Real-time process monitoring and closed-loop control on laser power via a customized laser powder bed fusion platform
Additive manufacturing (AM) is one of the most effective ways to fabricate parts with complex geometries using various materials. However, AM also suffers from printing quality issues resulting from the defects such as over-melt, lack of fusion, swelling, etc. One of the root causes of those issues...
Saved in:
Published in | Additive manufacturing Vol. 66; p. 103449 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
25.03.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Additive manufacturing (AM) is one of the most effective ways to fabricate parts with complex geometries using various materials. However, AM also suffers from printing quality issues resulting from the defects such as over-melt, lack of fusion, swelling, etc. One of the root causes of those issues is that the process parameters remain constant during the entire printing process, regardless of the dynamic heat accumulation and various printing feature sizes. For instance, raster is the most common scanning strategy in the laser powder bed fusion (L-PBF) process. The length of the raster line varies depending on the printing feature size. When scanning small features, the raster line is short, resulting in heat accumulations and over-melt. These variabilities may cause severe quality issues and thus suggest adaptive process parameters be applied. Aiming to address this challenge, this study develops a closed-loop control system to regulate the laser power based on melt pool thermal emission to avoid over-melt, balling, and high surface roughness. The control target is determined by correlating the printing quality (dimensional printing error in this study) with the thermal emission through thin-line printing trials using variable power. A high-speed thermal sensor and controller are designed, tuned, and implemented on a newly developed L-PBF testbed. The system successfully maintains a low dimensional error by regulating the laser power at 2 kHz. A significant improvement in printing quality was achieved, as validated by both microscopic imaging and 3D scanning.
•Design and implement a customized laser powder bed fusion testbed.•Propose a high-speed and real-time thermal sensor and control system.•Correlate dimensional accuracy and printing temperature to determine the control setpoint.•Controller effectiveness is validated by a high spatial-resolution 3D scanner. |
---|---|
AbstractList | Additive manufacturing (AM) is one of the most effective ways to fabricate parts with complex geometries using various materials. However, AM also suffers from printing quality issues resulting from the defects such as over-melt, lack of fusion, swelling, etc. One of the root causes of those issues is that the process parameters remain constant during the entire printing process, regardless of the dynamic heat accumulation and various printing feature sizes. For instance, raster is the most common scanning strategy in the laser powder bed fusion (L-PBF) process. The length of the raster line varies depending on the printing feature size. When scanning small features, the raster line is short, resulting in heat accumulations and over-melt. These variabilities may cause severe quality issues and thus suggest adaptive process parameters be applied. Aiming to address this challenge, this study develops a closed-loop control system to regulate the laser power based on melt pool thermal emission to avoid over-melt, balling, and high surface roughness. The control target is determined by correlating the printing quality (dimensional printing error in this study) with the thermal emission through thin-line printing trials using variable power. A high-speed thermal sensor and controller are designed, tuned, and implemented on a newly developed L-PBF testbed. The system successfully maintains a low dimensional error by regulating the laser power at 2 kHz. A significant improvement in printing quality was achieved, as validated by both microscopic imaging and 3D scanning.
