Point- and contact-symmetry pseudogroups of dispersionless Nizhnik equation
Applying an original megaideal-based version of the algebraic method, we compute the point-symmetry pseudogroup of the dispersionless (potential symmetric) Nizhnik equation. This is the first example of this kind in the literature, where there is no need to use the direct method for completing the c...
Saved in:
Published in | Communications in nonlinear science & numerical simulation Vol. 132; p. 107915 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.05.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Applying an original megaideal-based version of the algebraic method, we compute the point-symmetry pseudogroup of the dispersionless (potential symmetric) Nizhnik equation. This is the first example of this kind in the literature, where there is no need to use the direct method for completing the computation. The analogous studies are also carried out for the corresponding nonlinear Lax representation and the dispersionless counterpart of the symmetric Nizhnik system. We also first apply the megaideal-based version of the algebraic method to find the contact-symmetry (pseudo)group of a partial differential equation. It is shown that the contact-symmetry pseudogroup of the dispersionless Nizhnik equation coincides with the first prolongation of its point-symmetry pseudogroup. We check whether the subalgebras of the maximal Lie invariance algebra of the dispersionless Nizhnik equation that naturally arise in the course of the above computations define the diffeomorphisms stabilizing this algebra or its first prolongation. In addition, we construct all the third-order partial differential equations in three independent variables that admit the same Lie invariance algebra. We also find a set of geometric properties of the dispersionless Nizhnik equation that exhaustively defines it.
•The point-symmetry pseudogroup G of the dispersionless Nizhnik equation is found.•The contact-symmetry counterpart of G coincides with the first prolongation of G.•This gives the first examples where (pseudo)groups are defined by their algebras.•We describe geometric properties of this equation that completely define it.•The algebraic method of constructing point-symmetry pseudogroups is developed. |
---|---|
AbstractList | Applying an original megaideal-based version of the algebraic method, we compute the point-symmetry pseudogroup of the dispersionless (potential symmetric) Nizhnik equation. This is the first example of this kind in the literature, where there is no need to use the direct method for completing the computation. The analogous studies are also carried out for the corresponding nonlinear Lax representation and the dispersionless counterpart of the symmetric Nizhnik system. We also first apply the megaideal-based version of the algebraic method to find the contact-symmetry (pseudo)group of a partial differential equation. It is shown that the contact-symmetry pseudogroup of the dispersionless Nizhnik equation coincides with the first prolongation of its point-symmetry pseudogroup. We check whether the subalgebras of the maximal Lie invariance algebra of the dispersionless Nizhnik equation that naturally arise in the course of the above computations define the diffeomorphisms stabilizing this algebra or its first prolongation. In addition, we construct all the third-order partial differential equations in three independent variables that admit the same Lie invariance algebra. We also find a set of geometric properties of the dispersionless Nizhnik equation that exhaustively defines it.
•The point-symmetry pseudogroup G of the dispersionless Nizhnik equation is found.•The contact-symmetry counterpart of G coincides with the first prolongation of G.•This gives the first examples where (pseudo)groups are defined by their algebras.•We describe geometric properties of this equation that completely define it.•The algebraic method of constructing point-symmetry pseudogroups is developed. |
ArticleNumber | 107915 |
Author | Vinnichenko, Oleksandra O. Popovych, Roman O. Boyko, Vyacheslav M. |
Author_xml | – sequence: 1 givenname: Vyacheslav M. surname: Boyko fullname: Boyko, Vyacheslav M. email: boyko@imath.kiev.ua organization: Institute of Mathematics of NAS of Ukraine, 3 Tereshchenkivska Str, 01024 Kyiv, Ukraine – sequence: 2 givenname: Roman O. surname: Popovych fullname: Popovych, Roman O. email: rop@imath.kiev.ua organization: Institute of Mathematics of NAS of Ukraine, 3 Tereshchenkivska Str, 01024 Kyiv, Ukraine – sequence: 3 givenname: Oleksandra O. surname: Vinnichenko fullname: Vinnichenko, Oleksandra O. email: oleksandra.vinnichenko@imath.kiev.ua organization: Institute of Mathematics of NAS of Ukraine, 3 Tereshchenkivska Str, 01024 Kyiv, Ukraine |
