Real-time process monitoring and closed-loop control on laser power via a customized laser powder bed fusion platform

Additive manufacturing (AM) is one of the most effective ways to fabricate parts with complex geometries using various materials. However, AM also suffers from printing quality issues resulting from the defects such as over-melt, lack of fusion, swelling, etc. One of the root causes of those issues...

Full description

Saved in:
Bibliographic Details
Published inAdditive manufacturing Vol. 66; p. 103449
Main Authors Wang, Rongxuan, Standfield, Benjamin, Dou, Chaoran, Law, Andrew C., Kong, Zhenyu James
Format Journal Article
LanguageEnglish
Published Elsevier B.V 25.03.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Additive manufacturing (AM) is one of the most effective ways to fabricate parts with complex geometries using various materials. However, AM also suffers from printing quality issues resulting from the defects such as over-melt, lack of fusion, swelling, etc. One of the root causes of those issues is that the process parameters remain constant during the entire printing process, regardless of the dynamic heat accumulation and various printing feature sizes. For instance, raster is the most common scanning strategy in the laser powder bed fusion (L-PBF) process. The length of the raster line varies depending on the printing feature size. When scanning small features, the raster line is short, resulting in heat accumulations and over-melt. These variabilities may cause severe quality issues and thus suggest adaptive process parameters be applied. Aiming to address this challenge, this study develops a closed-loop control system to regulate the laser power based on melt pool thermal emission to avoid over-melt, balling, and high surface roughness. The control target is determined by correlating the printing quality (dimensional printing error in this study) with the thermal emission through thin-line printing trials using variable power. A high-speed thermal sensor and controller are designed, tuned, and implemented on a newly developed L-PBF testbed. The system successfully maintains a low dimensional error by regulating the laser power at 2 kHz. A significant improvement in printing quality was achieved, as validated by both microscopic imaging and 3D scanning. •Design and implement a customized laser powder bed fusion testbed.•Propose a high-speed and real-time thermal sensor and control system.•Correlate dimensional accuracy and printing temperature to determine the control setpoint.•Controller effectiveness is validated by a high spatial-resolution 3D scanner.
AbstractList Additive manufacturing (AM) is one of the most effective ways to fabricate parts with complex geometries using various materials. However, AM also suffers from printing quality issues resulting from the defects such as over-melt, lack of fusion, swelling, etc. One of the root causes of those issues is that the process parameters remain constant during the entire printing process, regardless of the dynamic heat accumulation and various printing feature sizes. For instance, raster is the most common scanning strategy in the laser powder bed fusion (L-PBF) process. The length of the raster line varies depending on the printing feature size. When scanning small features, the raster line is short, resulting in heat accumulations and over-melt. These variabilities may cause severe quality issues and thus suggest adaptive process parameters be applied. Aiming to address this challenge, this study develops a closed-loop control system to regulate the laser power based on melt pool thermal emission to avoid over-melt, balling, and high surface roughness. The control target is determined by correlating the printing quality (dimensional printing error in this study) with the thermal emission through thin-line printing trials using variable power. A high-speed thermal sensor and controller are designed, tuned, and implemented on a newly developed L-PBF testbed. The system successfully maintains a low dimensional error by regulating the laser power at 2 kHz. A significant improvement in printing quality was achieved, as validated by both microscopic imaging and 3D scanning. •Design and implement a customized laser powder bed fusion testbed.•Propose a high-speed and real-time thermal sensor and control system.•Correlate dimensional accuracy and printing temperature to determine the control setpoint.•Controller effectiveness is validated by a high spatial-resolution 3D scanner.
ArticleNumber 103449
Author Standfield, Benjamin
Dou, Chaoran
Kong, Zhenyu James
Law, Andrew C.
Wang, Rongxuan
Author_xml – sequence: 1
  givenname: Rongxuan
  orcidid: 0000-0001-7327-3577
  surname: Wang
  fullname: Wang, Rongxuan
– sequence: 2
  givenname: Benjamin
  orcidid: 0000-0001-6442-1558
  surname: Standfield
  fullname: Standfield, Benjamin
– sequence: 3
  givenname: Chaoran
  surname: Dou
  fullname: Dou, Chaoran
– sequence: 4
  givenname: Andrew C.
  surname: Law
  fullname: Law, Andrew C.
