmEsw2bq5Nv_lEkNSvzOCOpgE-XDd3f4e0GSQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1JSwMxFMeDC4gXUVSs6xwET4NZJ5njuBS3FhErxUvIWgRpS1vBo9_Bb-gnMZmZVnsSr8NsvHkv-c97eb8AcAydzZXmLmWGxTIjc6lymqdGKEidQVnGYzdyq51ddehNl3V_dfFXfIhZwi1GRjlexwAfWn_6Aw1Vw_fI84xrIEOkLILliMoLfr1cPHWeO7M8C451uHIDS8wZSlHwiim7EeLT-ZvMzU0lwn9Od_5Wr-X001wHa7VuTIrqQ2-ABdffBLToJ8VrL9Z-X0xS1HjwZDJI7uI_99fHZ6vEZyZl3q9qYRhvgU7z8vH8Kq23QUhNrImlwuRCIM8h0jnMMfYky4TJQnQqDoWGyHuNEbVeCAsN8s55xRC3QlnqMbdkGyz1B323AxIUxJNTnnFFCbVKK5JRF0SgIsxB500DnEwNIIcV7UJWXGMso6nkzFQNcBbtMzsrUqrLA4NRT9ZOL70xubaMCY88NVprx4xhnhHMHLGUNMD-1LqyDp2xDIMMJyyopvCMygH-eBVZ3HcfUJCRfPe_FxyBlfuLpry7bt_ugVUct_Ytsyv7YGkyenMHQW9M9GHtUt9pPs5N
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Algebraic+Approach+to+Light%E2%80%93Matter+Interactions&rft.jtitle=Advanced+Physics+Research&rft.au=Fernandez%E2%80%90Corbaton%2C+Ivan&rft.date=2025-01-01&rft.issn=2751-1200&rft.eissn=2751-1200&rft.volume=4&rft.issue=1&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fapxr.202400088&rft.externalDBID=10.1002%252Fapxr.202400088&rft.externalDocID=APXR12267
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2751-1200&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2751-1200&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2751-1200&client=summon