BookMark | eNp9kM9OwzAMhyM0JLbBE3DJC3QkTdp0Bw5o4p-YgAOcozRxIWNLStwhjacnY5yRD7Z-8mdZ34SMQgxAyDlnM854fbGa2YABZyUrZU7UnFdHZMwb1RSqVHKUZ8ZUUSkmT8gEccUyNa_kmDw8Rx-GgprgqI1hMHYocLfZwJB2tEfYuviW4rZHGjvqPPaQ0MewBkT66L_fg_-g8Lk1Qw5PyXFn1ghnf31KXm-uXxZ3xfLp9n5xtSysYGIowBjVVLa2dS0cNKoUspGibFtT1m1Xy66GXG1VubxYSWvFnNtWWedkA4yDmBJxuGtTREzQ6T75jUk7zZne-9Ar_etD733og49MXR4oyK99eUgarYdgwfkEdtAu-n_5Hz1Ablw |
CitedBy_id | crossref_primary_10_1007_s13324_024_00925_y |
Cites_doi | 10.1088/0305-4470/37/10/L01 10.1016/S0926-2245(99)00028-5 10.1063/1.530708 10.1007/s10665-012-9589-2 10.1088/1742-6596/621/1/012001 10.1016/j.cnsns.2021.105885 10.1111/1467-9590.00226 10.1007/s13324-021-00563-8 10.1088/0305-4470/36/26/309 10.1088/0305-4470/31/6/010 10.1016/j.jmaa.2023.127430 10.1007/s10440-007-9178-y 10.1016/j.cpc.2006.08.001 10.1016/S0895-7177(97)00063-0 10.1007/s11005-017-1013-4 10.1016/j.jmaa.2006.10.042 10.1017/S0956792523000074 10.1006/jmaa.2001.7570 10.1016/j.physd.2019.132175 10.1006/jsco.1999.0299 10.1007/s10208-008-9039-8 10.1063/1.522396 10.1063/1.531496 10.1016/j.geomphys.2019.06.011 10.1016/j.cpc.2012.01.005 10.1007/s13324-021-00550-z 10.1016/j.physd.2024.134081 10.1017/S0956792500004204 10.1007/s10440-018-0215-9 10.1063/1.2993117 10.1016/j.geomphys.2014.05.028 10.1063/1.4734344 10.1111/j.0022-2526.2004.01536.x 10.1088/0305-4470/36/5/102 10.1088/0266-5611/2/3/005 10.1016/j.physd.2019.132188 10.2991/jnmp.1998.5.4.6 |
ContentType | Journal Article |
Copyright | 2024 Elsevier B.V. |
Copyright_xml | – notice: 2024 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cnsns.2024.107915 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 1878-7274 |
ExternalDocumentID | 10_1016_j_cnsns_2024_107915 S1007570424001011 |
GroupedDBID | --K --M -01 -0A -0I -0Y -SA -S~ .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VR 5VS 7-5 71M 8P~ 92M 9D9 9DA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXDM AAXUO ABAOU ABFNM ABJNI ABMAC ABNEU ABXDB ABYKQ ACAZW ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADGUI ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AFUIB AGHFR AGUBO AGYEJ AHJVU AIEXJ AIGVJ AIKHN AITUG AIVDX AJBFU AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CAJEA CAJUS CCEZO CCVFK CHBEP CS3 CUBFJ DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FA0 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA JUIAU KOM M41 MHUIS MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q-- Q-0 Q38 R-A R-I R2- RIG ROL RPZ RT1 RT9 S.. SDF SDG SES SEW SPC SPCBC SPD SSQ SST SSW SSZ T5K T8Q T8Y U1F U1G U5A U5I U5K UHS ~G- ~LA AAXKI AAYXX AFJKZ CITATION |
ID | FETCH-LOGICAL-c303t-eaa785c6c663de872348432bba26bf64f6e6e6b55daa754cc391cb7cdd48e01e3 |
IEDL.DBID | AIKHN |
ISSN | 1007-5704 |
IngestDate | Thu Sep 26 18:52:55 EDT 2024 Sat Mar 30 16:20:36 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Dispersionless Nizhnik equation Discrete symmetry Lie invariance algebra Point-symmetry pseudogroup |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c303t-eaa785c6c663de872348432bba26bf64f6e6e6b55daa754cc391cb7cdd48e01e3 |
ParticipantIDs | crossref_primary_10_1016_j_cnsns_2024_107915 elsevier_sciencedirect_doi_10_1016_j_cnsns_2024_107915 |
PublicationCentury | 2000 |
PublicationDate | May 2024 2024-05-00 |
PublicationDateYYYYMMDD | 2024-05-01 |
PublicationDate_xml | – month: 05 year: 2024 text: May 2024 |
PublicationDecade | 2020 |
PublicationTitle | Communications in nonlinear science & numerical simulation |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Andriopoulos, Leach, Flessas (b1) 2001; 262 Popovych, Boyko, Nesterenko, Lutfullin (b46) 2003; 36 Boiti, Leon, Manna, Pempinelli (b8) 1986; 2 Hydon (b20) 2000 Popovych, Bihlo (b44) 2012; 53 Nucci (b38) 1996; 37 Dos Santos Cardoso-Bihlo, Popovych (b13) 2021; 101 Bihlo, Dos Santos Cardoso-Bihlo, Popovych (b3) 2015; 621 Gorgone, Oliveri (b15) 2019; 144 Cheviakov (b11) 2007; 176 Hilgert, Neeb (b17) 2012 Hydon (b21) 2000; 11 Manno, Oliveri, Vitolo (b33) 2007; 332 Bluman, Kumei (b6) 1989 Koval, Bihlo, Popovych (b27) 2023; 34 Olver (b39) 1993 Kunzinger, Popovych (b30) 2008; 49 Rosenhaus (b50) 1988; 5 Konopelchenko, Moro (b25) 2004; 113 Opanasenko, Bihlo, Popovych, Sergyeyev (b41) 2020; 402 Zakharov (b55) 1994; vol. 320 Hereman (b16) 1997; 25 . Maltseva, Popovych (b31) 2024; 460 Veselov, Novikov (b52) 1984; 30 Ovsiannikov (b42) 1982 Bocharov, Chetverikov, Duzhin, Khor’kova, Krasil’shchik, Samokhin, Torkhov, Verbovetsky, Vinogradov (b7) 1999 Rogers, Schief (b48) 2002 Ferapontov (b14) 1999; 11 Konopelchenko, Martínez Alonso (b23) 2002; 109 Krause (b29) 1994; 35 Baran H, Marvan M, Jets. A software for differential calculus on jet spaces and diffieties. Available at Rosenhaus (b49) 1986; 3 Boyko, Lokaziuk, Popovych (b9) 2021; 11 Dos Santos Cardoso-Bihlo, Popovych (b12) 2013; 82 Nizhnik (b37) 1980; 25 Popovych, Kunzinger, Ivanova (b47) 2008; 100 Koval, Popovych (b28) 2023; 527 Kingston, Sophocleous (b22) 1998; 31 Bluman, Cheviakov, Anco (b5) 2010 Bihlo, Popovych (b4) 2011 Konopelchenko, Moro (b24) 2004; 37 Hydon (b19) 1998; 5 Pavlov (b43) 2006 Sergyeyev (b51) 2018; 108 Marvan, Sergyeyev (b35) 2003; 36 Vu, Jefferson, Carminati (b53) 2012; 183 Wahlquist, Estabrook (b54) 1975; 16 Manno, Oliveri, Saccomandi, Vitolo (b32) 2014; 85 Morozov, Chang (b36) 2021; 11 Marvan (b34) 2009; 9 Hydon (b18) 1998; 454 Popovych, Bihlo (b45) 2020; 401 Kontogiorgis, Popovych, Sophocleous (b26) 2019; 163 Olver (b40) 1995 Carminati, Vu (b10) 2000; 29 Nizhnik (10.1016/j.cnsns.2024.107915_b37) 1980; 25 Olver (10.1016/j.cnsns.2024.107915_b40) 1995 Ferapontov (10.1016/j.cnsns.2024.107915_b14) 1999; 11 Cheviakov (10.1016/j.cnsns.2024.107915_b11) 2007; 176 Manno (10.1016/j.cnsns.2024.107915_b32) 2014; 85 Dos Santos Cardoso-Bihlo (10.1016/j.cnsns.2024.107915_b13) 2021; 101 Boiti (10.1016/j.cnsns.2024.107915_b8) 1986; 2 Hydon (10.1016/j.cnsns.2024.107915_b20) 2000 Hereman (10.1016/j.cnsns.2024.107915_b16) 1997; 25 Hydon (10.1016/j.cnsns.2024.107915_b21) 2000; 11 Konopelchenko (10.1016/j.cnsns.2024.107915_b25) 2004; 113 Ovsiannikov (10.1016/j.cnsns.2024.107915_b42) 1982 Konopelchenko (10.1016/j.cnsns.2024.107915_b24) 2004; 37 Morozov (10.1016/j.cnsns.2024.107915_b36) 2021; 11 Nucci (10.1016/j.cnsns.2024.107915_b38) 1996; 37 Rosenhaus (10.1016/j.cnsns.2024.107915_b49) 1986; 3 Popovych (10.1016/j.cnsns.2024.107915_b44) 2012; 53 Koval (10.1016/j.cnsns.2024.107915_b28) 2023; 527 Popovych (10.1016/j.cnsns.2024.107915_b45) 2020; 401 Konopelchenko (10.1016/j.cnsns.2024.107915_b23) 2002; 109 Pavlov (10.1016/j.cnsns.2024.107915_b43) 2006 Andriopoulos (10.1016/j.cnsns.2024.107915_b1) 2001; 262 Bluman (10.1016/j.cnsns.2024.107915_b5) 2010 Kingston (10.1016/j.cnsns.2024.107915_b22) 1998; 31 Kontogiorgis (10.1016/j.cnsns.2024.107915_b26) 2019; 163 Bihlo (10.1016/j.cnsns.2024.107915_b3) 2015; 621 Koval (10.1016/j.cnsns.2024.107915_b27) 2023; 34 Opanasenko (10.1016/j.cnsns.2024.107915_b41) 2020; 402 10.1016/j.cnsns.2024.107915_b2 Bluman (10.1016/j.cnsns.2024.107915_b6) 1989 Hilgert (10.1016/j.cnsns.2024.107915_b17) 2012 Dos Santos Cardoso-Bihlo (10.1016/j.cnsns.2024.107915_b12) 2013; 82 Wahlquist (10.1016/j.cnsns.2024.107915_b54) 1975; 16 Bihlo (10.1016/j.cnsns.2024.107915_b4) 2011 Marvan (10.1016/j.cnsns.2024.107915_b35) 2003; 36 Veselov (10.1016/j.cnsns.2024.107915_b52) 1984; 30 Kunzinger (10.1016/j.cnsns.2024.107915_b30) 2008; 49 Bocharov (10.1016/j.cnsns.2024.107915_b7) 1999 Olver (10.1016/j.cnsns.2024.107915_b39) 1993 Gorgone (10.1016/j.cnsns.2024.107915_b15) 2019; 144 Boyko (10.1016/j.cnsns.2024.107915_b9) 2021; 11 Hydon (10.1016/j.cnsns.2024.107915_b19) 1998; 5 Marvan (10.1016/j.cnsns.2024.107915_b34) 2009; 9 Sergyeyev (10.1016/j.cnsns.2024.107915_b51) 2018; 108 Hydon (10.1016/j.cnsns.2024.107915_b18) 1998; 454 Krause (10.1016/j.cnsns.2024.107915_b29) 1994; 35 Maltseva (10.1016/j.cnsns.2024.107915_b31) 2024; 460 Carminati (10.1016/j.cnsns.2024.107915_b10) 2000; 29 Popovych (10.1016/j.cnsns.2024.107915_b47) 2008; 100 Zakharov (10.1016/j.cnsns.2024.107915_b55) 1994; vol. 320 Manno (10.1016/j.cnsns.2024.107915_b33) 2007; 332 Rosenhaus (10.1016/j.cnsns.2024.107915_b50) 1988; 5 Rogers (10.1016/j.cnsns.2024.107915_b48) 2002 Popovych (10.1016/j.cnsns.2024.107915_b46) 2003; 36 Vu (10.1016/j.cnsns.2024.107915_b53) 2012; 183 |
References_xml | – volume: 11 start-page: 515 year: 2000 end-page: 527 ident: b21 article-title: How to construct the discrete symmetries of partial differential equations publication-title: Eur J Appl Math contributor: fullname: Hydon – volume: 53 year: 2012 ident: b44 article-title: Symmetry preserving parameterization schemes publication-title: J Math Phys contributor: fullname: Bihlo – year: 2010 ident: b5 article-title: Applications of symmetry methods to partial differential equations contributor: fullname: Anco – year: 1995 ident: b40 article-title: Equivalence, invariants, and symmetry contributor: fullname: Olver – year: 2006 ident: b43 article-title: Modified dispersionless Veselov–Novikov equation and corresponding hydrodynamic chains contributor: fullname: Pavlov – volume: 163 start-page: 91 year: 2019 end-page: 128 ident: b26 article-title: Enhanced symmetry analysis of two-dimensional Burgers system publication-title: Acta Appl Math contributor: fullname: Sophocleous – year: 2000 ident: b20 article-title: Symmetry methods for differential equations. A beginner’s guide contributor: fullname: Hydon – volume: 25 start-page: 706 year: 1980 end-page: 708 ident: b37 article-title: Integration of multidimensional nonlinear equations by the inverse problem method publication-title: Sov Phys Dokl contributor: fullname: Nizhnik – volume: 262 start-page: 256 year: 2001 end-page: 