Structural reliability analysis of in-service API X65 natural gas pipeline using statistical data

The failure probability of the pipeline in the structural reliability assessment was evaluated by the relationship between the resistance of the pipe material to an external load or stress. The stress acting on the natural gas pipeline is affected by the circumferential stress and the longitudinal s...

Full description

Saved in:
Bibliographic Details
Published inThe International journal of pressure vessels and piping Vol. 199; p. 104699
Main Authors Baek, Jong-hyun, Jang, Yun-chan, Kim, Ik-joong, Yoo, Jung-soo, Kim, Cheol-man, Kim, Young-pyo
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The failure probability of the pipeline in the structural reliability assessment was evaluated by the relationship between the resistance of the pipe material to an external load or stress. The stress acting on the natural gas pipeline is affected by the circumferential stress and the longitudinal stress generated by the internal pressure, the thermal stress caused by the temperature difference during installation and operation, the bending stress caused by the buried depth, the embankment height, and vehicle load. The failure probabilities of the API X65 pipes were evaluated by the Von-Mises stress criterion as the maximum allowable stress criterion under the combined stresses. First-order reliability method as approximate analytical methods was used to perform the failure probability analysis on the natural gas pipelines. The failure probabilities of the pipelines were evaluated with buried depth in a range of 1.5–30 m and wheel load in the range of 2.5–20 ton. The failure probabilities were evaluated under the conditions that internal pressure of 7 MPa, temperature difference of −45 °C, soil density of 18.9 kN/m3. •Random variables such as average, standard deviation and coefficient of variation were employed from the mill sheets and operation conditions actually used in the natural gas utilities.•Probability of failure due to the yielding of the API X65 natural gas pipe with the average tensile strength of 515 MPa is 2.44E-21.•Probability of failure due to the bursting of the API X65 natural gas pipe with the average tensile strength of 594 MPa is 3.28E-32.•Probability of failure to the API X65 natural gas pipe due to external loads such as soil load and vehicle load change was evaluated.
AbstractList The failure probability of the pipeline in the structural reliability assessment was evaluated by the relationship between the resistance of the pipe material to an external load or stress. The stress acting on the natural gas pipeline is affected by the circumferential stress and the longitudinal stress generated by the internal pressure, the thermal stress caused by the temperature difference during installation and operation, the bending stress caused by the buried depth, the embankment height, and vehicle load. The failure probabilities of the API X65 pipes were evaluated by the Von-Mises stress criterion as the maximum allowable stress criterion under the combined stresses. First-order reliability method as approximate analytical methods was used to perform the failure probability analysis on the natural gas pipelines. The failure probabilities of the pipelines were evaluated with buried depth in a range of 1.5–30 m and wheel load in the range of 2.5–20 ton. The failure probabilities were evaluated under the conditions that internal pressure of 7 MPa, temperature difference of −45 °C, soil density of 18.9 kN/m3. •Random variables such as average, standard deviation and coefficient of variation were employed from the mill sheets and operation conditions actually used in the natural gas utilities.•Probability of failure due to the yielding of the API X65 natural gas pipe with the average tensile strength of 515 MPa is 2.44E-21.•Probability of failure due to the bursting of the API X65 natural gas pipe with the average tensile strength of 594 MPa is 3.28E-32.•Probability of failure to the API X65 natural gas pipe due to external loads such as soil load and vehicle load change was evaluated.
