An Algebraic Approach to Light–Matter Interactions
A theoretical and computational framework for the study and engineering of light–matter interactions is reviewed in here. The framework rests on the invariance properties of electromagnetism, and is formalized in a Hilbert space whose conformally invariant scalar product provides connections to phys...
Saved in:
Published in | Advanced Physics Research Vol. 4; no. 1 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Edinburgh
John Wiley & Sons, Inc
01.01.2025
Wiley-VCH |
Subjects | |
Online Access | Get full text |
ISSN | 2751-1200 2751-1200 |
DOI | 10.1002/apxr.202400088 |
Cover
Loading…
Abstract | A theoretical and computational framework for the study and engineering of light–matter interactions is reviewed in here. The framework rests on the invariance properties of electromagnetism, and is formalized in a Hilbert space whose conformally invariant scalar product provides connections to physical quantities, such as the energy or momentum of a given field, or the outcome of measurements. The light–matter interaction is modeled by the polychromatic scattering operator, which establishes a natural connection to a popular computational formalism, the transition matrix, or T‐matrix. This review contains a succinct yet comprehensive description of the main theoretical ideas, and illustrates some of the practical benefits of the approach.
This is a review of an algebraic approach to light–matter interactions that is theoretically powerful and computationally friendly. Theoretical expressions can be developed and manipulated conveniently thanks to the generality of the basis on which the approach rests, and a compact notation. The tight connections to popular computational tools allow one to readily perform numerical calculations. |
---|---|
AbstractList | Abstract A theoretical and computational framework for the study and engineering of light–matter interactions is reviewed in here. The framework rests on the invariance properties of electromagnetism, and is formalized in a Hilbert space whose conformally invariant scalar product provides connections to physical quantities, such as the energy or momentum of a given field, or the outcome of measurements. The light–matter interaction is modeled by the polychromatic scattering operator, which establishes a natural connection to a popular computational formalism, the transition matrix, or T‐matrix. This review contains a succinct yet comprehensive description of the main theoretical ideas, and illustrates some of the practical benefits of the approach. A theoretical and computational framework for the study and engineering of light–matter interactions is reviewed in here. The framework rests on the invariance properties of electromagnetism, and is formalized in a Hilbert space whose conformally invariant scalar product provides connections to physical quantities, such as the energy or momentum of a given field, or the outcome of measurements. The light–matter interaction is modeled by the polychromatic scattering operator, which establishes a natural connection to a popular computational formalism, the transition matrix, or T‐matrix. This review contains a succinct yet comprehensive description of the main theoretical ideas, and illustrates some of the practical benefits of the approach. A theoretical and computational framework for the study and engineering of light–matter interactions is reviewed in here. The framework rests on the invariance properties of electromagnetism, and is formalized in a Hilbert space whose conformally invariant scalar product provides connections to physical quantities, such as the energy or momentum of a given field, or the outcome of measurements. The light–matter interaction is modeled by the polychromatic scattering operator, which establishes a natural connection to a popular computational formalism, the transition matrix, or T‐matrix. This review contains a succinct yet comprehensive description of the main theoretical ideas, and illustrates some of the practical benefits of the approach. A theoretical and computational framework for the study and engineering of light–matter interactions is reviewed in here. The framework rests on the invariance properties of electromagnetism, and is formalized in a Hilbert space whose conformally invariant scalar product provides connections to physical quantities, such as the energy or momentum of a given field, or the outcome of measurements. The light–matter interaction is modeled by the polychromatic scattering operator, which establishes a natural connection to a popular computational formalism, the transition matrix, or T‐matrix. This review contains a succinct yet comprehensive description of the main theoretical ideas, and illustrates some of the practical benefits of the approach. This is a review of an algebraic approach to light–matter interactions that is theoretically powerful and computationally friendly. Theoretical expressions can be developed and manipulated conveniently thanks to the generality of the basis on which the approach rests, and a compact notation. The tight connections to popular computational tools allow one to readily perform numerical calculations. |
Author | Fernandez‐Corbaton, Ivan |
Author_xml | – sequence: 1 givenname: Ivan orcidid: 0000-0003-2834-5572 surname: Fernandez‐Corbaton fullname: Fernandez‐Corbaton, Ivan email: ivan.fernandez-corbaton@kit.edu organization: Karlsruhe Institute of Technology |