•Design and implement a customized laser powder bed fusion testbed.•Propose a high-speed and real-time thermal sensor and control system.•Correlate dimensional accuracy and printing temperature to determine the control setpoint.•Controller effectiveness is validated by a high spatial-resolution 3D scanner. |
ArticleNumber | 103449 |
Author | Standfield, Benjamin Dou, Chaoran Kong, Zhenyu James Law, Andrew C. Wang, Rongxuan |
Author_xml | – sequence: 1 givenname: Rongxuan orcidid: 0000-0001-7327-3577 surname: Wang fullname: Wang, Rongxuan – sequence: 2 givenname: Benjamin orcidid: 0000-0001-6442-1558 surname: Standfield fullname: Standfield, Benjamin – sequence: 3 givenname: Chaoran surname: Dou fullname: Dou, Chaoran – sequence: 4 givenname: Andrew C. surname: Law fullname: Law, Andrew C. – sequence: 5 givenname: Zhenyu James surname: Kong fullname: Kong, Zhenyu James email: zkong@vt.edu |
BookMark | eNqFkEtLAzEUhYNUsNb-Ajf5A1OTSea1cCHFFxQE0XW4zUNSMsmQpBX99U5tQXChm3sO5_JduOccTXzwGqFLShaU0PpqswCleliUpGRjwjjvTtC0LCkvmpaSydG3NeFnaJ7ShhBCK9Z0bTlF22cNrsi213iIQeqUcB-8zSFa_4bBKyxdSFoVLoQBy-BzDA4Hjx0kHfEQ3se5s4ABy23KobefWv0s1SjrMTDbZEdocJBNiP0FOjXgkp4fdYZe725flg_F6un-cXmzKiQjLBdmTTtW19wQU7VrourKgGRl00kCoICXxBAloa6aWjeMypYqDp0ejTS8VYbNUHe4K2NIKWojpM2Q7f4NsE5QIvYVio34rlDsKxSHCkeW_WKHaHuIH_9Q1wdKj2_trI4iSau91MpGLbNQwf7JfwEWGpBm |
CitedBy_id | crossref_primary_10_1115_1_4066977 crossref_primary_10_1002_jrs_6622 crossref_primary_10_5937_fme2303432S crossref_primary_10_35784_iapgos_6289 crossref_primary_10_1016_j_cie_2024_110098 crossref_primary_10_1016_j_procs_2025_01_182 crossref_primary_10_1115_1_4063236 crossref_primary_10_1007_s40964_024_00816_5 crossref_primary_10_1016_j_ifacol_2024_12_024 crossref_primary_10_1088_1361_6501_ada4c6 crossref_primary_10_1115_1_4067325 |
Cites_doi | 10.1016/j.promfg.2018.07.112 10.1016/j.actamat.2017.08.038 10.1016/j.cirp.2019.04.110 10.1179/1743284714Y.0000000734 10.1016/j.protcy.2015.07.037 10.1007/s40192-019-00130-x 10.1007/s40964-019-00083-9 10.3390/ma15196556 10.1016/j.ijheatmasstransfer.2019.119172 10.2351/7.0000108 10.1007/s00170-014-6214-8 10.1016/j.actamat.2012.11.052 10.3390/ma12020239 10.1016/j.matdes.2020.109165 |
ContentType | Journal Article |
Copyright | 2023 Elsevier B.V. |
Copyright_xml | – notice: 2023 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.addma.2023.103449 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2214-7810 |
ExternalDocumentID | 10_1016_j_addma_2023_103449 S2214860423000623 |
GroupedDBID | --M .~1 0R~ 1~. 4.4 457 4G. 7-5 8P~ AABXZ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC EBS EFJIC EFLBG FDB FIRID FYGXN GBLVA KOM M41 O9- OAUVE PC. ROL SPC SPCBC SSM SST SSZ T5K ~G- AAQFI AATTM AAXKI AAYWO AAYXX ABXDB ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION EJD SSH |
ID | FETCH-LOGICAL-c303t-fb193664f0f58b0d65fac3279c0aada420f0dca6576e731c81d4a9e1c8cf48df3 |
IEDL.DBID | .~1 |
ISSN | 2214-8604 |
IngestDate | Thu Apr 24 23:03:24 EDT 2025 Tue Jul 01 01:47:14 EDT 2025 Fri Feb 23 02:36:33 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Process monitoring Laser powder bed fusion L-PBF 3D scanning Quality control TEI PID LDR FOV ROI Closed-loop control |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c303t-fb193664f0f58b0d65fac3279c0aada420f0dca6576e731c81d4a9e1c8cf48df3 |
ORCID | 0000-0001-7327-3577 0000-0001-6442-1558 |
ParticipantIDs | crossref_citationtrail_10_1016_j_addma_2023_103449 crossref_primary_10_1016_j_addma_2023_103449 elsevier_sciencedirect_doi_10_1016_j_addma_2023_103449 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-03-25 |