– sequence: 5
  givenname: Zhenyu James
  surname: Kong
  fullname: Kong, Zhenyu James
  email: zkong@vt.edu
BookMark eNqFkEtLAzEUhYNUsNb-Ajf5A1OTSea1cCHFFxQE0XW4zUNSMsmQpBX99U5tQXChm3sO5_JduOccTXzwGqFLShaU0PpqswCleliUpGRjwjjvTtC0LCkvmpaSydG3NeFnaJ7ShhBCK9Z0bTlF22cNrsi213iIQeqUcB-8zSFa_4bBKyxdSFoVLoQBy-BzDA4Hjx0kHfEQ3se5s4ABy23KobefWv0s1SjrMTDbZEdocJBNiP0FOjXgkp4fdYZe725flg_F6un-cXmzKiQjLBdmTTtW19wQU7VrourKgGRl00kCoICXxBAloa6aWjeMypYqDp0ejTS8VYbNUHe4K2NIKWojpM2Q7f4NsE5QIvYVio34rlDsKxSHCkeW_WKHaHuIH_9Q1wdKj2_trI4iSau91MpGLbNQwf7JfwEWGpBm
CitedBy_id crossref_primary_10_1115_1_4066977
crossref_primary_10_1002_jrs_6622
crossref_primary_10_5937_fme2303432S
crossref_primary_10_35784_iapgos_6289
crossref_primary_10_1016_j_cie_2024_110098
crossref_primary_10_1016_j_procs_2025_01_182
crossref_primary_10_1115_1_4063236
crossref_primary_10_1007_s40964_024_00816_5
crossref_primary_10_1016_j_ifacol_2024_12_024
crossref_primary_10_1088_1361_6501_ada4c6
crossref_primary_10_1115_1_4067325
Cites_doi 10.1016/j.promfg.2018.07.112
10.1016/j.actamat.2017.08.038
10.1016/j.cirp.2019.04.110
10.1179/1743284714Y.0000000734
10.1016/j.protcy.2015.07.037
10.1007/s40192-019-00130-x
10.1007/s40964-019-00083-9
10.3390/ma15196556
10.1016/j.ijheatmasstransfer.2019.119172
10.2351/7.0000108
10.1007/s00170-014-6214-8
10.1016/j.actamat.2012.11.052
10.3390/ma12020239
10.1016/j.matdes.2020.109165
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.addma.2023.103449
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2214-7810
ExternalDocumentID 10_1016_j_addma_2023_103449
S2214860423000623
GroupedDBID --M
.~1
0R~
1~.
4.4
457
4G.
7-5
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
EBS
EFJIC
EFLBG
FDB
FIRID
FYGXN
GBLVA
KOM
M41
O9-
OAUVE
PC.
ROL
SPC
SPCBC
SSM
SST
SSZ
T5K
~G-
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ABXDB
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
EJD
SSH
ID FETCH-LOGICAL-c303t-fb193664f0f58b0d65fac3279c0aada420f0dca6576e731c81d4a9e1c8cf48df3
IEDL.DBID .~1
ISSN 2214-8604
IngestDate Thu Apr 24 23:03:24 EDT 2025
Tue Jul 01 01:47:14 EDT 2025
Fri Feb 23 02:36:33 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Process monitoring
Laser powder bed fusion
L-PBF
3D scanning
Quality control
TEI
PID
LDR
FOV
ROI
Closed-loop control
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c303t-fb193664f0f58b0d65fac3279c0aada420f0dca6576e731c81d4a9e1c8cf48df3
ORCID 0000-0001-7327-3577
0000-0001-6442-1558
ParticipantIDs crossref_citationtrail_10_1016_j_addma_2023_103449
crossref_primary_10_1016_j_addma_2023_103449
elsevier_sciencedirect_doi_10_1016_j_addma_2023_103449
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-25
PublicationDateYYYYMMDD 2023-03-25
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-25
  day: 25
PublicationDecade 2020
PublicationTitle Additive manufacturing
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Gan (bib2) 2019; 8
Kurzynowski (bib23) 2019; 12
Wang (bib30) 2021; 117
Zhao (bib6) 2017; 7
Boone (bib9) 2018; 22
Dehoff (bib16) 2015; 31
Liu, C., et al. Real-time 3D surface measurement in additive manufacturing using deep learning. in Solid freeform fabrication 2019: proceedings of the 30th annual international, solid freeform fabrication symposium—an additive manufacturing conference. 2019.
