Effects of alternating wet and dry irrigation regimes on rice growth and physiology characteristics in southeast China
Alternative wet and dry irrigation (AWD) has been widely used for rice plants in many countries. Determining the appropriate irrigation amount for different growth stages is of great significance for balancing irrigation water use efficiency ( WUE ) and yield. Five irrigation regimes: continuous flo...
Saved in:
Published in | Paddy and water environment Vol. 23; no. 2; pp. 301 - 321 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Nature Singapore
01.04.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Alternative wet and dry irrigation (AWD) has been widely used for rice plants in many countries. Determining the appropriate irrigation amount for different growth stages is of great significance for balancing irrigation water use efficiency (
WUE
) and yield. Five irrigation regimes: continuous flooding irrigation as control group (CK), AWD in early tillering and jointing stage (CW1), AWD in whole growth stage (CW2), slightly controlled irrigation with a minimum moisture soil content in the range 60–85%
θ
s
(CW3) and severely controlled irrigation with minimum soil moisture content in the range of 50–60%
θ
s
(CW4), were applied in this study for rice fields in southeast China. The growth index, root morphology, physiological characteristics, chlorophyll fluorescence parameters, soil physicochemical properties, and rice yield were measured under the five irrigation regimes. The results showed that different irrigation treatments had no significant effects on plant height at all growth stages of rice plants but had greater effects on
LAI
at the heading and milking stages. In comparison with CK, the
LAI
decreased by 6.72% under the CW4 treatment. Additionally, the total root length, root volume, and root surface area increased by 21.7%, 24.2%, and 25.4%, respectively, in the CW1 treatment compared with the CK treatment. The maximum transpiration rates (
T
r
) of the CW1 treatment at different growth stages were 40.58%, 39.92%, and 38.76% higher than those of the CW2, CW3, and CW4 treatments, respectively. The amount of irrigation had a significant influence on the
T
r
of rice. The influence of the different irrigation regimes on the maximum quantum efficiency (
F
v
/F
m
) of rice at the milking stage was more significant than that at the heading stage. At 13:00 of heading and milk maturity, the
F
v
/F
m
of CW1 increased by 0.073 and 0.097 compared to that of CW4, respectively, and increased by 0.015–0.055 and 0.055–0.080 for the rest of the day. The results also showed that, compared with CK, the CW1 and CW2 treatments reduced soil bulk density and increased soil porosity, which were conducive to crop root growth, and the CW1 treatment significantly reduced the soil (10–40 cm) NO
3
−
N content. Compared with CK, CW1 treatment increased
WUE
by 67.8% and yield by 4.22%, whereas the
WUE
of CW2, CW3, and CW4 treatments increased significantly by 127.2%, 156.5%, and 246.2%, respectively, but the yield decreased by 6.4%, 17.5%, and 26.3%, respectively. It was concluded that AWD at the early tillering joint stage (CW1) can enhance rice yield and improve the growth index and physiological characteristics of rice at each growth stage compared to CK. This may be attributed to the greater soil porosity and promotion of better crop root growth associated with CW1, making it a suitable AWD irrigation regime for rice cultivation in southeast China. |
---|---|
AbstractList | Alternative wet and dry irrigation (AWD) has been widely used for rice plants in many countries. Determining the appropriate irrigation amount for different growth stages is of great significance for balancing irrigation water use efficiency (WUE) and yield. Five irrigation regimes: continuous flooding irrigation as control group (CK), AWD in early tillering and jointing stage (CW1), AWD in whole growth stage (CW2), slightly controlled irrigation with a minimum moisture soil content in the range 60–85%θs (CW3) and severely controlled irrigation with minimum soil moisture content in the range of 50–60%θs (CW4), were applied in this study for rice fields in southeast China. The growth index, root morphology, physiological characteristics, chlorophyll fluorescence parameters, soil physicochemical properties, and rice yield were measured under the five irrigation regimes. The results showed that different irrigation treatments had