Point- and contact-symmetry pseudogroups of dispersionless Nizhnik equation

Applying an original megaideal-based version of the algebraic method, we compute the point-symmetry pseudogroup of the dispersionless (potential symmetric) Nizhnik equation. This is the first example of this kind in the literature, where there is no need to use the direct method for completing the c...

Full description

Saved in:
Bibliographic Details
Published inCommunications in nonlinear science & numerical simulation Vol. 132; p. 107915
Main Authors Boyko, Vyacheslav M., Popovych, Roman O., Vinnichenko, Oleksandra O.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.05.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Applying an original megaideal-based version of the algebraic method, we compute the point-symmetry pseudogroup of the dispersionless (potential symmetric) Nizhnik equation. This is the first example of this kind in the literature, where there is no need to use the direct method for completing the computation. The analogous studies are also carried out for the corresponding nonlinear Lax representation and the dispersionless counterpart of the symmetric Nizhnik system. We also first apply the megaideal-based version of the algebraic method to find the contact-symmetry (pseudo)group of a partial differential equation. It is shown that the contact-symmetry pseudogroup of the dispersionless Nizhnik equation coincides with the first prolongation of its point-symmetry pseudogroup. We check whether the subalgebras of the maximal Lie invariance algebra of the dispersionless Nizhnik equation that naturally arise in the course of the above computations define the diffeomorphisms stabilizing this algebra or its first prolongation. In addition, we construct all the third-order partial differential equations in three independent variables that admit the same Lie invariance algebra. We also find a set of geometric properties of the dispersionless Nizhnik equation that exhaustively defines it. •The point-symmetry pseudogroup G of the dispersionless Nizhnik equation is found.•The contact-symmetry counterpart of G coincides with the first prolongation of G.•This gives the first examples where (pseudo)groups are defined by their algebras.•We describe geometric properties of this equation that completely define it.•The algebraic method of constructing point-symmetry pseudogroups is developed.
AbstractList Applying an original megaideal-based version of the algebraic method, we compute the point-symmetry pseudogroup of the dispersionless (potential symmetric) Nizhnik equation. This is the first example of this kind in the literature, where there is no need to use the direct method for completing the computation. The analogous studies are also carried out for the corresponding nonlinear Lax representation and the dispersionless counterpart of the symmetric Nizhnik system. We also first apply the megaideal-based version of the algebraic method to find the contact-symmetry (pseudo)group of a partial differential equation. It is shown that the contact-symmetry pseudogroup of the dispersionless Nizhnik equation coincides with the first prolongation of its point-symmetry pseudogroup. We check whether the subalgebras of the maximal Lie invariance algebra of the dispersionless Nizhnik equation that naturally arise in the course of the above computations define the diffeomorphisms stabilizing this algebra or its first prolongation. In addition, we construct all the third-order partial differential equations in three independent variables that admit the same Lie invariance algebra. We also find a set of geometric properties of the dispersionless Nizhnik equation that exhaustively defines it. •The point-symmetry pseudogroup G of the dispersionless Nizhnik equation is found.•The contact-symmetry counterpart of G coincides with the first prolongation of G.•This gives the first examples where (pseudo)groups are defined by their algebras.•We describe geometric properties of this equation that completely define it.•The algebraic method of constructing point-symmetry pseudogroups is developed.
ArticleNumber 107915
Author Vinnichenko, Oleksandra O.
Popovych, Roman O.
Boyko, Vyacheslav M.
Author_xml – sequence: 1
  givenname: Vyacheslav M.
  surname: Boyko
  fullname: Boyko, Vyacheslav M.
  email: boyko@imath.kiev.ua
  organization: Institute of Mathematics of NAS of Ukraine, 3 Tereshchenkivska Str, 01024 Kyiv, Ukraine
– sequence: 2
  givenname: Roman O.
  surname: Popovych
  fullname: Popovych, Roman O.
  email: rop@imath.kiev.ua
  organization: Institute of Mathematics of NAS of Ukraine, 3 Tereshchenkivska Str, 01024 Kyiv, Ukraine
– sequence: 3
  givenname: Oleksandra O.
  surname: Vinnichenko
  fullname: Vinnichenko, Oleksandra O.
  email: oleksandra.vinnichenko@imath.kiev.ua
  organization: Institute of Mathematics of NAS of Ukraine, 3 Tereshchenkivska Str, 01024 Kyiv, Ukraine
BookMark eNp9kM9OwzAMhyM0JLbBE3DJC3QkTdp0Bw5o4p-YgAOcozRxIWNLStwhjacnY5yRD7Z-8mdZ34SMQgxAyDlnM854fbGa2YABZyUrZU7UnFdHZMwb1RSqVHKUZ8ZUUSkmT8gEccUyNa_kmDw8Rx-GgprgqI1hMHYocLfZwJB2tEfYuviW4rZHGjvqPPaQ0MewBkT66L_fg_-g8Lk1Qw5PyXFn1ghnf31KXm-uXxZ3xfLp9n5xtSysYGIowBjVVLa2dS0cNKoUspGibFtT1m1Xy66GXG1VubxYSWvFnNtWWedkA4yDmBJxuGtTREzQ6T75jUk7zZne-9Ar_etD733og49MXR4oyK99eUgarYdgwfkEdtAu-n_5Hz1Ablw
CitedBy_id crossref_primary_10_1007_s13324_024_00925_y
Cites_doi 10.1088/0305-4470/37/10/L01
10.1016/S0926-2245(99)00028-5
10.1063/1.530708
10.1007/s10665-012-9589-2
10.1088/1742-6596/621/1/012001
10.1016/j.cnsns.2021.105885
10.1111/1467-9590.00226
10.1007/s13324-021-00563-8
10.1088/0305-4470/36/26/309
10.1088/0305-4470/31/6/010
10.1016/j.jmaa.2023.127430
10.1007/s10440-007-9178-y
10.1016/j.cpc.2006.08.001
10.1016/S0895-7177(97)00063-0
10.1007/s11005-017-1013-4
10.1016/j.jmaa.2006.10.042
10.1017/S0956792523000074
10.1006/jmaa.2001.7570
10.1016/j.physd.2019.132175
10.1006/jsco.1999.0299
10.1007/s10208-008-9039-8
10.1063/1.522396
10.1063/1.531496
10.1016/j.geomphys.2019.06.011
10.1016/j.cpc.2012.01.005
10.1007/s13324-021-00550-z
10.1016/j.physd.2024.134081
10.1017/S0956792500004204
10.1007/s10440-018-0215-9
10.1063/1.2993117
10.1016/j.geomphys.2014.05.028
10.1063/1.4734344
10.1111/j.0022-2526.2004.01536.x
10.1088/0305-4470/36/5/102
10.1088/0266-5611/2/3/005
10.1016/j.physd.2019.132188
10.2991/jnmp.1998.5.4.6
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cnsns.2024.107915
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1878-7274
ExternalDocumentID 10_1016_j_cnsns_2024_107915
S1007570424001011
GroupedDBID --K
--M
-01
-0A
-0I
-0Y
-SA
-S~
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VR
5VS
7-5
71M
8P~
92M
9D9
9DA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXDM
AAXUO
ABAOU
ABFNM
ABJNI
ABMAC
ABNEU
ABXDB
ABYKQ
ACAZW
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AFUIB
AGHFR
AGUBO
AGYEJ
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAJEA
CAJUS
CCEZO
CCVFK
CHBEP
CS3
CUBFJ
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA0
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
JUIAU
KOM
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q--
Q-0
Q38
R-A
R-I
R2-
RIG
ROL
RPZ
RT1
RT9
S..