Thijs (bib4) 2013; 61
Yeung, Lane, Fox (bib13) 2019; 30
Tang, Le, Wong (bib10) 2020; 149
Yeung (bib14) 2016
Bansal (bib29) 2009; 2
Bisht (bib1) 2018; 22
Yeung (bib12) 2018; 26
Richter (bib3) 2019; 68
Shkoruta, Mishra, Rock (bib26) 2022; 2
Laser, R., User Guide of 1000W Small Size Cutting Continuous Wave Laser. 2021.
Campbell (bib5) 2018
Clijsters (bib20) 2014; 75
Shao (bib17) 2020; 196
Malekipour (bib19) 2020
Johnson, Moradi (bib27) 2005
Wang (bib11) 2020; 31
Raghavan (bib15) 2017; 140
Ramani (bib18) 2022; 52
Shunmugavel, Polishetty, Littlefair (bib31) 2015; 20
Chernyshikhin (bib7) 2022; 15
Wang (bib22) 2022; 12
Kruth (bib8) 2007
Renken (bib25) 2019; 4
Vasileska (bib24) 2020; 32
Renken (10.1016/j.addma.2023.103449_bib25) 2019; 4
Yeung (10.1016/j.addma.2023.103449_bib14) 2016
Shunmugavel (10.1016/j.addma.2023.103449_bib31) 2015; 20
Wang (10.1016/j.addma.2023.103449_bib30) 2021; 117
Bansal (10.1016/j.addma.2023.103449_bib29) 2009; 2
Yeung (10.1016/j.addma.2023.103449_bib12) 2018; 26
Shkoruta (10.1016/j.addma.2023.103449_bib26) 2022; 2
Kurzynowski (10.1016/j.addma.2023.103449_bib23) 2019; 12
Campbell (10.1016/j.addma.2023.103449_bib5) 2018
Malekipour (10.1016/j.addma.2023.103449_bib19) 2020
Tang (10.1016/j.addma.2023.103449_bib10) 2020; 149
Gan (10.1016/j.addma.2023.103449_bib2) 2019; 8
10.1016/j.addma.2023.103449_bib28
Johnson (10.1016/j.addma.2023.103449_bib27) 2005
Kruth (10.1016/j.addma.2023.103449_bib8) 2007
10.1016/j.addma.2023.103449_bib21
Boone (10.1016/j.addma.2023.103449_bib9) 2018; 22
Wang (10.1016/j.addma.2023.103449_bib11) 2020; 31
Zhao (10.1016/j.addma.2023.103449_bib6) 2017; 7
Yeung (10.1016/j.addma.2023.103449_bib13) 2019; 30
Shao (10.1016/j.addma.2023.103449_bib17) 2020; 196
Bisht (10.1016/j.addma.2023.103449_bib1) 2018; 22
Vasileska (10.1016/j.addma.2023.103449_bib24) 2020; 32
Richter (10.1016/j.addma.2023.103449_bib3) 2019; 68
Chernyshikhin (10.1016/j.addma.2023.103449_bib7) 2022; 15
Wang (10.1016/j.addma.2023.103449_bib22) 2022; 12
Thijs (10.1016/j.addma.2023.103449_bib4) 2013; 61
Dehoff (10.1016/j.addma.2023.103449_bib16) 2015; 31
Ramani (10.1016/j.addma.2023.103449_bib18) 2022; 52
Clijsters (10.1016/j.addma.2023.103449_bib20) 2014; 75
Raghavan (10.1016/j.addma.2023.103449_bib15) 2017; 140
References_xml – volume: 22
  start-page: 302
  year: 2018
  end-page: 306
  ident: bib1
  article-title: Correlation of selective laser melting-melt pool events with the tensile properties of Ti-6Al-4V ELI processed by laser powder bed fusion
  publication-title: Addit. Manuf.
– volume: 52
  year: 2022
  ident: bib18
  article-title: SmartScan: an intelligent scanning approach for uniform thermal distribution, reduced residual stresses and deformations in PBF additive manufacturing
  publication-title: Addit. Manuf.
