Effects of alternating wet and dry irrigation regimes on rice growth and physiology characteristics in southeast China

Alternative wet and dry irrigation (AWD) has been widely used for rice plants in many countries. Determining the appropriate irrigation amount for different growth stages is of great significance for balancing irrigation water use efficiency ( WUE ) and yield. Five irrigation regimes: continuous flo...

Full description

Saved in:
Bibliographic Details
Published inPaddy and water environment Vol. 23; no. 2; pp. 301 - 321
Main Authors Zhou, Rui, Yan, Haofang, Zhang, Chuan, Zhu, Xingye, Wang, Guoqing, He, Bin, Disasa, Kinda Negessa, Lakhiar, Imran Ali, Xue, Run, Zhou, Yudong, Wang, Biyu, Li, Jun, Wang, Xuanxuan, Bao, Rongxuan, Liu, Youwei, Han, Yujing
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 01.04.2025
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Alternative wet and dry irrigation (AWD) has been widely used for rice plants in many countries. Determining the appropriate irrigation amount for different growth stages is of great significance for balancing irrigation water use efficiency ( WUE ) and yield. Five irrigation regimes: continuous flooding irrigation as control group (CK), AWD in early tillering and jointing stage (CW1), AWD in whole growth stage (CW2), slightly controlled irrigation with a minimum moisture soil content in the range 60–85% θ s (CW3) and severely controlled irrigation with minimum soil moisture content in the range of 50–60% θ s (CW4), were applied in this study for rice fields in southeast China. The growth index, root morphology, physiological characteristics, chlorophyll fluorescence parameters, soil physicochemical properties, and rice yield were measured under the five irrigation regimes. The results showed that different irrigation treatments had no significant effects on plant height at all growth stages of rice plants but had greater effects on LAI at the heading and milking stages. In comparison with CK, the LAI decreased by 6.72% under the CW4 treatment. Additionally, the total root length, root volume, and root surface area increased by 21.7%, 24.2%, and 25.4%, respectively, in the CW1 treatment compared with the CK treatment. The maximum transpiration rates ( T r ) of the CW1 treatment at different growth stages were 40.58%, 39.92%, and 38.76% higher than those of the CW2, CW3, and CW4 treatments, respectively. The amount of irrigation had a significant influence on the T r of rice. The influence of the different irrigation regimes on the maximum quantum efficiency ( F v /F m ) of rice at the milking stage was more significant than that at the heading stage. At 13:00 of heading and milk maturity, the F v /F m of CW1 increased by 0.073 and 0.097 compared to that of CW4, respectively, and increased by 0.015–0.055 and 0.055–0.080 for the rest of the day. The results also showed that, compared with CK, the CW1 and CW2 treatments reduced soil bulk density and increased soil porosity, which were conducive to crop root growth, and the CW1 treatment significantly reduced the soil (10–40 cm) NO 3 − N content. Compared with CK, CW1 treatment increased WUE by 67.8% and yield by 4.22%, whereas the WUE of CW2, CW3, and CW4 treatments increased significantly by 127.2%, 156.5%, and 246.2%, respectively, but the yield decreased by 6.4%, 17.5%, and 26.3%, respectively. It was concluded that AWD at the early tillering joint stage (CW1) can enhance rice yield and improve the growth index and physiological characteristics of rice at each growth stage compared to CK. This may be attributed to the greater soil porosity and promotion of better crop root growth associated with CW1, making it a suitable AWD irrigation regime for rice cultivation in southeast China.
AbstractList Alternative wet and dry irrigation (AWD) has been widely used for rice plants in many countries. Determining the appropriate irrigation amount for different growth stages is of great significance for balancing irrigation water use efficiency (WUE) and yield. Five irrigation regimes: continuous flooding irrigation as control group (CK), AWD in early tillering and jointing stage (CW1), AWD in whole growth stage (CW2), slightly controlled irrigation with a minimum moisture soil content in the range 60–85%θs (CW3) and severely controlled irrigation with minimum soil moisture content in the range of 50–60%θs (CW4), were applied in this study for rice fields in southeast China. The growth index, root morphology, physiological characteristics, chlorophyll fluorescence parameters, soil physicochemical properties, and rice yield were measured under the five irrigation regimes. The results showed that different irrigation treatments had no significant effects on plant height at all growth stages of rice plants but had greater effects on LAI at the heading and milking stages. In comparison with CK, the LAI decreased by 6.72% under the CW4 treatment. Additionally, the total root length, root volume, and root surface area increased by 21.7%, 24.2%, and 25.4%, respectively, in the CW1 treatment compared with the CK treatment. The maximum transpiration rates (Tr) of the CW1 treatment at different growth stages were 40.58%, 39.92%, and 38.76% higher than those of the CW2, CW3, and CW4 treatments, respectively. The amount of irrigation had a significant influence on the Tr of rice. The influence of the different irrigation regimes on the maximum quantum efficiency (Fv/Fm) of rice at the milking stage was more significant than that at the heading stage. At 13:00 of heading and milk maturity, the Fv/Fm of CW1 increased by 0.073 and 0.097 compared to that of CW4, respectively, and increased by 0.015–0.055 and 0.055–0.080 for the rest of the day. The results also showed that, compared with CK, the CW1 and CW2 treatments reduced soil bulk density and increased soil porosity, which were conducive to crop root growth, and the CW1 treatment significantly reduced the soil (10–40 cm) NO3−N content. Compared with CK, CW1 treatment increased WUE by 67.8% and yield by 4.22%, whereas the WUE of CW2, CW3, and CW4 treatments increased significantly by 127.2%, 156.5%, and 246.2%, respectively, but the yield decreased by 6.4%, 17.5%, and 26.3%, respectively. It was concluded that AWD at the early tillering joint stage (CW1) can enhance rice yield and improve the growth index and physiological characteristics of rice at each growth stage compared to CK. This may be attributed to the greater soil porosity and promotion of better crop root growth associated with CW1, making it a suitable AWD irrigation regime for rice cultivation in southeast China.