273 ident: b1 article-title: Complete symmetry groups of ordinary differential equations and their integrals: some basic considerations publication-title: J Math Anal Appl contributor: fullname: Flessas – volume: 621 year: 2015 ident: b3 article-title: Algebraic method for finding equivalence groups publication-title: J Phys Conf Ser contributor: fullname: Popovych – year: 2002 ident: b48 article-title: Bäcklund and darboux transformations. Geometry and modern applications in soliton theory contributor: fullname: Schief – volume: 401 year: 2020 ident: b45 article-title: Inverse problem on conservation laws publication-title: Physica D contributor: fullname: Bihlo – volume: 82 start-page: 31 year: 2013 end-page: 38 ident: b12 article-title: Complete point symmetry group of the barotropic vorticity equation on a rotating sphere publication-title: J Engrg Math contributor: fullname: Popovych – volume: 402 year: 2020 ident: b41 article-title: Extended symmetry analysis of isothermal no-slip drift flux model publication-title: Physica D contributor: fullname: Sergyeyev – year: 1989 ident: b6 article-title: Symmetries and differential equations contributor: fullname: Kumei – volume: 332 start-page: 767 year: 2007 end-page: 786 ident: b33 article-title: On differential equations characterized by their Lie point symmetries publication-title: J Math Anal Appl contributor: fullname: Vitolo – volume: 34 start-page: 1067 year: 2023 end-page: 1098 ident: b27 article-title: Extended symmetry analysis of remarkable (1+2)-dimensional Fokker–Planck equation publication-title: European J Appl Math contributor: fullname: Popovych – volume: 37 start-page: 1772 year: 1996 end-page: 1775 ident: b38 article-title: The complete Kepler group can be derived by Lie group analysis publication-title: J Math Phys contributor: fullname: Nucci – year: 1999 ident: b7 article-title: Symmetries and conservation laws for differential equations of mathematical physics contributor: fullname: Vinogradov – volume: 85 start-page: 2 year: 2014 end-page: 15 ident: b32 article-title: Ordinary differential equations described by their Lie symmetry algebra publication-title: J Geom Phys contributor: fullname: Vitolo – year: 1982 ident: b42 article-title: Group analysis of differential equations contributor: fullname: Ovsiannikov – volume: 176 start-page: 48 year: 2007 end-page: 61 ident: b11 article-title: Gem software package for computation of symmetries and conservation laws of differential equations publication-title: Comput Phys Comm contributor: fullname: Cheviakov – volume: 100 start-page: 113 year: 2008 end-page: 185 ident: b47 article-title: Conservation laws and potential symmetries of linear parabolic equations publication-title: Acta Appl Math contributor: fullname: Ivanova – volume: 30 start-page: 588 year: 1984 end-page: 591 ident: b52 article-title: Finite-zone two-dimensional potential Schrödinger operators. Explicit formulas and evolution equations publication-title: Sov Math Dokl contributor: fullname: Novikov – volume: 11 start-page: 117 year: 1999 end-page: 128 ident: b14 article-title: Stationary Veselov–Novikov equation and isothermally asymptotic surfaces in projective differential geometry publication-title: Differential Geom Appl contributor: fullname: Ferapontov – volume: 144 start-page: 314 year: 2019 end-page: 323 ident: b15 article-title: Lie remarkable partial differential equations characterized by Lie algebras of point symmetries publication-title: J Geom Phys contributor: fullname: Oliveri – volume: 36 start-page: L87 year: 2003 end-page: L92 ident: b35 article-title: Recursion operator for the stationary Nizhnik–Veselov–Novikov equation publication-title: J Phys A contributor: fullname: Sergyeyev – volume: 108 start-page: 359 year: 2018 end-page: 376 ident: b51 article-title: New integrable (3+1)-dimensional systems and contact geometry publication-title: Lett Math Phys contributor: fullname: Sergyeyev – volume: vol. 320 start-page: 165 year: 1994 end-page: 174 ident: b55 article-title: Dispersionless limit of integrable systems in 2+1 dimensions publication-title: Singular limits of dispersive waves (Lyon, 1991) contributor: fullname: Zakharov – volume: 9 start-page: 651 year: 2009 end-page: 674 ident: b34 article-title: Sufficient set of integrability conditions of an orthonomic system publication-title: Found Comput Math contributor: fullname: Marvan – volume: 5 start-page: 405 year: 1998 end-page: 416 ident: b19 article-title: How to find discrete contact symmetries publication-title: J Nonlinear Math Phys contributor: fullname: Hydon – year: 1993 ident: b39 article-title: Application of Lie groups to differential equations contributor: fullname: Olver – volume: 36 start-page: 7337 year: 2003 end-page: 7360 ident: b46 article-title: Realizations