no significant effects on plant height at all growth stages of rice plants but had greater effects on LAI at the heading and milking stages. In comparison with CK, the LAI decreased by 6.72% under the CW4 treatment. Additionally, the total root length, root volume, and root surface area increased by 21.7%, 24.2%, and 25.4%, respectively, in the CW1 treatment compared with the CK treatment. The maximum transpiration rates (Tr) of the CW1 treatment at different growth stages were 40.58%, 39.92%, and 38.76% higher than those of the CW2, CW3, and CW4 treatments, respectively. The amount of irrigation had a significant influence on the Tr of rice. The influence of the different irrigation regimes on the maximum quantum efficiency (Fv/Fm) of rice at the milking stage was more significant than that at the heading stage. At 13:00 of heading and milk maturity, the Fv/Fm of CW1 increased by 0.073 and 0.097 compared to that of CW4, respectively, and increased by 0.015–0.055 and 0.055–0.080 for the rest of the day. The results also showed that, compared with CK, the CW1 and CW2 treatments reduced soil bulk density and increased soil porosity, which were conducive to crop root growth, and the CW1 treatment significantly reduced the soil (10–40 cm) NO3−N content. Compared with CK, CW1 treatment increased WUE by 67.8% and yield by 4.22%, whereas the WUE of CW2, CW3, and CW4 treatments increased significantly by 127.2%, 156.5%, and 246.2%, respectively, but the yield decreased by 6.4%, 17.5%, and 26.3%, respectively. It was concluded that AWD at the early tillering joint stage (CW1) can enhance rice yield and improve the growth index and physiological characteristics of rice at each growth stage compared to CK. This may be attributed to the greater soil porosity and promotion of better crop root growth associated with CW1, making it a suitable AWD irrigation regime for rice cultivation in southeast China. Alternative wet and dry irrigation (AWD) has been widely used for rice plants in many countries. Determining the appropriate irrigation amount for different growth stages is of great significance for balancing irrigation water use efficiency ( WUE ) and yield. Five irrigation regimes: continuous flooding irrigation as control group (CK), AWD in early tillering and jointing stage (CW1), AWD in whole growth stage (CW2), slightly controlled irrigation with a minimum moisture soil content in the range 60–85% θ s (CW3) and severely controlled irrigation with minimum soil moisture content in the range of 50–60% θ s (CW4), were applied in this study for rice fields in southeast China. The growth index, root morphology, physiological characteristics, chlorophyll fluorescence parameters, soil physicochemical properties, and rice yield were measured under the five irrigation regimes. The results showed that different irrigation treatments had no significant effects on plant height at all growth stages of rice plants but had greater effects on LAI at the heading and milking stages. In comparison with CK, the LAI decreased by 6.72% under the CW4 treatment. Additionally, the total root length, root volume, and root surface area increased by 21.7%, 24.2%, and 25.4%, respectively, in the CW1 treatment compared with the CK treatment. The maximum transpiration rates ( T r ) of the CW1 treatment at different growth stages were 40.58%, 39.92%, and 38.76% higher than those of the CW2, CW3, and CW4 treatments, respectively. The amount of irrigation had a significant influence on the T r of rice. The influence of the different irrigation regimes on the maximum quantum efficiency ( F v /F m ) of rice at the milking stage was more significant than that at the heading stage. At 13:00 of heading and milk maturity, the F v /F m of CW1 increased by 0.073 and 0.097 compared to that of CW4, respectively, and increased by 0.015–0.055 and 0.055–0.080 for the rest of the day. The results also showed that, compared with CK, the CW1 and CW2 treatments reduced soil bulk density and increased soil porosity, which were conducive to crop root growth, and the CW1 treatment significantly reduced the soil (10–40 cm) NO 3 − N content. Compared with CK, CW1 treatment increased WUE by 67.8% and yield by 4.22%, whereas the WUE of CW2, CW3, and CW4 treatments increased significantly by 127.2%, 156.5%, and 246.2%, respectively, but the yield decreased by 6.4%, 17.5%, and 26.3%, respectively. It was concluded that AWD at the early tillering joint stage (CW1) can enhance rice yield and improve the growth index and physiological characteristics of rice at each growth stage compared to CK. This may be attributed to the greater soil porosity and promotion of better crop root growth associated with CW1, making it a suitable AWD irrigation regime for rice cultivation in southeast China. |