SDF
SDG
SES
SEW
SPC
SPCBC
SPD
SSQ
SST
SSW
SSZ
T5K
T8Q
T8Y
U1F
U1G
U5A
U5I
U5K
UHS
~G-
~LA
AAXKI
AAYXX
AFJKZ
CITATION
ID FETCH-LOGICAL-c303t-eaa785c6c663de872348432bba26bf64f6e6e6b55daa754cc391cb7cdd48e01e3
IEDL.DBID AIKHN
ISSN 1007-5704
IngestDate Thu Sep 26 18:52:55 EDT 2024
Sat Mar 30 16:20:36 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Dispersionless Nizhnik equation
Discrete symmetry
Lie invariance algebra
Point-symmetry pseudogroup
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c303t-eaa785c6c663de872348432bba26bf64f6e6e6b55daa754cc391cb7cdd48e01e3
ParticipantIDs crossref_primary_10_1016_j_cnsns_2024_107915
elsevier_sciencedirect_doi_10_1016_j_cnsns_2024_107915
PublicationCentury 2000
PublicationDate May 2024
2024-05-00
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: May 2024
PublicationDecade 2020
PublicationTitle Communications in nonlinear science & numerical simulation
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Andriopoulos, Leach, Flessas (b1) 2001; 262
Popovych, Boyko, Nesterenko, Lutfullin (b46) 2003; 36
Boiti, Leon, Manna, Pempinelli (b8) 1986; 2
Hydon (b20) 2000
Popovych, Bihlo (b44) 2012; 53
Nucci (b38) 1996; 37
Dos Santos Cardoso-Bihlo, Popovych (b13) 2021; 101
Bihlo, Dos Santos Cardoso-Bihlo, Popovych (b3) 2015; 621
Gorgone, Oliveri (b15) 2019; 144
Cheviakov (b11) 2007; 176
Hilgert, Neeb (b17) 2012
Hydon (b21) 2000; 11
Manno, Oliveri, Vitolo (b33) 2007; 332
Bluman, Kumei (b6) 1989
Koval, Bihlo, Popovych (b27) 2023; 34
Olver (b39) 1993
Kunzinger, Popovych (b30) 2008; 49
Rosenhaus (b50) 1988; 5
Konopelchenko, Moro (b25) 2004; 113
Opanasenko, Bihlo, Popovych, Sergyeyev (b41) 2020; 402
Zakharov (b55) 1994; vol. 320
Hereman (b16) 1997; 25
.
Maltseva, Popovych (b31) 2024; 460
Veselov, Novikov (b52) 1984; 30
Ovsiannikov (b42) 1982
Bocharov, Chetverikov, Duzhin, Khor’kova, Krasil’shchik, Samokhin, Torkhov, Verbovetsky, Vinogradov (b7) 1999
Rogers, Schief (b48) 2002
Ferapontov (b14) 1999; 11
Konopelchenko, Martínez Alonso (b23) 2002; 109
Krause (b29) 1994; 35
Baran H, Marvan M, Jets. A software for differential calculus on jet spaces and diffieties. Available at
Rosenhaus (b49) 1986; 3
Boyko, Lokaziuk, Popovych (b9) 2021; 11
Dos Santos Cardoso-Bihlo, Popovych (b12) 2013; 82
Nizhnik (b37) 1980; 25
Popovych, Kunzinger, Ivanova (b47) 2008; 100
Koval, Popovych (b28) 2023; 527
Kingston, Sophocleous (b22) 1998; 31
Bluman, Cheviakov, Anco (b5) 2010
Bihlo, Popovych (b4) 2011
Konopelchenko, Moro (b24) 2004; 37
Hydon (b19) 1998; 5
Pavlov (b43) 2006
Sergyeyev (b51) 2018; 108
Marvan, Sergyeyev (b35) 2003; 36
Vu, Jefferson, Carminati (b53) 2012; 183
Wahlquist, Estabrook (b54) 1975; 16
Manno, Oliveri, Saccomandi, Vitolo (b32) 2014; 85
Morozov, Chang (b36) 2021; 11
Marvan (b34) 2009; 9
Hydon (b18) 1998; 454
Popovych, Bihlo (b45) 2020; 401
Kontogiorgis, Popovych, Sophocleous (b26) 2019; 163
Olver (b40) 1995
Carminati, Vu (b10) 2000; 29
Nizhnik (10.1016/j.cnsns.2024.107915_b37) 1980; 25
Olver (10.1016/j.cnsns.2024.107915_b40) 1995
Ferapontov (10.1016/j.cnsns.2024.107915_b14) 1999; 11
Cheviakov (10.1016/j.cnsns.2024.107915_b11) 2007; 176
Manno (10.1016/j.cnsns.2024.107915_b32) 2014; 85
Dos Santos Cardoso-Bihlo (10.1016/j.cnsns.2024.107915_b13) 2021; 101
Boiti (10.1016/j.cnsns.2024.107915_b8) 1986; 2
Hydon (10.1016/j.cnsns.2024.107915_b20) 2000
Hereman (10.1016/j.cnsns.2024.107915_b16) 1997; 25
Hydon (10.1016/j.cnsns.2024.107915_b21) 2000; 11
Konopelchenko (10.1016/j.cnsns.2024.107915_b25) 2004; 113
Ovsiannikov (10.1016/j.cnsns.2024.107915_b42) 1982
Konopelchenko (10.1016/j.cnsns.2024.107915_b24) 2004; 37
Morozov (10.1016/j.cnsns.2024.107915_b36) 2021; 11
Nucci (10.1016/j.cnsns.2024.107915_b38) 1996; 37
Rosenhaus (10.1016/j.cnsns.2024.107915_b49) 1986; 3
Popovych (10.1016/j.cnsns.2024.107915_b44) 2012; 53
Koval (10.1016/j.cnsns.2024.107915_b28) 2023; 527
Popovych (10.1016/j.cnsns.2024.107915_b45) 2020; 401
Konopelchenko (10.1016/j.cnsns.2024.107915_b23) 2002; 109
Pavlov (10.1016/j.cnsns.2024.107915_b43) 2006
Andriopoulos (10.1016/j.cnsns.2024.107915_b1) 2001; 262
Bluman (10.1016/j.cnsns.2024.107915_b5) 2010
Kingston (10.1016/j.cnsns.2024.107915_b22) 1998; 31
Kontogiorgis (10.1016/j.cnsns.2024.107915_b26) 2019; 163
Bihlo (10.1016/j.cnsns.2024.107915_b3) 2015; 621
Koval (10.1016/j.cnsns.2024.107915_b27) 2023; 34
Opanasenko (10.1016/j.cnsns.2024.107915_b41) 2020; 402
10.1016/j.cnsns.2024.107915_b2
Bluman (10.1016/j.cnsns.2024.107915_b6) 1989
Hilgert (10.1016/j.cnsns.2024.107915_b17) 2012
Dos Santos Cardoso-Bihlo (10.1016/j.cnsns.2024.107915_b12) 2013; 82
Wahlquist (10.1016/j.cnsns.2024.107915_b54) 1975; 16
Bihlo (10.1016/j.cnsns.2024.107915_b4) 2011
Marvan (10.1016/j.cnsns.2024.107915_b35) 2003; 36