of real low-dimensional Lie algebras publication-title: J Phys A contributor: fullname: Lutfullin – volume: 31 start-page: 1597 year: 1998 end-page: 1619 ident: b22 article-title: On form-preserving point transformations of partial differential equations publication-title: J Phys A contributor: fullname: Sophocleous – volume: 49 year: 2008 ident: b30 article-title: Potential conservation laws publication-title: J Math Phys contributor: fullname: Popovych – volume: 113 start-page: 325 year: 2004 end-page: 352 ident: b25 article-title: Integrable equations in nonlinear geometrical optics publication-title: Stud Appl Math contributor: fullname: Moro – volume: 101 year: 2021 ident: b13 article-title: On the ineffectiveness of constant rotation in the primitive equations and their symmetry analysis publication-title: Commun Nonlinear Sci Numer Simul contributor: fullname: Popovych – volume: 25 start-page: 115 year: 1997 end-page: 132 ident: b16 article-title: Review of symbolic software for Lie symmetry analysis. Algorithms and software for symbolic analysis of nonlinear systems publication-title: Math Comput Modelling contributor: fullname: Hereman – volume: 2 start-page: 271 year: 1986 end-page: 279 ident: b8 article-title: On the spectral transform of a Korteweg–de Vries equation in two spatial dimensions publication-title: Inverse Problems contributor: fullname: Pempinelli – volume: 35 start-page: 5734 year: 1994 end-page: 5748 ident: b29 article-title: On the complete symmetry group of the classical Kepler system publication-title: J Math Phys contributor: fullname: Krause – volume: 3 start-page: 148 year: 1986 end-page: 166 ident: b49 article-title: The unique determination of the equation by its invariance group and field-space symmetry publication-title: Algebras Groups Geom contributor: fullname: Rosenhaus – volume: 5 start-page: 137 year: 1988 end-page: 150 ident: b50 article-title: Groups of invariance and solutions of equations determined by them publication-title: Algebras Groups Geom contributor: fullname: Rosenhaus – volume: 16 start-page: 1 year: 1975 end-page: 7 ident: b54 article-title: Prolongation structures of nonlinear evolution equations publication-title: J Math Phys contributor: fullname: Estabrook – volume: 11 start-page: 127 year: 2021 ident: b9 article-title: Realizations of Lie algebras on the line and the new group classification of (1+1)-dimensional generalized nonlinear Klein–Gordon equations publication-title: Anal Math Phys contributor: fullname: Popovych – start-page: 15 year: 2011 end-page: 27 ident: b4 article-title: Point symmetry group of the barotropic vorticity equation publication-title: Proceedings of 5th Workshop “Group Analysis of Differential Equations & Integrable Systems” (June 6–10, 2010, Protaras, Cyprus) contributor: fullname: Popovych – volume: 454 start-page: 1961 year: 1998 end-page: 1972 ident: b18 article-title: Discrete point symmetries of ordinary differential equations publication-title: Proc R Soc Lond Ser A Math Phys Eng Sci contributor: fullname: Hydon – volume: 11 start-page: 126 year: 2021 ident: b36 article-title: The dispersionless Veselov–Novikov equation: symmetries, exact solutions, and conservation laws publication-title: Anal Math Phys contributor: fullname: Chang – volume: 37 start-page: L105 year: 2004 end-page: L111 ident: b24 article-title: Geometrical optics in nonlinear media and integrable equations publication-title: J Phys A contributor: fullname: Moro – volume: 460 year: 2024 ident: b31 article-title: Complete point-symmetry group, Lie reductions and exact solutions of Boiti–Leon–Pempinelli system publication-title: Physica D contributor: fullname: Popovych – volume: 29 start-page: 95 year: 2000 end-page: 116 ident: b10 article-title: Symbolic computation and differential equations: Lie symmetries publication-title: J Symb Comput contributor: fullname: Vu – volume: 527 year: 2023 ident: b28 article-title: Point and generalized symmetries of the heat equation revisited publication-title: J Math Anal Appl contributor: fullname: Popovych – volume: 183 start-page: 1044 year: 2012 end-page: 1054 ident: b53 article-title: Finding higher symmetries of differential equations using the MAPLE package DESOLVII publication-title: Comput Phys Comm contributor: fullname: Carminati – volume: 109 start-page: 313 year: 2002 end-page: 336 ident: b23 article-title: Nonlinear dynamics on the plane and integrable hierarchies of infinitesimal deformations publication-title: Stud Appl Math contributor: fullname: Martínez Alonso – year: 2012 ident: b17 article-title: Structure and geometry of Lie groups contributor: fullname: Neeb – volume: 30 start-page: 588 year: 1984 ident: 10.1016/j.cnsns.2024.107915_b52 article-title: Finite-zone two-dimensional potential Schrödinger operators. Explicit