– year: 2007
  ident: bib8
  article-title: Feedback control of selective laser melting
  publication-title: Proceedings of the 3rd international conference on advanced research in virtual and rapid prototyping
– volume: 22
  start-page: 601
  year: 2018
  end-page: 605
  ident: bib9
  article-title: Thermal near infrared monitoring system for electron beam melting with emissivity tracking
  publication-title: Addit. Manuf.
– volume: 68
  start-page: 229
  year: 2019
  end-page: 232
  ident: bib3
  article-title: High-speed X-ray investigation of melt dynamics during continuous-wave laser remelting of selective laser melted Co-Cr alloy
  publication-title: CIRP Ann.
– volume: 140
  start-page: 375
  year: 2017
  end-page: 387
  ident: bib15
  article-title: Localized melt-scan strategy for site specific control of grain size and primary dendrite arm spacing in electron beam additive manufacturing
  publication-title: Acta Mater.
– volume: 12
  start-page: 1
  year: 2022
  end-page: 17
  ident: bib22
  article-title: In situ melt pool measurements for laser powder bed fusion using multi sensing and correlation analysis
  publication-title: Sci. Rep.
– volume: 2
  year: 2022
  ident: bib26
  article-title: Real-time image-based feedback control of laser powder bed fusion
  publication-title: ASME Lett. Dyn. Syst. Control
– volume: 7
  start-page: 1
  year: 2017
  end-page: 11
  ident: bib6
  article-title: Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction
  publication-title: Sci. Rep.
– year: 2005
  ident: bib27
  article-title: PID control
– volume: 149
  year: 2020
  ident: bib10
  article-title: Physics of humping formation in laser powder bed fusion
  publication-title: Int. J. Heat. Mass Transf.
– volume: 31
  year: 2020
  ident: bib11
  article-title: Model-based feedforward control of laser powder bed fusion additive manufacturing
  publication-title: Addit. Manuf.
– volume: 4
  start-page: 411
  year: 2019
  end-page: 421
  ident: bib25
  article-title: In-process closed-loop control for stabilising the melt pool temperature in selective laser melting
  publication-title: Prog. Addit. Manuf.
– reference: Laser, R., User Guide of 1000W Small Size Cutting Continuous Wave Laser. 2021.
– volume: 75
  start-page: 1089
  year: 2014
  end-page: 1101
  ident: bib20
  article-title: In situ quality control of the selective laser melting process using a high-speed, real-time melt pool monitoring system
  publication-title: Int. J. Adv. Manuf. Technol.
– reference: Liu, C., et al. Real-time 3D surface measurement in additive manufacturing using deep learning. in Solid freeform fabrication 2019: proceedings of the 30th annual international, solid freeform fabrication symposium—an additive manufacturing conference. 2019.
– volume: 8
  start-page: 178
  year: 2019
  end-page: 193
  ident: bib2
  article-title: Benchmark study of thermal behavior, surface topography, and dendritic microstructure in selective laser melting of Inconel 625
  publication-title: Integr. Mater. Manuf. Innov.
– volume: 30
  year: 2019
  ident: bib13
  article-title: Part geometry and conduction-based laser power control for powder bed fusion additive manufacturing
  publication-title: Addit. Manuf.
– volume: 26
  start-page: 871
  year: 2018
  end-page: 879
  ident: bib12
  article-title: Implementation of advanced laser control strategies for powder bed fusion systems
  publication-title: Procedia Manuf.
– year: 2020
  ident: bib19
  article-title: . in
– volume: 20
  start-page: 231
  year: 2015
  end-page: 236
  ident: bib31
  article-title: Microstructure and mechanical properties of wrought and additive manufactured Ti-6Al-4 V cylindrical bars
  publication-title: Proc. Technol.
– volume: 61
  start-page: 1809
  year: 2013
  end-page: 1819
  ident: bib4
  article-title: Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder
  publication-title: Acta Mater.
– volume: 15
  start-page: 6556
  year: 2022
  ident: bib7
  article-title: The Study on Resolution Factors of LPBF Technology for Manufacturing Superelastic NiTi Endodontic Files
  publication-title: Materials
– volume: 117
  start-page: 845
  year: 2021
  end-page: 862
  ident: bib30
  article-title: Development of structured light 3D-scanner with high spatial resolution and its applications for additive manufacturing quality assurance
  publication-title: Int. J. Adv. Manuf. Technol.