PublicationDateYYYYMMDD | 2023-03-25 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-25 day: 25 |
PublicationDecade | 2020 |
PublicationTitle | Additive manufacturing |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Gan (bib2) 2019; 8 Kurzynowski (bib23) 2019; 12 Wang (bib30) 2021; 117 Zhao (bib6) 2017; 7 Boone (bib9) 2018; 22 Dehoff (bib16) 2015; 31 Liu, C., et al. Real-time 3D surface measurement in additive manufacturing using deep learning. in Solid freeform fabrication 2019: proceedings of the 30th annual international, solid freeform fabrication symposium—an additive manufacturing conference. 2019. Thijs (bib4) 2013; 61 Yeung, Lane, Fox (bib13) 2019; 30 Tang, Le, Wong (bib10) 2020; 149 Yeung (bib14) 2016 Bansal (bib29) 2009; 2 Bisht (bib1) 2018; 22 Yeung (bib12) 2018; 26 Richter (bib3) 2019; 68 Shkoruta, Mishra, Rock (bib26) 2022; 2 Laser, R., User Guide of 1000W Small Size Cutting Continuous Wave Laser. 2021. Campbell (bib5) 2018 Clijsters (bib20) 2014; 75 Shao (bib17) 2020; 196 Malekipour (bib19) 2020 Johnson, Moradi (bib27) 2005 Wang (bib11) 2020; 31 Raghavan (bib15) 2017; 140 Ramani (bib18) 2022; 52 Shunmugavel, Polishetty, Littlefair (bib31) 2015; 20 Chernyshikhin (bib7) 2022; 15 Wang (bib22) 2022; 12 Kruth (bib8) 2007 Renken (bib25) 2019; 4 Vasileska (bib24) 2020; 32 Renken (10.1016/j.addma.2023.103449_bib25) 2019; 4 Yeung (10.1016/j.addma.2023.103449_bib14) 2016 Shunmugavel (10.1016/j.addma.2023.103449_bib31) 2015; 20 Wang (10.1016/j.addma.2023.103449_bib30) 2021; 117 Bansal (10.1016/j.addma.2023.103449_bib29) 2009; 2 Yeung (10.1016/j.addma.2023.103449_bib12) 2018; 26 Shkoruta (10.1016/j.addma.2023.103449_bib26) 2022; 2 Kurzynowski (10.1016/j.addma.2023.103449_bib23) 2019; 12 Campbell (10.1016/j.addma.2023.103449_bib5) 2018 Malekipour (10.1016/j.addma.2023.103449_bib19) 2020 Tang (10.1016/j.addma.2023.103449_bib10) 2020; 149 Gan (10.1016/j.addma.2023.103449_bib2) 2019; 8 10.1016/j.addma.2023.103449_bib28 Johnson (10.1016/j.addma.2023.103449_bib27) 2005 Kruth (10.1016/j.addma.2023.103449_bib8) 2007 10.1016/j.addma.2023.103449_bib21 Boone (10.1016/j.addma.2023.103449_bib9) 2018; 22 Wang (10.1016/j.addma.2023.103449_bib11) 2020; 31 Zhao (10.1016/j.addma.2023.103449_bib6) 2017; 7 Yeung (10.1016/j.addma.2023.103449_bib13) 2019; 30 Shao (10.1016/j.addma.2023.103449_bib17) 2020; 196 Bisht (10.1016/j.addma.2023.103449_bib1) 2018; 22 Vasileska (10.1016/j.addma.2023.103449_bib24) 2020; 32 Richter (10.1016/j.addma.2023.103449_bib3) 2019; 68 Chernyshikhin (10.1016/j.addma.2023.103449_bib7) 2022; 15 Wang (10.1016/j.addma.2023.103449_bib22) 2022; 12 Thijs (10.1016/j.addma.2023.103449_bib4) 2013; 61 Dehoff (10.1016/j.addma.2023.103449_bib16) 2015; 31 Ramani (10.1016/j.addma.2023.103449_bib18) 2022; 52 Clijsters (10.1016/j.addma.2023.103449_bib20) 2014; 75 Raghavan (10.1016/j.addma.2023.103449_bib15) 2017; 140 |
References_xml | – volume: 22 start-page: 302 year: 2018 end-page: 306 ident: bib1 article-title: Correlation of selective laser melting-melt pool events with the tensile properties of Ti-6Al-4V ELI processed by laser powder bed fusion publication-title: Addit. Manuf. – volume: 52 year: 2022 ident: bib18 article-title: SmartScan: an intelligent scanning approach for uniform thermal distribution, reduced residual stresses and deformations in PBF additive manufacturing publication-title: Addit. Manuf. – year: 2007 ident: bib8 article-title: Feedback control of selective laser melting publication-title: Proceedings of the 3rd international conference on advanced research in virtual and rapid prototyping – volume: 22 