Structural reliability analysis of in-service API X65 natural gas pipeline using statistical data
The failure probability of the pipeline in the structural reliability assessment was evaluated by the relationship between the resistance of the pipe material to an external load or stress. The stress acting on the natural gas pipeline is affected by the circumferential stress and the longitudinal s...
Saved in:
Published in | The International journal of pressure vessels and piping Vol. 199; p. 104699 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.10.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The failure probability of the pipeline in the structural reliability assessment was evaluated by the relationship between the resistance of the pipe material to an external load or stress. The stress acting on the natural gas pipeline is affected by the circumferential stress and the longitudinal stress generated by the internal pressure, the thermal stress caused by the temperature difference during installation and operation, the bending stress caused by the buried depth, the embankment height, and vehicle load. The failure probabilities of the API X65 pipes were evaluated by the Von-Mises stress criterion as the maximum allowable stress criterion under the combined stresses. First-order reliability method as approximate analytical methods was used to perform the failure probability analysis on the natural gas pipelines. The failure probabilities of the pipelines were evaluated with buried depth in a range of 1.5–30 m and wheel load in the range of 2.5–20 ton. The failure probabilities were evaluated under the conditions that internal pressure of 7 MPa, temperature difference of −45 °C, soil density of 18.9 kN/m3.
•Random variables such as average, standard deviation and coefficient of variation were employed from the mill sheets and operation conditions actually used in the natural gas utilities.•Probability of failure due to the yielding of the API X65 natural gas pipe with the average tensile strength of 515 MPa is 2.44E-21.•Probability of failure due to the bursting of the API X65 natural gas pipe with the average tensile strength of 594 MPa is 3.28E-32.•Probability of failure to the API X65 natural gas pipe due to external loads such as soil load and vehicle load change was evaluated. |
---|---|
AbstractList | The failure probability of the pipeline in the structural reliability assessment was evaluated by the relationship between the resistance of the pipe material to an external load or stress. The stress acting on the natural gas pipeline is affected by the circumferential stress and the longitudinal stress generated by the internal pressure, the thermal stress caused by the temperature difference during installation and operation, the bending stress caused by the buried depth, the embankment height, and vehicle load. The failure probabilities of the API X65 pipes were evaluated by the Von-Mises stress criterion as the maximum allowable stress criterion under the combined stresses. First-order reliability method as approximate analytical methods was used to perform the failure probability analysis on the natural gas pipelines. The failure probabilities of the pipelines were evaluated with buried depth in a range of 1.5–30 m and wheel load in the range of 2.5–20 ton. The failure probabilities were evaluated under the conditions that internal pressure of 7 MPa, temperature difference of −45 °C, soil density of 18.9 kN/m3.
