Effectiveness of wind-constrained sea-ice momentum on formation of sea-ice distribution and upper halocline of Arctic Ocean in climate model

Initialization of sea ice and the upper halocline in the Arctic Ocean is crucial for sea-ice prediction, but their representation in climate models still remains biased. Here, using historical and four different simulations by a single climate model, we find that constraining the sea-ice momentum by...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental Research: Climate Vol. 3; no. 3; pp. 31004 - 31018
Main Authors Ono, Jun, Komuro, Yoshiki, Tatebe, Hiroaki, Kimura, Noriaki
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.09.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Initialization of sea ice and the upper halocline in the Arctic Ocean is crucial for sea-ice prediction, but their representation in climate models still remains biased. Here, using historical and four different simulations by a single climate model, we find that constraining the sea-ice momentum by surface wind stress contributes to a better representation of the sea-ice velocity, area, and concentration. Moreover, the wind-constrained sea-ice drift modifies the underlying ocean structure via ice-ocean stress, leading to an improved climatological halocline’s vertical structure in the Canada Basin. This is because the excessively represented negative wind and ice-ocean stress curl in the climate model is weakened when constraining the sea-ice momentum and consequently the downward vertical speed, including the Ekman pumping, is also weakened at depths of 0–500 m, alleviating the deepening of isohalines. From these results, the improvement of sea-ice and ocean states by constraining sea-ice momentum is expected to make sea-ice prediction more accurate.
AbstractList Initialization of sea ice and the upper halocline in the Arctic Ocean is crucial for sea-ice prediction, but their representation in climate models still remains biased. Here, using historical and four different simulations by a single climate model, we find that constraining the sea-ice momentum by surface wind stress contributes to a better representation of the sea-ice velocity, area, and concentration. Moreover, the wind-constrained sea-ice drift modifies the underlying ocean structure via ice-ocean stress, leading to an improved climatological halocline’s vertical structure in the Canada Basin. This is because the excessively represented negative wind and ice-ocean stress curl in the climate model is weakened when constraining the sea-ice momentum and consequently the downward vertical speed, including the Ekman pumping, is also weakened at depths of 0–500 m, alleviating the deepening of isohalines. From these results, the improvement of sea-ice and ocean states by constraining sea-ice momentum is expected to make sea-ice prediction more accurate.
Author Ono, Jun
Komuro, Yoshiki
Tatebe, Hiroaki
Kimura, Noriaki
Author_xml – sequence: 1
  givenname: Jun
  orcidid: 0000-0002-1826-7227
  surname: Ono
  fullname: Ono, Jun
  organization: Japan Agency for Marine-Earth Science and Technology , 3173-25 Showa-machi, Kanazawa-ku, Yokohama, Kanagawa 236-0001, Japan
– sequence: 2
  givenname: Yoshiki
  orcidid: 0000-0002-4322-1781
  surname: Komuro
  fullname: Komuro, Yoshiki
  organization: Japan Agency for Marine-Earth Science and Technology , 3173-25 Showa-machi, Kanazawa-ku, Yokohama, Kanagawa 236-0001, Japan
– sequence: 3
  givenname: Hiroaki
  orcidid: 0000-0002-2265-5847
  surname: Tatebe
  fullname: Tatebe, Hiroaki
  organization: Japan Agency for Marine-Earth Science and Technology , 3173-25 Showa-machi, Kanazawa-ku, Yokohama, Kanagawa 236-0001, Japan
– sequence: 4
  givenname: Noriaki
  orcidid: 0000-0002-1232-3638
  surname: Kimura
  fullname: Kimura, Noriaki
  organization: Atmosphere and Ocean Research Institute, The University of Tokyo , 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8568, Japan