Veselov (10.1016/j.cnsns.2024.107915_b52) 1984; 30
Kunzinger (10.1016/j.cnsns.2024.107915_b30) 2008; 49
Bocharov (10.1016/j.cnsns.2024.107915_b7) 1999
Olver (10.1016/j.cnsns.2024.107915_b39) 1993
Gorgone (10.1016/j.cnsns.2024.107915_b15) 2019; 144
Boyko (10.1016/j.cnsns.2024.107915_b9) 2021; 11
Hydon (10.1016/j.cnsns.2024.107915_b19) 1998; 5
Marvan (10.1016/j.cnsns.2024.107915_b34) 2009; 9
Sergyeyev (10.1016/j.cnsns.2024.107915_b51) 2018; 108
Hydon (10.1016/j.cnsns.2024.107915_b18) 1998; 454
Krause (10.1016/j.cnsns.2024.107915_b29) 1994; 35
Maltseva (10.1016/j.cnsns.2024.107915_b31) 2024; 460
Carminati (10.1016/j.cnsns.2024.107915_b10) 2000; 29
Popovych (10.1016/j.cnsns.2024.107915_b47) 2008; 100
Zakharov (10.1016/j.cnsns.2024.107915_b55) 1994; vol. 320
Manno (10.1016/j.cnsns.2024.107915_b33) 2007; 332
Rosenhaus (10.1016/j.cnsns.2024.107915_b50) 1988; 5
Rogers (10.1016/j.cnsns.2024.107915_b48) 2002
Popovych (10.1016/j.cnsns.2024.107915_b46) 2003; 36
Vu (10.1016/j.cnsns.2024.107915_b53) 2012; 183
References_xml – volume: 11
  start-page: 515
  year: 2000
  end-page: 527
  ident: b21
  article-title: How to construct the discrete symmetries of partial differential equations
  publication-title: Eur J Appl Math
  contributor:
    fullname: Hydon
– volume: 53
  year: 2012
  ident: b44
  article-title: Symmetry preserving parameterization schemes
  publication-title: J Math Phys
  contributor:
    fullname: Bihlo
– year: 2010
  ident: b5
  article-title: Applications of symmetry methods to partial differential equations
  contributor:
    fullname: Anco
– year: 1995
  ident: b40
  article-title: Equivalence, invariants, and symmetry
  contributor:
    fullname: Olver
– year: 2006
  ident: b43
  article-title: Modified dispersionless Veselov–Novikov equation and corresponding hydrodynamic chains
  contributor:
    fullname: Pavlov
– volume: 163
  start-page: 91
  year: 2019
  end-page: 128
  ident: b26
  article-title: Enhanced symmetry analysis of two-dimensional Burgers system
  publication-title: Acta Appl Math
  contributor:
    fullname: Sophocleous
– year: 2000
  ident: b20
  article-title: Symmetry methods for differential equations. A beginner’s guide
  contributor:
    fullname: Hydon
– volume: 25
  start-page: 706
  year: 1980
  end-page: 708
  ident: b37
  article-title: Integration of multidimensional nonlinear equations by the inverse problem method
  publication-title: Sov Phys Dokl
  contributor:
    fullname: Nizhnik
– volume: 262
  start-page: 256
  year: 2001
  end-page: 273
  ident: b1
  article-title: Complete symmetry groups of ordinary differential equations and their integrals: some basic considerations
  publication-title: J Math Anal Appl
  contributor:
    fullname: Flessas
– volume: 621
  year: 2015
  ident: b3
  article-title: Algebraic method for finding equivalence groups
  publication-title: J Phys Conf Ser
  contributor:
    fullname: Popovych
– year: 2002
  ident: b48
  article-title: Bäcklund and darboux transformations. Geometry and modern applications in soliton theory
  contributor:
    fullname: Schief
– volume: 401
  year: 2020
  ident: b45
  article-title: Inverse problem on conservation laws
  publication-title: Physica D
  contributor:
    fullname: Bihlo
– volume: 82
  start-page: 31
  year: 2013
  end-page: 38
  ident: b12
  article-title: Complete point symmetry group of the barotropic vorticity equation on a rotating sphere
  publication-title: J Engrg Math
  contributor:
    fullname: Popovych
– volume: 402
  year: 2020
  ident: b41
  article-title: Extended symmetry analysis of isothermal no-slip drift flux model
  publication-title: Physica D
  contributor:
    fullname: Sergyeyev
– year: 1989
  ident: b6
  article-title: Symmetries and differential equations
  contributor:
    fullname: Kumei
– volume: 332
  start-page: 767
  year: 2007
  end-page: 786
  ident: b33
  article-title: On differential equations characterized by their Lie point symmetries
  publication-title: J Math Anal Appl
  contributor:
    fullname: Vitolo
– volume: 34
  start-page: 1067
  year: 2023
  end-page: 1098
  ident: b27
  article-title: Extended symmetry analysis of remarkable (1+2)-dimensional Fokker–Planck equation
  publication-title: European J Appl Math
  contributor:
    fullname: Popovych
– volume: 37
  start-page: 1772
  year: 1996
  end-page: 1775
  ident: b38
  article-title: The complete Kepler group can be derived by Lie group analysis
  publication-title: J Math Phys
  contributor:
    fullname: Nucci
– year: 1999
  ident: b7
  article-title: Symmetries and conservation laws for differential equations of mathematical physics
  contributor:
    fullname: Vinogradov
– volume: 85