– year: 2018
  ident: bib5
  article-title: Wohlers report 2018: 3D printing and additive manufacturing state of the industry: annual worldwide progress report
– volume: 12
  start-page: 239
  year: 2019
  ident: bib23
  article-title: Effect of scanning and support strategies on relative density of SLM-ed H13 steel in relation to specimen size
  publication-title: Materials
– volume: 31
  start-page: 931
  year: 2015
  end-page: 938
  ident: bib16
  article-title: Site specific control of crystallographic grain orientation through electron beam additive manufacturing
  publication-title: Mater. Sci. Technol.
– year: 2016
  ident: bib14
  article-title: . in
  publication-title: 2016 International Solid Freeform Fabrication Symposium
– volume: 2
  start-page: 337
  year: 2009
  end-page: 344
  ident: bib29
  article-title: Tuning of PID controllers using s
  publication-title: Int. J. Math. Model. Simul. Appl.
– volume: 196
  year: 2020
  ident: bib17
  article-title: The effect of beam scan strategies on microstructural variations in Ti-6Al-4V fabricated by electron beam powder bed fusion
  publication-title: Mater. Des.
– volume: 32
  year: 2020
  ident: bib24
  article-title: Layer-wise control of selective laser melting by means of inline melt pool area measurements
  publication-title: J. Laser Appl.
– volume: 22
  start-page: 601
  year: 2018
  ident: 10.1016/j.addma.2023.103449_bib9
  article-title: Thermal near infrared monitoring system for electron beam melting with emissivity tracking
  publication-title: Addit. Manuf.
– volume: 26
  start-page: 871
  year: 2018
  ident: 10.1016/j.addma.2023.103449_bib12
  article-title: Implementation of advanced laser control strategies for powder bed fusion systems
  publication-title: Procedia Manuf.
  doi: 10.1016/j.promfg.2018.07.112
– volume: 140
  start-page: 375
  year: 2017
  ident: 10.1016/j.addma.2023.103449_bib15
  article-title: Localized melt-scan strategy for site specific control of grain size and primary dendrite arm spacing in electron beam additive manufacturing
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2017.08.038
– volume: 68
  start-page: 229
  issue: 1
  year: 2019
  ident: 10.1016/j.addma.2023.103449_bib3
  article-title: High-speed X-ray investigation of melt dynamics during continuous-wave laser remelting of selective laser melted Co-Cr alloy
  publication-title: CIRP Ann.
  doi: 10.1016/j.cirp.2019.04.110
– year: 2020
  ident: 10.1016/j.addma.2023.103449_bib19
– volume: 117
  start-page: 845
  issue: 3
  year: 2021
  ident: 10.1016/j.addma.2023.103449_bib30
  article-title: Development of structured light 3D-scanner with high spatial resolution and its applications for additive manufacturing quality assurance
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 31
  start-page: 931
  issue: 8
  year: 2015
  ident: 10.1016/j.addma.2023.103449_bib16
  article-title: Site specific control of crystallographic grain orientation through electron beam additive manufacturing
  publication-title: Mater. Sci. Technol.
  doi: 10.1179/1743284714Y.0000000734
– volume: 12
  start-page: 1
  issue: 1
  year: 2022
  ident: 10.1016/j.addma.2023.103449_bib22
  article-title: In situ melt pool measurements for laser powder bed fusion using multi sensing and correlation analysis
  publication-title: Sci. Rep.