BookMark eNp9kU9vFiEQxompibX23iM3L24LCyxwbJqqTZr0omfCn8HyZl_YwL4av4MfWrZvbTwYw4HJ8Dy_GWbeopNcMiB0QcklJUpdjVKMgxi1uLKBxeBfodOX1Mlf8Rt03tqOEDIqMWmtT9Gv2xjBr-k7ZGgNl4h_pBwGX3Jbq00ZAm5gh-QB78se8nrY45JxLHVv19Sj7vgjCKl7kjs85W0O-LAsUPGjnYufO2rTXtdezOMHDzbjlHF_6KANHmB-h15HOzc4f77P0NePt19uPg_3D5_ubq7vB88IW4c4hTGIUfLAJ6sU185y6QWhSgfrNIxKM6Ecc26C6ASnUnkriZUiUBq8Z2fo7sgNxe7MUnsL9acpNpmnRKnfjK29zRmMtJpyrscwRca9C8pJcJ7b6KVwEGVnkSPL19JahfjCo8RsyzHb9M02fXNcTrd8OFpSWcyuHGrun_2f_P0_5FD9bFg_hFFCuFlCZL8BAiCjrw
CODEN ERCNDD
Cites_doi 10.1038/s41467-018-05256-8
10.1016/j.jtrangeo.2009.08.004
10.1175/2009JTECHO701.1
10.1002/2014GL061694
10.1007/978-3-642-04683-4
10.1038/nature09051
10.1029/2003JC002009
10.1175/MWR-D-12-00057.1
10.1007/s10872-006-0041-y
10.1038/ngeo2277
10.1007/s00382-014-2190-9
10.1126/science.aai8204
10.1175/JCLI-D-14-00125.1
10.1023/A:1005504031923
10.1175/mwr-d-15-0007.1
10.1029/2001JC00104
10.1007/s00376-002-0059-z
10.1002/rog.20017
10.1002/2013GL058755
10.1029/2022MS003176
10.1038/ngeo2234
10.1002/qj.2401
10.1002/2014GL060799
10.1175/JCLI3892.1
10.1002/2013JC009724
10.1002/2017GL073042
10.5194/tc-12-3419-2018
10.1029/2021JC017176
10.1007/s10584-009-9683-2
10.1029/1999JC000113
10.22033/ESGF/CMIP6.5603
10.3402/polar.v32i0.20193
10.1175/1520-0493(1996)124<1256:DAUIAU>2.0.CO;2
10.1175/1520-0442(2001)014<2079:PAGOHW>2.0.CO;2
10.1007/s10872-009-0027-7
10.1126/science.adh5158
10.1038/s41598-021-91042-4
10.1175/JCLI-D-12-00612.1
10.5194/os-3-321-2007
10.1175/1520-0485(2002)032<1209:EOBBLP>2.0.CO;2
10.1175/JCLI-D-12-00837.1
10.1017/aog2020.13
10.1175/JCLI-D-11-00466.1
10.22033/ESGF/CMIP6.5655
10.1029/2018JC014378
10.2151/jmsj.2012-A11
10.22033/ESGF/CMIP6.5467
10.1002/2016GL071396
10.1002/2015GL066626
10.1029/2000GL011495
10.5194/tc-15-4703-2021
10.7265/N5H12ZX4
10.1029/2019MS002035
10.5194/gmd-12-2727-2019
10.1038/s41467-022-31117-6
10.1002/jgrc.20191
10.1029/2008JC005104
10.5194/gmd-9-1937-2016
10.1038/s43247-022-00498-3
10.1038/s41558-019-0551-4
10.1175/1520-0485(1997)027<1849:AEVPMF>2.0.CO;2
10.1088/1748-9326/aade56
10.1146/annurev-marine-032122-012034
10.1175/JTECH1871.1
10.5067/INAWUWO7QH7B
10.1002/grl.50129
10.2151/jmsj.2012-A14
10.1073/pnas.2120770119
10.1175/2009BAMS2778.1
10.5194/tc-12-675-2018
10.1029/2007JC004224
10.1175/JCLI-D-18-0750.1
10.1017/aog2020.15
10.1006/jcph.1996.0136
10.1016/0198-0149(81)90115-1
10.1175/JCLI-D-13-00614.1
10.1088/1748-9326/9/8/084009
10.1126/sciadv.aat6773
10.1029/JC087iC08p05845
10.1002/2017GL073155
10.1029/1999JC900100
10.1038/s41558-018-0379-3
10.5194/gmd-13-3643-2020
ContentType Journal Article
Copyright 2024 The Author(s). Published by IOP Publishing Ltd
Copyright_xml – notice: 2024 The Author(s). Published by IOP Publishing Ltd
DBID O3W
TSCCA
AAYXX
CITATION
DOA
DOI 10.1088/2752-5295/ad3fdc
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2752-5295
ExternalDocumentID oai_doaj_org_article_7a914492d6f34cbd8b7ebc4afc75bef7
10_1088_2752_5295_ad3fdc
erclad3fdc
GrantInformation_xml – fundername: Japan Ministry of Education, Culture, Sports, Science and Technology (MEXT)
  grantid: JPMXD0722680395; JPMXD1420318865
– fundername: Japan Society for the Promotion of Science (JSPS)
  grantid: JP23K11416
GroupedDBID ABHWH
ACHIP
AKPSB
ALMA_UNASSIGNED_HOLDINGS
CJUJL
GROUPED_DOAJ
N5L
O3W
TSCCA
AAYXX
CITATION
AEINN
ID FETCH-LOGICAL-c303t-f6d2d5274d46a8849ba47c50189dab9e289358b3bb6efb54178ca70a75d11dcc3
IEDL.DBID O3W
ISSN 2752-5295
IngestDate Wed Aug 27 01:31:27 EDT 2025
Tue Jul 01 04:31:09 EDT 2025
Sun Aug 18 16:50:26 EDT 2024
Tue Aug 20 22:17:07 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c303t-f6d2d5274d46a8849ba47c50189dab9e289358b3bb6efb54178ca70a75d11dcc3
Notes ERCL-100291.R2
ORCID 0000-0002-2265-5847
0000-0002-1232-3638
0000-0002-1826-7227
0000-0002-4322-1781
OpenAccessLink https://iopscience.iop.org/article/10.1088/2752-5295/ad3fdc
PageCount 15
ParticipantIDs iop_journals_10_1088_2752_5295_ad3fdc
doaj_primary_oai_doaj_org_article_7a914492d6f34cbd8b7ebc4afc75bef7
crossref_primary_10_1088_2752_5295_ad3fdc
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationTitle Environmental Research: Climate