  start-page: 2
  year: 2014
  end-page: 15
  ident: b32
  article-title: Ordinary differential equations described by their Lie symmetry algebra
  publication-title: J Geom Phys
  contributor:
    fullname: Vitolo
– year: 1982
  ident: b42
  article-title: Group analysis of differential equations
  contributor:
    fullname: Ovsiannikov
– volume: 176
  start-page: 48
  year: 2007
  end-page: 61
  ident: b11
  article-title: Gem software package for computation of symmetries and conservation laws of differential equations
  publication-title: Comput Phys Comm
  contributor:
    fullname: Cheviakov
– volume: 100
  start-page: 113
  year: 2008
  end-page: 185
  ident: b47
  article-title: Conservation laws and potential symmetries of linear parabolic equations
  publication-title: Acta Appl Math
  contributor:
    fullname: Ivanova
– volume: 30
  start-page: 588
  year: 1984
  end-page: 591
  ident: b52
  article-title: Finite-zone two-dimensional potential Schrödinger operators. Explicit formulas and evolution equations
  publication-title: Sov Math Dokl
  contributor:
    fullname: Novikov
– volume: 11
  start-page: 117
  year: 1999
  end-page: 128
  ident: b14
  article-title: Stationary Veselov–Novikov equation and isothermally asymptotic surfaces in projective differential geometry
  publication-title: Differential Geom Appl
  contributor:
    fullname: Ferapontov
– volume: 144
  start-page: 314
  year: 2019
  end-page: 323
  ident: b15
  article-title: Lie remarkable partial differential equations characterized by Lie algebras of point symmetries
  publication-title: J Geom Phys
  contributor:
    fullname: Oliveri
– volume: 36
  start-page: L87
  year: 2003
  end-page: L92
  ident: b35
  article-title: Recursion operator for the stationary Nizhnik–Veselov–Novikov equation
  publication-title: J Phys A
  contributor:
    fullname: Sergyeyev
– volume: 108
  start-page: 359
  year: 2018
  end-page: 376
  ident: b51
  article-title: New integrable (3+1)-dimensional systems and contact geometry
  publication-title: Lett Math Phys
  contributor:
    fullname: Sergyeyev
– volume: vol. 320
  start-page: 165
  year: 1994
  end-page: 174
  ident: b55
  article-title: Dispersionless limit of integrable systems in 2+1 dimensions
  publication-title: Singular limits of dispersive waves (Lyon, 1991)
  contributor:
    fullname: Zakharov
– volume: 9
  start-page: 651
  year: 2009
  end-page: 674
  ident: b34
  article-title: Sufficient set of integrability conditions of an orthonomic system
  publication-title: Found Comput Math
  contributor:
    fullname: Marvan
– volume: 5
  start-page: 405
  year: 1998
  end-page: 416
  ident: b19
  article-title: How to find discrete contact symmetries
  publication-title: J Nonlinear Math Phys
  contributor:
    fullname: Hydon
– year: 1993
  ident: b39
  article-title: Application of Lie groups to differential equations
  contributor:
    fullname: Olver
– volume: 36
  start-page: 7337
  year: 2003
  end-page: 7360
  ident: b46
  article-title: Realizations of real low-dimensional Lie algebras
  publication-title: J Phys A
  contributor:
    fullname: Lutfullin
– volume: 31
  start-page: 1597
  year: 1998
  end-page: 1619
  ident: b22
  article-title: On form-preserving point transformations of partial differential equations
  publication-title: J Phys A
  contributor:
    fullname: Sophocleous
– volume: 49
  year: 2008
  ident: b30
  article-title: Potential conservation laws
  publication-title: J Math Phys
  contributor:
    fullname: Popovych
– volume: 113
  start-page: 325
  year: 2004
  end-page: 352
  ident: b25
  article-title: Integrable equations in nonlinear geometrical optics
  publication-title: Stud Appl Math
  contributor:
    fullname: Moro
– volume: 101
  year: 2021
  ident: b13
  article-title: On the ineffectiveness of constant rotation in the primitive equations and their symmetry analysis
  publication-title: Commun Nonlinear Sci Numer Simul
  contributor:
    fullname: Popovych
– volume: 25
  start-page: 115
  year: 1997
  end-page: 132
  ident: b16
  article-title: Review of symbolic software for Lie symmetry analysis. Algorithms and software for symbolic analysis of nonlinear systems
  publication-title: Math Comput Modelling
  contributor:
    fullname: Hereman
– volume: 2
  start-page: 271
  year: 1986
  end-page: 279
  ident: b8
  article-title: On the spectral transform of a Korteweg–de Vries equation in two spatial dimensions
  publication-title: Inverse Problems
  contributor:
    fullname: Pempinelli
– volume: 35
  start-page: 5734
  year: 1994
  end-page: 5748
  ident: b29
  article-title: On the complete symmetry group of the classical Kepler system