Author | Zhou, Rui Zhang, Chuan He, Bin Yan, Haofang Wang, Biyu Li, Jun Liu, Youwei Wang, Xuanxuan Zhu, Xingye Lakhiar, Imran Ali Han, Yujing Wang, Guoqing Xue, Run Disasa, Kinda Negessa Zhou, Yudong Bao, Rongxuan |
Author_xml | – sequence: 1 givenname: Rui surname: Zhou fullname: Zhou, Rui organization: Research Center of Fluid Machinery Engineering and Technology, Jiangsu University – sequence: 2 givenname: Haofang orcidid: 0009-0003-1018-1255 surname: Yan fullname: Yan, Haofang email: yanhaofangyhf@163.com organization: Research Center of Fluid Machinery Engineering and Technology, Jiangsu University – sequence: 3 givenname: Chuan surname: Zhang fullname: Zhang, Chuan organization: School of Agricultural Engineering, Jiangsu University – sequence: 4 givenname: Xingye surname: Zhu fullname: Zhu, Xingye organization: Research Center of Fluid Machinery Engineering and Technology, Jiangsu University – sequence: 5 givenname: Guoqing surname: Wang fullname: Wang, Guoqing organization: State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute – sequence: 6 givenname: Bin surname: He fullname: He, Bin organization: Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences – sequence: 7 givenname: Kinda Negessa surname: Disasa fullname: Disasa, Kinda Negessa organization: Research Center of Fluid Machinery Engineering and Technology, Jiangsu University – sequence: 8 givenname: Imran Ali surname: Lakhiar fullname: Lakhiar, Imran Ali organization: Research Center of Fluid Machinery Engineering and Technology, Jiangsu University – sequence: 9 givenname: Run surname: Xue fullname: Xue, Run organization: School of Agricultural Engineering, Jiangsu University – sequence: 10 givenname: Yudong surname: Zhou fullname: Zhou, Yudong organization: Research Center of Fluid Machinery Engineering and Technology, Jiangsu University – sequence: 11 givenname: Biyu surname: Wang fullname: Wang, Biyu organization: Research Center of Fluid Machinery Engineering and Technology, Jiangsu University – sequence: 12 givenname: Jun surname: Li fullname: Li, Jun organization: School of Agricultural Engineering, Jiangsu University – sequence: 13 givenname: Xuanxuan surname: Wang fullname: Wang, Xuanxuan organization: Research Center of Fluid Machinery Engineering and Technology, Jiangsu University – sequence: 14 givenname: Rongxuan surname: Bao fullname: Bao, Rongxuan organization: Research Center of Fluid Machinery Engineering and Technology, Jiangsu University – sequence: 15 givenname: Youwei surname: Liu fullname: Liu, Youwei organization: Research Center of Fluid Machinery Engineering and Technology, Jiangsu University – sequence: 16 givenname: Yujing surname: Han fullname: Han, Yujing organization: Research Center of Fluid Machinery Engineering and Technology, Jiangsu University |
BookMark | eNp9kM1OwzAQhC1UJNrCC3CyxDmwjpO4OaKq_EhIXOBsOY6duErtYrtUeXtMA-LGaUe734y0s0Az66xC6JrALQFgd4EApTSDvMyAAKmy-gzNSUVIlpdQzH51UcMFWoSwBchZQckcfW60VjIG7DQWQ1Teimhsh48qYmFb3PoRG-9Nl9bOYq86s1OJTtJIhTvvjrE_kft-DMYNrhux7IUXMoWZEI0M2Fgc3CH2SoSI172x4hKdazEEdfUzl-j9YfO2fspeXh-f1_cvmaRAY6ZLSqFiUhdQ57IGBbLOm1y2REBTVSSdaFUwVmrd6IKyUgrZKs1EqUA1jNAluply9959HFSIfOsO6cchcEpqQlewgipR-URJ70LwSvO9NzvhR06Af_fLp3556pef-uV1MtHJFBJsO-X_ov9xfQHJRoGM |
Cites_doi | 10.1111/j.1672-9072.2007.00555.x 10.1016/j.fcr.2021.108165 10.1016/j.plantsci.2008.06.002 10.1007/s11120-013-9885-3 10.1016/j.jclepro.2019.03.212 10.1016/j.fcr.2015.02.007 10.1016/j.agwat.2020.106263 10.1016/j.scitotenv.2019.03.392 10.1002/ird.2856 10.1016/j.fcr.2008.07.010 10.17221/193/2009-PSE 10.1007/s11738-006-0013-2 10.11648/j.aff.20140302.16 10.1016/j.geoderma.2018.06.014 10.1016/j.jclepro.2022.131487 10.1016/j.indcrop.2014.12.002 10.3390/agronomy13112798 10.3390/horticulturae7080238 10.1016/j.agwat.2019.105981 10.1007/s11274-010-0444-1 10.1016/j.jclepro.2021.125811 10.1016/j.agwat.2020.106240 10.1016/j.fcr.2009.03.004 10.1016/j.agwat.2022.107464 10.1016/j.cj.2018.04.005 10.1093/jxb/eru532 10.1016/j.jclepro.2020.124019 10.1016/j.agwat.2017.01.013 10.1016/j.fcr.2008.03.004 10.1016/j.fcr.2012.12.003 10.1016/j.soilbio.2011.12.028 10.1016/j.agwat.2018.09.041 10.1007/s13205-016-0542-3 10.3390/w12010289 