BookMark | eNqFkE1Lw0AQhhdRsNZePQc8p85-ZTfHUPwoVBRR8LZsNrttSszGTYr25n_wH_pLTI0Ub15mhuGZd2beE3RY-9oidIZhigHIhW7ew5QAYQAg5QEaEcFxjAnA4Z_6GE3adt0jRKaYMjxCLKujrFraPOjSRFnTBK_NKup8tCiXq-7r4_NWd50N0bzuozZd6ev2FB05XbV28pvH6Onq8nF2Ey_uruezbBEbCkzE0qRSYicA5ymkhDiaJNIkQEELkDlg53KCWeGkLMBgZ63THItC6oI5Igo6RvNBt_B6rZpQvuiwVV6X6qfhw1Lp0JWmssoZk-YF59Jhx0ye55Ybwx2nhFtaMNprnQ9a_YevG9t2au03oe7PVxRLQXlKheyp6UCZ4Ns2WLffikHtjFY7o9Xe6H6ADwNvZWW3_9Aqu39-wIQkgn4DDMKCiQ |
Cites_doi | 10.1016/j.jqsrt.2023.108853 10.1364/OE.21.029885 10.1103/PhysRevB.102.035432 10.1103/PhysRevA.92.023813 10.1364/PRJ.475616 10.1103/PhysRevA.85.063810 10.1112/plms/s2-8.1.77 10.1109/PROC.1965.4058 10.1038/ncomms6713 10.1016/S0079-6638(08)70316-0 10.37188/lam.2021.017 10.1103/PhysRevD.8.3661 10.1016/0003-4916(67)90201-1 10.1364/OL.43.003249 10.1021/acsphotonics.0c00555 10.1038/nnano.2015.159 10.1103/PhysRevB.103.054406 10.1103/PhysRevD.13.1592 10.1002/andp.19624640706 10.1016/j.physleta.2017.05.042 10.1088/2040-8978/16/1/015708 10.1103/PhysRevA.65.043801 10.1016/j.jqsrt.2019.04.004 10.1038/nnano.2013.243 10.3390/sym11101191 10.1126/sciadv.adh2353 10.1021/acsphotonics.1c00336 10.1063/1.1704120 10.1017/9781108891066 10.1016/j.jqsrt.2007.11.008 10.1088/1361-648X/ac533d 10.1103/PhysRevLett.99.047601 10.1088/2040-8978/18/7/075007 10.1103/PhysRevA.109.043506 10.1088/0253-6102/68/4/405 10.1016/0550-3213(91)90139-O 10.3390/sym15101839 10.1103/PhysRevA.107.013508 10.1103/PhysRevD.92.125031 10.1039/C6NR00676K 10.1016/j.jqsrt.2017.05.010 10.1007/JHEP10(2019)142 10.1038/s41598-018-27496-w 10.1364/OE.19.000933 10.1002/cphc.202000072 10.1049/SBEW524E 10.1364/JOSAB.419645 10.1103/PhysRevB.100.035311 10.1073/pnas.44.6.489 10.1016/j.cpc.2011.09.009 10.1103/PhysRevLett.118.111301 10.1088/2040-8986/ab387c 10.2307/1968455 10.1103/PhysRevLett.116.113601 10.1063/1.881480 10.1088/1367-2630/abcb2d 10.1088/1751-8121/aad521 10.1103/PhysRevLett.51.39 10.1007/BF02731014 10.1007/BF02341691 10.1016/j.physletb.2016.01.048 10.1016/j.cpc.2023.109076 10.1103/PhysRevD.98.125001 10.1007/JHEP05(2020)100 10.1088/0143-0807/13/2/003 10.1021/ph500084b 10.1103/PhysRevA.95.053829 10.1007/978-3-642-36494-5 10.1073/pnas.0905337106 10.1038/nature23006 10.1103/PhysRevA.108.043510 10.1016/j.cam.2021.113769 10.1364/JOSAB.36.000F32 10.1112/plms/s2-8.1.223 10.1021/ar50050a002 10.1063/1.524828 10.1103/RevModPhys.53.385 10.1016/j.jqsrt.2024.109015 10.1103/PhysRevA.8.1710 10.1103/PhysRevLett.105.061602 10.1016/j.jqsrt.2021.107846 10.1103/PhysRevLett.121.173901 10.1039/b200393g 10.1002/anie.200501734 10.1002/andp.200852009-1005 10.1103/PhysRevB.98.174437 10.1088/1464-4258/9/8/S12 10.2528/PIER10102901 10.1038/ncomms4821 10.1209/0295-5075/25/7/004 10.1016/j.jqsrt.2009.01.023 10.1103/PhysRevB.99.075150 10.1103/PhysRevB.75.125119 10.1016/j.cpc.2024.109218 10.1002/lpor.202000516 10.1016/j.jqsrt.2019.106692 10.1088/1367-2630/15/3/033026 10.1142/0270 10.1016/j.cpc.2022.108337 10.1088/0741-3335/41/12B/312 10.1038/s41598-017-13405-0 10.1016/j.jqsrt.2022.108455 10.1002/adma.201807742 10.1038/s41467-021-21846-5 10.1088/0143-0807/17/3/008 10.13182/FST89-1 10.1117/12.2209551 10.1088/1367-2630/14/5/053050 10.1103/PhysRevA.60.R3331 10.4208/cicp.OA-2020-0136 10.1364/OE.443656 10.1088/1402-4896/acf4cc 10.1016/j.jqsrt.2019.06.001 10.3390/sym10070298 10.1007/BF01883768 10.1103/PhysRev.89.1072 10.1088/1361-6463/aa7573 10.1002/chem.200400869 10.1103/PhysRevLett.111.060401 10.1364/OE.23.007190 10.1119/1.1971089 10.1007/BF01164847 10.1063/1.1664804 10.1038/ncomms11183 10.1139/v99-223 10.1103/PhysRevLett.121.043901 10.1103/PhysRevA.82.043845 10.1103/PhysRevA.84.021803 10.1063/1.1704766 10.3390/e5030271 10.1103/PhysRevA.96.033822 10.1103/PhysRevLett.124.191604 10.1364/JOSAA.34.000270 10.1038/35048537 10.1103/PhysRev.140.B183 10.1103/PhysRevD.82.065003 10.1017/S0022112069000991 10.3390/sym11091113 10.1088/1367-2630/ac57e8 10.1016/j.ccr.2015.09.013 10.1063/1.1704847 10.1103/PhysRevD.69.063006 10.1103/PhysRevLett.76.4250 10.1142/9789812812100 10.1088/2399-6528/aada25 10.1088/0253-6102/65/4/423 10.1364/JOSAA.36.000686 10.1142/0097 10.1364/OE.27.035750 10.1016/0370-2693(67)90551-5 10.1103/PhysRevA.93.052331 10.1021/acsphotonics.9b00369 10.1121/10.0003958 10.1063/1.1704353 10.1038/srep11538 10.1016/j.jqsrt.2014.04.003 10.1021/acs.nanolett.1c03325 10.1103/PhysRevB.92.205420 10.1021/ja00041a016 10.1103/PhysRevB.99.075425 10.1016/j.physleta.2019.06.002 10.1021/acsphotonics.0c00304 10.1364/OPTICA.6.000061 10.1364/JOSAB.432984 10.1126/science.1257671 10.1364/OL.41.000444 10.1103/PhysRevLett.87.251302 10.1016/0003-4916(72)90130-3 10.1109/TAP.1965.1138542 10.1364/OPN.30.10.000028 10.1103/PhysRevLett.121.187201 10.1063/1.1704164 10.3390/sym11111427 10.1103/PhysRev.176.1489 10.1103/PhysRevA.86.013845 |
ContentType | Journal Article |
Copyright | 2024 The Author(s). Advanced Physics Research published by Wiley‐VCH GmbH 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 The Author(s). Advanced Physics Research published by Wiley‐VCH GmbH – notice: 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 3V. 7XB 88I 8FE 8FG 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU D1I DWQXO GNUQQ HCIFZ KB. M2P PCBAR PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U DOA |
DOI | 10.1002/apxr.202400088 |
DatabaseName | Wiley Online Library Open Access CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Materials Science Database Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2751-1200 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_fcc9bd558f1f4cbbbe5cc5f5325e3d43 10_1002_apxr_202400088 APXR12267 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: Deutsche Forschungsgemeinschaft funderid: 258734477 – SFB 1173 – fundername: Helmholtz‐Gemeinschaft |