•Random variables such as average, standard deviation and coefficient of variation were employed from the mill sheets and operation conditions actually used in the natural gas utilities.•Probability of failure due to the yielding of the API X65 natural gas pipe with the average tensile strength of 515 MPa is 2.44E-21.•Probability of failure due to the bursting of the API X65 natural gas pipe with the average tensile strength of 594 MPa is 3.28E-32.•Probability of failure to the API X65 natural gas pipe due to external loads such as soil load and vehicle load change was evaluated. |
ArticleNumber | 104699 |
Author | Kim, Ik-joong Kim, Young-pyo Kim, Cheol-man Jang, Yun-chan Yoo, Jung-soo Baek, Jong-hyun |
Author_xml | – sequence: 1 givenname: Jong-hyun orcidid: 0000-0003-2324-3067 surname: Baek fullname: Baek, Jong-hyun email: jhbaek@kogas.or.kr – sequence: 2 givenname: Yun-chan surname: Jang fullname: Jang, Yun-chan – sequence: 3 givenname: Ik-joong surname: Kim fullname: Kim, Ik-joong – sequence: 4 givenname: Jung-soo surname: Yoo fullname: Yoo, Jung-soo – sequence: 5 givenname: Cheol-man surname: Kim fullname: Kim, Cheol-man – sequence: 6 givenname: Young-pyo surname: Kim fullname: Kim, Young-pyo |
BookMark | eNqFkE1Lw0AQhhepYFv9BV72D6TuJukme_BQih8FQUEFb8tksilT4ibsbgv996bGkwc9Dcy8z8D7zNjEdc4ydi3FQgqpbnYL2vWHfpGKNB02udL6jE1lWegkW-ZywqYiE2UyROUFm4WwE0IWYqmmDF6j32Pce2i5ty1BRS3FIwcH7TFQ4F3DySXB-gOh5auXDf9QS-5gRLYQeE_9ADrL94HclocIkUIkHM41RLhk5w20wV79zDl7v797Wz8mT88Pm_XqKcFMZDGx2qLSdZELCRWIGrEU0FSqSrGSoOsU0VaNAqwaBCUFKgsSRFEVIteqLLM5y8a_6LsQvG1M7-kT_NFIYU6WzM58WzInS2a0NFD6F4V0KtC56IHaf9jbkbVDrQNZbwKSdWhr8hajqTv6k_8CCCaJmg |
CitedBy_id | crossref_primary_10_1371_journal_pone_0316820 crossref_primary_10_3390_jmse11030580 crossref_primary_10_1016_j_apor_2025_104454 crossref_primary_10_1016_j_jclepro_2023_139247 |
Cites_doi | 10.1061/(ASCE)0733-947X(1994)120:6(989) 10.1016/j.tust.2019.01.025 10.1016/j.engstruct.2018.06.092 10.1016/S0141-0296(97)00043-6 10.3390/ma14040852 10.1139/cgj-2015-0500 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ijpvp.2022.104699 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-3541 |
ExternalDocumentID | 10_1016_j_ijpvp_2022_104699 S0308016122000898 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYOK ABEFU ABFNM ABJNI ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SES SET SEW SPC SPCBC SST SSZ T5K WUQ XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c303t-e9ec69d7401aba0dcc80afb6b2cb1a9d2ccebf6acbfca610c6ea1a07b70496883 |
IEDL.DBID | .~1 |
ISSN | 0308-0161 |
IngestDate | Tue Jul 01 01:34:37 EDT 2025 Thu Apr 24 22:55:54 EDT 2025 Fri Feb 23 02:40:52 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Structural reliability Natural gas pipe Combined stresses Failure probability |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c303t-e9ec69d7401aba0dcc80afb6b2cb1a9d2ccebf6acbfca610c6ea1a07b70496883 |
ORCID | 0000-0003-2324-3067 |
ParticipantIDs | crossref_primary_10_1016_j_ijpvp_2022_104699 crossref_citationtrail_10_1016_j_ijpvp_2022_104699 elsevier_sciencedirect_doi_10_1016_j_ijpvp_2022_104699 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2022 2022-10-00 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: October 2022 |
PublicationDecade | 2020 |
PublicationTitle | The International journal of pressure vessels and piping |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Baek, Kim (bib10) 2011; 15 Siswantoro, Zaman, Priyanta (bib15) 2018 (bib6) 2016 (bib38) 2010 Ahammed, E Melchers (bib24) 1994; 120 Z662 (bib5) 2015 Spangler, Handy (bib36) 1982 ASME (bib17) 2012 Mahmoodain (bib3) 2018 Halder, Mahadevan (bib31) 2000 Nessim, Stephens, Adianto (bib33) 2012 (bib19) 1999 Robert, Rajeev, Kodikara, Rsjani (bib35) 2016; 53 Mohitpour, Golshan, Murray (bib1) 2003 Zhang, Braman, Zand, Auker (bib26) 2016 Waarts (bib16) 2000 Stephens, Leis, Kurre, Rudland (bib18) 1999 Maher, Wenxing (bib11) 2005 API (bib34) 2018 Marston, Anderson (bib37) 1913 David, James, Robert (bib14) 