– ident: 10.1016/j.addma.2023.103449_bib28
– volume: 20
  start-page: 231
  year: 2015
  ident: 10.1016/j.addma.2023.103449_bib31
  article-title: Microstructure and mechanical properties of wrought and additive manufactured Ti-6Al-4 V cylindrical bars
  publication-title: Proc. Technol.
  doi: 10.1016/j.protcy.2015.07.037
– volume: 8
  start-page: 178
  issue: 2
  year: 2019
  ident: 10.1016/j.addma.2023.103449_bib2
  article-title: Benchmark study of thermal behavior, surface topography, and dendritic microstructure in selective laser melting of Inconel 625
  publication-title: Integr. Mater. Manuf. Innov.
  doi: 10.1007/s40192-019-00130-x
– volume: 4
  start-page: 411
  issue: 4
  year: 2019
  ident: 10.1016/j.addma.2023.103449_bib25
  article-title: In-process closed-loop control for stabilising the melt pool temperature in selective laser melting
  publication-title: Prog. Addit. Manuf.
  doi: 10.1007/s40964-019-00083-9
– volume: 2
  issue: 2
  year: 2022
  ident: 10.1016/j.addma.2023.103449_bib26
  article-title: Real-time image-based feedback control of laser powder bed fusion
  publication-title: ASME Lett. Dyn. Syst. Control
– volume: 15
  start-page: 6556
  issue: 19
  year: 2022
  ident: 10.1016/j.addma.2023.103449_bib7
  article-title: The Study on Resolution Factors of LPBF Technology for Manufacturing Superelastic NiTi Endodontic Files
  publication-title: Materials
  doi: 10.3390/ma15196556
– volume: 149
  year: 2020
  ident: 10.1016/j.addma.2023.103449_bib10
  article-title: Physics of humping formation in laser powder bed fusion
  publication-title: Int. J. Heat. Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2019.119172
– year: 2005
  ident: 10.1016/j.addma.2023.103449_bib27
– volume: 52
  year: 2022
  ident: 10.1016/j.addma.2023.103449_bib18
  article-title: SmartScan: an intelligent scanning approach for uniform thermal distribution, reduced residual stresses and deformations in PBF additive manufacturing
  publication-title: Addit. Manuf.
– volume: 32
  issue: 2
  year: 2020
  ident: 10.1016/j.addma.2023.103449_bib24
  article-title: Layer-wise control of selective laser melting by means of inline melt pool area measurements
  publication-title: J. Laser Appl.
  doi: 10.2351/7.0000108
– volume: 75
  start-page: 1089
  issue: 5
  year: 2014
  ident: 10.1016/j.addma.2023.103449_bib20
  article-title: In situ quality control of the selective laser melting process using a high-speed, real-time melt pool monitoring system
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-014-6214-8
– year: 2007
  ident: 10.1016/j.addma.2023.103449_bib8
  article-title: Feedback control of selective laser melting
– ident: 10.1016/j.addma.2023.103449_bib21
– volume: 2
  start-page: 337
  issue: 3
  year: 2009
  ident: 10.1016/j.addma.2023.103449_bib29
  article-title: Tuning of PID controllers using simulink
  publication-title: Int. J. Math. Model. Simul. Appl.
– year: 2018
  ident: 10.1016/j.addma.2023.103449_bib5
– volume: 22
  start-page: 302
  year: 2018
  ident: 10.1016/j.addma.2023.103449_bib1
  article-title: Correlation of selective laser melting-melt pool events with the tensile properties of Ti-6Al-4V ELI processed by laser powder bed fusion
  publication-title: Addit. Manuf.
– volume: 31
  year: 2020
  ident: 10.1016/j.addma.2023.103449_bib11
  article-title: Model-based feedforward control of laser powder bed fusion additive manufacturing
  publication-title: Addit. Manuf.
– volume: 61
  start-page: 1809
  issue: 5
  year: 2013
  ident: 10.1016/j.addma.2023.103449_bib4
  article-title: Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2012.11.052
– year: 2016
  ident: 10.1016/j.addma.2023.103449_bib14
  article-title: Laser path planning and power control strategies for powder bed fusion systems. in
– volume: 7
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.addma.2023.103449_bib6
  article-title: Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction
  publication-title: Sci. Rep.
– volume: 30
  year: 2019
  ident: 10.1016/j.addma.2023.103449_bib13
  article-title: Part geometry and conduction-based laser power control for powder bed fusion additive manufacturing
  publication-title: Addit. Manuf.