Alternative wet and dry irrigation (AWD) has been widely used for rice plants in many countries. Determining the appropriate irrigation amount for different growth stages is of great significance for balancing irrigation water use efficiency ( WUE ) and yield. Five irrigation regimes: continuous flooding irrigation as control group (CK), AWD in early tillering and jointing stage (CW1), AWD in whole growth stage (CW2), slightly controlled irrigation with a minimum moisture soil content in the range 60–85% θ s (CW3) and severely controlled irrigation with minimum soil moisture content in the range of 50–60% θ s (CW4), were applied in this study for rice fields in southeast China. The growth index, root morphology, physiological characteristics, chlorophyll fluorescence parameters, soil physicochemical properties, and rice yield were measured under the five irrigation regimes. The results showed that different irrigation treatments had no significant effects on plant height at all growth stages of rice plants but had greater effects on LAI at the heading and milking stages. In comparison with CK, the LAI decreased by 6.72% under the CW4 treatment. Additionally, the total root length, root volume, and root surface area increased by 21.7%, 24.2%, and 25.4%, respectively, in the CW1 treatment compared with the CK treatment. The maximum transpiration rates ( T r ) of the CW1 treatment at different growth stages were 40.58%, 39.92%, and 38.76% higher than those of the CW2, CW3, and CW4 treatments, respectively. The amount of irrigation had a significant influence on the T r of rice. The influence of the different irrigation regimes on the maximum quantum efficiency ( F v /F m ) of rice at the milking stage was more significant than that at the heading stage. At 13:00 of heading and milk maturity, the F v /F m of CW1 increased by 0.073 and 0.097 compared to that of CW4, respectively, and increased by 0.015–0.055 and 0.055–0.080 for the rest of the day. The results also showed that, compared with CK, the CW1 and CW2 treatments reduced soil bulk density and increased soil porosity, which were conducive to crop root growth, and the CW1 treatment significantly reduced the soil (10–40 cm) NO 3 − N content. Compared with CK, CW1 treatment increased WUE by 67.8% and yield by 4.22%, whereas the WUE of CW2, CW3, and CW4 treatments increased significantly by 127.2%, 156.5%, and 246.2%, respectively, but the yield decreased by 6.4%, 17.5%, and 26.3%, respectively. It was concluded that AWD at the early tillering joint stage (CW1) can enhance rice yield and improve the growth index and physiological characteristics of rice at each growth stage compared to CK. This may be attributed to the greater soil porosity and promotion of better crop root growth associated with CW1, making it a suitable AWD irrigation regime for rice cultivation in southeast China.
Author Zhou, Rui
Zhang, Chuan
He, Bin
Yan, Haofang
Wang, Biyu
Li, Jun
Liu, Youwei
Wang, Xuanxuan
Zhu, Xingye
Lakhiar, Imran Ali
Han, Yujing
Wang, Guoqing
Xue, Run
Disasa, Kinda Negessa
Zhou, Yudong
Bao, Rongxuan
Author_xml – sequence: 1
  givenname: Rui
  surname: Zhou
  fullname: Zhou, Rui
  organization: Research Center of Fluid Machinery Engineering and Technology, Jiangsu University
– sequence: 2
  givenname: Haofang
  orcidid: 0009-0003-1018-1255
  surname: Yan
  fullname: Yan, Haofang
  email: yanhaofangyhf@163.com
  organization: Research Center of Fluid Machinery Engineering and Technology, Jiangsu University
– sequence: 3
  givenname: Chuan
  surname: Zhang
  fullname: Zhang, Chuan
  organization: School of Agricultural Engineering, Jiangsu University
– sequence: 4
  givenname: Xingye
  surname: Zhu
  fullname: Zhu, Xingye
  organization: Research Center of Fluid Machinery Engineering and Technology, Jiangsu University
– sequence: 5
  givenname: Guoqing
  surname: Wang
  fullname: Wang, Guoqing
  organization: State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute
– sequence: 6
  givenname: Bin
  surname: He
  fullname: He, Bin
  organization: Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences
– sequence: 7
  givenname: Kinda Negessa
  surname: Disasa
  fullname: Disasa, Kinda Negessa
  organization: Research Center of Fluid Machinery Engineering and Technology, Jiangsu University