2009; 5–44RI Witek (bib28) 2021; 14 Kiefner, Duffy (bib20) 1973 (bib13) 2001 Ritchie, Last (bib22) 1995 Revie (bib2) 2015 Ahammed, E Melchers (bib25) 1997; 19 Witek, Batura, Orynyak, Borodii (bib27) 2018; 173 COMREL (bib30) 2021 (bib23) 2020 Melchers (bib32) 2002 (bib4) 2006 (bib9) 2016 Maher, Wenxing (bib12) 2005 Tsinidis, Sarno, Sextos, Furtner (bib8) 2019; 92 Tsinidis, Sarno, Sextos, Furtner (bib7) 2019; 86 Witek, Uilhoorn (bib29) 2021; 19 Leis, Stephens (bib21) 1997; vol. 4 Ahammed (10.1016/j.ijpvp.2022.104699_bib25) 1997; 19 API (10.1016/j.ijpvp.2022.104699_bib34) 2018 Revie (10.1016/j.ijpvp.2022.104699_bib2) 2015 Tsinidis (10.1016/j.ijpvp.2022.104699_bib8) 2019; 92 (10.1016/j.ijpvp.2022.104699_bib38) 2010 (10.1016/j.ijpvp.2022.104699_bib6) 2016 Ritchie (10.1016/j.ijpvp.2022.104699_bib22) 1995 Mohitpour (10.1016/j.ijpvp.2022.104699_bib1) 2003 Maher (10.1016/j.ijpvp.2022.104699_bib11) 2005 Leis (10.1016/j.ijpvp.2022.104699_bib21) 1997; vol. 4 (10.1016/j.ijpvp.2022.104699_bib4) 2006 Stephens (10.1016/j.ijpvp.2022.104699_bib18) 1999 Waarts (10.1016/j.ijpvp.2022.104699_bib16) 2000 Witek (10.1016/j.ijpvp.2022.104699_bib27) 2018; 173 Baek (10.1016/j.ijpvp.2022.104699_bib10) 2011; 15 Robert (10.1016/j.ijpvp.2022.104699_bib35) 2016; 53 ASME (10.1016/j.ijpvp.2022.104699_bib17) 2012 Halder (10.1016/j.ijpvp.2022.104699_bib31) 2000 Z662 (10.1016/j.ijpvp.2022.104699_bib5) 2015 Ahammed (10.1016/j.ijpvp.2022.104699_bib24) 1994; 120 Mahmoodain (10.1016/j.ijpvp.2022.104699_bib3) 2018 COMREL (10.1016/j.ijpvp.2022.104699_bib30) 2021 (10.1016/j.ijpvp.2022.104699_bib9) 2016 Maher (10.1016/j.ijpvp.2022.104699_bib12) 2005 (10.1016/j.ijpvp.2022.104699_bib19) 1999 Tsinidis (10.1016/j.ijpvp.2022.104699_bib7) 2019; 86 Siswantoro (10.1016/j.ijpvp.2022.104699_bib15) 2018 Witek (10.1016/j.ijpvp.2022.104699_bib29) 2021; 19 Nessim (10.1016/j.ijpvp.2022.104699_bib33) 2012 Zhang (10.1016/j.ijpvp.2022.104699_bib26) 2016 Marston (10.1016/j.ijpvp.2022.104699_bib37) 1913 Witek (10.1016/j.ijpvp.2022.104699_bib28) 2021; 14 David (10.1016/j.ijpvp.2022.104699_bib14) 2009; 5–44RI Melchers (10.1016/j.ijpvp.2022.104699_bib32) 2002 Spangler (10.1016/j.ijpvp.2022.104699_bib36) 1982 (10.1016/j.ijpvp.2022.104699_bib23) 2020 (10.1016/j.ijpvp.2022.104699_bib13) 2001 Kiefner (10.1016/j.ijpvp.2022.104699_bib20) 1973 |
References_xml | – year: 2015 ident: bib2 article-title: Oil and Gas Pipelines-Integrity and Safety Handbook – year: 2016 ident: bib6 article-title: Risk Based Inspection – year: 1999 ident: bib18 article-title: Development of and Alternative Failure Criterion for Residual Strength of Corrosion Defects in Moderate to High Toughness Pipe – year: 2016 ident: bib26 article-title: A new approach to determine the stresses in buried pipes under surface loading publication-title: Proceedings of the 11th International Pipeline Conference, IPC2016-64050 – volume: 15 start-page: 1 year: 2011 end-page: 6 ident: bib10 article-title: Reliability assessment for pressure uprating of natural gas transmission pipelines publication-title: KIGAS – volume: 92 year: 2019 ident: bib8 article-title: A critical review on the vulnerability assessment of natural gas pipelines subjected to seismic wave propagation. Part 2: pipe analysis aspects publication-title: Tunn. Undergr. Space Technol. – year: 2016 ident: bib9 article-title: Gas Transmission and Distribution Piping Systems – start-page: 667 year: 2012 end-page: 673 ident: bib33 article-title: Safety levels associated with the ultimate limit state reliability target in annex O of CSA Z662 publication-title: Proceedings of the 9th International Pipeline Conference, IPC2012-90450 – year: 1913 ident: bib37 article-title: The Theory of Loads on Pipes in Ditches and Tests of Cement