start-page: 601 year: 2018 end-page: 605 ident: bib9 article-title: Thermal near infrared monitoring system for electron beam melting with emissivity tracking publication-title: Addit. Manuf. – volume: 68 start-page: 229 year: 2019 end-page: 232 ident: bib3 article-title: High-speed X-ray investigation of melt dynamics during continuous-wave laser remelting of selective laser melted Co-Cr alloy publication-title: CIRP Ann. – volume: 140 start-page: 375 year: 2017 end-page: 387 ident: bib15 article-title: Localized melt-scan strategy for site specific control of grain size and primary dendrite arm spacing in electron beam additive manufacturing publication-title: Acta Mater. – volume: 12 start-page: 1 year: 2022 end-page: 17 ident: bib22 article-title: In situ melt pool measurements for laser powder bed fusion using multi sensing and correlation analysis publication-title: Sci. Rep. – volume: 2 year: 2022 ident: bib26 article-title: Real-time image-based feedback control of laser powder bed fusion publication-title: ASME Lett. Dyn. Syst. Control – volume: 7 start-page: 1 year: 2017 end-page: 11 ident: bib6 article-title: Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction publication-title: Sci. Rep. – year: 2005 ident: bib27 article-title: PID control – volume: 149 year: 2020 ident: bib10 article-title: Physics of humping formation in laser powder bed fusion publication-title: Int. J. Heat. Mass Transf. – volume: 31 year: 2020 ident: bib11 article-title: Model-based feedforward control of laser powder bed fusion additive manufacturing publication-title: Addit. Manuf. – volume: 4 start-page: 411 year: 2019 end-page: 421 ident: bib25 article-title: In-process closed-loop control for stabilising the melt pool temperature in selective laser melting publication-title: Prog. Addit. Manuf. – reference: Laser, R., User Guide of 1000W Small Size Cutting Continuous Wave Laser. 2021. – volume: 75 start-page: 1089 year: 2014 end-page: 1101 ident: bib20 article-title: In situ quality control of the selective laser melting process using a high-speed, real-time melt pool monitoring system publication-title: Int. J. Adv. Manuf. Technol. – reference: Liu, C., et al. Real-time 3D surface measurement in additive manufacturing using deep learning. in Solid freeform fabrication 2019: proceedings of the 30th annual international, solid freeform fabrication symposium—an additive manufacturing conference. 2019. – volume: 8 start-page: 178 year: 2019 end-page: 193 ident: bib2 article-title: Benchmark study of thermal behavior, surface topography, and dendritic microstructure in selective laser melting of Inconel 625 publication-title: Integr. Mater. Manuf. Innov. – volume: 30 year: 2019 ident: bib13 article-title: Part geometry and conduction-based laser power control for powder bed fusion additive manufacturing publication-title: Addit. Manuf. – volume: 26 start-page: 871 year: 2018 end-page: 879 ident: bib12 article-title: Implementation of advanced laser control strategies for powder bed fusion systems publication-title: Procedia Manuf. – year: 2020 ident: bib19 article-title: . in – volume: 20 start-page: 231 year: 2015 end-page: 236 ident: bib31 article-title: Microstructure and mechanical properties of wrought and additive manufactured Ti-6Al-4 V cylindrical bars publication-title: Proc. Technol. – volume: 61 start-page: 1809 year: 2013 end-page: 1819 ident: bib4 article-title: Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder publication-title: Acta Mater. – volume: 15 start-page: 6556 year: 2022 ident: bib7 article-title: The Study on