– sequence: 8
  givenname: Imran Ali
  surname: Lakhiar
  fullname: Lakhiar, Imran Ali
  organization: Research Center of Fluid Machinery Engineering and Technology, Jiangsu University
– sequence: 9
  givenname: Run
  surname: Xue
  fullname: Xue, Run
  organization: School of Agricultural Engineering, Jiangsu University
– sequence: 10
  givenname: Yudong
  surname: Zhou
  fullname: Zhou, Yudong
  organization: Research Center of Fluid Machinery Engineering and Technology, Jiangsu University
– sequence: 11
  givenname: Biyu
  surname: Wang
  fullname: Wang, Biyu
  organization: Research Center of Fluid Machinery Engineering and Technology, Jiangsu University
– sequence: 12
  givenname: Jun
  surname: Li
  fullname: Li, Jun
  organization: School of Agricultural Engineering, Jiangsu University
– sequence: 13
  givenname: Xuanxuan
  surname: Wang
  fullname: Wang, Xuanxuan
  organization: Research Center of Fluid Machinery Engineering and Technology, Jiangsu University
– sequence: 14
  givenname: Rongxuan
  surname: Bao
  fullname: Bao, Rongxuan
  organization: Research Center of Fluid Machinery Engineering and Technology, Jiangsu University
– sequence: 15
  givenname: Youwei
  surname: Liu
  fullname: Liu, Youwei
  organization: Research Center of Fluid Machinery Engineering and Technology, Jiangsu University
– sequence: 16
  givenname: Yujing
  surname: Han
  fullname: Han, Yujing
  organization: Research Center of Fluid Machinery Engineering and Technology, Jiangsu University
BookMark eNp9kM1OwzAQhC1UJNrCC3CyxDmwjpO4OaKq_EhIXOBsOY6duErtYrtUeXtMA-LGaUe734y0s0Az66xC6JrALQFgd4EApTSDvMyAAKmy-gzNSUVIlpdQzH51UcMFWoSwBchZQckcfW60VjIG7DQWQ1Teimhsh48qYmFb3PoRG-9Nl9bOYq86s1OJTtJIhTvvjrE_kft-DMYNrhux7IUXMoWZEI0M2Fgc3CH2SoSI172x4hKdazEEdfUzl-j9YfO2fspeXh-f1_cvmaRAY6ZLSqFiUhdQ57IGBbLOm1y2REBTVSSdaFUwVmrd6IKyUgrZKs1EqUA1jNAluply9959HFSIfOsO6cchcEpqQlewgipR-URJ70LwSvO9NzvhR06Af_fLp3556pef-uV1MtHJFBJsO-X_ov9xfQHJRoGM
Cites_doi 10.1111/j.1672-9072.2007.00555.x
10.1016/j.fcr.2021.108165
10.1016/j.plantsci.2008.06.002
10.1007/s11120-013-9885-3
10.1016/j.jclepro.2019.03.212
10.1016/j.fcr.2015.02.007
10.1016/j.agwat.2020.106263
10.1016/j.scitotenv.2019.03.392
10.1002/ird.2856
10.1016/j.fcr.2008.07.010
10.17221/193/2009-PSE
10.1007/s11738-006-0013-2
10.11648/j.aff.20140302.16
10.1016/j.geoderma.2018.06.014
10.1016/j.jclepro.2022.131487
10.1016/j.indcrop.2014.12.002
10.3390/agronomy13112798
10.3390/horticulturae7080238
10.1016/j.agwat.2019.105981
10.1007/s11274-010-0444-1
10.1016/j.jclepro.2021.125811
10.1016/j.agwat.2020.106240
10.1016/j.fcr.2009.03.004
10.1016/j.agwat.2022.107464
10.1016/j.cj.2018.04.005
10.1093/jxb/eru532
10.1016/j.jclepro.2020.124019
10.1016/j.agwat.2017.01.013
10.1016/j.fcr.2008.03.004
10.1016/j.fcr.2012.12.003
10.1016/j.soilbio.2011.12.028
10.1016/j.agwat.2018.09.041
10.1007/s13205-016-0542-3
10.3390/w12010289
10.1016/j.fcr.2016.03.006
10.1016/S2095-3119(20)63409-8
10.1080/23311843.2019.1682106
10.1016/S2095-3119(12)60082-3
10.1016/j.scienta.2008.08.006
10.1111/aab.12540
10.1016/j.agwat.2018.02.033
10.1016/j.agee.2023.108787
10.1080/1343943X.2016.1242373
10.1016/j.fcr.2011.09.018
10.1016/j.agwat.2023.108196
10.1016/j.fcr.2014.09.010
10.1016/j.agwat.2017.08.018
10.1016/S0378-3774(00)00128-1
10.1016/j.agwat.2016.11.005
10.1016/S1671-2927(11)60193-4
10.1016/j.agwat.2020.106581
10.1016/S2095-3119(16)61506-X
10.1016/j.agwat.2018.05.022
10.1002/fes3.29
10.1016/j.fcr.2019.107698
10.32615/ps.2019.136
10.1016/j.envexpbot.2023.105605
10.1111/gcb.16204
10.1016/j.fcr.2012.06.015
10.2135/cropsci2009.02.0099
10.1016/j.fcr.2016.12.002
10.1007/s00374-017-1190-4
10.1007/s12011-010-8742-x
10.1007/s10333-014-0423-5
10.1007/s11099-008-0108-7
10.1080/03650340.2010.522993
10.1016/j.indcrop.2012.04.003
10.1007/s00704-024-04891-0
10.1111/j.1365-3040.2009.01934.x
10.1016/j.agwat.2022.107486
10.1016/j.agwat.2018.12.017
10.1016/j.agwat.2020.106363
10.1016/j.agwat.2023.108265
10.3389/fpls.2018.01223
10.3390/agronomy10060888
10.3390/agronomy14030548
10.1002/fes3.110
10.1093/jxb/err263
10.1016/j.agwat.2023.108333
10.1016/j.plaphy.2016.04.046
10.1093/aob/mcn199
10.1016/j.agwat.2022.108047
10.1016/j.agwat.2004.05.003
ContentType Journal Article
Copyright The Author(s), under exclusive licence to the International Society of Paddy and Water Environment Engineering 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. 2025