GroupedDBID | 0R~ 24P 88I ABJCF ABUWG ACCMX AEUYN AFKRA ALMA_UNASSIGNED_HOLDINGS ALUQN AVUZU AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO EBS GNUQQ GROUPED_DOAJ HCIFZ KB. M2P PCBAR PDBOC PIMPY AAFWJ AAYXX AFPKN CITATION M~E PHGZM PHGZT 3V. 7XB 8FE 8FG 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY ARCSS D1I PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U PUEGO WIN |
ID | FETCH-LOGICAL-c3047-8c9881f701b90922f3668c6030a708b01ffb214df88d0c1feefa517d8ad4f27d3 |
IEDL.DBID | 24P |
ISSN | 2751-1200 |
IngestDate | Wed Aug 27 01:24:55 EDT 2025 Fri Jul 25 11:50:16 EDT 2025 Tue Jul 01 02:33:01 EDT 2025 Wed Jan 22 17:11:08 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3047-8c9881f701b90922f3668c6030a708b01ffb214df88d0c1feefa517d8ad4f27d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2834-5572 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fapxr.202400088 |
PQID | 3187359378 |
PQPubID | 6852862 |
PageCount | 21 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_fcc9bd558f1f4cbbbe5cc5f5325e3d43 proquest_journals_3187359378 crossref_primary_10_1002_apxr_202400088 wiley_primary_10_1002_apxr_202400088_APXR12267 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2025 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: January 2025 |
PublicationDecade | 2020 |
PublicationPlace | Edinburgh |
PublicationPlace_xml | – name: Edinburgh |
PublicationTitle | Advanced Physics Research |
PublicationYear | 2025 |
Publisher | John Wiley & Sons, Inc Wiley-VCH |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley-VCH |
References | 2019; 2019 1993; 23 1991; 356 1965; 13 2016; 307 2019; 11 2019; 99 2010; 105 1936; 37 2024; 109 1965; 140 2008; 109 2009; 110 1975 2019; 16 2022; 24 1969; 35 1999; 41 2023; 108 1967; 26 2024 2023; 107 2022; 22 2012; 14 2007; 75 2013; 8 2018; 43 2011; 112 1996; 76 2000; 408 2018; 8 2018; 2 2023; 296 2019; 21 1965; 6 1992; 114 1958; 44 2022; 34 2007; 9 2013; 111 2019; 27 1985 2016; 41 2022; 30 5 1982 2021; 273 1988 2012; 183 1962; 464 1965; 33 1996; 17 2019; 6 2019; 31 2019; 30 2021; 149 2011; 84 2017; 68 1965; 163 1969; 10 2004; 45 1967; 41 2019; 36 1998 1994 2016; 93 1993 2008; 520 2016; 18 2007; 99 2019; 100 2003; 32 1981; 22 2017; 50 2016; 6 2016; 7 2020; 2020 2000; 78 1995; 48 1910; s2‐8 1918; 1918 1968; 176 2002; 65 1972; 71 2017; 381 2020; 22 2020; 21 2005; 16 2018; 98 2018; 10 1973; 8 1953; 89 2016; 8 2022; 16 2014; 146 2009; 106 2017; 547 2017; 7 1965; 53 2018; 121 1996; 109 2013; 21 2020; 242 2004; 69 1964; 5 2023; 9 1983; 51 1994; 25 1992; 13 2020; 124 2024; 301 1996; 36 2017; 199 2011; 19 2021; 30 2017; 118 2001; 87 2014; 1 2020; 7 2021; 38 2014; 5 1997; 95 2013; 15 2013; 16 2001 2024; 314 2017; 34 2019; 234 2003; 5 2016; 755 2016; 116 2022; 401 2019; 230 2022; 276 2023; 98 2021; 8 2016; 9756 2015; 5 2023; 11 2021; 2 2012 1995; 17 2015; 92 2023; 15 2021; 103 2015; 10 2024; 322 2020; 102 1999; 60 2019; 383 2005; 44 2010; 82 2017; 95 2004; 10 2012; 93 2015; 23 2017; 96 1976; 13 2021; 12 2022 2021 2016; 65 2024; 297 2016 2018; 51 2014 1904; 6 1989; 15 2014; 346 1981; 53 2012; 86 2012; 85 e_1_2_10_40_1 e_1_2_10_109_1 R. G. N. (auth.) (e_1_2_10_83_1) 1982 Bishop D. (e_1_2_10_159_1) 1993 e_1_2_10_158_1 e_1_2_10_74_1 e_1_2_10_97_1 e_1_2_10_150_1 e_1_2_10_6_1 e_1_2_10_135_1 e_1_2_10_173_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_112_1 e_1_2_10_196_1 e_1_2_10_13_1 e_1_2_10_51_1 e_1_2_10_147_1 Sakurai J. J. (e_1_2_10_134_1) 1993 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_124_1 e_1_2_10_162_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_101_1 e_1_2_10_185_1 e_1_2_10_41_1 e_1_2_10_90_1 e_1_2_10_52_1 e_1_2_10_75_1 e_1_2_10_113_1 e_1_2_10_136_1 e_1_2_10_151_1 e_1_2_10_174_1 e_1_2_10_197_1 e_1_2_10_38_1 e_1_2_10_98_1 e_1_2_10_7_1 e_1_2_10_15_1 Acebal P. (e_1_2_10_142_1) 2024 e_1_2_10_148_1 e_1_2_10_64_1 e_1_2_10_102_1 e_1_2_10_125_1 e_1_2_10_140_1 e_1_2_10_163_1 e_1_2_10_186_1 e_1_2_10_49_1 e_1_2_10_87_1 e_1_2_10_26_1 Jackson J. D. (e_1_2_10_123_1) 1998 e_1_2_10_42_1 e_1_2_10_190_1 e_1_2_10_91_1 e_1_2_10_4_1 e_1_2_10_53_1 e_1_2_10_137_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_99_1 e_1_2_10_114_1 e_1_2_10_152_1 e_1_2_10_198_1 e_1_2_10_175_1 e_1_2_10_30_1 e_1_2_10_80_1 e_1_2_10_149_1 e_1_2_10_126_1 e_1_2_10_27_1 e_1_2_10_88_1 e_1_2_10_103_1 e_1_2_10_141_1 e_1_2_10_187_1 Todorov I. (e_1_2_10_81_1) 2019; 16 e_1_2_10_164_1 e_1_2_10_43_1 e_1_2_10_20_1 Piechulla P. M. (e_1_2_10_146_1) 2021 e_1_2_10_130_1 e_1_2_10_92_1 e_1_2_10_115_1 e_1_2_10_138_1 e_1_2_10_191_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_77_1 Noether E. (e_1_2_10_143_1) 1918; 1918 e_1_2_10_153_1 e_1_2_10_176_1 e_1_2_10_31_1 e_1_2_10_188_1 e_1_2_10_104_1 e_1_2_10_127_1 e_1_2_10_180_1 e_1_2_10_28_1 e_1_2_10_66_1 e_1_2_10_165_1 e_1_2_10_89_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_131_1 e_1_2_10_177_1 e_1_2_10_70_1 e_1_2_10_93_1 e_1_2_10_2_1 e_1_2_10_139_1 e_1_2_10_18_1 e_1_2_10_116_1 e_1_2_10_192_1 e_1_2_10_55_1 e_1_2_10_78_1 e_1_2_10_154_1 e_1_2_10_32_1 Bialynicki‐Birula I. (e_1_2_10_79_1) 1975 e_1_2_10_120_1 e_1_2_10_166_1 e_1_2_10_189_1 e_1_2_10_82_1 e_1_2_10_128_1 e_1_2_10_29_1 e_1_2_10_105_1 e_1_2_10_181_1 e_1_2_10_67_1 e_1_2_10_22_1 Fuschchich W. (e_1_2_10_65_1) 1994 e_1_2_10_132_1 e_1_2_10_155_1 e_1_2_10_178_1 e_1_2_10_71_1 e_1_2_10_117_1 e_1_2_10_170_1 e_1_2_10_193_1 e_1_2_10_94_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_56_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_121_1 e_1_2_10_144_1 e_1_2_10_167_1 e_1_2_10_60_1 e_1_2_10_106_1 e_1_2_10_129_1 e_1_2_10_182_1 e_1_2_10_68_1 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 Pinto D. A. Y. (e_1_2_10_34_1) 2001 Lorentz H. A. (e_1_2_10_61_1) 1904; 6 e_1_2_10_110_1 e_1_2_10_156_1 e_1_2_10_179_1 Fowler P. W. (e_1_2_10_160_1) 2005; 16 e_1_2_10_72_1 e_1_2_10_95_1 e_1_2_10_118_1 e_1_2_10_194_1 e_1_2_10_171_1 e_1_2_10_8_1 e_1_2_10_57_1 e_1_2_10_133_1 e_1_2_10_58_1 e_1_2_10_11_1 e_1_2_10_119_1 Fernandez‐Corbaton I. (e_1_2_10_45_1) 2016; 6 e_1_2_10_145_1 e_1_2_10_168_1 e_1_2_10_107_1 e_1_2_10_183_1 e_1_2_10_122_1 e_1_2_10_24_1 e_1_2_10_108_1 e_1_2_10_157_1 e_1_2_10_1_1 e_1_2_10_73_1 e_1_2_10_172_1 e_1_2_10_96_1 e_1_2_10_111_1 e_1_2_10_195_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_50_1 Colton D. (e_1_2_10_84_1) 2012 e_1_2_10_169_1 e_1_2_10_62_1 e_1_2_10_161_1 e_1_2_10_85_1 e_1_2_10_100_1 e_1_2_10_184_1 e_1_2_10_47_1 |