and Clay Drain Tile and Sewer Pipes – year: 2000 ident: bib16 article-title: Structural Reliability Using Finite Element Methods – year: 2018 ident: bib3 article-title: Reliability and Maintainability of In-Service Pipelines – volume: 86 start-page: 279 year: 2019 end-page: 296 ident: bib7 article-title: A critical review on the vulnerability assessment of natural gas pipelines subjected to seismic wave propagation. Part 1: fragility relations and implemented seismic intensity measures publication-title: Tunn. Undergr. Space Technol. – year: 2000 ident: bib31 article-title: Probability, Reliability and Statistical Methods in Engineering Design – year: 2005 ident: bib12 article-title: Target Reliability for the Design and Assessment of Onshore Natural Gas Pipelines – volume: 5–44RI year: 2009 ident: bib14 publication-title: Development of a Pipelines Surface Loading Screening Process & Assessment of Surface Load Dispersing Methods – year: 1995 ident: bib22 article-title: Burst criteria of corroded pipelines defect acceptance criteria publication-title: Proceedings of the EPRG/PRC 10th Biennial Joint Technical Meeting on Line Pipe Research – year: 2010 ident: bib38 article-title: Properties (Metric) Material – year: 2015 ident: bib5 article-title: Oil and Gas Pipeline Systems-Annex O (Informative) Reliability-Based Design and Assessment (RBDA) of Onshore Non-sour Service Natural Gas Transmission Pipeline – year: 2021 ident: bib30 article-title: User's Manual, www.strurel.de – start-page: T86 year: 1973 end-page: T91 ident: bib20 article-title: Criteria for determining the strength of corroded areas of gas transmission lines publication-title: Paper T, American Gas Association Operating Section on Transmission Conference – year: 2006 ident: bib4 article-title: Petroleum and Natural Gas Industries-Pipeline Transportation Systems-Reliability-Based Limit State Methods – volume: 120 start-page: 989 year: 1994 end-page: 1002 ident: bib24 article-title: Reliability of underground pipelines subject to corrosion publication-title: J.Transport.Engng. – year: 2002 ident: bib32 article-title: Structural Reliability Analysis and Prediction” – year: 2012 ident: bib17 article-title: Manual for Determining the Remaining Strength of Corroded Pipelines – volume: 173 start-page: 150 year: 2018 end-page: 165 ident: bib27 article-title: An integrated risk assessment of onshore gas transmission pipelines based on defect population publication-title: Eng. Struct. – volume: 19 start-page: 988 year: 1997 end-page: 994 ident: bib25 article-title: Probability analysis of underground pipelines subject to combined stresses and corrosion publication-title: Eng. Struct. – volume: 14 start-page: 852 year: 2021 ident: bib28 article-title: Structural integrity of Steel pipeline with clusters of corrosion defect publication-title: Materials – year: 2005 ident: bib11 publication-title: Guidelines for Reliability Based Design and Assessment of Onshore Natural Gas Pipelines – volume: vol. 4 start-page: 635 year: 1997 end-page: 641 ident: bib21 article-title: An alternative approach to assess the integrity of corroded line pipe–Part II: alternative criterion publication-title: Proceedings of the 7th International Offshore and Polar Engineering Conference – year: 2018 ident: bib34 article-title: Specification for Line Pipe – year: 1982 ident: bib36 article-title: Soil Engineering – year: 2018 ident: bib15 article-title: The implementation of API RP 1102 code to evaluate gas pipeline road crossing publication-title: Proceeding of Marine Safety and Maritime Installation – year: 1999 ident: bib19 article-title: Corroded Pipelines – year: 2003 ident: bib1 article-title: Pipeline Design & Construction: A Practical Approach – volume: 53 start-page: 1315 year: 2016 end-page: 1331 ident: bib35 article-title: An equation to predict maximum pipe stress incorporating internal and external loadings on buried pipes publication-title: Can. Geotech. J. – year: 2001 ident: bib13 article-title: Guidelines for the Design of Buried Steel Pipe – year: 2020 ident: bib23 article-title: EGIG – volume: 19 year: 2021 ident: bib29 article-title: Influence of gas transmission network failure on security of supply publication-title: J. Nat. Gas Sci. Eng. – volume: 5–44RI year: 2009 ident: 10.1016/j.ijpvp.2022.104699_bib14 – year: 2000 ident: 10.1016/j.ijpvp.2022.104699_bib31 – volume: 120 start-page: 989 year: 1994 ident: 10.1016/j.ijpvp.2022.104699_bib24 article-title: Reliability of underground pipelines subject to corrosion publication-title: J.Transport.Engng. doi: 10.1061/(ASCE)0733-947X(1994)120:6(989) – year: 2018 ident: 10.1016/j.ijpvp.2022.104699_bib34 – year: 2001 ident: 10.1016/j.ijpvp.2022.104699_bib13 – volume: 86 start-page: 279 year: 2019 ident: 10.1016/j.ijpvp.2022.104699_bib7 article-title: A critical review on the vulnerability assessment of natural gas pipelines subjected to seismic wave propagation. Part 1: fragility relations and implemented seismic intensity measures publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2019.01.025 – year: 2010 ident: 10.1016/j.ijpvp.2022.104699_bib38 – volume: 173 start-page: 150 year: 2018 ident: 10.1016/j.ijpvp.2022.104699_bib27 article-title: An integrated risk assessment of onshore gas transmission pipelines based on defect population publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2018.06.092 – volume: 15 start-page: 1 year: 2011 ident: 10.1016/j.ijpvp.2022.104699_bib10 article-title: Reliability assessment for pressure uprating of natural gas transmission pipelines publication-title: KIGAS – volume: vol. 4 start-page: 635 year: 1997 ident: 10.1016/j.ijpvp.2022.104699_bib21 article-title: An alternative approach to assess the integrity of corroded line pipe–Part II: alternative criterion – year: 2021 ident: 10.1016/j.ijpvp.2022.104699_bib30 – year: 2005 ident: 10.1016/j.ijpvp.2022.104699_bib12 – year: 2000 ident: 10.1016/j.ijpvp.2022.104699_bib16 – year: 2016 ident: 10.1016/j.ijpvp.2022.104699_bib26 article-title: A new approach to determine the stresses in buried pipes under surface loading – start-page: 667 year: 2012 ident: 10.1016/j.ijpvp.2022.104699_bib33 article-title: Safety levels associated with the ultimate limit state reliability target in annex O of CSA Z662 – volume: 19 start-page: 988 year: 1997 ident: 10.1016/j.ijpvp.2022.104699_bib25 article-title: Probability analysis of underground pipelines subject to combined stresses and corrosion publication-title: Eng. Struct. doi: 10.1016/S0141-0296(97)00043-6 – volume: 14 start-page: 852 year: 2021 ident: 10.1016/j.ijpvp.2022.104699_bib28 article-title: Structural integrity of Steel pipeline with clusters of corrosion defect publication-title: Materials doi: 10.3390/ma14040852 – volume: 92 issue: Oct. year: 2019 ident: 10.1016/j.ijpvp.2022.104699_bib8 article-title: A critical review on the vulnerability assessment of natural gas pipelines subjected to seismic wave propagation. Part 2: pipe analysis aspects publication-title: Tunn. Undergr. Space Technol. – year: 1999 ident: 10.1016/j.ijpvp.2022.104699_bib18 – year: 2016 ident: 10.1016/j.ijpvp.2022.104699_bib9 – volume: 19 year: 2021 ident: 10.1016/j.ijpvp.2022.104699_bib29 article-title: Influence of gas transmission network failure on security of supply publication-title: J. Nat. Gas Sci. Eng. – year: 1982 ident: 10.1016/j.ijpvp.2022.104699_bib36 – volume: 53 start-page: 1315 year: 2016 ident: 10.1016/j.ijpvp.2022.104699_bib35 article-title: An equation to predict maximum pipe stress incorporating internal and external loadings on buried pipes publication-title: Can. Geotech. J. doi: 10.1139/cgj-2015-0500 – start-page: T86 year: 1973 ident: 10.1016/j.ijpvp.2022.104699_bib20 article-title: Criteria for determining the strength of corroded areas of gas transmission lines – year: 1995 ident: 10.1016/j.ijpvp.2022.104699_bib22 article-title: Burst criteria of corroded pipelines defect acceptance criteria – year: 2002 ident: 10.1016/j.ijpvp.2022.104699_bib32 – year: 2015 ident: 10.1016/j.ijpvp.2022.104699_bib2 – year: 2006 ident: 10.1016/j.ijpvp.2022.104699_bib4 – year: 2005 ident: 10.1016/j.ijpvp.2022.104699_bib11 – year: 1913 ident: 10.1016/j.ijpvp.2022.104699_bib37 – year: 2018 ident: 10.1016/j.ijpvp.2022.104699_bib15 article-title: The implementation of API RP 1102 code to evaluate gas pipeline road crossing – year: 2003 ident: 10.1016/j.ijpvp.2022.104699_bib1 – year: 2018 ident: 10.1016/j.ijpvp.2022.104699_bib3 – year: 1999 ident: 10.1016/j.ijpvp.2022.104699_bib19 – year: 2015 ident: 10.1016/j.ijpvp.2022.104699_bib5 – year: 2016 ident: 10.1016/j.ijpvp.2022.104699_bib6 – year: 2020 ident: 10.1016/j.ijpvp.2022.104699_bib23 – year: 2012 ident: 10.1016/j.ijpvp.2022.104699_bib17 |
SSID | ssj0017056 |
Score | 2.3522673 |
Snippet | The failure probability of the pipeline in the structural reliability assessment was evaluated by the relationship between the resistance of the pipe material... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 104699 |
SubjectTerms | Combined stresses Failure probability Natural gas pipe Structural reliability |
Title | Structural reliability analysis of in-service API X65 natural gas pipeline using statistical data |
URI | https://dx.doi.org/10.1016/j.ijpvp.2022.104699 |
Volume | 199 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3Pa8IwFMeDuMt2GPvJ3A_JYcd1tmkb06PIRDcmAyd4K0maSEVqmTLYZX_78pJWHAwPO_bHg_LyeHkl3_d5CN37sQwTHUsvYYnwokiYPEiI9mgchJkfaE7sSJbXMR1Oo-dZPGugft0LA7LKKve7nG6zdXWnU3mzU-Z5ZwKkFShYCHSbsAQafqOoC1H--L2VeQAtxp1XWtEWDWrykNV45YvyE6CVhNizTguA_WN32tlxBifouCoVcc99zSlqqOIMHe0ABM8Rn1j8K6Az8Ida5g66_YV5hRrBK43zwlu7hIB7byM8ozG2NE9jMudrXOYltKQrDAr4OYYGI8tuNo9BPXqBpoOn9_7Qq4YmeNLsRhtPJUrSJINBe1xwP5OS-VwLKogUAU8yIqUSmnIptOSmdpJU8YD7XdE1_wqUsfASNYtVoa4QDpjImOZK-TKOuGQiiSU39iSLKY_8sIVI7axUVkRxGGyxTGvp2CK1Hk7Bw6nzcAs9bI1KB9TY_zqtVyH9FRepSfn7DK__a3iDDuHKCfZuUdOso7ozhcdGtG1ktdFBb_QyHP8AsenaRA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3Pa8IwFMeDc4dth7GfzP3MYcd1tmkTk6PIRDeVgQreSpKmUhEtUwa77G9ffrTiYHjYtemD8pK8vJLv-zwAHn0sQ5Zi6THKhBdFQsdBhFKP4CBM_CDlyLZk6Q9IZxy9TvCkAlplLYyRVRax38V0G62LJ_XCm_U8y-pDQ1oxCQsy1SaU0T2wH-nta9oYPH9vdB4GF-MuLK1qiwQlesiKvLJZ_mmolQjZy05LgP3jeNo6cton4LjIFWHTfc4pqKjFGTjaIgieAz60_FfDzoAfap456vYX5AVrBC5TmC28lYsIsPnehROCocV5apMpX8E8y01NuoJGAj-FpsLIwpv1sJGPXoBx-2XU6nhF1wRP6uNo7SmmJGGJ6bTHBfcTKanPU0EEkiLgLEFSKpESLkUquU6eJFE84H5DNPTPAqE0vATVxXKhrgAMqEhoypXyJY64pIJhybU9SjDhkR_WACqdFcsCKW46W8zjUjs2i62HY-Ph2Hm4Bp42Rrkjaux-nZSzEP9aGLGO-bsMr_9r-AAOOqN-L-51B2834NCMOPXeLajqOVV3OgtZi3u7yn4Azajb0g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+reliability+analysis+of+in-service+API+X65+natural+gas+pipeline+using+statistical+data&rft.jtitle=The+International+journal+of+pressure+vessels+and+piping&rft.au=Baek%2C+Jong-hyun&rft.au=Jang%2C+Yun-chan&rft.au=Kim%2C+Ik-joong&rft.au=Yoo%2C+Jung-soo&rft.date=2022-10-01&rft.pub=Elsevier+Ltd&rft.issn=0308-0161&rft.eissn=1879-3541&rft.volume=199&rft_id=info:doi/10.1016%2Fj.ijpvp.2022.104699&rft.externalDocID=S0308016122000898 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0308-0161&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0308-0161&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0308-0161&client=summon |