  publication-title: J Math Phys
  contributor:
    fullname: Krause
– volume: 3
  start-page: 148
  year: 1986
  end-page: 166
  ident: b49
  article-title: The unique determination of the equation by its invariance group and field-space symmetry
  publication-title: Algebras Groups Geom
  contributor:
    fullname: Rosenhaus
– volume: 5
  start-page: 137
  year: 1988
  end-page: 150
  ident: b50
  article-title: Groups of invariance and solutions of equations determined by them
  publication-title: Algebras Groups Geom
  contributor:
    fullname: Rosenhaus
– volume: 16
  start-page: 1
  year: 1975
  end-page: 7
  ident: b54
  article-title: Prolongation structures of nonlinear evolution equations
  publication-title: J Math Phys
  contributor:
    fullname: Estabrook
– volume: 11
  start-page: 127
  year: 2021
  ident: b9
  article-title: Realizations of Lie algebras on the line and the new group classification of (1+1)-dimensional generalized nonlinear Klein–Gordon equations
  publication-title: Anal Math Phys
  contributor:
    fullname: Popovych
– start-page: 15
  year: 2011
  end-page: 27
  ident: b4
  article-title: Point symmetry group of the barotropic vorticity equation
  publication-title: Proceedings of 5th Workshop “Group Analysis of Differential Equations & Integrable Systems” (June 6–10, 2010, Protaras, Cyprus)
  contributor:
    fullname: Popovych
– volume: 454
  start-page: 1961
  year: 1998
  end-page: 1972
  ident: b18
  article-title: Discrete point symmetries of ordinary differential equations
  publication-title: Proc R Soc Lond Ser A Math Phys Eng Sci
  contributor:
    fullname: Hydon
– volume: 11
  start-page: 126
  year: 2021
  ident: b36
  article-title: The dispersionless Veselov–Novikov equation: symmetries, exact solutions, and conservation laws
  publication-title: Anal Math Phys
  contributor:
    fullname: Chang
– volume: 37
  start-page: L105
  year: 2004
  end-page: L111
  ident: b24
  article-title: Geometrical optics in nonlinear media and integrable equations
  publication-title: J Phys A
  contributor:
    fullname: Moro
– volume: 460
  year: 2024
  ident: b31
  article-title: Complete point-symmetry group, Lie reductions and exact solutions of Boiti–Leon–Pempinelli system
  publication-title: Physica D
  contributor:
    fullname: Popovych
– volume: 29
  start-page: 95
  year: 2000
  end-page: 116
  ident: b10
  article-title: Symbolic computation and differential equations: Lie symmetries
  publication-title: J Symb Comput
  contributor:
    fullname: Vu
– volume: 527
  year: 2023
  ident: b28
  article-title: Point and generalized symmetries of the heat equation revisited
  publication-title: J Math Anal Appl
  contributor:
    fullname: Popovych
– volume: 183
  start-page: 1044
  year: 2012
  end-page: 1054
  ident: b53
  article-title: Finding higher symmetries of differential equations using the MAPLE package DESOLVII
  publication-title: Comput Phys Comm
  contributor:
    fullname: Carminati
– volume: 109
  start-page: 313
  year: 2002
  end-page: 336
  ident: b23
  article-title: Nonlinear dynamics on the plane and integrable hierarchies of infinitesimal deformations
  publication-title: Stud Appl Math
  contributor:
    fullname: Martínez Alonso
– year: 2012
  ident: b17
  article-title: Structure and geometry of Lie groups
  contributor:
    fullname: Neeb
– volume: 30
  start-page: 588
  year: 1984
  ident: 10.1016/j.cnsns.2024.107915_b52
  article-title: Finite-zone two-dimensional potential Schrödinger operators. Explicit formulas and evolution equations
  publication-title: Sov Math Dokl
  contributor:
    fullname: Veselov
– year: 2000
  ident: 10.1016/j.cnsns.2024.107915_b20
  contributor:
    fullname: Hydon
– volume: 37
  start-page: L105
  year: 2004
  ident: 10.1016/j.cnsns.2024.107915_b24
  article-title: Geometrical optics in nonlinear media and integrable equations
  publication-title: J Phys A
  doi: 10.1088/0305-4470/37/10/L01
  contributor:
    fullname: Konopelchenko
– year: 1982
  ident: 10.1016/j.cnsns.2024.107915_b42
  contributor:
    fullname: Ovsiannikov
– ident: 10.1016/j.cnsns.2024.107915_b2
– volume: 11
  start-page: 117
  year: 1999
  ident: 10.1016/j.cnsns.2024.107915_b14
  article-title: Stationary Veselov–Novikov equation and isothermally asymptotic surfaces in projective differential geometry
  publication-title: Differential Geom Appl
  doi: 10.1016/S0926-2245(99)00028-5
  contributor:
    fullname: Ferapontov
– volume: 35
  start-page: 5734
  year: 1994
  ident: 10.1016/j.cnsns.2024.107915_b29
  article-title: On the complete symmetry group of the classical Kepler system
  publication-title: J Math Phys
  doi: 10.1063/1.530708