formulas and evolution equations publication-title: Sov Math Dokl contributor: fullname: Veselov – year: 2000 ident: 10.1016/j.cnsns.2024.107915_b20 contributor: fullname: Hydon – volume: 37 start-page: L105 year: 2004 ident: 10.1016/j.cnsns.2024.107915_b24 article-title: Geometrical optics in nonlinear media and integrable equations publication-title: J Phys A doi: 10.1088/0305-4470/37/10/L01 contributor: fullname: Konopelchenko – year: 1982 ident: 10.1016/j.cnsns.2024.107915_b42 contributor: fullname: Ovsiannikov – ident: 10.1016/j.cnsns.2024.107915_b2 – volume: 11 start-page: 117 year: 1999 ident: 10.1016/j.cnsns.2024.107915_b14 article-title: Stationary Veselov–Novikov equation and isothermally asymptotic surfaces in projective differential geometry publication-title: Differential Geom Appl doi: 10.1016/S0926-2245(99)00028-5 contributor: fullname: Ferapontov – volume: 35 start-page: 5734 year: 1994 ident: 10.1016/j.cnsns.2024.107915_b29 article-title: On the complete symmetry group of the classical Kepler system publication-title: J Math Phys doi: 10.1063/1.530708 contributor: fullname: Krause – year: 1999 ident: 10.1016/j.cnsns.2024.107915_b7 contributor: fullname: Bocharov – volume: 82 start-page: 31 year: 2013 ident: 10.1016/j.cnsns.2024.107915_b12 article-title: Complete point symmetry group of the barotropic vorticity equation on a rotating sphere publication-title: J Engrg Math doi: 10.1007/s10665-012-9589-2 contributor: fullname: Dos Santos Cardoso-Bihlo – volume: 621 year: 2015 ident: 10.1016/j.cnsns.2024.107915_b3 article-title: Algebraic method for finding equivalence groups publication-title: J Phys Conf Ser doi: 10.1088/1742-6596/621/1/012001 contributor: fullname: Bihlo – volume: 101 year: 2021 ident: 10.1016/j.cnsns.2024.107915_b13 article-title: On the ineffectiveness of constant rotation in the primitive equations and their symmetry analysis publication-title: Commun Nonlinear Sci Numer Simul doi: 10.1016/j.cnsns.2021.105885 contributor: fullname: Dos Santos Cardoso-Bihlo – volume: 109 start-page: 313 year: 2002 ident: 10.1016/j.cnsns.2024.107915_b23 article-title: Nonlinear dynamics on the plane and integrable hierarchies of infinitesimal deformations publication-title: Stud Appl Math doi: 10.1111/1467-9590.00226 contributor: fullname: Konopelchenko – year: 1995 ident: 10.1016/j.cnsns.2024.107915_b40 contributor: fullname: Olver – volume: vol. 320 start-page: 165 year: 1994 ident: 10.1016/j.cnsns.2024.107915_b55 article-title: Dispersionless limit of integrable systems in 2+1 dimensions contributor: fullname: Zakharov – volume: 454 start-page: 1961 year: 1998 ident: 10.1016/j.cnsns.2024.107915_b18 article-title: Discrete point symmetries of ordinary differential equations publication-title: Proc R Soc Lond Ser A Math Phys Eng Sci contributor: fullname: Hydon – volume: 11 start-page: 126 year: 2021 ident: 10.1016/j.cnsns.2024.107915_b36 article-title: The dispersionless Veselov–Novikov equation: symmetries, exact solutions, and conservation laws publication-title: Anal Math Phys doi: 10.1007/s13324-021-00563-8 contributor: fullname: Morozov – volume: 36 start-page: 7337 year: 2003 ident: 10.1016/j.cnsns.2024.107915_b46 article-title: Realizations of real low-dimensional Lie algebras publication-title: J Phys A doi: 10.1088/0305-4470/36/26/309 contributor: fullname: Popovych – volume: 31 start-page: 1597 year: 1998 ident: 10.1016/j.cnsns.2024.107915_b22 article-title: On form-preserving point transformations of partial differential equations publication-title: J Phys A doi: 10.1088/0305-4470/31/6/010 contributor: fullname: Kingston – volume: 527 year: 2023 ident: 10.1016/j.cnsns.2024.107915_b28 article-title: Point and generalized symmetries of the heat equation revisited publication-title: J Math Anal Appl doi: 10.1016/j.jmaa.2023.127430 contributor: fullname: Koval – volume: 100 start-page: 113 year: 2008 ident: 10.1016/j.cnsns.2024.107915_b47 article-title: Conservation laws and potential symmetries of linear parabolic equations publication-title: Acta Appl Math doi: 10.1007/s10440-007-9178-y contributor: fullname: Popovych – volume: 176 start-page: 48 year: 2007 ident: 10.1016/j.cnsns.2024.107915_b11 article-title: Gem software package for computation of symmetries and conservation laws of differential equations publication-title: Comput Phys Comm doi: 10.1016/j.cpc.2006.08.001 contributor: fullname: Cheviakov – year: 2006 ident: 10.1016/j.cnsns.2024.107915_b43 contributor: fullname: Pavlov – year: 2010 ident: 10.1016/j.cnsns.2024.107915_b5 contributor: fullname: Bluman – volume: 25 start-page: 115 year: 1997 ident: 10.1016/j.cnsns.2024.107915_b16 article-title: Review of symbolic software for Lie symmetry analysis. Algorithms and software for symbolic analysis of nonlinear systems publication-title: Math