PublicationTitleAbbrev ERCL
PublicationTitleAlternate Environ. Res.: Climate
PublicationYear 2024
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Chevallier (erclad3fdcbib14) 2013; 26
Sato (erclad3fdcbib59) 2014; 9
Nakanowatari (erclad3fdcbib51) 2014; 27
Kataoka (erclad3fdcbib31) 2020; 12
Ishii (erclad3fdcbib30) 2006; 62
Liu (erclad3fdcbib40) 2010; 18
Sigmond (erclad3fdcbib62) 2013; 40
Imada (erclad3fdcbib28) 2015; 143
Polyakov (erclad3fdcbib56) 2023; 381
Timmermans (erclad3fdcbib76) 2017; 44
Nakano (erclad3fdcbib50) 2002; 32
Morioka (erclad3fdcbib46) 2021; 11
Mochizuki (erclad3fdcbib43) 2019a
Peterson (erclad3fdcbib54) 2015; 44
Blackport (erclad3fdcbib9) 2019; 9
Antonov (erclad3fdcbib3) 1998
Årthun (erclad3fdcbib5) 2019; 32
Bitz (erclad3fdcbib8) 1999; 104
Meehl (erclad3fdcbib42) 2009; 90
Tsujino (erclad3fdcbib80) 2020; 13
Mu (erclad3fdcbib48) 2022; 14
Steele (erclad3fdcbib67) 2001; 14
Allard (erclad3fdcbib2) 2020; 61
Caya (erclad3fdcbib13) 2010; 27
Smedsrud (erclad3fdcbib64) 2013; 51
Coumou (erclad3fdcbib16) 2018; 9
Serreze (erclad3fdcbib61) 2000; 46
Tatebe (erclad3fdcbib71) 2019; 12
Leppäranta (erclad3fdcbib38) 2011
Mori (erclad3fdcbib45) 2014; 7
Wang (erclad3fdcbib82) 2013; 141
Yamagami (erclad3fdcbib83) 2022; 13
Komuro (erclad3fdcbib36) 2019
Murray (erclad3fdcbib49) 1996; 126
Sumata (erclad3fdcbib69) 2014; 119
Environmental Working Group (EWG) (erclad3fdcbib21) 1997
Msadek (erclad3fdcbib47) 2014; 41
Mori (erclad3fdcbib44) 2019; 9
Tatebe (erclad3fdcbib70) 2012; 90A
Bitz (erclad3fdcbib7) 2001; 106
Komuro (erclad3fdcbib35) 2012; 90A
Day (erclad3fdcbib18) 2014a; 27
Khon (erclad3fdcbib32) 2010; 100
Day (erclad3fdcbib17) 2014b; 41
Bloom (erclad3fdcbib11) 1996; 124
Kimura (erclad3fdcbib34) 2000; 27
Liu (erclad3fdcbib41) 2022; 119
Screen (erclad3fdcbib60) 2010; 464
Tschudi (erclad3fdcbib79) 2019
Thorndike (erclad3fdcbib73) 1982; 87
Årthun (erclad3fdcbib6) 2012; 25
Tietsche (erclad3fdcbib74) 2014; 41
Hirahara (erclad3fdcbib25) 2014; 27
Ono (erclad3fdcbib53) 2018; 12
Rantanen (erclad3fdcbib58) 2022; 3
Yang (erclad3fdcbib84) 2006; 19
Aagaard (erclad3fdcbib1) 1981; 28
Polyakov (erclad3fdcbib55) 2017; 356
Lindsay (erclad3fdcbib39) 2006; 23
Kimura (erclad3fdcbib33) 2013; 32
Dulière (erclad3fdcbib20) 2007; 3
Armstrong (erclad3fdcbib4) 2012
Cohen (erclad3fdcbib15) 2014; 7
Ono (erclad3fdcbib52) 2020; 61
Hunke (erclad3fdcbib27) 1997; 27
Steele (erclad3fdcbib66) 2004; 109
Guemas (erclad3fdcbib24) 2016a; 43
Kwok (erclad3fdcbib37) 2013; 118
Stark (erclad3fdcbib65) 2008; 113
Stroeve (erclad3fdcbib68) 2018; 13
Huang (erclad3fdcbib26) 2002; 19
Timmermans (erclad3fdcbib75) 2020; 125
Guemas (erclad3fdcbib23) 2016b; 142
Sigmond (erclad3fdcbib63) 2016; 43
Proshutinsky (erclad3fdcbib57) 2009; 114
Timmermans (erclad3fdcbib77) 2023; 16
Ishii (erclad3fdcbib29) 2009; 65
Tatebe (erclad3fdcbib72) 2018
Timmermans (erclad3fdcbib78) 2018; 4
Zhang (erclad3fdcbib85) 2003; 108
Dong (erclad3fdcbib19) 2021; 126
Wang (erclad3fdcbib81) 2021; 15
Eyring (erclad3fdcbib22) 2016; 9
Bushuk (erclad3fdcbib12) 2017; 44
Blockley (erclad3fdcbib10) 2018; 12
References_xml – volume: 9
  start-page: 2959
  year: 2018
  ident: erclad3fdcbib16
  article-title: The influence of Arctic amplification on mid-latitude summer circulation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05256-8
– volume: 18
  start-page: 434
  year: 2010
  ident: erclad3fdcbib40
  article-title: The potential economic variability of using the Northern Sea Route (NSR) as an alternative route between Asia and Europe
  publication-title: J. Transp. Geogr.
  doi: 10.1016/j.jtrangeo.2009.08.004
– volume: 27
  start-page: 353
  year: 2010
  ident: erclad3fdcbib13
  article-title: Analysis and forecasting of sea ice conditions with three-dimensional variational data assimilation and a coupled ice–ocean model
  publication-title: J. Atmos. Ocean. Technol.
  doi: 10.1175/2009JTECHO701.1
– volume: 41
  start-page: 7566
  year: 2014b
  ident: erclad3fdcbib17
  article-title: Will Arctic sea ice thickness initialization improve seasonal forecast skill?