10.1016/j.fcr.2016.03.006 10.1016/S2095-3119(20)63409-8 10.1080/23311843.2019.1682106 10.1016/S2095-3119(12)60082-3 10.1016/j.scienta.2008.08.006 10.1111/aab.12540 10.1016/j.agwat.2018.02.033 10.1016/j.agee.2023.108787 10.1080/1343943X.2016.1242373 10.1016/j.fcr.2011.09.018 10.1016/j.agwat.2023.108196 10.1016/j.fcr.2014.09.010 10.1016/j.agwat.2017.08.018 10.1016/S0378-3774(00)00128-1 10.1016/j.agwat.2016.11.005 10.1016/S1671-2927(11)60193-4 10.1016/j.agwat.2020.106581 10.1016/S2095-3119(16)61506-X 10.1016/j.agwat.2018.05.022 10.1002/fes3.29 10.1016/j.fcr.2019.107698 10.32615/ps.2019.136 10.1016/j.envexpbot.2023.105605 10.1111/gcb.16204 10.1016/j.fcr.2012.06.015 10.2135/cropsci2009.02.0099 10.1016/j.fcr.2016.12.002 10.1007/s00374-017-1190-4 10.1007/s12011-010-8742-x 10.1007/s10333-014-0423-5 10.1007/s11099-008-0108-7 10.1080/03650340.2010.522993 10.1016/j.indcrop.2012.04.003 10.1007/s00704-024-04891-0 10.1111/j.1365-3040.2009.01934.x 10.1016/j.agwat.2022.107486 10.1016/j.agwat.2018.12.017 10.1016/j.agwat.2020.106363 10.1016/j.agwat.2023.108265 10.3389/fpls.2018.01223 10.3390/agronomy10060888 10.3390/agronomy14030548 10.1002/fes3.110 10.1093/jxb/err263 10.1016/j.agwat.2023.108333 10.1016/j.plaphy.2016.04.046 10.1093/aob/mcn199 10.1016/j.agwat.2022.108047 10.1016/j.agwat.2004.05.003 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to the International Society of Paddy and Water Environment Engineering 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. 2025 |
Copyright_xml | – notice: The Author(s), under exclusive licence to the International Society of Paddy and Water Environment Engineering 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. 2025 |
DBID | AAYXX CITATION 7QH 7ST 7UA C1K F1W H95 L.G SOI |
DOI | 10.1007/s10333-025-01016-9 |
DatabaseName | CrossRef Aqualine Environment Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aqualine Environment Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1611-2504 |
EndPage | 321 |
ExternalDocumentID | 10_1007_s10333_025_01016_9 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: the Science and Technology Planning Project of Guangdong Province grantid: 2019B121201004 – fundername: the Key R&D Project of Jiangsu Province grantid: BE2022351 – fundername: the Natural Science Foundation of China grantid: 52121006; U2243228; 1509107; 42177065 |
GroupedDBID | -Y2 .86 .VR 06D 0R~ 0VY 123 1N0 203 29O 29~ 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 4P2 5VS 67M 67Z 6NX 7X2 7XC 88I 8CJ 8FE 8FH 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANXM AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADHKG ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFDZB AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG APEBS ARMRJ ASPBG ATCPS AVWKF AXYYD AYFIA AZFZN AZQEC B-. BA0 BDATZ BENPR BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D1J D1K DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS ECGQY EDH EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6- KDC KOV L8X LAS LLZTM M0K M2P M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM PATMY PCBAR PF0 PHGZT PQQKQ PROAC PT4 PYCSY Q2X QOR QOS R89 R9I ROL RPX RSV S16 S1Z S27 S3B SAP SBL SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 TSG TSK TSV TUC U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ZOVNA ~A9 AAYXX ABFSG ACMFV ACSTC AEZWR AFHIU AFOHR AHWEU AIXLP ATHPR CITATION PHGZM 7QH 7ST 7UA ABRTQ C1K F1W H95 L.G SOI |
ID | FETCH-LOGICAL-c303t-f533067cf4092c90e0c92b2cd1a0b66167c364775ffbf4375cacdef7a5e0eb713 |
IEDL.DBID | U2A |
ISSN | 1611-2490 |
IngestDate | Fri Jul 25 20:55:43 EDT 2025 Tue Jul 01 05:05:43 EDT 2025 Fri Apr 18 01:16:14 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Irrigation regime Root morphology Soil properties Physiological characteristics Rice |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c303t-f533067cf4092c90e0c92b2cd1a0b66167c364775ffbf4375cacdef7a5e0eb713 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0003-1018-1255 |
PQID | 3191380806 |
PQPubID | 54526 |
PageCount | 21 |
ParticipantIDs | proquest_journals_3191380806 crossref_primary_10_1007_s10333_025_01016_9 springer_journals_10_1007_s10333_025_01016_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-04-01 |
PublicationDateYYYYMMDD | 2025-04-01 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore – name: Dordrecht |
PublicationTitle | Paddy and water environment |
PublicationTitleAbbrev | Paddy Water Environ |
PublicationYear | 2025 |