Resolution Factors of LPBF Technology for Manufacturing Superelastic NiTi Endodontic Files publication-title: Materials – volume: 117 start-page: 845 year: 2021 end-page: 862 ident: bib30 article-title: Development of structured light 3D-scanner with high spatial resolution and its applications for additive manufacturing quality assurance publication-title: Int. J. Adv. Manuf. Technol. – year: 2018 ident: bib5 article-title: Wohlers report 2018: 3D printing and additive manufacturing state of the industry: annual worldwide progress report – volume: 12 start-page: 239 year: 2019 ident: bib23 article-title: Effect of scanning and support strategies on relative density of SLM-ed H13 steel in relation to specimen size publication-title: Materials – volume: 31 start-page: 931 year: 2015 end-page: 938 ident: bib16 article-title: Site specific control of crystallographic grain orientation through electron beam additive manufacturing publication-title: Mater. Sci. Technol. – year: 2016 ident: bib14 article-title: . in publication-title: 2016 International Solid Freeform Fabrication Symposium – volume: 2 start-page: 337 year: 2009 end-page: 344 ident: bib29 article-title: Tuning of PID controllers using s publication-title: Int. J. Math. Model. Simul. Appl. – volume: 196 year: 2020 ident: bib17 article-title: The effect of beam scan strategies on microstructural variations in Ti-6Al-4V fabricated by electron beam powder bed fusion publication-title: Mater. Des. – volume: 32 year: 2020 ident: bib24 article-title: Layer-wise control of selective laser melting by means of inline melt pool area measurements publication-title: J. Laser Appl. – volume: 22 start-page: 601 year: 2018 ident: 10.1016/j.addma.2023.103449_bib9 article-title: Thermal near infrared monitoring system for electron beam melting with emissivity tracking publication-title: Addit. Manuf. – volume: 26 start-page: 871 year: 2018 ident: 10.1016/j.addma.2023.103449_bib12 article-title: Implementation of advanced laser control strategies for powder bed fusion systems publication-title: Procedia Manuf. doi: 10.1016/j.promfg.2018.07.112 – volume: 140 start-page: 375 year: 2017 ident: 10.1016/j.addma.2023.103449_bib15 article-title: Localized melt-scan strategy for site specific control of grain size and primary dendrite arm spacing in electron beam additive manufacturing publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.08.038 – volume: 68 start-page: 229 issue: 1 year: 2019 ident: 10.1016/j.addma.2023.103449_bib3 article-title: High-speed X-ray investigation of melt dynamics during continuous-wave laser remelting of selective laser melted Co-Cr alloy publication-title: CIRP Ann. doi: 10.1016/j.cirp.2019.04.110 – year: 2020 ident: 10.1016/j.addma.2023.103449_bib19 – volume: 117 start-page: 845 issue: 3 year: 2021 ident: 10.1016/j.addma.2023.103449_bib30 article-title: Development of structured light 3D-scanner with high spatial resolution and its applications for additive manufacturing quality assurance publication-title: Int. J. Adv. Manuf. Technol. – volume: 31 start-page: 931 issue: 8 year: 2015 ident: 10.1016/j.addma.2023.103449_bib16 article-title: Site specific control of crystallographic grain orientation through electron beam additive manufacturing publication-title: Mater. Sci. Technol. doi: 10.1179/1743284714Y.0000000734 – volume: 12 start-page: 1 issue: 1 year: 2022 ident: 10.1016/j.addma.2023.103449_bib22 article-title: In situ melt pool measurements for laser powder bed fusion using multi sensing and correlation analysis publication-title: Sci. Rep. – ident: 