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2014GL061694
– year: 2011
  ident: erclad3fdcbib38
  doi: 10.1007/978-3-642-04683-4
– volume: 464
  start-page: 1334
  year: 2010
  ident: erclad3fdcbib60
  article-title: The central role of diminishing sea ice in recent Arctic temperature amplification
  publication-title: Nature
  doi: 10.1038/nature09051
– volume: 109
  year: 2004
  ident: erclad3fdcbib66
  article-title: Circulation of summer Pacific halocline water in the Arctic Ocean
  publication-title: J. Geophys. Res. Oceans
  doi: 10.1029/2003JC002009
– volume: 141
  start-page: 1375
  year: 2013
  ident: erclad3fdcbib82
  article-title: Seasonal prediction of Arctic sea ice extent from a coupled dynamical forecast system
  publication-title: Mon. Weather Rev.
  doi: 10.1175/MWR-D-12-00057.1
– volume: 62
  start-page: 155
  year: 2006
  ident: erclad3fdcbib30
  article-title: Steric sea level changes estimated from historical ocean subsurface temperature and salinity analyses
  publication-title: J. Oceanogr.
  doi: 10.1007/s10872-006-0041-y
– volume: 7
  start-page: 869
  year: 2014
  ident: erclad3fdcbib45
  article-title: Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo2277
– volume: 44
  start-page: 147
  year: 2015
  ident: erclad3fdcbib54
  article-title: Assessing the forecast skill of Arctic sea ice extent in the GloSea4 seasonal prediction system
  publication-title: Clim. Dyn.
  doi: 10.1007/s00382-014-2190-9
– volume: 356
  start-page: 285
  year: 2017
  ident: erclad3fdcbib55
  article-title: Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean
  publication-title: Science
  doi: 10.1126/science.aai8204
– volume: 27
  start-page: 8884
  year: 2014
  ident: erclad3fdcbib51
  article-title: Predictability of the Barents sea ice in early winter: remote effects of oceanic and atmospheric thermal conditions from the North Atlantic
  publication-title: J. Clim.
  doi: 10.1175/JCLI-D-14-00125.1
– volume: 46
  start-page: 159
  year: 2000
  ident: erclad3fdcbib61
  article-title: Observational evidence of recent change in the northern high latitude environment
  publication-title: Clim. Change
  doi: 10.1023/A:1005504031923
– volume: 143
  start-page: 4597
  year: 2015
  ident: erclad3fdcbib28
  article-title: Predictability of two types of El-Niño assessed using an extended seasonal prediction system by MIROC
  publication-title: Mon. Weather Rev.
  doi: 10.1175/mwr-d-15-0007.1
– volume: 108
  start-page: 3170
  year: 2003
  ident: erclad3fdcbib85
  article-title: Assimilation of ice motion observations and comparisons with submarine ice thickness
  publication-title: J. Geophys. Res. Oceans
  doi: 10.1029/2001JC00104
– volume: 19
  start-page: 965
  year: 2002
  ident: erclad3fdcbib26
  article-title: Ocean data assimilation using intermittent analyses and continuous model error correction
  publication-title: Asv. In Atmos. Sci
  doi: 10.1007/s00376-002-0059-z
– volume: 51
  start-page: 415
  year: 2013
  ident: erclad3fdcbib64
  article-title: The role of the Barents Sea in the Arctic climate system
  publication-title: Rev. Geophys.
  doi: 10.1002/rog.20017
– volume: 41
  start-page: 1035
  year: 2014
  ident: erclad3fdcbib74
  article-title: Seasonal to interannual Arctic sea ice predictability in current global climate models
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2013GL058755
– volume: 14
  year: 2022
  ident: erclad3fdcbib48
  article-title: Sea-ice forecasts with an upgraded AWI coupled prediction system
  publication-title: J. Adv. Model. Earth Syst.
  doi: 10.1029/2022MS003176
– volume: 7
  start-page: 627
  year: 2014
  ident: erclad3fdcbib15
  article-title: Recent Arctic amplification and extreme mid-latitude weather
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo2234
– volume: 142
  start-page: 546
  year: 2016b
  ident: erclad3fdcbib23
  article-title: A review on Arctic sea-ice predictability and prediction on seasonal to decadal time-scales
  publication-title: Q. J. R. Meteorol. Soc.
  doi: 10.1002/qj.2401
– volume: 41
  start-page: 5208
  year: 2014
  ident: erclad3fdcbib47
  article-title: Importance of initial conditions in seasonal predictions of Arctic sea ice extent
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2014GL060799
– volume: 19
  start-page: 5366
  year: 2006
  ident: erclad3fdcbib84
  article-title: The seasonal variability of the Arctic Ocean Ekman transport and its role in the mixed layer heat and salt fluxes
  publication-title: J. Clim.