Publisher | Springer Nature Singapore Springer Nature B.V |
Publisher_xml | – name: Springer Nature Singapore – name: Springer Nature B.V |
References | X Qiang (1016_CR49) 2020; 12 DR Carrijo (1016_CR10) 2017; 203 T Abbas (1016_CR1) 2019; 672 A Darzi-Naftchali (1016_CR15) 2017; 193 J Yang (1016_CR71) 2007; 49 IA Lakhiar (1016_CR29) 2024; 14 SY Lisar (1016_CR35) 2012; 25 J Bernier (1016_CR8) 2009; 110 R Xue (1016_CR64) 2024; 218 R Xue (1016_CR63) 2023; 13 Md Khairul Alam (1016_CR28) 2020; 10 H Singh Grewal (1016_CR58) 2009; 330 B Zhao (1016_CR86) 2020; 40 T Hura (1016_CR24) 2007; 29 S Loaiza (1016_CR36) 2024; 360 X Zhao (1016_CR87) 2023; 280 J Yan (1016_CR67) 2022; 263 X Yin (1016_CR76) 2009; 32 H Zhang (1016_CR78) 2009; 49 RM Lampayan (1016_CR30) 2014; 13 R Mathobo (1016_CR39) 2017; 180 VJ Pascual (1016_CR45) 2016; 20 Z Wang (1016_CR61) 2016; 193 H Yan (1016_CR66) 2022; 264 IC Dodd (1016_CR17) 2015; 66 RM Lampayan (1016_CR31) 2015; 13 MT Harrison (1016_CR21) 2012; 136 Md Redwanur Rahman (1016_CR51) 2014; 3 C Yang (1016_CR70) 2004; 70 Z Zhang (1016_CR77) 2008; 108 M Zivcak (1016_CR89) 2013; 117 SD Veresoglou (1016_CR60) 2022; 28 C Zhang (1016_CR84) 2023; 284 GJ Norton (1016_CR42) 2017; 6 Y Zhang (1016_CR85) 2023; 281 C Li (1016_CR32) 2018; 331 KL Sahrawat (1016_CR52) 2012; 58 Q Jin (1016_CR26) 2018; 27 C Ju (1016_CR27) 2015; 175 C Li (1016_CR34) 2020; 239 H Cheng (1016_CR13) 2022; 349 MF Atique-ur-Rehman (1016_CR7) 2014; 169 Y-F Shen (1016_CR56) 2011; 10 A Ahmadikhah (1016_CR2) 2016 H Yan (1016_CR68) 2023; 276 Z Yang (1016_CR73) 2020; 246 A Madani (1016_CR37) 2010; 56 J-C Yang (1016_CR72) 2012; 11 F Zhang (1016_CR80) 2019; 57 P Sriphirom (1016_CR59) 2019; 223 CM dos Santos (1016_CR19) 2013; 41 NM Dong (1016_CR18) 2012; 47 S Poormohammad Kiani (1016_CR46) 2008; 175 C Zhang (1016_CR81) 2020; 241 MH Arzanesh (1016_CR5) 2010; 27 O Huguenin-Elie (1016_CR23) 2009; 103 Y Alhaj Hamoud (1016_CR3) 2019; 213 HT Nguyen (1016_CR41) 2009; 112 D Qi (1016_CR48) 2020; 230 M Ishfaq (1016_CR25) 2020; 241 AH Price (1016_CR47) 2013; 2 S Sedaghathoor (1016_CR54) 2019; 5 BAM Bouman (1016_CR9) 2001; 49 KN Disasa (1016_CR16) 2024; 155 W Zhang (1016_CR83) 2021; 268 Q Zhou (1016_CR88) 2017; 16 G Chu (1016_CR14) 2018; 6 J Pan (1016_CR44) 2017; 184 R Santiago-Arenas (1016_CR53) 2019; 175 W Chen (1016_CR11) 2011; 142 X Chen (1016_CR12) 2021; 290 GJ Norton (1016_CR43) 2018; 9 YK Shin (1016_CR57) 2021; 7 F Yao (1016_CR74) 2012; 126 H Yan (1016_CR69) 2023; 73 M Zhang (1016_CR82) 2021; 52 Z Li (1016_CR33) 2018; 207 H Zhang (1016_CR79) 2012; 63 A Shakoor (1016_CR55) 2021; 278 F Razavi (1016_CR50) 2008; 46 M Guerfel (1016_CR20) 2009; 119 CT Atere (1016_CR6) 2017; 53 H Yan (1016_CR65) 2021; 245 Y Ye (1016_CR75) 2013; 144 S Ali (1016_CR4) 2022; 21 S Hazrati (1016_CR22) 2016; 106 S Maneepitak (1016_CR38) 2019; 211 G-W Xu (1016_CR62) 2018; 203 Y Miao (1016_CR40) 2015; 66 |
References_xml | – volume: 49 start-page: 1445 issue: 10 year: 2007 ident: 1016_CR71 publication-title: J Integr Plant Biol doi: 10.1111/j.1672-9072.2007.00555.x – volume: 268 start-page: 108165 year: 2021 ident: 1016_CR83 publication-title: Field Crops Res doi: 10.1016/j.fcr.2021.108165 – volume: 175 start-page: 565 issue: 4 year: 2008 ident: 1016_CR46 publication-title: Plant Sci doi: 10.1016/j.plantsci.2008.06.002 – volume: 117 start-page: 529 issue: 1–3 year: 2013 ident: 1016_CR89 publication-title: Photosynth Res doi: 10.1007/s11120-013-9885-3 – volume: 223 start-page: 980 year: 2019 ident: 1016_CR59 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2019.03.212 – volume: 175 start-page: 47 year: 2015 ident: 1016_CR27 publication-title: Field Crop Res doi: 10.1016/j.fcr.2015.02.007 – volume: 241 start-page: 106263 year: 2020 ident: 1016_CR81 publication-title: Agric Water Manag doi: 10.1016/j.agwat.2020.106263 – volume: 672 start-page: 305 year: 2019 ident: 1016_CR1 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2019.03.392 – volume: 27 start-page: 6993 issue: 10 year: 2018 ident: 1016_CR26 publication-title: Fresenius Environ Bull – volume: 73 start-page: 119 issue: 1 year: 2023 ident: 1016_CR69 publication-title: Irrig Drain doi: 10.1002/ird.2856 – volume: 110 start-page: 139 issue: 2 year: 2009 ident: 1016_CR8 publication-title: Field Crops Res doi: 10.1016/j.fcr.2008.07.010 – volume: 56 start-page: 218 issue: 5 year: 2010 ident: 1016_CR37 publication-title: Plant Soil Environ doi: 10.17221/193/2009-PSE – volume: 29 start-page: 103 issue: 2 year: 2007 ident: 1016_CR24 