10.1016/j.addma.2023.103449_bib28 – volume: 20 start-page: 231 year: 2015 ident: 10.1016/j.addma.2023.103449_bib31 article-title: Microstructure and mechanical properties of wrought and additive manufactured Ti-6Al-4 V cylindrical bars publication-title: Proc. Technol. doi: 10.1016/j.protcy.2015.07.037 – volume: 8 start-page: 178 issue: 2 year: 2019 ident: 10.1016/j.addma.2023.103449_bib2 article-title: Benchmark study of thermal behavior, surface topography, and dendritic microstructure in selective laser melting of Inconel 625 publication-title: Integr. Mater. Manuf. Innov. doi: 10.1007/s40192-019-00130-x – volume: 4 start-page: 411 issue: 4 year: 2019 ident: 10.1016/j.addma.2023.103449_bib25 article-title: In-process closed-loop control for stabilising the melt pool temperature in selective laser melting publication-title: Prog. Addit. Manuf. doi: 10.1007/s40964-019-00083-9 – volume: 2 issue: 2 year: 2022 ident: 10.1016/j.addma.2023.103449_bib26 article-title: Real-time image-based feedback control of laser powder bed fusion publication-title: ASME Lett. Dyn. Syst. Control – volume: 15 start-page: 6556 issue: 19 year: 2022 ident: 10.1016/j.addma.2023.103449_bib7 article-title: The Study on Resolution Factors of LPBF Technology for Manufacturing Superelastic NiTi Endodontic Files publication-title: Materials doi: 10.3390/ma15196556 – volume: 149 year: 2020 ident: 10.1016/j.addma.2023.103449_bib10 article-title: Physics of humping formation in laser powder bed fusion publication-title: Int. J. Heat. Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2019.119172 – year: 2005 ident: 10.1016/j.addma.2023.103449_bib27 – volume: 52 year: 2022 ident: 10.1016/j.addma.2023.103449_bib18 article-title: SmartScan: an intelligent scanning approach for uniform thermal distribution, reduced residual stresses and deformations in PBF additive manufacturing publication-title: Addit. Manuf. – volume: 32 issue: 2 year: 2020 ident: 10.1016/j.addma.2023.103449_bib24 article-title: Layer-wise control of selective laser melting by means of inline melt pool area measurements publication-title: J. Laser Appl. doi: 10.2351/7.0000108 – volume: 75 start-page: 1089 issue: 5 year: 2014 ident: 10.1016/j.addma.2023.103449_bib20 article-title: In situ quality control of the selective laser melting process using a high-speed, real-time melt pool monitoring system publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-014-6214-8 – year: 2007 ident: 10.1016/j.addma.2023.103449_bib8 article-title: Feedback control of selective laser melting – ident: 10.1016/j.addma.2023.103449_bib21 – volume: 2 start-page: 337 issue: 3 year: 2009 ident: 10.1016/j.addma.2023.103449_bib29 article-title: Tuning of PID controllers using simulink publication-title: Int. J. Math. Model. Simul. Appl. – year: 2018 ident: 10.1016/j.addma.2023.103449_bib5 – volume: 22 start-page: 302 year: 2018 ident: 10.1016/j.addma.2023.103449_bib1 article-title: Correlation of selective laser melting-melt pool events with the tensile properties of Ti-6Al-4V ELI processed by laser powder bed fusion publication-title: Addit. Manuf. – volume: 31 year: 2020 ident: 10.1016/j.addma.2023.103449_bib11 article-title: Model-based feedforward control of laser powder bed fusion additive manufacturing publication-title: Addit. Manuf. – volume: 61 start-page: 1809 issue: 5 year: 2013 ident: 10.1016/j.addma.2023.103449_bib4 article-title: Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder publication-title: Acta Mater. doi: 10.1016/j.actamat.2012.11.052 – year: 2016 ident: 10.1016/j.addma.2023.103449_bib14 article-title: Laser path planning and power control strategies for powder bed fusion systems. in – volume: 7 start-page: 1 issue: 1 year: 2017 ident: 10.1016/j.addma.2023.103449_bib6 article-title: Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction publication-title: Sci. Rep. – volume: 30 year: 2019 ident: 10.1016/j.addma.2023.103449_bib13 article-title: Part geometry and conduction-based laser power control for powder bed fusion additive manufacturing publication-title: Addit. Manuf. – volume: 12 start-page: 239 issue: 2 year: 2019 ident: 10.1016/j.addma.2023.103449_bib23 article-title: Effect of scanning and support strategies on relative density of SLM-ed H13 steel in relation to specimen size publication-title: Materials doi: 10.3390/ma12020239 – volume: 196 year: 2020 ident: 10.1016/j.addma.2023.103449_bib17 article-title: The effect of beam scan strategies on microstructural variations in Ti-6Al-4V fabricated by electron beam powder bed fusion publication-title: Mater. Des. doi: 10.1016/j.matdes.2020.109165 |
SSID | ssj0001537982 |
Score | 2.4278767 |
Snippet | Additive manufacturing (AM) is one of the most effective ways to fabricate parts with complex geometries using various materials. However, AM also suffers from... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 103449 |
SubjectTerms | 3D scanning Closed-loop control Laser powder bed fusion Process monitoring Quality control |
Title | Real-time process monitoring and closed-loop control on laser power via a customized laser powder bed fusion platform |
URI | https://dx.doi.org/10.1016/j.addma.2023.103449 |
Volume | 66 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIq3PDBimji2Q0aEQAUEA1CJLbLPtlRUkghaBgZ-O748oEiIgSmJ7Yuii333xbn7jpBDaYURAXgzaZTD34yGaQWeZYkEzyNrUovJyTe3ajgSV4_ysUfOulwYDKtsbX9j02tr3bYMWm0OqvF4cM95jBWUAh5Am8uR8VOIFGf58Uf8vc8ikzSra0bheIYCHflQHeYV1nfNP8QTzD8XyKn5m4OaczoXK2S5RYv0tHmgVdJzxRpZmuMQXCezuwD1GJaIp1UT9E-f63WK3VQXlsKkfHWWTcqyom1kOi0LGmCze6EVVkmjb2NNNYVZQILP43dnvzttOJjQ4Ge4rUariZ4izN0go4vzh7Mha2spMAhOasq8CUhNKeEjL09MZJX0GhKeZhBpbbXgkY8saBU-P1yaxBBgrNCZCyfgxYn1ySbpF2XhtgiNhXFpmkkP1olwK5MoCRGA8bGCzME24Z0Cc2iJxrHexSTvIsqe8lrrOWo9b7S-TY6-hKqGZ-Pv4ap7M_mP6ZIHT_CX4M5_BXfJIl5h-BmXe6Q_fZm5_YBHpuagnnAHZOH08np4-wnIz-IQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxUxFD5BXKgLAz4iKtKF7Kx3ptN2mIULApKLPBYICbuxz-Say8wE7tXogj_FH-SceQgmhoUJq5m006Y5bb5-055zPoD3yksrkXhzZXWga0bLjXaRF5lyUSTe5p6Ckw8O9fhEfjlVpwtwNcTCkFtlj_0dprdo3ZeMemuOmslk9FWIlBSUkA8Q5opBwXov_PqJ_20Xn3a3cZLXhdj5fLw15r20AHeI2TMeLRIXrWVMotqwidcqGpeJvHCJMd5IkcTEO6ORjYc8Sx2yOmmKgC8uyg0fM-z3ATyUCBckm_DxMr052FFZXrQiVTRATiMcsh21fmUIKG3CI5FRwLukJJ7_2hFv7XI7S_C0p6dss7PAMiyE6hk8uZW08DnMj5BbctKkZ00XZcDOWmCgamYqz9y0vgieT-u6Yb0rPKsrhjw9nLOGZNnYj4lhhrk5Us-zye_gbyo9PiwWxDmd47FmambEq1_Ayb1Y-CUsVnUVXgFLpQ15XqjofJDYlc20colzNqbaFcGtgBgMWLo-szkJbEzLwYXte9lavSSrl53VV-DDn0ZNl9jj7s_1MDPlX-uzxK3nroav_7fhGjwaHx_sl_u7h3tv4DHVkO-bUG9hcXY-D6tIhmb2Xbv4GHy779V-DUmuHvM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-time+process+monitoring+and+closed-loop+control+on+laser+power+via+a+customized+laser+powder+bed+fusion+platform&rft.jtitle=Additive+manufacturing&rft.au=Wang%2C+Rongxuan&rft.au=Standfield%2C+Benjamin&rft.au=Dou%2C+Chaoran&rft.au=Law%2C+Andrew+C.&rft.date=2023-03-25&rft.pub=Elsevier+B.V&rft.issn=2214-8604&rft.eissn=2214-7810&rft.volume=66&rft_id=info:doi/10.1016%2Fj.addma.2023.103449&rft.externalDocID=S2214860423000623 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-8604&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-8604&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-8604&client=summon |