ArticleNumber 104699
Author Kim, Ik-joong
Kim, Young-pyo
Kim, Cheol-man
Jang, Yun-chan
Yoo, Jung-soo
Baek, Jong-hyun
Author_xml – sequence: 1
  givenname: Jong-hyun
  orcidid: 0000-0003-2324-3067
  surname: Baek
  fullname: Baek, Jong-hyun
  email: jhbaek@kogas.or.kr
– sequence: 2
  givenname: Yun-chan
  surname: Jang
  fullname: Jang, Yun-chan
– sequence: 3
  givenname: Ik-joong
  surname: Kim
  fullname: Kim, Ik-joong
– sequence: 4
  givenname: Jung-soo
  surname: Yoo
  fullname: Yoo, Jung-soo
– sequence: 5
  givenname: Cheol-man
  surname: Kim
  fullname: Kim, Cheol-man
– sequence: 6
  givenname: Young-pyo
  surname: Kim
  fullname: Kim, Young-pyo
BookMark eNqFkE1Lw0AQhhepYFv9BV72D6TuJukme_BQih8FQUEFb8tksilT4ibsbgv996bGkwc9Dcy8z8D7zNjEdc4ydi3FQgqpbnYL2vWHfpGKNB02udL6jE1lWegkW-ZywqYiE2UyROUFm4WwE0IWYqmmDF6j32Pce2i5ty1BRS3FIwcH7TFQ4F3DySXB-gOh5auXDf9QS-5gRLYQeE_9ADrL94HclocIkUIkHM41RLhk5w20wV79zDl7v797Wz8mT88Pm_XqKcFMZDGx2qLSdZELCRWIGrEU0FSqSrGSoOsU0VaNAqwaBCUFKgsSRFEVIteqLLM5y8a_6LsQvG1M7-kT_NFIYU6WzM58WzInS2a0NFD6F4V0KtC56IHaf9jbkbVDrQNZbwKSdWhr8hajqTv6k_8CCCaJmg
CitedBy_id crossref_primary_10_1371_journal_pone_0316820
crossref_primary_10_3390_jmse11030580
crossref_primary_10_1016_j_apor_2025_104454
crossref_primary_10_1016_j_jclepro_2023_139247
Cites_doi 10.1061/(ASCE)0733-947X(1994)120:6(989)
10.1016/j.tust.2019.01.025
10.1016/j.engstruct.2018.06.092
10.1016/S0141-0296(97)00043-6
10.3390/ma14040852
10.1139/cgj-2015-0500
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.ijpvp.2022.104699
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-3541
ExternalDocumentID 10_1016_j_ijpvp_2022_104699
S0308016122000898
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYOK
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
WUQ
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c303t-e9ec69d7401aba0dcc80afb6b2cb1a9d2ccebf6acbfca610c6ea1a07b70496883
IEDL.DBID .~1
ISSN 0308-0161
IngestDate Tue Jul 01 01:34:37 EDT 2025
Thu Apr 24 22:55:54 EDT 2025
Fri Feb 23 02:40:52 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Structural reliability
Natural gas pipe
Combined stresses
Failure probability
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c303t-e9ec69d7401aba0dcc80afb6b2cb1a9d2ccebf6acbfca610c6ea1a07b70496883
ORCID 0000-0003-2324-3067
ParticipantIDs crossref_primary_10_1016_j_ijpvp_2022_104699
crossref_citationtrail_10_1016_j_ijpvp_2022_104699
elsevier_sciencedirect_doi_10_1016_j_ijpvp_2022_104699
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2022
2022-10-00
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: October 2022
PublicationDecade 2020
PublicationTitle The International journal of pressure vessels and piping
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Baek, Kim (bib10) 2011; 15
Siswantoro, Zaman, Priyanta (bib15) 2018
(bib6) 2016
(bib38) 2010
Ahammed, E Melchers (bib24) 1994; 120
Z662 (bib5) 2015
Spangler, Handy (bib36) 1982
ASME (bib17) 2012
Mahmoodain (bib3) 2018
Halder, Mahadevan (bib31) 2000
Nessim, Stephens, Adianto (bib33) 2012
(bib19) 1999
Robert, Rajeev, Kodikara, Rsjani (bib35) 2016; 53
Mohitpour, Golshan, Murray (bib1) 2003
Zhang, Braman, Zand, Auker (bib26) 2016
Waarts (bib16) 2000
Stephens, Leis, Kurre, Rudland (bib18) 1999
Maher, Wenxing (bib11) 2005
API (bib34) 2018
Marston, Anderson (bib37) 1913
David, James, Robert (bib14) 2009; 5–44RI