publication-title: Acta Physiol Plant doi: 10.1007/s11738-006-0013-2 – volume: 3 start-page: 86 issue: 2 year: 2014 ident: 1016_CR51 publication-title: Agric Forest Fisheries doi: 10.11648/j.aff.20140302.16 – volume: 331 start-page: 100 year: 2018 ident: 1016_CR32 publication-title: Geoderma doi: 10.1016/j.geoderma.2018.06.014 – volume: 349 start-page: 131487 year: 2022 ident: 1016_CR13 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2022.131487 – volume: 66 start-page: 81 year: 2015 ident: 1016_CR40 publication-title: Ind Crops Prod doi: 10.1016/j.indcrop.2014.12.002 – volume: 330 start-page: 103 issue: 1–2 year: 2009 ident: 1016_CR58 publication-title: Plant Soil – volume: 13 start-page: 2798 issue: 11 year: 2023 ident: 1016_CR63 publication-title: Agronomy doi: 10.3390/agronomy13112798 – volume: 7 start-page: 238 issue: 8 year: 2021 ident: 1016_CR57 publication-title: Horticulturae doi: 10.3390/horticulturae7080238 – volume: 230 start-page: 105981 year: 2020 ident: 1016_CR48 publication-title: Agric Water Manag doi: 10.1016/j.agwat.2019.105981 – volume: 27 start-page: 197 issue: 2 year: 2010 ident: 1016_CR5 publication-title: World J Microbiol Biotechnol doi: 10.1007/s11274-010-0444-1 – volume: 290 start-page: 13 year: 2021 ident: 1016_CR12 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2021.125811 – volume: 239 start-page: 106240 year: 2020 ident: 1016_CR34 publication-title: Agric Water Manag doi: 10.1016/j.agwat.2020.106240 – volume: 112 start-page: 189 issue: 2–3 year: 2009 ident: 1016_CR41 publication-title: Field Crop Res doi: 10.1016/j.fcr.2009.03.004 – volume: 52 start-page: 924 issue: 4 year: 2021 ident: 1016_CR82 publication-title: J Southern Argic – volume: 264 start-page: 107464 year: 2022 ident: 1016_CR66 publication-title: Agric Water Manag doi: 10.1016/j.agwat.2022.107464 – volume: 6 start-page: 482 issue: 5 year: 2018 ident: 1016_CR14 publication-title: The Crop J doi: 10.1016/j.cj.2018.04.005 – volume: 66 start-page: 2239 issue: 8 year: 2015 ident: 1016_CR17 publication-title: J Exp Bot doi: 10.1093/jxb/eru532 – volume: 278 start-page: 124019 year: 2021 ident: 1016_CR55 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2020.124019 – volume: 184 start-page: 191 year: 2017 ident: 1016_CR44 publication-title: Agric Water Manag doi: 10.1016/j.agwat.2017.01.013 – volume: 108 start-page: 71 issue: 1 year: 2008 ident: 1016_CR77 publication-title: Field Crop Res doi: 10.1016/j.fcr.2008.03.004 – volume: 144 start-page: 212 year: 2013 ident: 1016_CR75 publication-title: Field Crop Res doi: 10.1016/j.fcr.2012.12.003 – volume: 47 start-page: 166 year: 2012 ident: 1016_CR18 publication-title: Vietnam Soil Biol Biochem doi: 10.1016/j.soilbio.2011.12.028 – volume: 211 start-page: 89 year: 2019 ident: 1016_CR38 publication-title: Agric Water Manag doi: 10.1016/j.agwat.2018.09.041 – year: 2016 ident: 1016_CR2 publication-title: 3 Biotech doi: 10.1007/s13205-016-0542-3 – volume: 12 start-page: 289 issue: 1 year: 2020 ident: 1016_CR49 publication-title: Water doi: 10.3390/w12010289 – volume: 193 start-page: 54 year: 2016 ident: 1016_CR61 publication-title: Field Crop Res doi: 10.1016/j.fcr.2016.03.006 – volume: 21 start-page: 654 issue: 3 year: 2022 ident: 1016_CR4 publication-title: J Integr Agric doi: 10.1016/S2095-3119(20)63409-8 – volume: 5 start-page: 1682106 issue: 1 year: 2019 ident: 1016_CR54 publication-title: Cogent Environ Sci doi: 10.1080/23311843.2019.1682106 – volume: 11 start-page: 920 issue: 6 year: 2012 ident: 1016_CR72 publication-title: J Integr Agric doi: 10.1016/S2095-3119(12)60082-3 – volume: 119 start-page: 257 issue: 3 year: 2009 ident: 1016_CR20 publication-title: Sci Hortic doi: 10.1016/j.scienta.2008.08.006 – volume: 175 start-page: 388 issue: 3 year: 2019 ident: 1016_CR53 publication-title: Annals Appl Biol doi: 10.1111/aab.12540 – volume: 203 start-page: 385 year: 2018 ident: 1016_CR62 publication-title: Agric Water Manag doi: 10.1016/j.agwat.2018.02.033 – volume: 360 start-page: 108787 year: 2024 ident: 1016_CR36 publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2023.108787 – volume: 20 start-page: 24 issue: 1 year: 2016 ident: 1016_CR45 publication-title: Plant Prod Sci doi: 10.1080/1343943X.2016.1242373 – volume: 126 start-page: 16 year: 2012 ident: 1016_CR74 publication-title: Field Crop Res doi: 10.1016/j.fcr.2011.09.018 – volume: 280 start-page: 108196 year: 2023 ident: 1016_CR87 publication-title: Agric Water Manag doi: 10.1016/j.agwat.2023.108196 – volume: 169 start-page: 123 year: 2014 ident: 1016_CR7 publication-title: Field Crops Res doi: 10.1016/j.fcr.2014.09.010 – volume: 193 start-page: 221 year: 2017 ident: 1016_CR15 publication-title: Agric Water Manag doi: 10.1016/j.agwat.2017.08.018 – volume: 49 start-page: 11 issue: 1 year: 2001 ident: 1016_CR9 publication-title: Agric Water Manag doi: 10.1016/S0378-3774(00)00128-1 – volume: 180 start-page: 118 year: 2017 ident: 1016_CR39 publication-title: Agric Water Manag doi: 10.1016/j.agwat.2016.11.005 – volume: 10 start-page: 1923 issue: 12 year: 2011 ident: 1016_CR56 publication-title: Agric Sci China doi: 10.1016/S1671-2927(11)60193-4 – volume: 245 start-page: 106581 year: 2021 ident: 1016_CR65 publication-title: Agric Water Manag doi: 10.1016/j.agwat.2020.106581 – volume: 16 start-page: 1028 issue: 5 year: 2017 ident: 1016_CR88 publication-title: J Integr Agric doi: 10.1016/S2095-3119(16)61506-X – volume: 207 start-page: 26 year: 2018 ident: 1016_CR33 publication-title: Agric Water Manag doi: 10.1016/j.agwat.2018.05.022 – volume: 2 start-page: 120 issue: 2 year: 2013 ident: 1016_CR47 publication-title: Food Energy Secur doi: 10.1002/fes3.29 – volume: 246 start-page: 107698 year: 2020 ident: 1016_CR73 publication-title: Field Crops Res doi: 10.1016/j.fcr.2019.107698 – volume: 57 start-page: 1156 issue: 4 year: 2019 ident: 1016_CR80 publication-title: Photosynthetica doi: 10.32615/ps.2019.136 – volume: 218 start-page: 105605 year: 2024 ident: 1016_CR64 publication-title: Environ Exp Bot doi: 10.1016/j.envexpbot.2023.105605 – volume: 28 start-page: 3995 issue: 13 year: 2022 ident: 1016_CR60 publication-title: Glob Chang Biol doi: 10.1111/gcb.16204 – volume: 136 start-page: 116 year: 2012 ident: 1016_CR21 publication-title: Field Crop Res doi: 10.1016/j.fcr.2012.06.015 – volume: 49 start-page: 2246 issue: 6 year: 2009 ident: 1016_CR78 publication-title: Crop Sci doi: 10.2135/cropsci2009.02.0099 – volume: 203 start-page: 173 year: 2017 ident: 1016_CR10 publication-title: Field Crop Res doi: 10.1016/j.fcr.2016.12.002 – volume: 53 start-page: 407 issue: 4 year: 2017 ident: 1016_CR6 publication-title: Biol Fertil Soils doi: 10.1007/s00374-017-1190-4 – volume: 142 start-page: 67 issue: 1 year: 2011 ident: 1016_CR11 publication-title: Biol Trace Elem Res doi: 10.1007/s12011-010-8742-x – volume: 13 start-page: 215 issue: 3 year: 2015 ident: 1016_CR31 publication-title: Philippines Paddy Water Environ doi: 10.1007/s10333-014-0423-5 – volume: 46 start-page: 631 issue: 4 year: 2008 ident: 1016_CR50 publication-title: Photosynthetica doi: 10.1007/s11099-008-0108-7 – volume: 58 start-page: 423 issue: 4 year: 2012 ident: 1016_CR52 publication-title: Arch Agron Soil Sci doi: 10.1080/03650340.2010.522993 – volume: 41 start-page: 203 year: 2013 ident: 1016_CR19 publication-title: Indus Crops Prod doi: 10.1016/j.indcrop.2012.04.003 – volume: 155 start-page: 4481 issue: 6 year: 2024 ident: 1016_CR16 publication-title: Theor Appl Climatol doi: 10.1007/s00704-024-04891-0 – volume: 32 start-page: 448 issue: 5 year: 2009 ident: 1016_CR76 publication-title: Plant Cell Environ doi: 10.1111/j.1365-3040.2009.01934.x – volume: 263 start-page: 107486 year: 2022 ident: 1016_CR67 publication-title: Agric Water Manag doi: 10.1016/j.agwat.2022.107486 – volume: 213 start-page: 934 year: 2019 ident: 1016_CR3 publication-title: Agric Water Manag doi: 10.1016/j.agwat.2018.12.017 – volume: 241 start-page: 106363 year: 2020 ident: 1016_CR25 publication-title: Agric Water Manag doi: 10.1016/j.agwat.2020.106363 – volume: 25 start-page: 33 issue: 1 year: 2012 ident: 1016_CR35 publication-title: Water Stress – volume: 40 start-page: 1399 issue: 11 year: 2020 ident: 1016_CR86 publication-title: J Triticeae Crops – volume: 13 start-page: 215 issue: 3 year: 2014 ident: 1016_CR30 publication-title: Philippines Paddy and Water Environ doi: 10.1007/s10333-014-0423-5 – volume: 281 start-page: 108265 year: 2023 ident: 1016_CR85 publication-title: Agric Water Manag doi: 10.1016/j.agwat.2023.108265 – volume: 9 start-page: 18 year: 2018 ident: 1016_CR43 publication-title: Front Plant Sci doi: 10.3389/fpls.2018.01223 – volume: 10 start-page: 888 issue: 6 year: 2020 ident: 1016_CR28 publication-title: Agronomy doi: 10.3390/agronomy10060888 – volume: 14 start-page: 548 issue: 3 year: 2024 ident: 1016_CR29 publication-title: Agronomy doi: 10.3390/agronomy14030548 – volume: 6 start-page: 98 issue: 3 year: 2017 ident: 1016_CR42 publication-title: Food Energy