  doi: 10.1175/JCLI3892.1
– volume: 119
  start-page: 4887
  year: 2014
  ident: erclad3fdcbib69
  article-title: An intercomparison of Arctic ice drift products to deduce uncertainty estimates
  publication-title: J. Geophys. Res. Oceans
  doi: 10.1002/2013JC009724
– volume: 44
  start-page: 5008
  year: 2017
  ident: erclad3fdcbib76
  article-title: Seasonally derived components of the Canada Basin halocline
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2017GL073042
– volume: 12
  start-page: 3419
  year: 2018
  ident: erclad3fdcbib10
  article-title: Improving Met Office seasonal predictions of Arctic sea ice using assimilation of CryoSat-2 thickness
  publication-title: Cryosphere
  doi: 10.5194/tc-12-3419-2018
– volume: 126
  year: 2021
  ident: erclad3fdcbib19
  article-title: Interannual variability of surface salinity and Ekman pumping in the Canada Basin during summertime of 2003–2017
  publication-title: J. Geophys. Res. Ocean
  doi: 10.1029/2021JC017176
– volume: 100
  start-page: 757
  year: 2010
  ident: erclad3fdcbib32
  article-title: Perspectives of Northern Sea Route and Northwest passage in the twenty-first century
  publication-title: Clim. Change
  doi: 10.1007/s10584-009-9683-2
– volume: 106
  start-page: 2441
  year: 2001
  ident: erclad3fdcbib7
  article-title: Simulating the ice thickness distribution in a coupled climate model
  publication-title: J. Geophys. Res. Oceans
  doi: 10.1029/1999JC000113
– year: 2018
  ident: erclad3fdcbib72
  article-title: MIROC MIROC6 model output prepared for CMIP6 CMIP historical Version 20181212
  doi: 10.22033/ESGF/CMIP6.5603
– volume: 32
  year: 2013
  ident: erclad3fdcbib33
  article-title: Influence of winter sea-ice motion on summer ice cover in the Arctic
  publication-title: Polar. Res.
  doi: 10.3402/polar.v32i0.20193
– volume: 124
  start-page: 1256
  year: 1996
  ident: erclad3fdcbib11
  article-title: Data assimilation using incremental analysis updates
  publication-title: Mon. Weather Rev.
  doi: 10.1175/1520-0493(1996)124<1256:DAUIAU>2.0.CO;2
– volume: 14
  start-page: 2079
  year: 2001
  ident: erclad3fdcbib67
  article-title: PHC: A Global Ocean Hydrography with a High-Quality Arctic Ocean
  publication-title: J. Clim.
  doi: 10.1175/1520-0442(2001)014<2079:PAGOHW>2.0.CO;2
– volume: 65
  start-page: 287
  year: 2009
  ident: erclad3fdcbib29
  article-title: Reevaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias corrections
  publication-title: J. Oceanogr.
  doi: 10.1007/s10872-009-0027-7
– volume: 381
  start-page: 972
  year: 2023
  ident: erclad3fdcbib56
  article-title: Fluctuating Atlantic inflows modulate Atlantic atlantification
  publication-title: Science
  doi: 10.1126/science.adh5158
– volume: 11
  year: 2021
  ident: erclad3fdcbib46
  article-title: Summertime sea-ice prediction in the Weddell Sea improved by sea-ice thickness initialization
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-91042-4
– volume: 26
  start-page: 6092
  year: 2013
  ident: erclad3fdcbib14
  article-title: Seasonal forecasts of the pan-Arctic sea ice extent using a GCM-based seasonal prediction system
  publication-title: J. Clim.
  doi: 10.1175/JCLI-D-12-00612.1
– volume: 3
  start-page: 321
  year: 2007
  ident: erclad3fdcbib20
  article-title: On the assimilation of ice velocity and concentration data into large-scale sea ice models
  publication-title: Ocean Sci.
  doi: 10.5194/os-3-321-2007
– volume: 32
  start-page: 1209
  year: 2002
  ident: erclad3fdcbib50
  article-title: Effects of bottom boundary layer parameterization on reproducing deep and bottom waters in a world ocean model
  publication-title: J. Phys. Oceanogr.
  doi: 10.1175/1520-0485(2002)032<1209:EOBBLP>2.0.CO;2
– volume: 27
  start-page: 57
  year: 2014
  ident: erclad3fdcbib25
  article-title: Centennial-scale sea surface temperature analysis and its uncertainty
  publication-title: J. Clim.
  doi: 10.1175/JCLI-D-12-00837.1
– volume: 61
  start-page: 97
  year: 2020
  ident: erclad3fdcbib52
  article-title: Impact of sea-ice thickness initialized in April on Arctic sea-ice extent predictability with the MIROC climate model
  publication-title: Ann. Glaciol.
  doi: 10.1017/aog2020.13
– volume: 25
  start-page: 4736
  year: 2012
  ident: erclad3fdcbib6
  article-title: Quantifying the influence of Atlantic heat on Barents Sea ice variability and retreat
  publication-title: J. Clim.