Witek (bib28) 2021; 14
Kiefner, Duffy (bib20) 1973
(bib13) 2001
Ritchie, Last (bib22) 1995
Revie (bib2) 2015
Ahammed, E Melchers (bib25) 1997; 19
Witek, Batura, Orynyak, Borodii (bib27) 2018; 173
COMREL (bib30) 2021
(bib23) 2020
Melchers (bib32) 2002
(bib4) 2006
(bib9) 2016
Maher, Wenxing (bib12) 2005
Tsinidis, Sarno, Sextos, Furtner (bib8) 2019; 92
Tsinidis, Sarno, Sextos, Furtner (bib7) 2019; 86
Witek, Uilhoorn (bib29) 2021; 19
Leis, Stephens (bib21) 1997; vol. 4
Ahammed (10.1016/j.ijpvp.2022.104699_bib25) 1997; 19
API (10.1016/j.ijpvp.2022.104699_bib34) 2018
Revie (10.1016/j.ijpvp.2022.104699_bib2) 2015
Tsinidis (10.1016/j.ijpvp.2022.104699_bib8) 2019; 92
(10.1016/j.ijpvp.2022.104699_bib38) 2010
(10.1016/j.ijpvp.2022.104699_bib6) 2016
Ritchie (10.1016/j.ijpvp.2022.104699_bib22) 1995
Mohitpour (10.1016/j.ijpvp.2022.104699_bib1) 2003
Maher (10.1016/j.ijpvp.2022.104699_bib11) 2005
Leis (10.1016/j.ijpvp.2022.104699_bib21) 1997; vol. 4
(10.1016/j.ijpvp.2022.104699_bib4) 2006
Stephens (10.1016/j.ijpvp.2022.104699_bib18) 1999
Waarts (10.1016/j.ijpvp.2022.104699_bib16) 2000
Witek (10.1016/j.ijpvp.2022.104699_bib27) 2018; 173
Baek (10.1016/j.ijpvp.2022.104699_bib10) 2011; 15
Robert (10.1016/j.ijpvp.2022.104699_bib35) 2016; 53
ASME (10.1016/j.ijpvp.2022.104699_bib17) 2012
Halder (10.1016/j.ijpvp.2022.104699_bib31) 2000
Z662 (10.1016/j.ijpvp.2022.104699_bib5) 2015
Ahammed (10.1016/j.ijpvp.2022.104699_bib24) 1994; 120
Mahmoodain (10.1016/j.ijpvp.2022.104699_bib3) 2018
COMREL (10.1016/j.ijpvp.2022.104699_bib30) 2021
(10.1016/j.ijpvp.2022.104699_bib9) 2016
Maher (10.1016/j.ijpvp.2022.104699_bib12) 2005
(10.1016/j.ijpvp.2022.104699_bib19) 1999
Tsinidis (10.1016/j.ijpvp.2022.104699_bib7) 2019; 86
Siswantoro (10.1016/j.ijpvp.2022.104699_bib15) 2018
Witek (10.1016/j.ijpvp.2022.104699_bib29) 2021; 19
Nessim (10.1016/j.ijpvp.2022.104699_bib33) 2012
Zhang (10.1016/j.ijpvp.2022.104699_bib26) 2016
Marston (10.1016/j.ijpvp.2022.104699_bib37) 1913
Witek (10.1016/j.ijpvp.2022.104699_bib28) 2021; 14
David (10.1016/j.ijpvp.2022.104699_bib14) 2009; 5–44RI
Melchers (10.1016/j.ijpvp.2022.104699_bib32) 2002
Spangler (10.1016/j.ijpvp.2022.104699_bib36) 1982
(10.1016/j.ijpvp.2022.104699_bib23) 2020
(10.1016/j.ijpvp.2022.104699_bib13) 2001
Kiefner (10.1016/j.ijpvp.2022.104699_bib20) 1973
References_xml – year: 2015
  ident: bib2
  article-title: Oil and Gas Pipelines-Integrity and Safety Handbook
– year: 2016
  ident: bib6
  article-title: Risk Based Inspection
– year: 1999
  ident: bib18
  article-title: Development of and Alternative Failure Criterion for Residual Strength of Corrosion Defects in Moderate to High Toughness Pipe
– year: 2016
  ident: bib26
  article-title: A new approach to determine the stresses in buried pipes under surface loading
  publication-title: Proceedings of the 11th International Pipeline Conference, IPC2016-64050
– volume: 15
  start-page: 1
  year: 2011
  end-page: 6
  ident: bib10
  article-title: Reliability assessment for pressure uprating of natural gas transmission pipelines
  publication-title: KIGAS
– volume: 92
  year: 2019
  ident: bib8
  article-title: A critical review on the vulnerability assessment of natural gas pipelines subjected to seismic wave propagation. Part 2: pipe analysis aspects
  publication-title: Tunn. Undergr. Space Technol.