Comput Modelling doi: 10.1016/S0895-7177(97)00063-0 contributor: fullname: Hereman – volume: 25 start-page: 706 year: 1980 ident: 10.1016/j.cnsns.2024.107915_b37 article-title: Integration of multidimensional nonlinear equations by the inverse problem method publication-title: Sov Phys Dokl contributor: fullname: Nizhnik – volume: 5 start-page: 137 year: 1988 ident: 10.1016/j.cnsns.2024.107915_b50 article-title: Groups of invariance and solutions of equations determined by them publication-title: Algebras Groups Geom contributor: fullname: Rosenhaus – volume: 108 start-page: 359 year: 2018 ident: 10.1016/j.cnsns.2024.107915_b51 article-title: New integrable (3+1)-dimensional systems and contact geometry publication-title: Lett Math Phys doi: 10.1007/s11005-017-1013-4 contributor: fullname: Sergyeyev – volume: 332 start-page: 767 year: 2007 ident: 10.1016/j.cnsns.2024.107915_b33 article-title: On differential equations characterized by their Lie point symmetries publication-title: J Math Anal Appl doi: 10.1016/j.jmaa.2006.10.042 contributor: fullname: Manno – year: 2012 ident: 10.1016/j.cnsns.2024.107915_b17 contributor: fullname: Hilgert – volume: 34 start-page: 1067 year: 2023 ident: 10.1016/j.cnsns.2024.107915_b27 article-title: Extended symmetry analysis of remarkable (1+2)-dimensional Fokker–Planck equation publication-title: European J Appl Math doi: 10.1017/S0956792523000074 contributor: fullname: Koval – volume: 262 start-page: 256 year: 2001 ident: 10.1016/j.cnsns.2024.107915_b1 article-title: Complete symmetry groups of ordinary differential equations and their integrals: some basic considerations publication-title: J Math Anal Appl doi: 10.1006/jmaa.2001.7570 contributor: fullname: Andriopoulos – year: 2002 ident: 10.1016/j.cnsns.2024.107915_b48 contributor: fullname: Rogers – volume: 401 year: 2020 ident: 10.1016/j.cnsns.2024.107915_b45 article-title: Inverse problem on conservation laws publication-title: Physica D doi: 10.1016/j.physd.2019.132175 contributor: fullname: Popovych – volume: 29 start-page: 95 year: 2000 ident: 10.1016/j.cnsns.2024.107915_b10 article-title: Symbolic computation and differential equations: Lie symmetries publication-title: J Symb Comput doi: 10.1006/jsco.1999.0299 contributor: fullname: Carminati – year: 1993 ident: 10.1016/j.cnsns.2024.107915_b39 contributor: fullname: Olver – volume: 9 start-page: 651 year: 2009 ident: 10.1016/j.cnsns.2024.107915_b34 article-title: Sufficient set of integrability conditions of an orthonomic system publication-title: Found Comput Math doi: 10.1007/s10208-008-9039-8 contributor: fullname: Marvan – volume: 16 start-page: 1 year: 1975 ident: 10.1016/j.cnsns.2024.107915_b54 article-title: Prolongation structures of nonlinear evolution equations publication-title: J Math Phys doi: 10.1063/1.522396 contributor: fullname: Wahlquist – start-page: 15 year: 2011 ident: 10.1016/j.cnsns.2024.107915_b4 article-title: Point symmetry group of the barotropic vorticity equation contributor: fullname: Bihlo – volume: 37 start-page: 1772 year: 1996 ident: 10.1016/j.cnsns.2024.107915_b38 article-title: The complete Kepler group can be derived by Lie group analysis publication-title: J Math Phys doi: 10.1063/1.531496 contributor: fullname: Nucci – volume: 3 start-page: 148 year: 1986 ident: 10.1016/j.cnsns.2024.107915_b49 article-title: The unique determination of the equation by its invariance group and field-space symmetry publication-title: Algebras Groups Geom contributor: fullname: Rosenhaus – volume: 144 start-page: 314 year: 2019 ident: 10.1016/j.cnsns.2024.107915_b15 article-title: Lie remarkable partial differential equations characterized by Lie algebras of point symmetries publication-title: J Geom Phys doi: 10.1016/j.geomphys.2019.06.011 contributor: fullname: Gorgone – volume: 183 start-page: 1044 year: 2012 ident: 10.1016/j.cnsns.2024.107915_b53 article-title: Finding higher symmetries of differential equations using the MAPLE package DESOLVII publication-title: Comput Phys Comm doi: 10.1016/j.cpc.2012.01.005 contributor: fullname: Vu – volume: 11 start-page: 127 year: 2021 ident: 10.1016/j.cnsns.2024.107915_b9 article-title: Realizations of Lie algebras on the line and the new group classification of (1+1)-dimensional generalized nonlinear Klein–Gordon equations publication-title: Anal Math Phys doi: 10.1007/s13324-021-00550-z contributor: fullname: Boyko – volume: 460 year: 2024 ident: 10.1016/j.cnsns.2024.107915_b31 article-title: Complete point-symmetry group, Lie reductions and exact solutions of Boiti–Leon–Pempinelli system publication-title: Physica D doi: 10.1016/j.physd.2024.134081 contributor: fullname: Maltseva – volume: 11 start-page: 515 year: 2000 ident: 10.1016/j.cnsns.2024.107915_b21 article-title: How to construct the discrete symmetries of partial differential