References_xml | – volume: 8 start-page: 3661 year: 1973 publication-title: Phys. Rev. D – volume: 2020 start-page: 100 year: 2020 publication-title: J. High Energy Phys. – volume: 121 year: 2018 publication-title: Phys. Rev. Lett. – volume: 381 start-page: 2375 year: 2017 publication-title: Phys. Lett. A – volume: 1 start-page: 762 year: 2014 publication-title: ACS Photonics – volume: 547 start-page: 328 year: 2017 publication-title: Nature – volume: 5 start-page: 3821 year: 2014 publication-title: Nat. Commun. – volume: 34 year: 2022 publication-title: J. Phys.: Condens. Matter – volume: 15 year: 2013 publication-title: New J. Phys. – year: 1975 – volume: 22 start-page: 896 year: 2022 publication-title: Nano Lett. – volume: 16 year: 2013 publication-title: J. Opt. – volume: 92 year: 2015 publication-title: Phys. Rev. A – volume: 95 start-page: 63 year: 1997 publication-title: Theoret. Chim. Acta – year: 2014 – volume: 36 start-page: 245 year: 1996 publication-title: Prog. Optics – year: 1998 – volume: 34 start-page: 270 year: 2017 publication-title: J. Opt. Soc. Am. A – volume: 307 start-page: 391 year: 2016 publication-title: Coord. Chem. Rev. – volume: 7 start-page: 2682 year: 2020 publication-title: ACS Photonics – volume: 176 start-page: 1489 year: 1968 publication-title: Phys. Rev. – volume: 30 start-page: 357 year: 2021 publication-title: Commun. Computat. Physics – volume: 99 year: 2019 publication-title: Phys. Rev. B – volume: 30 start-page: 6846 year: 2022 publication-title: Opt. Express – volume: 11 start-page: 1113 year: 2019 publication-title: Symmetry – volume: 51 start-page: 39 year: 1983 publication-title: Phys. Rev. Lett. – year: 2022 – volume: 41 start-page: 444 year: 2016 publication-title: Opt. Lett. – volume: 9 year: 2023 publication-title: Sci. Adv. – start-page: 1 year: 2024 publication-title: IEEE Trans. Antenn. Propag. – volume: 146 start-page: 59 year: 2014 publication-title: J. Quant. Spectrosc. Radiat. Transfer – volume: 230 start-page: 247 year: 2019 publication-title: J. Quant. Spectrosc. Radiat. Transfer – volume: 140 start-page: B183 year: 1965 publication-title: Phys. Rev. – volume: 69 year: 2004 publication-title: Phys. Rev. D – year: 1993 – volume: 87 year: 2001 publication-title: Phys. Rev. Lett. – volume: 92 year: 2015 publication-title: Phys. Rev. D – volume: 356 start-page: 3 year: 1991 publication-title: Nucl. Phys. B – volume: 2019 start-page: 142 year: 2019 publication-title: J. High Energy Phys. – volume: 183 start-page: 370 year: 2012 publication-title: Comput. Phys. Commun. – volume: 755 start-page: 1 year: 2016 publication-title: Phys. Lett. B – volume: 6 start-page: 2231 year: 2019 publication-title: ACS Photonics – volume: 48 start-page: 46 year: 1995 publication-title: Phys. Today – volume: 16 year: 2022 publication-title: Laser Photonics Rev. – volume: 22 year: 2020 publication-title: New J. Phys. – volume: 11 start-page: 10 year: 2019 publication-title: Symmetry – volume: 75 year: 2007 publication-title: Phys. Rev. B – volume: 68 start-page: 405 year: 2017 publication-title: Commun. Theor. Phys. – volume: 25 start-page: 497 year: 1994 publication-title: EPL (Europhys. Lett.) – volume: 10 start-page: 775 year: 2015 publication-title: Nat. Nanotechnol. – volume: 346 start-page: 67 year: 2014 publication-title: Science – volume: 16 start-page: 321 year: 2005 publication-title: Symmetry: Culture and Science – volume: 9 start-page: S196 year: 2007 publication-title: J. Opt. A: Pure Appl. Opt. – volume: 106 year: 2009 publication-title: Proc. Natl. Acad. Sci. – volume: s2‐8 start-page: 223 year: 1910 publication-title: Proc. London Mathemat. Soc. – volume: 108 year: 2023 publication-title: Phys. Rev. A – volume: 23 start-page: 599 year: 1993 publication-title: Found. Phys. – volume: 6 start-page: 1244 year: 1965 publication-title: J. Math. Phys. – volume: 102 year: 2020 publication-title: Phys. Rev. B – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 234 start-page: 40 year: 2019 publication-title: J. Quant. Spectrosc. Radiat. Transfer – volume: 15 start-page: 10 year: 2023 publication-title: Symmetry – volume: 520 start-page: 631 year: 2008 publication-title: Ann. Phys. – volume: 5 year: 2015 publication-title: Sci. Rep. – volume: 383 start-page: 3180 year: 2019 publication-title: Phys. Lett. A – year: 2016 – volume: 98 year: 2023 publication-title: Phys. Scr. – volume: 65 year: 2002 publication-title: Phys. Rev. A – volume: 71 start-page: 519 year: 1972 publication-title: Ann. Phys. – start-page: 211 year: 2001 publication-title: Enantiomer – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 23 start-page: 7190 year: 2015 publication-title: Opt. Express – volume: 99 year: 2007 publication-title: Phys. Rev. Lett. – volume: 21 year: 2013 publication-title: Opt. Express – volume: 14 year: 2012 publication-title: New J. Phys. – volume: 21 year: 2019 publication-title: J. Opt. – volume: 6 year: 2016 publication-title: Phys. Rev. X – volume: 15 start-page: 7 year: 1989 publication-title: Fusion Technol. – volume: 401 year: 2022 publication-title: J. Computat. Appl. Math. – volume: 