– year: 2016
  ident: bib9
  article-title: Gas Transmission and Distribution Piping Systems
– start-page: 667
  year: 2012
  end-page: 673
  ident: bib33
  article-title: Safety levels associated with the ultimate limit state reliability target in annex O of CSA Z662
  publication-title: Proceedings of the 9th International Pipeline Conference, IPC2012-90450
– year: 1913
  ident: bib37
  article-title: The Theory of Loads on Pipes in Ditches and Tests of Cement and Clay Drain Tile and Sewer Pipes
– year: 2000
  ident: bib16
  article-title: Structural Reliability Using Finite Element Methods
– year: 2018
  ident: bib3
  article-title: Reliability and Maintainability of In-Service Pipelines
– volume: 86
  start-page: 279
  year: 2019
  end-page: 296
  ident: bib7
  article-title: A critical review on the vulnerability assessment of natural gas pipelines subjected to seismic wave propagation. Part 1: fragility relations and implemented seismic intensity measures
  publication-title: Tunn. Undergr. Space Technol.
– year: 2000
  ident: bib31
  article-title: Probability, Reliability and Statistical Methods in Engineering Design
– year: 2005
  ident: bib12
  article-title: Target Reliability for the Design and Assessment of Onshore Natural Gas Pipelines
– volume: 5–44RI
  year: 2009
  ident: bib14
  publication-title: Development of a Pipelines Surface Loading Screening Process & Assessment of Surface Load Dispersing Methods
– year: 1995
  ident: bib22
  article-title: Burst criteria of corroded pipelines defect acceptance criteria
  publication-title: Proceedings of the EPRG/PRC 10th Biennial Joint Technical Meeting on Line Pipe Research
– year: 2010
  ident: bib38
  article-title: Properties (Metric) Material
– year: 2015
  ident: bib5
  article-title: Oil and Gas Pipeline Systems-Annex O (Informative) Reliability-Based Design and Assessment (RBDA) of Onshore Non-sour Service Natural Gas Transmission Pipeline
– year: 2021
  ident: bib30
  article-title: User's Manual, www.strurel.de
– start-page: T86
  year: 1973
  end-page: T91
  ident: bib20
  article-title: Criteria for determining the strength of corroded areas of gas transmission lines
  publication-title: Paper T, American Gas Association Operating Section on Transmission Conference
– year: 2006
  ident: bib4
  article-title: Petroleum and Natural Gas Industries-Pipeline Transportation Systems-Reliability-Based Limit State Methods
– volume: 120
  start-page: 989
  year: 1994
  end-page: 1002
  ident: bib24
  article-title: Reliability of underground pipelines subject to corrosion
  publication-title: J.Transport.Engng.
– year: 2002
  ident: bib32
  article-title: Structural Reliability Analysis and Prediction”
– year: 2012
  ident: bib17
  article-title: Manual for Determining the Remaining Strength of Corroded Pipelines
– volume: 173
  start-page: 150
  year: 2018
  end-page: 165
  ident: bib27
  article-title: An integrated risk assessment of onshore gas transmission pipelines based on defect population
  publication-title: Eng. Struct.
– volume: 19
  start-page: 988
  year: 1997
  end-page: 994
  ident: bib25
  article-title: Probability analysis of underground pipelines subject to combined stresses and corrosion
  publication-title: Eng. Struct.