  contributor:
    fullname: Krause
– year: 1999
  ident: 10.1016/j.cnsns.2024.107915_b7
  contributor:
    fullname: Bocharov
– volume: 82
  start-page: 31
  year: 2013
  ident: 10.1016/j.cnsns.2024.107915_b12
  article-title: Complete point symmetry group of the barotropic vorticity equation on a rotating sphere
  publication-title: J Engrg Math
  doi: 10.1007/s10665-012-9589-2
  contributor:
    fullname: Dos Santos Cardoso-Bihlo
– volume: 621
  year: 2015
  ident: 10.1016/j.cnsns.2024.107915_b3
  article-title: Algebraic method for finding equivalence groups
  publication-title: J Phys Conf Ser
  doi: 10.1088/1742-6596/621/1/012001
  contributor:
    fullname: Bihlo
– volume: 101
  year: 2021
  ident: 10.1016/j.cnsns.2024.107915_b13
  article-title: On the ineffectiveness of constant rotation in the primitive equations and their symmetry analysis
  publication-title: Commun Nonlinear Sci Numer Simul
  doi: 10.1016/j.cnsns.2021.105885
  contributor:
    fullname: Dos Santos Cardoso-Bihlo
– volume: 109
  start-page: 313
  year: 2002
  ident: 10.1016/j.cnsns.2024.107915_b23
  article-title: Nonlinear dynamics on the plane and integrable hierarchies of infinitesimal deformations
  publication-title: Stud Appl Math
  doi: 10.1111/1467-9590.00226
  contributor:
    fullname: Konopelchenko
– year: 1995
  ident: 10.1016/j.cnsns.2024.107915_b40
  contributor:
    fullname: Olver
– volume: vol. 320
  start-page: 165
  year: 1994
  ident: 10.1016/j.cnsns.2024.107915_b55
  article-title: Dispersionless limit of integrable systems in 2+1 dimensions
  contributor:
    fullname: Zakharov
– volume: 454
  start-page: 1961
  year: 1998
  ident: 10.1016/j.cnsns.2024.107915_b18
  article-title: Discrete point symmetries of ordinary differential equations
  publication-title: Proc R Soc Lond Ser A Math Phys Eng Sci
  contributor:
    fullname: Hydon
– volume: 11
  start-page: 126
  year: 2021
  ident: 10.1016/j.cnsns.2024.107915_b36
  article-title: The dispersionless Veselov–Novikov equation: symmetries, exact solutions, and conservation laws
  publication-title: Anal Math Phys
  doi: 10.1007/s13324-021-00563-8
  contributor:
    fullname: Morozov
– volume: 36
  start-page: 7337
  year: 2003
  ident: 10.1016/j.cnsns.2024.107915_b46
  article-title: Realizations of real low-dimensional Lie algebras
  publication-title: J Phys A
  doi: 10.1088/0305-4470/36/26/309
  contributor:
    fullname: Popovych
– volume: 31
  start-page: 1597
  year: 1998
  ident: 10.1016/j.cnsns.2024.107915_b22
  article-title: On form-preserving point transformations of partial differential equations
  publication-title: J Phys A
  doi: 10.1088/0305-4470/31/6/010
  contributor:
    fullname: Kingston
– volume: 527
  year: 2023
  ident: 10.1016/j.cnsns.2024.107915_b28
  article-title: Point and generalized symmetries of the heat equation revisited
  publication-title: J Math Anal Appl
  doi: 10.1016/j.jmaa.2023.127430
  contributor:
    fullname: Koval
– volume: 100
  start-page: 113
  year: 2008
  ident: 10.1016/j.cnsns.2024.107915_b47
  article-title: Conservation laws and potential symmetries of linear parabolic equations
  publication-title: Acta Appl Math
  doi: 10.1007/s10440-007-9178-y
  contributor:
    fullname: Popovych
– volume: 176
  start-page: 48
  year: 2007
  ident: 10.1016/j.cnsns.2024.107915_b11
  article-title: Gem software package for computation of symmetries and conservation laws of differential equations
  publication-title: Comput Phys Comm
  doi: 10.1016/j.cpc.2006.08.001
  contributor:
    fullname: Cheviakov
– year: 2006
  ident: 10.1016/j.cnsns.2024.107915_b43
  contributor:
    fullname: Pavlov
– year: 2010
  ident: 10.1016/j.cnsns.2024.107915_b5
  contributor:
    fullname: Bluman
– volume: 25
  start-page: 115
  year: 1997
  ident: 10.1016/j.cnsns.2024.107915_b16
  article-title: Review of symbolic software for Lie symmetry analysis. Algorithms and software for symbolic analysis of nonlinear systems
  publication-title: Math Comput Modelling
  doi: 10.1016/S0895-7177(97)00063-0
  contributor:
    fullname: Hereman
– volume: 25
  start-page: 706
  year: 1980
  ident: 10.1016/j.cnsns.2024.107915_b37
  article-title: Integration of multidimensional nonlinear equations by the inverse problem method
  publication-title: Sov Phys Dokl
  contributor:
    fullname: Nizhnik
– volume: 5
  start-page: 137
  year: 1988
  ident: 10.1016/j.cnsns.2024.107915_b50
  article-title: Groups of invariance and solutions of equations determined by them
  publication-title: Algebras Groups Geom
  contributor:
    fullname: Rosenhaus
– volume: 108
  start-page: 359
  year: 2018
  ident: 10.1016/j.cnsns.2024.107915_b51
  article-title: New integrable (3+1)-dimensional systems and contact geometry