37 start-page: 429 year: 1936 publication-title: Ann. Math. – volume: 12 start-page: 1562 year: 2021 publication-title: Nat. Commun. – volume: 10 start-page: 6575 year: 2004 publication-title: Chem.: Eur. J – volume: 5 start-page: 1 year: 2014 publication-title: Nat. Commun. – volume: 149 start-page: 2179 year: 2021 publication-title: J. Acoust. Soc. Am. – volume: 297 year: 2024 publication-title: Comput. Phys. Commun. – volume: 78 start-page: 41 year: 2000 publication-title: Can. J. Chem. – volume: 38 start-page: 1782 year: 2021 publication-title: J. Opt. Soc. Am. B – volume: 314 year: 2024 publication-title: JQSRT – volume: 19 start-page: 933 year: 2011 publication-title: Opt. Express – volume: 82 year: 2010 publication-title: Phys. Rev. A – volume: 118 year: 2017 publication-title: Phys. Rev. Lett. – volume: 53 start-page: 805 year: 1965 publication-title: Proc. IEEE – volume: 114 start-page: 6006 year: 1992 publication-title: J. Am. Chem. Soc. – volume: 92 year: 2015 publication-title: Phys. Rev. B – volume: 116 year: 2016 publication-title: Phys. Rev. Lett. – volume: 44 start-page: 489 year: 1958 publication-title: PNAS – volume: 5 start-page: 271 year: 2003 publication-title: Entropy – volume: 103 year: 2021 publication-title: Phys. Rev. B – year: 1985 – volume: 84 year: 2011 publication-title: Phys. Rev. A – volume: 109 start-page: 1536 year: 2008 publication-title: J. Quant. Spectrosc. Radiat. Transfer – volume: 2 year: 2018 publication-title: J. Phys. Commun. – volume: 51 year: 2018 publication-title: J. Phys. A: Math. Theor. – volume: 17 start-page: 185 year: 1995 publication-title: J. Math. Chem. – volume: 45 start-page: 1887 year: 2004 publication-title: J. Math. Phys. – volume: 21 start-page: 878 year: 2020 publication-title: ChemPhysChem – volume: 89 start-page: 1072 year: 1953 publication-title: Phys. Rev. – volume: 6 start-page: 928 year: 1965 publication-title: J. Math. Phys. – year: 2021 – volume: 322 year: 2024 publication-title: J. Quant. Spectrosc. Radiat. Transfer – year: 2024 – volume: 82 year: 2010 publication-title: Phys. Rev. D – volume: 13 start-page: 973 year: 1965 publication-title: IEEE Trans. Antennas Propagat. – volume: 2 start-page: 296 year: 2021 publication-title: Light: Adv. Mfg. – volume: 98 year: 2018 publication-title: Phys. Rev. D – volume: 93 year: 2012 – volume: 7 year: 2017 publication-title: Sci. Rep. – volume: 107 year: 2023 publication-title: Phys. Rev. A – volume: 41 start-page: B167 year: 1999 publication-title: Plasma Phys. Controll. Fusion – volume: 76 start-page: 4250 year: 1996 publication-title: Phys. Rev. Lett. – year: 1994 – volume: 24 year: 2022 publication-title: New J. Phys. – volume: 32 start-page: 276 year: 2003 publication-title: Chem. Soc. Rev. – volume: 163 year: 1965 – volume: 408 start-page: 839 year: 2000 publication-title: Nature – volume: 7 start-page: 1830 year: 2020 publication-title: ACS Photonics – volume: 1918 start-page: 235 year: 1918 publication-title: Nachr. v. d. Ges. d. Wiss. zu Göttingen – volume: 26 start-page: 75 year: 1967 publication-title: Phys. Lett. B – year: 1982 – volume: 5 start-page: 687 year: 1964 publication-title: J. Math. Phys. – volume: 112 start-page: 349 year: 2011 publication-title: Progr. Electromagn. Res.‐pier – volume: 100 year: 2019 publication-title: Phys. Rev. B – volume: 65 start-page: 423 year: 2016 publication-title: Commun. Theor. Phys. – volume: 8 start-page: 899 year: 2013 publication-title: Nat. Nanotechnol. – volume: 44 start-page: 6810 year: 2005 publication-title: Angew. Chem., Int. Ed. – volume: 199 start-page: 103 year: 2017 publication-title: J. Quant. Spectrosc. Radiat. Transfer – volume: 273 year: 2021 publication-title: J. Quant. Spectrosc. Radiat. Transfer – volume: 95 year: 2017 publication-title: Phys. Rev. A – volume: 8 start-page: 9416 year: 2018 publication-title: Sci. Rep. – volume: 17 start-page: 141 year: 1996 publication-title: Eur. J. Phys. – volume: 86 year: 2012 publication-title: Phys. Rev. A – volume: 13 start-page: 70 year: 1992 publication-title: Eur. J. Phys. – volume: 109 year: 2024 publication-title: Phys. Rev. A – volume: 10 start-page: 2078 year: 1969 publication-title: J. Math. Phys. – volume: 11 start-page: 1427 year: 2019 publication-title: Symmetry – volume: 41 start-page: 158 year: 1967 publication-title: Ann. Phys. – volume: 35 start-page: 117 year: 1969 publication-title: J. Fluid Mechan. – volume: 6 start-page: 61 year: 2019 publication-title: Optica – volume: 53 start-page: 385 year: 1981 publication-title: Rev. Mod. Phys. – volume: s2‐8 start-page: 77 year: 1910 publication-title: Proc. London Mathemat. Soc. – volume: 27 year: 2019 publication-title: Opt. Express – volume: 8 start-page: 1710 year: 1973 publication-title: Phys. Rev. A – volume: 109 start-page: 271 year: 1996 publication-title: Il Nuovo Cimento A (1971‐1996) – volume: 43 start-page: 3249 year: 2018 publication-title: Opt. Lett. – volume: 11 start-page: 252 year: 2023 publication-title: Photon. Res. – volume: 13 start-page: 1592 year: 1976 publication-title: Phys. Rev. D – year: 2021 publication-title: ACS Photonics – volume: 276 year: 2022 publication-title: Comput. Phys. Commun. – volume: 22 start-page: 2530 year: 1981 publication-title: J. Math. Phys. – volume: 111 year: 2013 publication-title: Phys. Rev. Lett. – volume: 301 year: 2024 publication-title: Comput. Phys. Commun. – volume: 36 start-page: 686 year: 2019 publication-title: J. Opt. Soc. Am. A – volume: 8 start-page: 1522 year: 2021 publication-title: ACS Photonics – volume: 8 year: 2016 publication-title: Nanoscale. – volume: 38 start-page: 3319 year: 2021 publication-title: J. Opt. Soc. Am. B – volume: 