Copyright_xml – notice: The Author(s), under exclusive licence to the International Society of Paddy and Water Environment Engineering 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. 2025
DBID AAYXX
CITATION
7QH
7ST
7UA
C1K
F1W
H95
L.G
SOI
DOI 10.1007/s10333-025-01016-9
DatabaseName CrossRef
Aqualine
Environment Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aqualine
Environment Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1611-2504
EndPage 321
ExternalDocumentID 10_1007_s10333_025_01016_9
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: the Science and Technology Planning Project of Guangdong Province
  grantid: 2019B121201004
– fundername: the Key R&D Project of Jiangsu Province
  grantid: BE2022351
– fundername: the Natural Science Foundation of China
  grantid: 52121006; U2243228; 1509107; 42177065
GroupedDBID -Y2
.86
.VR
06D
0R~
0VY
123
1N0
203
29O
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
4P2
5VS
67M
67Z
6NX
7X2
7XC
88I
8CJ
8FE
8FH
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFDZB
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
APEBS
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYFIA
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1J
D1K
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
ECGQY
EDH
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6-
KDC
KOV
L8X
LAS
LLZTM
M0K
M2P
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
PATMY
PCBAR
PF0
PHGZT
PQQKQ
PROAC
PT4
PYCSY
Q2X
QOR
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SBL
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
ZOVNA
~A9
AAYXX
ABFSG
ACMFV
ACSTC
AEZWR
AFHIU
AFOHR
AHWEU
AIXLP
ATHPR
CITATION
PHGZM
7QH
7ST
7UA
ABRTQ
C1K
F1W
H95
L.G
SOI
ID FETCH-LOGICAL-c303t-f533067cf4092c90e0c92b2cd1a0b66167c364775ffbf4375cacdef7a5e0eb713
IEDL.DBID U2A
ISSN 1611-2490
IngestDate Fri Jul 25 20:55:43 EDT 2025
Tue Jul 01 05:05:43 EDT 2025
Fri Apr 18 01:16:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Irrigation regime
Root morphology
Soil properties
Physiological characteristics
Rice
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c303t-f533067cf4092c90e0c92b2cd1a0b66167c364775ffbf4375cacdef7a5e0eb713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0003-1018-1255
PQID 3191380806
PQPubID 54526
PageCount 21
ParticipantIDs proquest_journals_3191380806
crossref_primary_10_1007_s10333_025_01016_9
springer_journals_10_1007_s10333_025_01016_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-04-01
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Dordrecht
PublicationTitle Paddy and water environment
PublicationTitleAbbrev Paddy Water Environ
PublicationYear 2025
Publisher Springer Nature Singapore
Springer Nature B.V
Publisher_xml – name: Springer Nature Singapore
– name: Springer Nature B.V
References X Qiang (1016_CR49) 2020; 12
DR Carrijo (1016_CR10) 2017; 203
T Abbas (1016_CR1) 2019; 672
A Darzi-Naftchali (1016_CR15) 2017; 193
J Yang (1016_CR71) 2007; 49
IA Lakhiar (1016_CR29) 2024; 14
SY Lisar (1016_CR35) 2012; 25
J Bernier (1016_CR8) 2009; 110
R Xue (1016_CR64) 2024; 218
R Xue (1016_CR63) 2023; 13
Md Khairul Alam (1016_CR28) 2020; 10
H Singh Grewal (1016_CR58) 2009; 330
B Zhao (1016_CR86) 2020; 40
T Hura (1016_CR24) 2007; 29
S Loaiza (1016_CR36) 2024; 360
X Zhao (1016_CR87) 2023; 280
J Yan (1016_CR67) 2022; 263
X Yin (1016_CR76) 2009; 32
H Zhang (1016_CR78) 2009; 49
RM Lampayan (1016_CR30) 2014; 13
R Mathobo (1016_CR39) 2017; 180
VJ Pascual (1016_CR45) 2016; 20
Z Wang (1016_CR61) 2016; 193
H Yan (1016_CR66) 2022; 264
IC Dodd (1016_CR17) 2015; 66
RM Lampayan (1016_CR31) 2015; 13
MT Harrison (1016_CR21) 2012; 136
Md Redwanur Rahman (1016_CR51) 2014; 3
C Yang (1016_CR70) 2004; 70
Z Zhang (1016_CR77) 2008; 108
M Zivcak (1016_CR89) 2013; 117
SD Veresoglou (1016_CR60) 2022; 28
C Zhang (1016_CR84) 2023; 284
GJ Norton (1016_CR42) 2017; 6
Y Zhang (1016_CR85) 2023; 281
C Li (1016_CR32) 2018; 331
KL Sahrawat (1016_CR52) 2012; 58
Q Jin (1016_CR26) 2018; 27
C Ju (1016_CR27) 2015; 175
C Li (1016_CR34) 2020; 239
H Cheng (1016_CR13) 2022; 349
MF Atique-ur-Rehman (1016_CR7) 2014; 169
Y-F Shen (1016_CR56) 2011; 10
A Ahmadikhah (1016_CR2) 2016
H Yan (1016_CR68) 2023; 276
Z Yang (1016_CR73) 2020; 246
A Madani (1016_CR37) 2010; 56
J-C Yang (1016_CR72) 2012; 11