  publication-title: Lett Math Phys
  doi: 10.1007/s11005-017-1013-4
  contributor:
    fullname: Sergyeyev
– volume: 332
  start-page: 767
  year: 2007
  ident: 10.1016/j.cnsns.2024.107915_b33
  article-title: On differential equations characterized by their Lie point symmetries
  publication-title: J Math Anal Appl
  doi: 10.1016/j.jmaa.2006.10.042
  contributor:
    fullname: Manno
– year: 2012
  ident: 10.1016/j.cnsns.2024.107915_b17
  contributor:
    fullname: Hilgert
– volume: 34
  start-page: 1067
  year: 2023
  ident: 10.1016/j.cnsns.2024.107915_b27
  article-title: Extended symmetry analysis of remarkable (1+2)-dimensional Fokker–Planck equation
  publication-title: European J Appl Math
  doi: 10.1017/S0956792523000074
  contributor:
    fullname: Koval
– volume: 262
  start-page: 256
  year: 2001
  ident: 10.1016/j.cnsns.2024.107915_b1
  article-title: Complete symmetry groups of ordinary differential equations and their integrals: some basic considerations
  publication-title: J Math Anal Appl
  doi: 10.1006/jmaa.2001.7570
  contributor:
    fullname: Andriopoulos
– year: 2002
  ident: 10.1016/j.cnsns.2024.107915_b48
  contributor:
    fullname: Rogers
– volume: 401
  year: 2020
  ident: 10.1016/j.cnsns.2024.107915_b45
  article-title: Inverse problem on conservation laws
  publication-title: Physica D
  doi: 10.1016/j.physd.2019.132175
  contributor:
    fullname: Popovych
– volume: 29
  start-page: 95
  year: 2000
  ident: 10.1016/j.cnsns.2024.107915_b10
  article-title: Symbolic computation and differential equations: Lie symmetries
  publication-title: J Symb Comput
  doi: 10.1006/jsco.1999.0299
  contributor:
    fullname: Carminati
– year: 1993
  ident: 10.1016/j.cnsns.2024.107915_b39
  contributor:
    fullname: Olver
– volume: 9
  start-page: 651
  year: 2009
  ident: 10.1016/j.cnsns.2024.107915_b34
  article-title: Sufficient set of integrability conditions of an orthonomic system
  publication-title: Found Comput Math
  doi: 10.1007/s10208-008-9039-8
  contributor:
    fullname: Marvan
– volume: 16
  start-page: 1
  year: 1975
  ident: 10.1016/j.cnsns.2024.107915_b54
  article-title: Prolongation structures of nonlinear evolution equations
  publication-title: J Math Phys
  doi: 10.1063/1.522396
  contributor:
    fullname: Wahlquist
– start-page: 15
  year: 2011
  ident: 10.1016/j.cnsns.2024.107915_b4
  article-title: Point symmetry group of the barotropic vorticity equation
  contributor:
    fullname: Bihlo
– volume: 37
  start-page: 1772
  year: 1996
  ident: 10.1016/j.cnsns.2024.107915_b38
  article-title: The complete Kepler group can be derived by Lie group analysis
  publication-title: J Math Phys
  doi: 10.1063/1.531496
  contributor:
    fullname: Nucci
– volume: 3
  start-page: 148
  year: 1986
  ident: 10.1016/j.cnsns.2024.107915_b49
  article-title: The unique determination of the equation by its invariance group and field-space symmetry
  publication-title: Algebras Groups Geom
  contributor:
    fullname: Rosenhaus
– volume: 144
  start-page: 314
  year: 2019
  ident: 10.1016/j.cnsns.2024.107915_b15
  article-title: Lie remarkable partial differential equations characterized by Lie algebras of point symmetries
  publication-title: J Geom Phys
  doi: 10.1016/j.geomphys.2019.06.011
  contributor:
    fullname: Gorgone
– volume: 183
  start-page: 1044
  year: 2012
  ident: 10.1016/j.cnsns.2024.107915_b53
  article-title: Finding higher symmetries of differential equations using the MAPLE package DESOLVII
  publication-title: Comput Phys Comm
  doi: 10.1016/j.cpc.2012.01.005
  contributor:
    fullname: Vu
– volume: 11
  start-page: 127
  year: 2021
  ident: 10.1016/j.cnsns.2024.107915_b9
  article-title: Realizations of Lie algebras on the line and the new group classification of (1+1)-dimensional generalized nonlinear Klein–Gordon equations
  publication-title: Anal Math Phys
  doi: 10.1007/s13324-021-00550-z
  contributor:
    fullname: Boyko
– volume: 460
  year: 2024
  ident: 10.1016/j.cnsns.2024.107915_b31
  article-title: Complete point-symmetry group, Lie reductions and exact solutions of Boiti–Leon–Pempinelli system
  publication-title: Physica D
  doi: 10.1016/j.physd.2024.134081
  contributor:
    fullname: Maltseva
– volume: 11
  start-page: 515
  year: 2000
  ident: 10.1016/j.cnsns.2024.107915_b21
  article-title: How to construct the discrete symmetries of partial differential equations
  publication-title: Eur J Appl Math
  doi: 10.1017/S0956792500004204
  contributor:
    fullname: Hydon
– volume: 163
  start-page: 91
  year: 2019
  ident: 10.1016/j.cnsns.2024.107915_b26
  article-title: Enhanced symmetry analysis of two-dimensional Burgers system