  doi: 10.1175/JCLI-D-11-00466.1
– year: 2019
  ident: erclad3fdcbib36
  article-title: MIROC MIROC6 model output prepared for CMIP6 OMIP omip2. Version 20190821. Earth System Grid Federation
  doi: 10.22033/ESGF/CMIP6.5655
– volume: 125
  year: 2020
  ident: erclad3fdcbib75
  article-title: Understanding Arctic Ocean circulation: a review of ocean dynamics in a changing climate
  publication-title: J. Geophys. Res. Oceans
  doi: 10.1029/2018JC014378
– volume: 90A
  start-page: 213
  year: 2012
  ident: erclad3fdcbib35
  article-title: Sea-ice in twentieth-century simulations by new MIROC coupled models: a comparison between models with high resolution and with ice thickness distribution
  publication-title: J. Meteorol. Soc. Japan II
  doi: 10.2151/jmsj.2012-A11
– year: 2019a
  ident: erclad3fdcbib43
  article-title: MIROC MIROC6 model output prepared for CMIP6 DCPP dcppA-assim. Version 20190821
  publication-title: Earth System Grid Federation
  doi: 10.22033/ESGF/CMIP6.5467
– volume: 43
  start-page: 12457
  year: 2016
  ident: erclad3fdcbib63
  article-title: Skillful seasonal forecasts of Arctic sea ice retreat and advance dates in a dynamical forecasts system
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2016GL071396
– volume: 43
  start-page: 3889
  year: 2016a
  ident: erclad3fdcbib24
  article-title: Impact of sea ice initialization on sea ice and atmosphere prediction skill on seasonal timescales
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2015GL066626
– volume: 27
  start-page: 3735
  year: 2000
  ident: erclad3fdcbib34
  article-title: Relationship between sea-ice motion and geostrophic wind in the Northern Hemisphere
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2000GL011495
– volume: 15
  start-page: 4703
  year: 2021
  ident: erclad3fdcbib81
  article-title: Lasting impact of winds on Arctic sea ice through the ocean’s memory
  publication-title: Cryosphere
  doi: 10.5194/tc-15-4703-2021
– year: 1997
  ident: erclad3fdcbib21
  doi: 10.7265/N5H12ZX4
– volume: 12
  year: 2020
  ident: erclad3fdcbib31
  article-title: Seasonal to decadal predictions with MIROC6: description and basic evaluation
  publication-title: J. Adv. Model. Earth Syst.
  doi: 10.1029/2019MS002035
– volume: 12
  start-page: 2727
  year: 2019
  ident: erclad3fdcbib71
  article-title: Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6
  publication-title: Geosci. Model. Dev.
  doi: 10.5194/gmd-12-2727-2019
– volume: 13
  start-page: 3767
  year: 2022
  ident: erclad3fdcbib83
  article-title: Barents-Kara sea-ice decline attributed to surface warming in the Gulf Stream
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-31117-6
– volume: 118
  start-page: 2408
  year: 2013
  ident: erclad3fdcbib37
  article-title: Arctic sea ice circulation and drift speed: decadal trends and ocean currents
  publication-title: J. Geophys. Res. Oceans
  doi: 10.1002/jgrc.20191
– volume: 114
  start-page: C00A10
  year: 2009
  ident: erclad3fdcbib57
  article-title: Beaufort Gyre freshwater reservoir: state and variability from observations
  publication-title: J. Geophys. Res. Oceans
  doi: 10.1029/2008JC005104
– volume: 9
  start-page: 1937
  year: 2016
  ident: erclad3fdcbib22
  article-title: Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-9-1937-2016
– volume: 3
  start-page: 168
  year: 2022
  ident: erclad3fdcbib58
  article-title: The Arctic has warmed nearly four times faster than the globe since 1979
  publication-title: Commun. Earth Environ.
  doi: 10.1038/s43247-022-00498-3
– year: 2012
  ident: erclad3fdcbib4
  article-title: DMSP SSM/I-SSMIS Pathfinder daily EASE-grid brightness temperatures
– volume: 9
  start-page: 697
  year: 2019
  ident: erclad3fdcbib9
  article-title: Minimal influence of reduced Arctic sea ice on coincident cold winters in mid-latitudes
  publication-title: Nat. Clim. Change
  doi: 10.1038/s41558-019-0551-4
– volume: 27
  start-page: 1849
  year: 1997
  ident: erclad3fdcbib27
  article-title: An elastic-viscous-plastic model for sea ice dynamics
  publication-title: J. Phys. Oceanogr.
  doi: 10.1175/1520-0485(1997)027<1849:AEVPMF>2.0.CO;2
– volume: 13
  year: 2018
  ident: erclad3fdcbib68
  article-title: Changing state of Arctic sea ice across all seasons
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/aade56
– volume: 16
  start-page: 223
  year: 2023
  ident: erclad3fdcbib77
  article-title: The Arctic Ocean’s Beaufort Gyre
  publication-title: Annu. Rev. Mar. Sci.
  doi: 10.1146/annurev-marine-032122-012034
– volume: 23
  start-page: 742
  year: 2006
  ident: erclad3fdcbib39
  article-title: Assimilation of ice concentration in an ice–ocean model
  publication-title: J. Atmos. Ocean. Technol.