F Zhang (1016_CR80) 2019; 57
P Sriphirom (1016_CR59) 2019; 223
CM dos Santos (1016_CR19) 2013; 41
NM Dong (1016_CR18) 2012; 47
S Poormohammad Kiani (1016_CR46) 2008; 175
C Zhang (1016_CR81) 2020; 241
MH Arzanesh (1016_CR5) 2010; 27
O Huguenin-Elie (1016_CR23) 2009; 103
Y Alhaj Hamoud (1016_CR3) 2019; 213
HT Nguyen (1016_CR41) 2009; 112
D Qi (1016_CR48) 2020; 230
M Ishfaq (1016_CR25) 2020; 241
AH Price (1016_CR47) 2013; 2
S Sedaghathoor (1016_CR54) 2019; 5
BAM Bouman (1016_CR9) 2001; 49
KN Disasa (1016_CR16) 2024; 155
W Zhang (1016_CR83) 2021; 268
Q Zhou (1016_CR88) 2017; 16
G Chu (1016_CR14) 2018; 6
J Pan (1016_CR44) 2017; 184
R Santiago-Arenas (1016_CR53) 2019; 175
W Chen (1016_CR11) 2011; 142
X Chen (1016_CR12) 2021; 290
GJ Norton (1016_CR43) 2018; 9
YK Shin (1016_CR57) 2021; 7
F Yao (1016_CR74) 2012; 126
H Yan (1016_CR69) 2023; 73
M Zhang (1016_CR82) 2021; 52
Z Li (1016_CR33) 2018; 207
H Zhang (1016_CR79) 2012; 63
A Shakoor (1016_CR55) 2021; 278
F Razavi (1016_CR50) 2008; 46
M Guerfel (1016_CR20) 2009; 119
CT Atere (1016_CR6) 2017; 53
H Yan (1016_CR65) 2021; 245
Y Ye (1016_CR75) 2013; 144
S Ali (1016_CR4) 2022; 21
S Hazrati (1016_CR22) 2016; 106
S Maneepitak (1016_CR38) 2019; 211
G-W Xu (1016_CR62) 2018; 203
Y Miao (1016_CR40) 2015; 66
References_xml – volume: 49
  start-page: 1445
  issue: 10
  year: 2007
  ident: 1016_CR71
  publication-title: J Integr Plant Biol
  doi: 10.1111/j.1672-9072.2007.00555.x
– volume: 268
  start-page: 108165
  year: 2021
  ident: 1016_CR83
  publication-title: Field Crops Res
  doi: 10.1016/j.fcr.2021.108165
– volume: 175
  start-page: 565
  issue: 4
  year: 2008
  ident: 1016_CR46
  publication-title: Plant Sci
  doi: 10.1016/j.plantsci.2008.06.002
– volume: 117
  start-page: 529
  issue: 1–3
  year: 2013
  ident: 1016_CR89
  publication-title: Photosynth Res
  doi: 10.1007/s11120-013-9885-3
– volume: 223
  start-page: 980
  year: 2019
  ident: 1016_CR59
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2019.03.212
– volume: 175
  start-page: 47
  year: 2015
  ident: 1016_CR27
  publication-title: Field Crop Res
  doi: 10.1016/j.fcr.2015.02.007
– volume: 241
  start-page: 106263
  year: 2020
  ident: 1016_CR81
  publication-title: Agric Water Manag
  doi: 10.1016/j.agwat.2020.106263
– volume: 672
  start-page: 305
  year: 2019
  ident: 1016_CR1
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2019.03.392
– volume: 27
  start-page: 6993
  issue: 10
  year: 2018
  ident: 1016_CR26
  publication-title: Fresenius Environ Bull
– volume: 73
  start-page: 119
  issue: 1
  year: 2023
  ident: 1016_CR69
  publication-title: Irrig Drain
  doi: 10.1002/ird.2856
– volume: 110
  start-page: 139
  issue: 2
  year: 2009
  ident: 1016_CR8
  publication-title: Field Crops Res
  doi: 10.1016/j.fcr.2008.07.010
– volume: 56
  start-page: 218
  issue: 5
  year: 2010
  ident: 1016_CR37
  publication-title: Plant Soil Environ
  doi: 10.17221/193/2009-PSE
– volume: 29
  start-page: 103
  issue: 2
  year: 2007
  ident: 1016_CR24
  publication-title: Acta Physiol Plant
  doi: 10.1007/s11738-006-0013-2
– volume: 3
  start-page: 86
  issue: 2
  year: 2014
  ident: 1016_CR51
  publication-title: Agric Forest Fisheries
  doi: 10.11648/j.aff.20140302.16
– volume: 331
  start-page: 100
  year: 2018
  ident: 1016_CR32
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.06.014
– volume: 349
  start-page: 131487
  year: 2022
  ident: 1016_CR13
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2022.131487
– volume: 66
  start-page: 81
  year: 2015
  ident: 1016_CR40
  publication-title: Ind Crops Prod
  doi: 10.1016/j.indcrop.2014.12.002
– volume: 330
  start-page: 103
  issue: 1–2
  year: 2009
  ident: 1016_CR58
  publication-title: Plant Soil
– volume: 13
  start-page: 2798
  issue: 11
  year: 2023
  ident: 1016_CR63
  publication-title: Agronomy
  doi: 10.3390/agronomy13112798
– volume: 7
  start-page: 238
  issue: 8
  year: 2021
  ident: 1016_CR57
  publication-title: Horticulturae
  doi: 10.3390/horticulturae7080238
– volume: 230
  start-page: 105981
  year: 2020
  ident: 1016_CR48
  publication-title: Agric Water Manag
  doi: 10.1016/j.agwat.2019.105981
– volume: 27
  start-page: 197
  issue: 2
  year: 2010
  ident: 1016_CR5
  publication-title: World J Microbiol Biotechnol
  doi: 10.1007/s11274-010-0444-1