93 year: 2016 publication-title: Phys. Rev. A – volume: 98 year: 2018 publication-title: Phys. Rev. B – volume: 60 year: 1999 publication-title: Phys. Rev. A – volume: 33 start-page: 958 year: 1965 publication-title: Am. J. Phys. – volume: 96 year: 2017 publication-title: Phys. Rev. A – volume: 296 year: 2023 publication-title: J. Quant. Spectrosc. Radiat. Transfer – volume: 16 start-page: 117 year: 2019 publication-title: Bulg. J. Phys. – volume: 36 start-page: F32 year: 2019 publication-title: J. Opt. Soc. Am. B – volume: 6 start-page: 809 year: 1904 publication-title: Proc. Royal Netherlands Acad. Arts Sci. – year: 2012 – volume: 18 year: 2016 publication-title: J. Opt. – volume: 9756 year: 2016 – volume: 30 start-page: 28 year: 2019 publication-title: Opt. Photon. News – volume: 464 start-page: 388 year: 1962 publication-title: Ann. Phys. – year: 1988 – volume: 110 start-page: 1511 year: 2009 publication-title: J. Quant. Spectrosc. Radiat. Transfer – volume: 10 start-page: 298 year: 2018 publication-title: Symmetry – volume: 5 start-page: 49 – volume: 85 year: 2012 publication-title: Phys. Rev. A – volume: 124 year: 2020 publication-title: Phys. Rev. Lett. – volume: 5 start-page: 294 year: 1964 publication-title: J. Math. Phys. – volume: 242 year: 2020 publication-title: J. Quant. Spectrosc. Radiat. Transfer – volume: 50 year: 2017 publication-title: J. Phys. D: Appl. Phys. – volume: 105 year: 2010 publication-title: Phys. Rev. Lett. – ident: e_1_2_10_10_1 doi: 10.1016/j.jqsrt.2023.108853 – ident: e_1_2_10_144_1 doi: 10.1364/OE.21.029885 – ident: e_1_2_10_196_1 doi: 10.1103/PhysRevB.102.035432 – ident: e_1_2_10_43_1 doi: 10.1103/PhysRevA.92.023813 – ident: e_1_2_10_186_1 doi: 10.1364/PRJ.475616 – start-page: 1 year: 2024 ident: e_1_2_10_142_1 publication-title: IEEE Trans. Antenn. Propag. – ident: e_1_2_10_37_1 doi: 10.1103/PhysRevA.85.063810 – ident: e_1_2_10_63_1 doi: 10.1112/plms/s2-8.1.77 – ident: e_1_2_10_86_1 doi: 10.1109/PROC.1965.4058 – ident: e_1_2_10_148_1 doi: 10.1038/ncomms6713 – ident: e_1_2_10_71_1 doi: 10.1016/S0079-6638(08)70316-0 – ident: e_1_2_10_2_1 doi: 10.37188/lam.2021.017 – ident: e_1_2_10_92_1 doi: 10.1103/PhysRevD.8.3661 – ident: e_1_2_10_76_1 doi: 10.1016/0003-4916(67)90201-1 – ident: e_1_2_10_131_1 doi: 10.1364/OL.43.003249 – ident: e_1_2_10_145_1 doi: 10.1021/acsphotonics.0c00555 – ident: e_1_2_10_149_1 doi: 10.1038/nnano.2015.159 – ident: e_1_2_10_8_1 doi: 10.1103/PhysRevB.103.054406 – ident: e_1_2_10_126_1 doi: 10.1103/PhysRevD.13.1592 – ident: e_1_2_10_68_1 doi: 10.1002/andp.19624640706 – ident: e_1_2_10_46_1 doi: 10.1016/j.physleta.2017.05.042 – ident: e_1_2_10_41_1 doi: 10.1088/2040-8978/16/1/015708 – ident: e_1_2_10_16_1 doi: 10.1103/PhysRevA.65.043801 – ident: e_1_2_10_87_1 doi: 10.1016/j.jqsrt.2019.04.004 – ident: e_1_2_10_118_1 doi: 10.1038/nnano.2013.243 – ident: e_1_2_10_56_1 doi: 10.3390/sym11101191 – ident: e_1_2_10_187_1 doi: 10.1126/sciadv.adh2353 – ident: e_1_2_10_197_1 doi: 10.1021/acsphotonics.1c00336 – ident: e_1_2_10_72_1 doi: 10.1063/1.1704120 – ident: e_1_2_10_91_1 doi: 10.1017/9781108891066 – ident: e_1_2_10_100_1 doi: 10.1016/j.jqsrt.2007.11.008 – ident: e_1_2_10_171_1 doi: 10.1088/1361-648X/ac533d – ident: e_1_2_10_117_1 doi: 10.1103/PhysRevLett.99.047601 – ident: e_1_2_10_172_1 doi: 10.1088/2040-8978/18/7/075007 – ident: e_1_2_10_11_1 doi: 10.1103/PhysRevA.109.043506 – ident: e_1_2_10_27_1 doi: 10.1088/0253-6102/68/4/405 – ident: e_1_2_10_161_1 doi: 10.1016/0550-3213(91)90139-O – volume-title: Scattering Theory of Waves and Particles year: 1982 ident: e_1_2_10_83_1 – ident: e_1_2_10_9_1 doi: 10.3390/sym15101839 – ident: e_1_2_10_103_1 doi: 10.1103/PhysRevA.107.013508 – ident: e_1_2_10_112_1 doi: 10.1103/PhysRevD.92.125031 – ident: e_1_2_10_139_1 doi: 10.1039/C6NR00676K – ident: e_1_2_10_94_1 doi: 10.1016/j.jqsrt.2017.05.010 – ident: e_1_2_10_115_1 doi: 10.1007/JHEP10(2019)142 – ident: e_1_2_10_158_1 doi: 10.1038/s41598-018-27496-w – ident: e_1_2_10_14_1 doi: 10.1364/OE.19.000933 – ident: e_1_2_10_93_1 doi: 10.1002/cphc.202000072 – ident: e_1_2_10_90_1 doi: 10.1049/SBEW524E – ident: e_1_2_10_102_1 doi: 10.1364/JOSAB.419645 – start-page: 211 year: 2001 ident: e_1_2_10_34_1 publication-title: Enantiomer – ident: e_1_2_10_151_1 doi: 10.1103/PhysRevB.100.035311 – ident: e_1_2_10_104_1 doi: 10.1073/pnas.44.6.489 – ident: e_1_2_10_140_1 doi: 10.1016/j.cpc.2011.09.009 – volume: 6 year: 2016 ident: e_1_2_10_45_1 publication-title: Phys. Rev. X – ident: e_1_2_10_47_1 doi: 10.1103/PhysRevLett.118.111301 – ident: e_1_2_10_53_1 doi: 10.1088/2040-8986/ab387c – ident: e_1_2_10_64_1 doi: 10.2307/1968455 – ident: e_1_2_10_198_1 doi: 10.1103/PhysRevLett.116.113601 – ident: e_1_2_10_59_1 doi: 10.1063/1.881480 – ident: e_1_2_10_180_1 doi: 10.1088/1367-2630/abcb2d – ident: e_1_2_10_164_1 doi: 10.1088/1751-8121/aad521 – ident: e_1_2_10_110_1 doi: 10.1103/PhysRevLett.51.39 – ident: e_1_2_10_128_1 doi: 10.1007/BF02731014 – ident: e_1_2_10_23_1 – ident: e_1_2_10_32_1 doi: 10.1007/BF02341691 – ident: e_1_2_10_113_1 doi: 10.1016/j.physletb.2016.01.048 – ident: e_1_2_10_99_1 doi: 10.1016/j.cpc.2023.109076 – ident: e_1_2_10_48_1 doi: 10.1103/PhysRevD.98.125001 – ident: e_1_2_10_191_1 doi: 10.1007/JHEP05(2020)100 – ident: e_1_2_10_106_1 doi: 10.1088/0143-0807/13/2/003 – ident: e_1_2_10_155_1 doi: 10.1021/ph500084b – ident: e_1_2_10_5_1 doi: 10.1103/PhysRevA.95.053829 – ident: e_1_2_10_162_1 doi: 10.1007/978-3-642-36494-5 – ident: e_1_2_10_22_1 doi: 10.1073/pnas.0905337106 – ident: e_1_2_10_167_1 doi: 10.1038/nature23006 – ident: e_1_2_10_20_1 doi: 10.1103/PhysRevA.108.043510 – volume-title: Quantum Electrodynamics year: 1975 ident: e_1_2_10_79_1 – ident: e_1_2_10_176_1 doi: 10.1016/j.cam.2021.113769 – ident: e_1_2_10_184_1 doi: 10.1364/JOSAB.36.000F32 – ident: e_1_2_10_62_1 doi: 10.1112/plms/s2-8.1.223 – ident: e_1_2_10_29_1 doi: 10.1021/ar50050a002 – ident: e_1_2_10_127_1 doi: 10.1063/1.524828 – ident: e_1_2_10_157_1 doi: 10.1103/RevModPhys.53.385 – ident: e_1_2_10_137_1 doi: 10.1016/j.jqsrt.2024.109015 – ident: e_1_2_10_78_1 doi: 10.1103/PhysRevA.8.1710 – volume-title: Modern Quantum Mechanics (Revised Edition) year: 1993 ident: e_1_2_10_134_1 – ident: e_1_2_10_189_1 doi: 10.1103/PhysRevLett.105.061602 – ident: e_1_2_10_96_1 doi: 10.1016/j.jqsrt.2021.107846 – ident: e_1_2_10_70_1 – ident: e_1_2_10_179_1 doi: 10.1103/PhysRevLett.121.173901 – ident: e_1_2_10_3_1 doi: 10.1039/b200393g – ident: e_1_2_10_166_1 doi: 10.1002/anie.200501734 – ident: e_1_2_10_66_1 doi: 10.1002/andp.200852009-1005 – volume-title: Group Theory and Chemistry year: 1993 ident: e_1_2_10_159_1 – ident: e_1_2_10_168_1 doi: 10.1103/PhysRevB.98.174437 – ident: e_1_2_10_12_1 doi: 10.1088/1464-4258/9/8/S12 – ident: e_1_2_10_18_1 doi: 10.2528/PIER10102901 – ident: e_1_2_10_24_1 doi: 10.1038/ncomms4821 – ident: e_1_2_10_135_1 doi: 10.1209/0295-5075/25/7/004 – ident: e_1_2_10_101_1 doi: 10.1016/j.jqsrt.2009.01.023 – ident: e_1_2_10_120_1 doi: 10.1103/PhysRevB.99.075150 – ident: e_1_2_10_165_1 doi: 10.1103/PhysRevB.75.125119 – ident: e_1_2_10_58_1 – volume: 16 start-page: 321 year: 2005 ident: e_1_2_10_160_1 publication-title: Symmetry: Culture and Science – volume: 6 start-page: 809 year: 1904 ident: e_1_2_10_61_1 publication-title: Proc. Royal Netherlands Acad. Arts Sci. – ident: e_1_2_10_121_1 – ident: e_1_2_10_98_1 doi: 10.1016/j.cpc.2024.109218 – ident: e_1_2_10_147_1 doi: 10.1002/lpor.202000516 – ident: e_1_2_10_88_1 doi: 10.1016/j.jqsrt.2019.106692 – ident: e_1_2_10_40_1 doi: 10.1088/1367-2630/15/3/033026 – ident: e_1_2_10_133_1 doi: 10.1142/0270 – ident: e_1_2_10_141_1 doi: 10.1016/j.cpc.2022.108337 – ident: e_1_2_10_109_1 doi: 10.1088/0741-3335/41/12B/312 – ident: e_1_2_10_28_1 doi: 10.1038/s41598-017-13405-0 – ident: e_1_2_10_177_1 doi: 10.1016/j.jqsrt.2022.108455 – ident: e_1_2_10_51_1 doi: 10.1002/adma.201807742 – volume-title: Symmetries of Equations of Quantum Mechanics year: 1994 ident: e_1_2_10_65_1 – ident: e_1_2_10_170_1 doi: 10.1038/s41467-021-21846-5 – ident: e_1_2_10_129_1 doi: 10.1088/0143-0807/17/3/008 – ident: e_1_2_10_111_1 doi: 10.13182/FST89-1 – ident: e_1_2_10_181_1 – ident: e_1_2_10_44_1 doi: 10.1117/12.2209551 – ident: e_1_2_10_42_1 – ident: e_1_2_10_39_1 doi: 10.1088/1367-2630/14/5/053050 – ident: e_1_2_10_130_1 doi: 10.1103/PhysRevA.60.R3331 – ident: e_1_2_10_97_1 doi: 10.4208/cicp.OA-2020-0136 – ident: e_1_2_10_194_1 doi: 10.1364/OE.443656 – ident: e_1_2_10_57_1 doi: 10.1088/1402-4896/acf4cc – ident: e_1_2_10_173_1 doi: 10.1016/j.jqsrt.2019.06.001 – ident: e_1_2_10_49_1 doi: 10.3390/sym10070298 – ident: e_1_2_10_136_1 doi: 10.1007/BF01883768 – ident: e_1_2_10_132_1 doi: 10.1103/PhysRev.89.1072 – ident: e_1_2_10_119_1 doi: 10.1088/1361-6463/aa7573 – ident: e_1_2_10_36_1 doi: 10.1002/chem.200400869 – ident: e_1_2_10_38_1 doi: 10.1103/PhysRevLett.111.060401 – ident: e_1_2_10_89_1 doi: 10.1364/OE.23.007190 – ident: e_1_2_10_124_1 doi: 10.1119/1.1971089 – ident: e_1_2_10_31_1 doi: 10.1007/BF01164847 – ident: e_1_2_10_77_1 doi: 10.1063/1.1664804 – ident: e_1_2_10_150_1 doi: 10.1038/ncomms11183 – ident: e_1_2_10_33_1 doi: 10.1139/v99-223 – ident: e_1_2_10_50_1 doi: 10.1103/PhysRevLett.121.043901 – ident: e_1_2_10_17_1 doi: 10.1103/PhysRevA.82.043845 – ident: e_1_2_10_15_1 doi: 10.1103/PhysRevA.84.021803 – ident: e_1_2_10_75_1 doi: 10.1063/1.1704766 – ident: e_1_2_10_35_1 doi: 10.3390/e5030271 – ident: e_1_2_10_95_1 doi: 10.1103/PhysRevA.96.033822 – ident: e_1_2_10_114_1 doi: 10.1103/PhysRevLett.124.191604 – ident: e_1_2_10_19_1 doi: 10.1364/JOSAA.34.000270 – ident: e_1_2_10_178_1 – ident: e_1_2_10_21_1 doi: 10.1038/35048537 – ident: e_1_2_10_73_1 doi: 10.1103/PhysRev.140.B183 – ident: e_1_2_10_188_1 doi: 10.1103/PhysRevD.82.065003 – ident: e_1_2_10_105_1 doi: 10.1017/S0022112069000991 – ident: e_1_2_10_55_1 doi: 10.3390/sym11091113 – ident: e_1_2_10_122_1 doi: 10.1088/1367-2630/ac57e8 – ident: e_1_2_10_4_1 doi: 10.1016/j.ccr.2015.09.013 – ident: e_1_2_10_80_1 doi: 10.1063/1.1704847 – ident: e_1_2_10_108_1 doi: 10.1103/PhysRevD.69.063006 – ident: e_1_2_10_116_1 doi: 10.1103/PhysRevLett.76.4250 – ident: e_1_2_10_85_1 doi: 10.1142/9789812812100 – ident: e_1_2_10_82_1 – ident: e_1_2_10_6_1 doi: 10.1088/2399-6528/aada25 – ident: e_1_2_10_25_1 doi: 10.1088/0253-6102/65/4/423 – ident: e_1_2_10_193_1 doi: 10.1364/JOSAA.36.000686 – ident: e_1_2_10_60_1 doi: 10.1142/0097 – volume: 1918 start-page: 235 year: 1918 ident: e_1_2_10_143_1 publication-title: Nachr. v. d. Ges. d. Wiss. zu Göttingen – ident: e_1_2_10_174_1 doi: 10.1364/OE.27.035750 – ident: e_1_2_10_156_1 doi: 10.1016/0370-2693(67)90551-5 – ident: e_1_2_10_26_1 doi: 10.1103/PhysRevA.93.052331 – ident: e_1_2_10_152_1 doi: 10.1021/acsphotonics.9b00369 – ident: e_1_2_10_175_1 doi: 10.1121/10.0003958 – ident: e_1_2_10_74_1 doi: 10.1063/1.1704353 – ident: e_1_2_10_190_1 doi: 10.1038/srep11538 – ident: e_1_2_10_13_1 doi: 10.1016/j.jqsrt.2014.04.003 – ident: e_1_2_10_185_1 doi: 10.1021/acs.nanolett.1c03325 – ident: e_1_2_10_195_1 doi: 10.1103/PhysRevB.92.205420 – ident: e_1_2_10_30_1 doi: 10.1021/ja00041a016 – ident: e_1_2_10_183_1 doi: 10.1103/PhysRevB.99.075425 – ident: e_1_2_10_54_1 doi: 10.1016/j.physleta.2019.06.002 – volume: 16 start-page: 117 year: 2019 ident: e_1_2_10_81_1 publication-title: Bulg. J. Phys. – ident: e_1_2_10_52_1 doi: 10.1021/acsphotonics.0c00304 – ident: e_1_2_10_153_1 doi: 