equations publication-title: Eur J Appl Math doi: 10.1017/S0956792500004204 contributor: fullname: Hydon – volume: 163 start-page: 91 year: 2019 ident: 10.1016/j.cnsns.2024.107915_b26 article-title: Enhanced symmetry analysis of two-dimensional Burgers system publication-title: Acta Appl Math doi: 10.1007/s10440-018-0215-9 contributor: fullname: Kontogiorgis – volume: 49 year: 2008 ident: 10.1016/j.cnsns.2024.107915_b30 article-title: Potential conservation laws publication-title: J Math Phys doi: 10.1063/1.2993117 contributor: fullname: Kunzinger – volume: 85 start-page: 2 year: 2014 ident: 10.1016/j.cnsns.2024.107915_b32 article-title: Ordinary differential equations described by their Lie symmetry algebra publication-title: J Geom Phys doi: 10.1016/j.geomphys.2014.05.028 contributor: fullname: Manno – volume: 53 year: 2012 ident: 10.1016/j.cnsns.2024.107915_b44 article-title: Symmetry preserving parameterization schemes publication-title: J Math Phys doi: 10.1063/1.4734344 contributor: fullname: Popovych – volume: 113 start-page: 325 year: 2004 ident: 10.1016/j.cnsns.2024.107915_b25 article-title: Integrable equations in nonlinear geometrical optics publication-title: Stud Appl Math doi: 10.1111/j.0022-2526.2004.01536.x contributor: fullname: Konopelchenko – volume: 36 start-page: L87 year: 2003 ident: 10.1016/j.cnsns.2024.107915_b35 article-title: Recursion operator for the stationary Nizhnik–Veselov–Novikov equation publication-title: J Phys A doi: 10.1088/0305-4470/36/5/102 contributor: fullname: Marvan – year: 1989 ident: 10.1016/j.cnsns.2024.107915_b6 contributor: fullname: Bluman – volume: 2 start-page: 271 year: 1986 ident: 10.1016/j.cnsns.2024.107915_b8 article-title: On the spectral transform of a Korteweg–de Vries equation in two spatial dimensions publication-title: Inverse Problems doi: 10.1088/0266-5611/2/3/005 contributor: fullname: Boiti – volume: 402 year: 2020 ident: 10.1016/j.cnsns.2024.107915_b41 article-title: Extended symmetry analysis of isothermal no-slip drift flux model publication-title: Physica D doi: 10.1016/j.physd.2019.132188 contributor: fullname: Opanasenko – volume: 5 start-page: 405 year: 1998 ident: 10.1016/j.cnsns.2024.107915_b19 article-title: How to find discrete contact symmetries publication-title: J Nonlinear Math Phys doi: 10.2991/jnmp.1998.5.4.6 contributor: fullname: Hydon |
SSID | ssj0016954 |
Score | 2.4488518 |
Snippet | Applying an original megaideal-based version of the algebraic method, we compute the point-symmetry pseudogroup of the dispersionless (potential symmetric)... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 107915 |
SubjectTerms | Discrete symmetry Dispersionless Nizhnik equation Lie invariance algebra Point-symmetry pseudogroup |
Title | Point- and contact-symmetry pseudogroups of dispersionless Nizhnik equation |
URI | https://dx.doi.org/10.1016/j.cnsns.2024.107915 |
Volume | 132 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA66Xrz4Ft_k4NG4fSRpe5TFZVVcBBW8lTwmWHXb1XYP68HfbtKHKIgH6SkhA-VLMjPJTL5B6Bg8O5fa8whoe0Shknkk1pEggqqQGZ7EBtx9x_WYj-7p5QN7WECD7i2MS6tsdX-j02tt3fb0WzT70yzr37r4Potc6K4mSrNHoCVrjoK4h5bOLq5G469gAk_qYmhuPHECHflQneal8jJ3tN0BtT1R4srj_magvhmd4Rpaab1FfNb80DpagHwDrbaeI273ZbmJrm6KLK8IFrnGLvlcqIqU88kEqrc5npYw00X9fKPEhcE6c-zg7pbsxao5PM7eH_PsGcNrw_q9he6H53eDEWnLJBBl7U9FQIgoZoor6zxoiKMgpDENAylFwKXh1HCwn2RM24GMKhUmvpKR0prG4PkQbqNeXuSwgzAIYyIhfGYE0FBRCcKnQkmtgpBrE-6ikw6bdNqwYaRdmthTWkOZOijTBspdxDv80h-Tmlp9_Zfg3n8F99GyazUZiQeoV73N4NB6DZU8QounH_5RuzY-AZbkxIQ |
link.rule.ids | 315,783,787,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqdoCFN6I8PTBiNU1sJxkrBGopVEiA1C3y4yzCIy1NGMqvx84DgYQYkDfbJ0Wf47uz7_wdQqfg2bXUnkdA2yMKlcwjkQ4FEVQFzPA4MuDuO24mfPhAr6Zs2kLnzVsYl1ZZ6_5Kp5fauu7p1Wj25mnau3PxfRa60F1JlGaPQB3rDcR2d3YGo_Fw8hVM4HFZDM3NJ06gIR8q07xUlmeOttuntieMXXnc3wzUN6NzuYHWam8RD6oP2kQtyLbQeu054npf5ttofDtLs4JgkWnsks-FKki-fH2FYrHE8xze9ax8vpHjmcE6dezg7pbsxao5PEk_HrP0GcNbxfq9gx4uL-7Ph6Quk0CUtT8FASHCiCmurPOgIQr9gEY08KUUPpeGU8PBNsmYthMZVSqI-0qGSmsagdeHYBe1s1kGewiDMCYUos-MABooKkH0qVBSKz_g2gRddNZgk8wrNoykSRN7SkooEwdlUkHZRbzBL_mxqInV138J7v9X8AStDO9vrpPr0WR8gFbdSJWdeIjaxeIdjqwHUcjj-g_5BFymxng |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Point-+and+contact-symmetry+pseudogroups+of+dispersionless+Nizhnik+equation&rft.jtitle=Communications+in+nonlinear+science+%26+numerical+simulation&rft.au=Boyko%2C+Vyacheslav+M.&rft.au=Popovych%2C+Roman+O.&rft.au=Vinnichenko%2C+Oleksandra+O.&rft.date=2024-05-01&rft.issn=1007-5704&rft.volume=132&rft.spage=107915&rft_id=info:doi/10.1016%2Fj.cnsns.2024.107915&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cnsns_2024_107915 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1007-5704&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1007-5704&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1007-5704&client=summon |