– volume: 290
  start-page: 13
  year: 2021
  ident: 1016_CR12
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2021.125811
– volume: 239
  start-page: 106240
  year: 2020
  ident: 1016_CR34
  publication-title: Agric Water Manag
  doi: 10.1016/j.agwat.2020.106240
– volume: 112
  start-page: 189
  issue: 2–3
  year: 2009
  ident: 1016_CR41
  publication-title: Field Crop Res
  doi: 10.1016/j.fcr.2009.03.004
– volume: 52
  start-page: 924
  issue: 4
  year: 2021
  ident: 1016_CR82
  publication-title: J Southern Argic
– volume: 264
  start-page: 107464
  year: 2022
  ident: 1016_CR66
  publication-title: Agric Water Manag
  doi: 10.1016/j.agwat.2022.107464
– volume: 6
  start-page: 482
  issue: 5
  year: 2018
  ident: 1016_CR14
  publication-title: The Crop J
  doi: 10.1016/j.cj.2018.04.005
– volume: 66
  start-page: 2239
  issue: 8
  year: 2015
  ident: 1016_CR17
  publication-title: J Exp Bot
  doi: 10.1093/jxb/eru532
– volume: 278
  start-page: 124019
  year: 2021
  ident: 1016_CR55
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2020.124019
– volume: 184
  start-page: 191
  year: 2017
  ident: 1016_CR44
  publication-title: Agric Water Manag
  doi: 10.1016/j.agwat.2017.01.013
– volume: 108
  start-page: 71
  issue: 1
  year: 2008
  ident: 1016_CR77
  publication-title: Field Crop Res
  doi: 10.1016/j.fcr.2008.03.004
– volume: 144
  start-page: 212
  year: 2013
  ident: 1016_CR75
  publication-title: Field Crop Res
  doi: 10.1016/j.fcr.2012.12.003
– volume: 47
  start-page: 166
  year: 2012
  ident: 1016_CR18
  publication-title: Vietnam Soil Biol Biochem
  doi: 10.1016/j.soilbio.2011.12.028
– volume: 211
  start-page: 89
  year: 2019
  ident: 1016_CR38
  publication-title: Agric Water Manag
  doi: 10.1016/j.agwat.2018.09.041
– year: 2016
  ident: 1016_CR2
  publication-title: 3 Biotech
  doi: 10.1007/s13205-016-0542-3
– volume: 12
  start-page: 289
  issue: 1
  year: 2020
  ident: 1016_CR49
  publication-title: Water
  doi: 10.3390/w12010289
– volume: 193
  start-page: 54
  year: 2016
  ident: 1016_CR61
  publication-title: Field Crop Res
  doi: 10.1016/j.fcr.2016.03.006
– volume: 21
  start-page: 654
  issue: 3
  year: 2022
  ident: 1016_CR4
  publication-title: J Integr Agric
  doi: 10.1016/S2095-3119(20)63409-8
– volume: 5
  start-page: 1682106
  issue: 1
  year: 2019
  ident: 1016_CR54
  publication-title: Cogent Environ Sci
  doi: 10.1080/23311843.2019.1682106
– volume: 11
  start-page: 920
  issue: 6
  year: 2012
  ident: 1016_CR72
  publication-title: J Integr Agric
  doi: 10.1016/S2095-3119(12)60082-3
– volume: 119
  start-page: 257
  issue: 3
  year: 2009
  ident: 1016_CR20
  publication-title: Sci Hortic
  doi: 10.1016/j.scienta.2008.08.006
– volume: 175
  start-page: 388
  issue: 3
  year: 2019
  ident: 1016_CR53
  publication-title: Annals Appl Biol
  doi: 10.1111/aab.12540
– volume: 203
  start-page: 385
  year: 2018
  ident: 1016_CR62
  publication-title: Agric Water Manag
  doi: 10.1016/j.agwat.2018.02.033
– volume: 360
  start-page: 108787
  year: 2024
  ident: 1016_CR36
  publication-title: Agric Ecosyst Environ
  doi: 10.1016/j.agee.2023.108787
– volume: 20
  start-page: 24
  issue: 1
  year: 2016
  ident: 1016_CR45
  publication-title: Plant Prod Sci
  doi: 10.1080/1343943X.2016.1242373
– volume: 126
  start-page: 16
  year: 2012
  ident: 1016_CR74
  publication-title: Field Crop Res
  doi: 10.1016/j.fcr.2011.09.018
– volume: 280
  start-page: 108196
  year: 2023
  ident: 1016_CR87
  publication-title: Agric Water Manag
  doi: 10.1016/j.agwat.2023.108196
– volume: 169
  start-page: 123
  year: 2014
  ident: 1016_CR7
  publication-title: Field Crops Res
  doi: 10.1016/j.fcr.2014.09.010
– volume: 193
  start-page: 221
  year: 2017
  ident: 1016_CR15
  publication-title: Agric Water Manag
  doi: 10.1016/j.agwat.2017.08.018
– volume: 49
  start-page: 11
  issue: 1
  year: 2001
  ident: 1016_CR9
  publication-title: Agric Water Manag
  doi: 10.1016/S0378-3774(00)00128-1
– volume: 180
  start-page: 118
  year: 2017
  ident: 1016_CR39
  publication-title: Agric Water Manag
  doi: 10.1016/j.agwat.2016.11.005
– volume: 10
  start-page: 1923
  issue: 12
  year: 2011
  ident: 1016_CR56
  publication-title: Agric Sci China
  doi: 10.1016/S1671-2927(11)60193-4
– volume: 245
  start-page: 106581
  year: 2021
  ident: 1016_CR65