– volume: 14
  start-page: 852
  year: 2021
  ident: bib28
  article-title: Structural integrity of Steel pipeline with clusters of corrosion defect
  publication-title: Materials
– year: 2005
  ident: bib11
  publication-title: Guidelines for Reliability Based Design and Assessment of Onshore Natural Gas Pipelines
– volume: vol. 4
  start-page: 635
  year: 1997
  end-page: 641
  ident: bib21
  article-title: An alternative approach to assess the integrity of corroded line pipe–Part II: alternative criterion
  publication-title: Proceedings of the 7th International Offshore and Polar Engineering Conference
– year: 2018
  ident: bib34
  article-title: Specification for Line Pipe
– year: 1982
  ident: bib36
  article-title: Soil Engineering
– year: 2018
  ident: bib15
  article-title: The implementation of API RP 1102 code to evaluate gas pipeline road crossing
  publication-title: Proceeding of Marine Safety and Maritime Installation
– year: 1999
  ident: bib19
  article-title: Corroded Pipelines
– year: 2003
  ident: bib1
  article-title: Pipeline Design & Construction: A Practical Approach
– volume: 53
  start-page: 1315
  year: 2016
  end-page: 1331
  ident: bib35
  article-title: An equation to predict maximum pipe stress incorporating internal and external loadings on buried pipes
  publication-title: Can. Geotech. J.
– year: 2001
  ident: bib13
  article-title: Guidelines for the Design of Buried Steel Pipe
– year: 2020
  ident: bib23
  article-title: EGIG
– volume: 19
  year: 2021
  ident: bib29
  article-title: Influence of gas transmission network failure on security of supply
  publication-title: J. Nat. Gas Sci. Eng.
– volume: 5–44RI
  year: 2009
  ident: 10.1016/j.ijpvp.2022.104699_bib14
– year: 2000
  ident: 10.1016/j.ijpvp.2022.104699_bib31
– volume: 120
  start-page: 989
  year: 1994
  ident: 10.1016/j.ijpvp.2022.104699_bib24
  article-title: Reliability of underground pipelines subject to corrosion
  publication-title: J.Transport.Engng.
  doi: 10.1061/(ASCE)0733-947X(1994)120:6(989)
– year: 2018
  ident: 10.1016/j.ijpvp.2022.104699_bib34
– year: 2001
  ident: 10.1016/j.ijpvp.2022.104699_bib13
– volume: 86
  start-page: 279
  year: 2019
  ident: 10.1016/j.ijpvp.2022.104699_bib7
  article-title: A critical review on the vulnerability assessment of natural gas pipelines subjected to seismic wave propagation. Part 1: fragility relations and implemented seismic intensity measures
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2019.01.025
– year: 2010
  ident: 10.1016/j.ijpvp.2022.104699_bib38
– volume: 173
  start-page: 150
  year: 2018
  ident: 10.1016/j.ijpvp.2022.104699_bib27
  article-title: An integrated risk assessment of onshore gas transmission pipelines based on defect population
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2018.06.092
– volume: 15
  start-page: 1
  year: 2011
  ident: 10.1016/j.ijpvp.2022.104699_bib10
  article-title: Reliability assessment for pressure uprating of natural gas transmission pipelines
  publication-title: KIGAS
– volume: vol. 4
  start-page: 635
  year: 1997
  ident: 10.1016/j.ijpvp.2022.104699_bib21
  article-title: An alternative approach to assess the integrity of corroded line pipe–Part II: alternative criterion
– year: 2021
  ident: 10.1016/j.ijpvp.2022.104699_bib30
– year: 2005
  ident: 10.1016/j.ijpvp.2022.104699_bib12
– year: 2000
  ident: 10.1016/j.ijpvp.2022.104699_bib16
– year: 2016
  ident: 10.1016/j.ijpvp.2022.104699_bib26
  article-title: A new approach to determine the stresses in buried pipes under surface loading
– start-page: 667
  year: 2012
  ident: 10.1016/j.ijpvp.2022.104699_bib33
  article-title: Safety levels associated with the ultimate limit state reliability target in annex O of CSA Z662
– volume: 19
  start-page: 988
  year: 1997
  ident: 10.1016/j.ijpvp.2022.104699_bib25
  article-title: Probability analysis of underground pipelines subject to combined stresses and corrosion
  publication-title: Eng. Struct.