Secur doi: 10.1002/fes3.110 – volume: 63 start-page: 215 issue: 1 year: 2012 ident: 1016_CR79 publication-title: J Exp Bot doi: 10.1093/jxb/err263 – volume: 284 start-page: 108333 year: 2023 ident: 1016_CR84 publication-title: Agric Water Manag doi: 10.1016/j.agwat.2023.108333 – volume: 106 start-page: 141 year: 2016 ident: 1016_CR22 publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2016.04.046 – volume: 103 start-page: 211 issue: 2 year: 2009 ident: 1016_CR23 publication-title: Ann Bot doi: 10.1093/aob/mcn199 – volume: 276 start-page: 108047 year: 2023 ident: 1016_CR68 publication-title: Agric Water Manag doi: 10.1016/j.agwat.2022.108047 – volume: 70 start-page: 67 issue: 1 year: 2004 ident: 1016_CR70 publication-title: Agric Water Manag doi: 10.1016/j.agwat.2004.05.003 |
SSID | ssj0027431 |
Score | 2.361149 |
Snippet | Alternative wet and dry irrigation (AWD) has been widely used for rice plants in many countries. Determining the appropriate irrigation amount for different... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 301 |
SubjectTerms | Agricultural production Agriculture Biomedical and Life Sciences Bulk density Crop yield Cultivation Ecotoxicology Fluorescence Geoecology/Natural Processes Grain cultivation Growth stage Hydrogeology Hydrology/Water Resources Irrigation Irrigation efficiency Irrigation water Life Sciences Milking Moisture content Physical characteristics Physicochemical processes Physicochemical properties Physiology Plant growth Porosity Quantum efficiency Rice Rice fields Soil Soil density Soil moisture Soil porosity Soil properties Soil Science & Conservation Transpiration Water content Water use Water use efficiency |
Title | Effects of alternating wet and dry irrigation regimes on rice growth and physiology characteristics in southeast China |
URI | https://link.springer.com/article/10.1007/s10333-025-01016-9 https://www.proquest.com/docview/3191380806 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1Bu8CA-BSFUnlgA0uJkzjxWKFCBRITlcoUxY5dOpCiJID495zdRG0RDGyRbHk4O773fHfvAC6ZMLFJMo9GPDY0DAWjQvKMGhlymQdWZcklyD7y8SS8n0bTpiisarPd25Cku6nXit2CwMYcbbIZAhUqtqEbIXe3iVwTNlyjWa4LIUIZnyK58JpSmd_X2HRHK4z5IyzqvM3tPuw1MJEMl_t6AFu6OITd4axspDL0EXwshYcrsjDExbztu14xI5-6JlmRk7z8IvOydBIai4LYDgyvGmfjJ14OZIb8u35xM93rhnteJ2pTv5nMC1LZJnu2ww9xvbaPYXI7eroZ06aLAlXonmpqbP4oj5VBJseU8LSnBJNM5X7mSfTOOGQ15OPIGGnCII5UpnJt4izSnpbIYU-gUywKfQrEz-Lc-FKwJDKhQWgVJZKjw0-UQpjAkh5ctcZM35ZiGelKFtmaPkXTp870qehBv7V32vw4VYo3gh9YrUveg-t2D1bDf6929r_p57DD3DFADs370KnLd32B8KKWA-gO754fRgN3qr4BaZrI0w |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BGYAB8RSFAh7YwFLiPD1WiKpA6dRK3aLYsUsHUpQEEP-es5uoLYKBLZJPHs4X33e-u-8ArhnXkY5ThwZhpKnvc0a5CFOqhR-KzDMsS7ZAdhj2x_7jJJjUTWFlU-3epCTtTb3S7OZ5Judois0QqFC-CVsIBmJjy2PWXQmz7BRChDIuxeDCqVtlft9j3R0tMeaPtKj1Nr192KthIukuzvUANlR-CLvdaVFTZagj-FgQD5dkronNeZt3vXxKPlVF0jwjWfFFZkVhKTTmOTETGF4VSuMnXg5kivF39WIl7euGfV4ncp2_mcxyUpohe2bCD7Gzto9h3Lsf3fVpPUWBSnRPFdWmfjSMpMZIjknuKEdyJpjM3NQR6J1xyXDIR4HWQvteFMhUZkpHaaAcJTCGPYFWPs_VKRA3jTLtCs7iQPsaoVUQixAdfiwlwgQWt-GmUWbytiDLSJa0yEb1Cao-sapPeBs6jb6T-scpE7wRXM9wXYZtuG3OYLn8925n_xO_gu3-6HmQDB6GT-eww6xJmHqcDrSq4l1dINSoxKW1rG-1PMoo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagSAgGxFMUCnhgA6uJ8_RYAVV5qGKgUjcrduzSAbdKA4h_z9lJ1RbBwBbJJw9nx_fd6zuELinTiU4zj0RxokkYMkqYiDOiRRiLPLAsS65Ath_3BuHDMBoudfG7avd5SrLqabAsTaZsT3PdXmp8CwKbf7SFZwBaCFtHG6HtBoYbPaCdJZfLTSQEWOMTcDS8um3m9z1WTdMCb_5IkTrL091FOzVkxJ3qjPfQmjL7aLszKmraDHWAPioS4hmeaOzy3zbGZ0b4U5U4MznOiy88LgpHpzEx2E5jeFMgDZ_wUOAR-OLlq5N0kQ4XasdylcsZjw2e2YF7dtoPdnO3D9Gge_dy0yP1RAUiwVSVRNta0jiRGrw6KpmnPMmooDL3M0-ApYYlyyefRFoLHQZJJDOZK51kkfKUAH_2CDXMxKhjhP0sybUvGE0jHWqAWVEqYjD-qZQAGWjaRFdzZfJpRZzBFxTJVvUcVM-d6jlrotZc37z-iWYcXgc_sLyXcRNdz89gsfz3bif_E79Am8-3Xf503388RVvU3QhbmtNCjbJ4V2eAOkpx7i7WN3zKzls |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+alternating+wet+and+dry+irrigation+regimes+on+rice+growth+and+physiology+characteristics+in+southeast+China&rft.jtitle=Paddy+and+water+environment&rft.au=Zhou%2C+Rui&rft.au=Yan%2C+Haofang&rft.au=Zhang%2C+Chuan&rft.au=Zhu%2C+Xingye&rft.date=2025-04-01&rft.issn=1611-2490&rft.eissn=1611-2504&rft.volume=23&rft.issue=2&rft.spage=301&rft.epage=321&rft_id=info:doi/10.1007%2Fs10333-025-01016-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10333_025_01016_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1611-2490&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1611-2490&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1611-2490&client=summon |