  publication-title: Agric Water Manag
  doi: 10.1016/j.agwat.2020.106581
– volume: 16
  start-page: 1028
  issue: 5
  year: 2017
  ident: 1016_CR88
  publication-title: J Integr Agric
  doi: 10.1016/S2095-3119(16)61506-X
– volume: 207
  start-page: 26
  year: 2018
  ident: 1016_CR33
  publication-title: Agric Water Manag
  doi: 10.1016/j.agwat.2018.05.022
– volume: 2
  start-page: 120
  issue: 2
  year: 2013
  ident: 1016_CR47
  publication-title: Food Energy Secur
  doi: 10.1002/fes3.29
– volume: 246
  start-page: 107698
  year: 2020
  ident: 1016_CR73
  publication-title: Field Crops Res
  doi: 10.1016/j.fcr.2019.107698
– volume: 57
  start-page: 1156
  issue: 4
  year: 2019
  ident: 1016_CR80
  publication-title: Photosynthetica
  doi: 10.32615/ps.2019.136
– volume: 218
  start-page: 105605
  year: 2024
  ident: 1016_CR64
  publication-title: Environ Exp Bot
  doi: 10.1016/j.envexpbot.2023.105605
– volume: 28
  start-page: 3995
  issue: 13
  year: 2022
  ident: 1016_CR60
  publication-title: Glob Chang Biol
  doi: 10.1111/gcb.16204
– volume: 136
  start-page: 116
  year: 2012
  ident: 1016_CR21
  publication-title: Field Crop Res
  doi: 10.1016/j.fcr.2012.06.015
– volume: 49
  start-page: 2246
  issue: 6
  year: 2009
  ident: 1016_CR78
  publication-title: Crop Sci
  doi: 10.2135/cropsci2009.02.0099
– volume: 203
  start-page: 173
  year: 2017
  ident: 1016_CR10
  publication-title: Field Crop Res
  doi: 10.1016/j.fcr.2016.12.002
– volume: 53
  start-page: 407
  issue: 4
  year: 2017
  ident: 1016_CR6
  publication-title: Biol Fertil Soils
  doi: 10.1007/s00374-017-1190-4
– volume: 142
  start-page: 67
  issue: 1
  year: 2011
  ident: 1016_CR11
  publication-title: Biol Trace Elem Res
  doi: 10.1007/s12011-010-8742-x
– volume: 13
  start-page: 215
  issue: 3
  year: 2015
  ident: 1016_CR31
  publication-title: Philippines Paddy Water Environ
  doi: 10.1007/s10333-014-0423-5
– volume: 46
  start-page: 631
  issue: 4
  year: 2008
  ident: 1016_CR50
  publication-title: Photosynthetica
  doi: 10.1007/s11099-008-0108-7
– volume: 58
  start-page: 423
  issue: 4
  year: 2012
  ident: 1016_CR52
  publication-title: Arch Agron Soil Sci
  doi: 10.1080/03650340.2010.522993
– volume: 41
  start-page: 203
  year: 2013
  ident: 1016_CR19
  publication-title: Indus Crops Prod
  doi: 10.1016/j.indcrop.2012.04.003
– volume: 155
  start-page: 4481
  issue: 6
  year: 2024
  ident: 1016_CR16
  publication-title: Theor Appl Climatol
  doi: 10.1007/s00704-024-04891-0
– volume: 32
  start-page: 448
  issue: 5
  year: 2009
  ident: 1016_CR76
  publication-title: Plant Cell Environ
  doi: 10.1111/j.1365-3040.2009.01934.x
– volume: 263
  start-page: 107486
  year: 2022
  ident: 1016_CR67
  publication-title: Agric Water Manag
  doi: 10.1016/j.agwat.2022.107486
– volume: 213
  start-page: 934
  year: 2019
  ident: 1016_CR3
  publication-title: Agric Water Manag
  doi: 10.1016/j.agwat.2018.12.017
– volume: 241
  start-page: 106363
  year: 2020
  ident: 1016_CR25
  publication-title: Agric Water Manag
  doi: 10.1016/j.agwat.2020.106363
– volume: 25
  start-page: 33
  issue: 1
  year: 2012
  ident: 1016_CR35
  publication-title: Water Stress
– volume: 40
  start-page: 1399
  issue: 11
  year: 2020
  ident: 1016_CR86
  publication-title: J Triticeae Crops
– volume: 13
  start-page: 215
  issue: 3
  year: 2014
  ident: 1016_CR30
  publication-title: Philippines Paddy and Water Environ
  doi: 10.1007/s10333-014-0423-5
– volume: 281
  start-page: 108265
  year: 2023
  ident: 1016_CR85
  publication-title: Agric Water Manag
  doi: 10.1016/j.agwat.2023.108265
– volume: 9
  start-page: 18
  year: 2018
  ident: 1016_CR43
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2018.01223
– volume: 10
  start-page: 888
  issue: 6
  year: 2020
  ident: 1016_CR28
  publication-title: Agronomy
  doi: 10.3390/agronomy10060888
– volume: 14
  start-page: 548
  issue: 3
  year: 2024
  ident: 1016_CR29
  publication-title: Agronomy
  doi: 10.3390/agronomy14030548
– volume: 6
  start-page: 98
  issue: 3
  year: 2017
  ident: 1016_CR42
  publication-title: Food Energy Secur
  doi: 10.1002/fes3.110
– volume: 63
  start-page: 215
  issue: 1
  year: 2012
  ident: 1016_CR79
  publication-title: J Exp Bot
  doi: 10.1093/jxb/err263
– volume: 284
  start-page: 108333
  year: 2023