  doi: 10.1175/JTECH1871.1
– year: 2019
  ident: erclad3fdcbib79
  article-title: Polar pathfinder daily 25 km EASE-grid Sea Ice Motion Vectors, Version 4
  doi: 10.5067/INAWUWO7QH7B
– volume: 40
  start-page: 529
  year: 2013
  ident: erclad3fdcbib62
  article-title: Seasonal forecast skill of Arctic sea ice area in a dynamical forecast system
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/grl.50129
– volume: 90A
  start-page: 275
  year: 2012
  ident: erclad3fdcbib70
  article-title: The initialization of the MIROC climate models with hydrographic data assimilation for decadal prediction
  publication-title: J. Meteorol. Soc. Japan
  doi: 10.2151/jmsj.2012-A14
– volume: 119
  year: 2022
  ident: erclad3fdcbib41
  article-title: Atmospheric forcing dominates winter Barents-Kara sea ice variability on interannual to decadal time scales
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.2120770119
– volume: 90
  start-page: 1467
  year: 2009
  ident: erclad3fdcbib42
  article-title: Decadal prediction: can it be skillful?
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/2009BAMS2778.1
– volume: 12
  start-page: 675
  year: 2018
  ident: erclad3fdcbib53
  article-title: Mechanisms influencing seasonal to inter-annual prediction skill of sea ice extent in the Arctic Ocean in MIROC
  publication-title: Cryosphere
  doi: 10.5194/tc-12-675-2018
– volume: 113
  start-page: C05S91
  year: 2008
  ident: erclad3fdcbib65
  article-title: Sea ice concentration and motion assimilation in a sea ice-ocean model
  publication-title: J. Geophys. Res. Oceans
  doi: 10.1029/2007JC004224
– volume: 32
  start-page: 3327
  year: 2019
  ident: erclad3fdcbib5
  article-title: The role of Atlantic heat transport in future Arctic winter sea ice loss
  publication-title: J. Clim.
  doi: 10.1175/JCLI-D-18-0750.1
– volume: 61
  start-page: 78
  year: 2020
  ident: erclad3fdcbib2
  article-title: Analyzing the impact of CryoSat-2 ice thickness initialization on seasonal Arctic Sea ice prediction
  publication-title: Ann. Glaciol.
  doi: 10.1017/aog2020.15
– volume: 126
  start-page: 251
  year: 1996
  ident: erclad3fdcbib49
  article-title: Explicit generation of orthogonal grids for ocean models
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1996.0136
– volume: 28
  start-page: 529
  year: 1981
  ident: erclad3fdcbib1
  article-title: On the halocline of the Arctic Ocean
  publication-title: Deep-Sea Res. I
  doi: 10.1016/0198-0149(81)90115-1
– volume: 27
  start-page: 4371
  year: 2014a
  ident: erclad3fdcbib18
  article-title: Pan-Arctic and regional sea ice predictability: initialization month dependence
  publication-title: J. Clim.
  doi: 10.1175/JCLI-D-13-00614.1
– volume: 9
  year: 2014
  ident: erclad3fdcbib59
  article-title: Influence of the Gulf Stream on the Barents Sea ice retreat and Eurasian coldness during early winter
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/9/8/084009
– volume: 4
  start-page: eaat6773
  year: 2018
  ident: erclad3fdcbib78
  article-title: Warming of the interior Arctic Ocean linked to sea ice losses at the basin margins
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aat6773
– start-page: p 166
  year: 1998
  ident: erclad3fdcbib3
– volume: 87
  start-page: 5845
  year: 1982
  ident: erclad3fdcbib73
  article-title: Sea ice motion in response to geostrophic winds
  publication-title: J. Geophys. Res. Oceans
  doi: 10.1029/JC087iC08p05845
– volume: 44
  start-page: 4953
  year: 2017
  ident: erclad3fdcbib12
  article-title: Skillful regional prediction of Arctic sea ice on seasonal timescales
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2017GL073155
– volume: 104
  start-page: 15669
  year: 1999
  ident: erclad3fdcbib8
  article-title: An energy-conserving thermodynamic model of sea ice
  publication-title: J. Geophys. Res. Oceans
  doi: 10.1029/1999JC900100
– volume: 9
  start-page: 123
  year: 2019
  ident: erclad3fdcbib44
  article-title: A reconciled estimate of the influence of Arctic sea-ice loss on recent Eurasian cooling
  publication-title: Nat. Clim. Change
  doi: 10.1038/s41558-018-0379-3
– volume: 13
  start-page: 3643
  year: 2020
  ident: erclad3fdcbib80
  article-title: Evaluation of global ocean–sea-ice model simulations based on the experimental protocols of the ocean model intercomparison project phase 2 (OMIP-2)
  publication-title: Geosci. Model. Dev.
  doi: 10.5194/gmd-13-3643-2020
SSID ssj0002856999
Score 2.2667665
Snippet Initialization of sea ice and the upper halocline in the Arctic Ocean is crucial for sea-ice prediction, but their representation in climate models still...