10.1364/OPTICA.6.000061 – ident: e_1_2_10_192_1 doi: 10.1364/JOSAB.432984 – ident: e_1_2_10_154_1 doi: 10.1126/science.1257671 – ident: e_1_2_10_182_1 doi: 10.1364/OL.41.000444 – volume-title: Inverse Acoustic and Electromagnetic Scattering Theory year: 2012 ident: e_1_2_10_84_1 – ident: e_1_2_10_107_1 doi: 10.1103/PhysRevLett.87.251302 – ident: e_1_2_10_67_1 doi: 10.1016/0003-4916(72)90130-3 – ident: e_1_2_10_138_1 doi: 10.1109/TAP.1965.1138542 – ident: e_1_2_10_1_1 doi: 10.1364/OPN.30.10.000028 – ident: e_1_2_10_169_1 doi: 10.1103/PhysRevLett.121.187201 – ident: e_1_2_10_69_1 doi: 10.1063/1.1704164 – year: 2021 ident: e_1_2_10_146_1 publication-title: ACS Photonics – ident: e_1_2_10_7_1 doi: 10.3390/sym11111427 – ident: e_1_2_10_125_1 doi: 10.1103/PhysRev.176.1489 – volume-title: Classical Electrodynamics year: 1998 ident: e_1_2_10_123_1 – ident: e_1_2_10_163_1 doi: 10.1103/PhysRevA.86.013845 |
SSID | ssj0002891341 |
Score | 2.285757 |
Snippet | A theoretical and computational framework for the study and engineering of light–matter interactions is reviewed in here. The framework rests on the invariance... Abstract A theoretical and computational framework for the study and engineering of light–matter interactions is reviewed in here. The framework rests on the... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Index Database Publisher |
SubjectTerms | Algebra conformal symmetry Electromagnetism Hilbert space Light light–matter interactions Operators (mathematics) Physics Spacetime Symmetry Theoretical physics Theory of relativity T‐matrix |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1NS8MwGMeDePIiiorTKT0Inury2qTHKo4hTkQc7BbyKop0w03w6HfwG_pJTNJuztMuXkuhD_80yT95kt8DwBl0tlSau5wZFtOMzOXKaZ4boSB1BhUFj7eRh3fFYERvxmy8Uuornglr8MCNcD1vTKktY8IjT43W2jFjmGcEM0csTZzPMOetLKZemvRZJJUtKI0Q99T0I-I_45FJmMqs_M5CCdb_x2Gu-tQ00fR3wHbrELOqiWwXbLh6D9CqzqrXp5jlfTZZ1YLAs_kku42r6-_Pr2ECZWZph6-5rDDbB6P-9ePVIG8LHuQmZr9yYUohkOcQ6RKWGHtSFMIUoR8qDoWGyHuNEbVeCAsN8s55xRC3QlnqMbfkAGzWk9odggwFm-SUZ1xRQq3SihTUBbunCHPQedMB5wsB5LThWsiGYIxllEoupeqAy6jP8q3Io04PQivJtpXkulbqgO5CXdl2kpkMwwknLPij8I2LpPiaUGR1P35AwTDyo_8I6hhs4VjNN22odMHm_O3dnQSLMden6W_6ASepz6I priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LSwMxEA5qEbyIT6wv9iB4Ws1zkz3JVhQRFRGF3kKeIkhb2woe_Q_-Q3-JSZpWveh1WZZlMpn5MjP5PgAOoLO10tyVzLDYZmSuVE7z0ggFqTOoqni8jXx9U1080Msu6-aC2yiPVU5jYgrUtm9ijfw4-B4nLCRTcTJ4KaNqVOyuZgmNedAKIViEw1erc3ZzezersuDYhUvylZgzVKLgE1PmRoiP1eAtUoLGMUqYpFe-M1Mi8P-FOn9i15R8zlfAckaNRTNZ5lUw53prYDFNb5rROqBNr2ieH2MP-MkUTaYJL8b94iqevT_fP64TjWaR6n-TqwyjDfBwfnZ_elFmOYTSxN5YKUwtBPIcIl3DGmNPqkqYKuxSxaHQEHmvMaLWC2GhQd45rxjiVihLPeaWbIKFXr_ntkCBAohyyjOuKKFWaUUq6gIYVIQ56Lxpg8OpKeRgwnohJ_zGWEajyZnR2qATLTV7K7JVpwf94aPMzi-9MbW2jAmPPDVaa8eMYZ4RzByxlLTB7tTOMm-hkfxe8DY4Srb_51dkc9u9QwFO8u2_v7cDlnBU8U2FlF2wMB6-ur0ALcZ6P_vPFxwpy24 priority: 102 providerName: ProQuest |
Title | An Algebraic Approach to Light–Matter Interactions |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fapxr.202400088 https://www.proquest.com/docview/3187359378 https://doaj.org/article/fcc9bd558f1f4cbbbe5cc5f5325e3d43 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aL15EUbE-yh4ET4t5brLHVVqLWCmi0FvIUwRppa3gSfwP_kN_iUl2W-1JvOQQdjfLZCb5MpP5BoBT6GypNHc5MyyGGZnLldM8N0JB6gwqCh6zkQe3Rf-BXo_Y6FcWf80PsXS4RctI63U0cKVn5z-koerlLfJ5xjuQwVLWwUbMr43s-ZgOl14WHKNwqXwl5gzlKOjEgrkR4vPVT6zsTInAfwV1_sauafPpbYOtBjVmVT3NO2DNjXcBrcZZ9fwYI79PJqsacvBsPslu4on76-NzkMgzs-T1qxMYZnvgode9v-znTRGE3MSIWC5MKQTyHCJdwhJjT4pCmCLYpuJQaIi81xhR64Ww0CDvnFcMcSuUpR5zS_ZBazwZuwOQoQCdnPKMK0qoVVqRgroAARVhDjpv2uBsIQD5UnNdyJrVGMsoKrkUVRtcRPksn4oc1aljMn2UjcpLb0ypLWPCI0-N1toxY5hnBDNHLCVtcLyQrmwMZybDEsMJC5gpjFFP_x-_Iqvh6A4FEMkP__vCEdjEsZpvcqgcg9Z8-upOAsSY607SotCK3lUHbFx0b4d3nXRcD-3gvfsNSxvOjw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFL0qRQg2iKc6UCALEKtQP2NngarwGKZ0pkKolWZn_KyQ0MzQGQTs-g_9j34UX4LtJFPYwKrbKLKim3Pt43vtcwCeIu9qbYQvueWpzch9qb0RpZUaMW9xVYl0G3lyUI2O2Pspn27AeX8XJh2r7OfEPFG7uU018p2IPUF5XEzl7uJrmVyjUne1t9BoYbHvf36PW7bly7038f8-I2T49vD1qOxcBUqbWkyltLWUOAiETY1qQgKtKmmrCHYtkDQIh2AIZi5I6ZDFwfugORZOascCEY7Gca_AVUZpnTJKDt-tazok9fyyWSYRHJc4IrDXiURkRy9-JAHSdGgTZaOXi3Uw2wX8xXH_ZMp5qRvegpsdRy2aFlS3YcPP7sC1fFbULu8Ca2ZF8-U4dZw_26LpRMmL1bwYp53-r9OzSRbtLHK1sb04sbwHR5cSpvuwOZvP_BYUOFI2rwMXmlHmtNG0Yj5ST025Rz7YATzvQ6EWrcaGatWUiUpBU-ugDeBVitT6raSNnR_MT45Vl2oqWFsbx7kMODBrjPHcWh44JdxTx-gAtvs4qy5hl-oCXgN4kWP_n09RzYfpRxzJq3jw7_GewPXR4WSsxnsH-w_hBkn-wbmEsw2bq5Nv_lEkNSvzOCOpgE-XDd3f4e0GSQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1JSwMxFMeDC4gXUVSs6xwET4NZJ5njuBS3FhErxUvIWgRpS1vBo9_Bb-gnMZmZVnsSr8NsvHkv-c97eb8AcAydzZXmLmWGxTIjc6lymqdGKEidQVnGYzdyq51ddehNl3V_dfFXfIhZwi1GRjlexwAfWn_6Aw1Vw_fI84xrIEOkLILliMoLfr1cPHWeO7M8C451uHIDS8wZSlHwiim7EeLT-ZvMzU0lwn9Od_5Wr-X001wHa7VuTIrqQ2-ABdffBLToJ8VrL9Z-X0xS1HjwZDJI7uI_99fHZ6vEZyZl3q9qYRhvgU7z8vH8Kq23QUhNrImlwuRCIM8h0jnMMfYky4TJQnQqDoWGyHuNEbVeCAsN8s55xRC3QlnqMbdkGyz1B323AxIUxJNTnnFFCbVKK5JRF0SgIsxB500DnEwNIIcV7UJWXGMso6nkzFQNcBbtMzsrUqrLA4NRT9ZOL70xubaMCY88NVprx4xhnhHMHLGUNMD-1LqyDp2xDIMMJyyopvCMygH-eBVZ3HcfUJCRfPe_FxyBlfuLpry7bt_ugVUct_Ytsyv7YGkyenMHQW9M9GHtUt9pPs5N |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Algebraic+Approach+to+Light%E2%80%93Matter+Interactions&rft.jtitle=Advanced+Physics+Research&rft.au=Fernandez%E2%80%90Corbaton%2C+Ivan&rft.date=2025-01-01&rft.issn=2751-1200&rft.eissn=2751-1200&rft.volume=4&rft.issue=1&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fapxr.202400088&rft.externalDBID=10.1002%252Fapxr.202400088&rft.externalDocID=APXR12267 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2751-1200&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2751-1200&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2751-1200&client=summon |