  publication-title: Acta Appl Math
  doi: 10.1007/s10440-018-0215-9
  contributor:
    fullname: Kontogiorgis
– volume: 49
  year: 2008
  ident: 10.1016/j.cnsns.2024.107915_b30
  article-title: Potential conservation laws
  publication-title: J Math Phys
  doi: 10.1063/1.2993117
  contributor:
    fullname: Kunzinger
– volume: 85
  start-page: 2
  year: 2014
  ident: 10.1016/j.cnsns.2024.107915_b32
  article-title: Ordinary differential equations described by their Lie symmetry algebra
  publication-title: J Geom Phys
  doi: 10.1016/j.geomphys.2014.05.028
  contributor:
    fullname: Manno
– volume: 53
  year: 2012
  ident: 10.1016/j.cnsns.2024.107915_b44
  article-title: Symmetry preserving parameterization schemes
  publication-title: J Math Phys
  doi: 10.1063/1.4734344
  contributor:
    fullname: Popovych
– volume: 113
  start-page: 325
  year: 2004
  ident: 10.1016/j.cnsns.2024.107915_b25
  article-title: Integrable equations in nonlinear geometrical optics
  publication-title: Stud Appl Math
  doi: 10.1111/j.0022-2526.2004.01536.x
  contributor:
    fullname: Konopelchenko
– volume: 36
  start-page: L87
  year: 2003
  ident: 10.1016/j.cnsns.2024.107915_b35
  article-title: Recursion operator for the stationary Nizhnik–Veselov–Novikov equation
  publication-title: J Phys A
  doi: 10.1088/0305-4470/36/5/102
  contributor:
    fullname: Marvan
– year: 1989
  ident: 10.1016/j.cnsns.2024.107915_b6
  contributor:
    fullname: Bluman
– volume: 2
  start-page: 271
  year: 1986
  ident: 10.1016/j.cnsns.2024.107915_b8
  article-title: On the spectral transform of a Korteweg–de Vries equation in two spatial dimensions
  publication-title: Inverse Problems
  doi: 10.1088/0266-5611/2/3/005
  contributor:
    fullname: Boiti
– volume: 402
  year: 2020
  ident: 10.1016/j.cnsns.2024.107915_b41
  article-title: Extended symmetry analysis of isothermal no-slip drift flux model
  publication-title: Physica D
  doi: 10.1016/j.physd.2019.132188
  contributor:
    fullname: Opanasenko
– volume: 5
  start-page: 405
  year: 1998
  ident: 10.1016/j.cnsns.2024.107915_b19
  article-title: How to find discrete contact symmetries
  publication-title: J Nonlinear Math Phys
  doi: 10.2991/jnmp.1998.5.4.6
  contributor:
    fullname: Hydon
SSID ssj0016954
Score 2.4488518
Snippet Applying an original megaideal-based version of the algebraic method, we compute the point-symmetry pseudogroup of the dispersionless (potential symmetric)...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 107915
SubjectTerms Discrete symmetry
Dispersionless Nizhnik equation
Lie invariance algebra
Point-symmetry pseudogroup
Title Point- and contact-symmetry pseudogroups of dispersionless Nizhnik equation
URI https://dx.doi.org/10.1016/j.cnsns.2024.107915
Volume 132
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA66Xrz4Ft_k4NG4fSRpe5TFZVVcBBW8lTwmWHXb1XYP68HfbtKHKIgH6SkhA-VLMjPJTL5B6Bg8O5fa8whoe0Shknkk1pEggqqQGZ7EBtx9x_WYj-7p5QN7WECD7i2MS6tsdX-j02tt3fb0WzT70yzr37r4Potc6K4mSrNHoCVrjoK4h5bOLq5G469gAk_qYmhuPHECHflQneal8jJ3tN0BtT1R4srj_magvhmd4Rpaab1FfNb80DpagHwDrbaeI273ZbmJrm6KLK8IFrnGLvlcqIqU88kEqrc5npYw00X9fKPEhcE6c-zg7pbsxao5PM7eH_PsGcNrw_q9he6H53eDEWnLJBBl7U9FQIgoZoor6zxoiKMgpDENAylFwKXh1HCwn2RM24GMKhUmvpKR0prG4PkQbqNeXuSwgzAIYyIhfGYE0FBRCcKnQkmtgpBrE-6ikw6bdNqwYaRdmthTWkOZOijTBspdxDv80h-Tmlp9_Zfg3n8F99GyazUZiQeoV73N4NB6DZU8QounH_5RuzY-AZbkxIQ
link.rule.ids 315,783,787,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqdoCFN6I8PTBiNU1sJxkrBGopVEiA1C3y4yzCIy1NGMqvx84DgYQYkDfbJ0Wf47uz7_wdQqfg2bXUnkdA2yMKlcwjkQ4FEVQFzPA4MuDuO24mfPhAr6Zs2kLnzVsYl1ZZ6_5Kp5fauu7p1Wj25mnau3PxfRa60F1JlGaPQB3rDcR2d3YGo_Fw8hVM4HFZDM3NJ06gIR8q07xUlmeOttuntieMXXnc3wzUN6NzuYHWam8RD6oP2kQtyLbQeu054npf5ttofDtLs4JgkWnsks-FKki-fH2FYrHE8xze9ax8vpHjmcE6dezg7pbsxao5PEk_HrP0GcNbxfq9gx4uL-7Ph6Quk0CUtT8FASHCiCmurPOgIQr9gEY08KUUPpeGU8PBNsmYthMZVSqI-0qGSmsagdeHYBe1s1kGewiDMCYUos-MABooKkH0qVBSKz_g2gRddNZgk8wrNoykSRN7SkooEwdlUkHZRbzBL_mxqInV138J7v9X8AStDO9vrpPr0WR8gFbdSJWdeIjaxeIdjqwHUcjj-g_5BFymxng
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Point-+and+contact-symmetry+pseudogroups+of+dispersionless+Nizhnik+equation&rft.jtitle=Communications+in+nonlinear+science+%26+numerical+simulation&rft.au=Boyko%2C+Vyacheslav+M.&rft.au=Popovych%2C+Roman+O.&rft.au=Vinnichenko%2C+Oleksandra+O.&rft.date=2024-05-01&rft.issn=1007-5704&rft.volume=132&rft.spage=107915&rft_id=info:doi/10.1016%2Fj.cnsns.2024.107915&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cnsns_2024_107915
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1007-5704&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1007-5704&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1007-5704&client=summon