SourceID doaj
crossref
iop
SourceType Open Website
Index Database
Enrichment Source
Publisher
StartPage 31004
SubjectTerms climate model
halocline
sea ice
sea-ice momentum
upper Arctic Ocean
wind stress
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07TxwxELYiKpoIBFEugcgFFCms2zu_S4KCEBJJEyQ6yx7bCgj2Vsed-BP8aGZ2F3Q0SYO22x17rRnb840f3zB2ZH0B4nESOPMZobyqwgE44WSRTQVvdc-uf_nLnF-pi2t9vZHqi86EDfTAg-KmNnrE_H6eTZUKUnbJlgQqVrA6ldrfI0eftxFM3fZLRtog9Bn3JXEkTedWU9Tl9TRmWTO88UM9XT96l5tFt-FdznbYxxEW8pOhObvsQ2n32NNALTzOR3xR-SNG0AII0lFmh5I5dlSBQ53fE5HCan3PFy1_vY9IJV4EMhHkjrmteGwzX3ddWfK_EZ0ZIU2SPVnShSn-G0ps-U3L8QNWRJXncrfPrs5-_jk9F2P2BAHollaimjzPGoPOrEx0TvkUlQXi7_M5Jl8w0pLaJZmSKTVpNbMOom2i1Xk2ywDyE9tqF235zHiSxs2qMxLBgTKy8YCBs8ciOAOYJtUJ-_6iy9ANJBmh39x2LpDeA-k9DHqfsB-k7Fc5orfuX6DRw2j08D-jT9gxmiqMw-3hHz_jb-TKEu6CxIcIURsVuly_vEd7vrLtOYKd4ezZAdtaLdflEMHKKn3r--UznqDpJg
  priority: 102
  providerName: Directory of Open Access Journals
Title Effectiveness of wind-constrained sea-ice momentum on formation of sea-ice distribution and upper halocline of Arctic Ocean in climate model
URI https://iopscience.iop.org/article/10.1088/2752-5295/ad3fdc
https://doaj.org/article/7a914492d6f34cbd8b7ebc4afc75bef7
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NaxUxEA-1XryIouLzo-SgBw-x-zbf9FTFUgTtxWJvIZkkKLT7ltf38J_wj-7MbvqwICJ7WXYnyTJJZua3yfzC2BvrCxCPk0DLZ4TyqgoH4ISTRXYVvNUTu_6Xr-b0XH2-0Bd77GiXC7Mam-l_j7czUfCswrYhzh32VhN-8vowZlkz3GP3pTOOkNeZ_L77wdI7bTD6aUuTfyt4xxVNjP3oYLDVPxzMySP2sEWG_Hj-jsdsrwxP2O-ZXbiZJL6q_BeCaAEU1dHhDiVzHKsCZzu_Ii6FzfaKrwa-S0mkErcCmThy2_FWPA6Zb8exrPmPiP6Mgk2SPV5TzhQ_gxIH_nPg-AIrospzuXzKzk8-fft4KtoBCgLQM21ENbnPGnFnViY6p3yKygJR-Pkcky8ItqR2SaZkSk1aLa2DaLtodV4uM4B8xvaH1VCeM56kccvqjMT4QBnZeUDs7LEIGgHTpbpg7251GcaZJyNM69vOBdJ7IL2HWe8L9oGUvZMjhuvpAfZ2aL0dbPSI9XyfTZUKUnbJlgQqVrA6lWoX7C12VWgz7vofjfE7cmUNl0HiRZyonQpjri_-s6qX7EGPIc28w-wV29-st-U1hiSbdDBB-YNpAN4AgKfe7w
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaglRCXqqgglkfxoRw4mM3G72NbWJUCLQcqerP8FEhtNtruij_Bj2YmcVdUQgjlEiVjOxrbM9_E9jeEHGibI_I4MbB8igkrCjMxGmZ45k2JVsuBXf_zmTq5EKeX8rLmOR3Owiz6avrfwu1IFDyqsG6IM9NWS4yfrJz6xEuK0z6V-2RbcqUwd8M5_7b5ydIaqQAB1eXJvxW-444G1n5wMtDyH05mvkt2Kjqkh-O3PCL3crdHfo0Mw9Us0UWhPyGQZhGRHSZ4yInCeGUw4-k18ims1td00dHNsUQscSuQkCe3priivkt03fd5Sb978GkIOFH2cInnpuh5zL6jPzoKL6AirDzlq8fkYv7-6_EJq0kUWATvtGJFpTZJiD2TUN4YYYMXOiKNn00-2AwBF5cm8BBULkGKmTbR68ZrmWazFCN_Qra6RZefEhq4MrNiFAeMIBRvbIT42UIRMASqCWVC3tzq0vUjV4Yb1riNcah3h3p3o94n5AiVvZFDluvhAfS4qz3utLcQ79k2qcJFDMkEnUMUvkQtQy56Ql5DV7k6627-0Ri9I5eX8cpxuJAXtREOBtCz_6zqFXnw5d3cffpw9vE5edgCwhk3nL0gW6vlOr8EhLIK-8Mo_A37VeHp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effectiveness+of+wind-constrained+sea-ice+momentum+on+formation+of+sea-ice+distribution+and+upper+halocline+of+Arctic+Ocean+in+climate+model&rft.jtitle=Environmental+Research%3A+Climate&rft.au=Ono%2C+Jun&rft.au=Komuro%2C+Yoshiki&rft.au=Tatebe%2C+Hiroaki&rft.au=Kimura%2C+Noriaki&rft.date=2024-09-01&rft.pub=IOP+Publishing&rft.eissn=2752-5295&rft.volume=3&rft.issue=3&rft_id=info:doi/10.1088%2F2752-5295%2Fad3fdc&rft.externalDocID=erclad3fdc
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2752-5295&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2752-5295&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2752-5295&client=summon