  ident: 1016_CR84
  publication-title: Agric Water Manag
  doi: 10.1016/j.agwat.2023.108333
– volume: 106
  start-page: 141
  year: 2016
  ident: 1016_CR22
  publication-title: Plant Physiol Biochem
  doi: 10.1016/j.plaphy.2016.04.046
– volume: 103
  start-page: 211
  issue: 2
  year: 2009
  ident: 1016_CR23
  publication-title: Ann Bot
  doi: 10.1093/aob/mcn199
– volume: 276
  start-page: 108047
  year: 2023
  ident: 1016_CR68
  publication-title: Agric Water Manag
  doi: 10.1016/j.agwat.2022.108047
– volume: 70
  start-page: 67
  issue: 1
  year: 2004
  ident: 1016_CR70
  publication-title: Agric Water Manag
  doi: 10.1016/j.agwat.2004.05.003
SSID ssj0027431
Score 2.361149
Snippet Alternative wet and dry irrigation (AWD) has been widely used for rice plants in many countries. Determining the appropriate irrigation amount for different...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 301
SubjectTerms Agricultural production
Agriculture
Biomedical and Life Sciences
Bulk density
Crop yield
Cultivation
Ecotoxicology
Fluorescence
Geoecology/Natural Processes
Grain cultivation
Growth stage
Hydrogeology
Hydrology/Water Resources
Irrigation
Irrigation efficiency
Irrigation water
Life Sciences
Milking
Moisture content
Physical characteristics
Physicochemical processes
Physicochemical properties
Physiology
Plant growth
Porosity
Quantum efficiency
Rice
Rice fields
Soil
Soil density
Soil moisture
Soil porosity
Soil properties
Soil Science & Conservation
Transpiration
Water content
Water use
Water use efficiency
Title Effects of alternating wet and dry irrigation regimes on rice growth and physiology characteristics in southeast China
URI https://link.springer.com/article/10.1007/s10333-025-01016-9
https://www.proquest.com/docview/3191380806
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1Bu8CA-BSFUnlgA0uJkzjxWKFCBRITlcoUxY5dOpCiJID495zdRG0RDGyRbHk4O773fHfvAC6ZMLFJMo9GPDY0DAWjQvKMGhlymQdWZcklyD7y8SS8n0bTpiisarPd25Cku6nXit2CwMYcbbIZAhUqtqEbIXe3iVwTNlyjWa4LIUIZnyK58JpSmd_X2HRHK4z5IyzqvM3tPuw1MJEMl_t6AFu6OITd4axspDL0EXwshYcrsjDExbztu14xI5-6JlmRk7z8IvOydBIai4LYDgyvGmfjJ14OZIb8u35xM93rhnteJ2pTv5nMC1LZJnu2ww9xvbaPYXI7eroZ06aLAlXonmpqbP4oj5VBJseU8LSnBJNM5X7mSfTOOGQ15OPIGGnCII5UpnJt4izSnpbIYU-gUywKfQrEz-Lc-FKwJDKhQWgVJZKjw0-UQpjAkh5ctcZM35ZiGelKFtmaPkXTp870qehBv7V32vw4VYo3gh9YrUveg-t2D1bDf6929r_p57DD3DFADs370KnLd32B8KKWA-gO754fRgN3qr4BaZrI0w
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BGYAB8RSFAh7YwFLiPD1WiKpA6dRK3aLYsUsHUpQEEP-es5uoLYKBLZJPHs4X33e-u-8ArhnXkY5ThwZhpKnvc0a5CFOqhR-KzDMsS7ZAdhj2x_7jJJjUTWFlU-3epCTtTb3S7OZ5Judois0QqFC-CVsIBmJjy2PWXQmz7BRChDIuxeDCqVtlft9j3R0tMeaPtKj1Nr192KthIukuzvUANlR-CLvdaVFTZagj-FgQD5dkronNeZt3vXxKPlVF0jwjWfFFZkVhKTTmOTETGF4VSuMnXg5kivF39WIl7euGfV4ncp2_mcxyUpohe2bCD7Gzto9h3Lsf3fVpPUWBSnRPFdWmfjSMpMZIjknuKEdyJpjM3NQR6J1xyXDIR4HWQvteFMhUZkpHaaAcJTCGPYFWPs_VKRA3jTLtCs7iQPsaoVUQixAdfiwlwgQWt-GmUWbytiDLSJa0yEb1Cao-sapPeBs6jb6T-scpE7wRXM9wXYZtuG3OYLn8925n_xO_gu3-6HmQDB6GT-eww6xJmHqcDrSq4l1dINSoxKW1rG-1PMoo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagSAgGxFMUCnhgA6uJ8_RYAVV5qGKgUjcrduzSAbdKA4h_z9lJ1RbBwBbJJw9nx_fd6zuELinTiU4zj0RxokkYMkqYiDOiRRiLPLAsS65Ath_3BuHDMBoudfG7avd5SrLqabAsTaZsT3PdXmp8CwKbf7SFZwBaCFtHG6HtBoYbPaCdJZfLTSQEWOMTcDS8um3m9z1WTdMCb_5IkTrL091FOzVkxJ3qjPfQmjL7aLszKmraDHWAPioS4hmeaOzy3zbGZ0b4U5U4MznOiy88LgpHpzEx2E5jeFMgDZ_wUOAR-OLlq5N0kQ4XasdylcsZjw2e2YF7dtoPdnO3D9Gge_dy0yP1RAUiwVSVRNta0jiRGrw6KpmnPMmooDL3M0-ApYYlyyefRFoLHQZJJDOZK51kkfKUAH_2CDXMxKhjhP0sybUvGE0jHWqAWVEqYjD-qZQAGWjaRFdzZfJpRZzBFxTJVvUcVM-d6jlrotZc37z-iWYcXgc_sLyXcRNdz89gsfz3bif_E79Am8-3Xf503388RVvU3QhbmtNCjbJ4V2eAOkpx7i7WN3zKzls
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+alternating+wet+and+dry+irrigation+regimes+on+rice+growth+and+physiology+characteristics+in+southeast+China&rft.jtitle=Paddy+and+water+environment&rft.au=Zhou%2C+Rui&rft.au=Yan%2C+Haofang&rft.au=Zhang%2C+Chuan&rft.au=Zhu%2C+Xingye&rft.date=2025-04-01&rft.issn=1611-2490&rft.eissn=1611-2504&rft.volume=23&rft.issue=2&rft.spage=301&rft.epage=321&rft_id=info:doi/10.1007%2Fs10333-025-01016-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10333_025_01016_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1611-2490&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1611-2490&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1611-2490&client=summon