– volume: 12
  start-page: 239
  issue: 2
  year: 2019
  ident: 10.1016/j.addma.2023.103449_bib23
  article-title: Effect of scanning and support strategies on relative density of SLM-ed H13 steel in relation to specimen size
  publication-title: Materials
  doi: 10.3390/ma12020239
– volume: 196
  year: 2020
  ident: 10.1016/j.addma.2023.103449_bib17
  article-title: The effect of beam scan strategies on microstructural variations in Ti-6Al-4V fabricated by electron beam powder bed fusion
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2020.109165
SSID ssj0001537982
Score 2.4278767
Snippet Additive manufacturing (AM) is one of the most effective ways to fabricate parts with complex geometries using various materials. However, AM also suffers from...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103449
SubjectTerms 3D scanning
Closed-loop control
Laser powder bed fusion
Process monitoring
Quality control
Title Real-time process monitoring and closed-loop control on laser power via a customized laser powder bed fusion platform
URI https://dx.doi.org/10.1016/j.addma.2023.103449
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIq3PDBimji2Q0aEQAUEA1CJLbLPtlRUkghaBgZ-O748oEiIgSmJ7Yuii333xbn7jpBDaYURAXgzaZTD34yGaQWeZYkEzyNrUovJyTe3ajgSV4_ysUfOulwYDKtsbX9j02tr3bYMWm0OqvF4cM95jBWUAh5Am8uR8VOIFGf58Uf8vc8ikzSra0bheIYCHflQHeYV1nfNP8QTzD8XyKn5m4OaczoXK2S5RYv0tHmgVdJzxRpZmuMQXCezuwD1GJaIp1UT9E-f63WK3VQXlsKkfHWWTcqyom1kOi0LGmCze6EVVkmjb2NNNYVZQILP43dnvzttOJjQ4Ge4rUariZ4izN0go4vzh7Mha2spMAhOasq8CUhNKeEjL09MZJX0GhKeZhBpbbXgkY8saBU-P1yaxBBgrNCZCyfgxYn1ySbpF2XhtgiNhXFpmkkP1olwK5MoCRGA8bGCzME24Z0Cc2iJxrHexSTvIsqe8lrrOWo9b7S-TY6-hKqGZ-Pv4ap7M_mP6ZIHT_CX4M5_BXfJIl5h-BmXe6Q_fZm5_YBHpuagnnAHZOH08np4-wnIz-IQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxUxFD5BXKgLAz4iKtKF7Kx3ptN2mIULApKLPBYICbuxz-Say8wE7tXogj_FH-SceQgmhoUJq5m006Y5bb5-055zPoD3yksrkXhzZXWga0bLjXaRF5lyUSTe5p6Ckw8O9fhEfjlVpwtwNcTCkFtlj_0dprdo3ZeMemuOmslk9FWIlBSUkA8Q5opBwXov_PqJ_20Xn3a3cZLXhdj5fLw15r20AHeI2TMeLRIXrWVMotqwidcqGpeJvHCJMd5IkcTEO6ORjYc8Sx2yOmmKgC8uyg0fM-z3ATyUCBckm_DxMr052FFZXrQiVTRATiMcsh21fmUIKG3CI5FRwLukJJ7_2hFv7XI7S_C0p6dss7PAMiyE6hk8uZW08DnMj5BbctKkZ00XZcDOWmCgamYqz9y0vgieT-u6Yb0rPKsrhjw9nLOGZNnYj4lhhrk5Us-zye_gbyo9PiwWxDmd47FmambEq1_Ayb1Y-CUsVnUVXgFLpQ15XqjofJDYlc20colzNqbaFcGtgBgMWLo-szkJbEzLwYXte9lavSSrl53VV-DDn0ZNl9jj7s_1MDPlX-uzxK3nroav_7fhGjwaHx_sl_u7h3tv4DHVkO-bUG9hcXY-D6tIhmb2Xbv4GHy779V-DUmuHvM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-time+process+monitoring+and+closed-loop+control+on+laser+power+via+a+customized+laser+powder+bed+fusion+platform&rft.jtitle=Additive+manufacturing&rft.au=Wang%2C+Rongxuan&rft.au=Standfield%2C+Benjamin&rft.au=Dou%2C+Chaoran&rft.au=Law%2C+Andrew+C.&rft.date=2023-03-25&rft.pub=Elsevier+B.V&rft.issn=2214-8604&rft.eissn=2214-7810&rft.volume=66&rft_id=info:doi/10.1016%2Fj.addma.2023.103449&rft.externalDocID=S2214860423000623
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-8604&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-8604&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-8604&client=summon