  doi: 10.1016/S0141-0296(97)00043-6
– volume: 14
  start-page: 852
  year: 2021
  ident: 10.1016/j.ijpvp.2022.104699_bib28
  article-title: Structural integrity of Steel pipeline with clusters of corrosion defect
  publication-title: Materials
  doi: 10.3390/ma14040852
– volume: 92
  issue: Oct.
  year: 2019
  ident: 10.1016/j.ijpvp.2022.104699_bib8
  article-title: A critical review on the vulnerability assessment of natural gas pipelines subjected to seismic wave propagation. Part 2: pipe analysis aspects
  publication-title: Tunn. Undergr. Space Technol.
– year: 1999
  ident: 10.1016/j.ijpvp.2022.104699_bib18
– year: 2016
  ident: 10.1016/j.ijpvp.2022.104699_bib9
– volume: 19
  year: 2021
  ident: 10.1016/j.ijpvp.2022.104699_bib29
  article-title: Influence of gas transmission network failure on security of supply
  publication-title: J. Nat. Gas Sci. Eng.
– year: 1982
  ident: 10.1016/j.ijpvp.2022.104699_bib36
– volume: 53
  start-page: 1315
  year: 2016
  ident: 10.1016/j.ijpvp.2022.104699_bib35
  article-title: An equation to predict maximum pipe stress incorporating internal and external loadings on buried pipes
  publication-title: Can. Geotech. J.
  doi: 10.1139/cgj-2015-0500
– start-page: T86
  year: 1973
  ident: 10.1016/j.ijpvp.2022.104699_bib20
  article-title: Criteria for determining the strength of corroded areas of gas transmission lines
– year: 1995
  ident: 10.1016/j.ijpvp.2022.104699_bib22
  article-title: Burst criteria of corroded pipelines defect acceptance criteria
– year: 2002
  ident: 10.1016/j.ijpvp.2022.104699_bib32
– year: 2015
  ident: 10.1016/j.ijpvp.2022.104699_bib2
– year: 2006
  ident: 10.1016/j.ijpvp.2022.104699_bib4
– year: 2005
  ident: 10.1016/j.ijpvp.2022.104699_bib11
– year: 1913
  ident: 10.1016/j.ijpvp.2022.104699_bib37
– year: 2018
  ident: 10.1016/j.ijpvp.2022.104699_bib15
  article-title: The implementation of API RP 1102 code to evaluate gas pipeline road crossing
– year: 2003
  ident: 10.1016/j.ijpvp.2022.104699_bib1
– year: 2018
  ident: 10.1016/j.ijpvp.2022.104699_bib3
– year: 1999
  ident: 10.1016/j.ijpvp.2022.104699_bib19
– year: 2015
  ident: 10.1016/j.ijpvp.2022.104699_bib5
– year: 2016
  ident: 10.1016/j.ijpvp.2022.104699_bib6
– year: 2020
  ident: 10.1016/j.ijpvp.2022.104699_bib23
– year: 2012
  ident: 10.1016/j.ijpvp.2022.104699_bib17
SSID ssj0017056
Score 2.3522673
Snippet The failure probability of the pipeline in the structural reliability assessment was evaluated by the relationship between the resistance of the pipe material...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104699
SubjectTerms Combined stresses
Failure probability
Natural gas pipe
Structural reliability
Title Structural reliability analysis of in-service API X65 natural gas pipeline using statistical data
URI https://dx.doi.org/10.1016/j.ijpvp.2022.104699
Volume 199
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3Pa8IwFMeDuMt2GPvJ3A_JYcd1tmkb06PIRDcmAyd4K0maSEVqmTLYZX_78pJWHAwPO_bHg_LyeHkl3_d5CN37sQwTHUsvYYnwokiYPEiI9mgchJkfaE7sSJbXMR1Oo-dZPGugft0LA7LKKve7nG6zdXWnU3mzU-Z5ZwKkFShYCHSbsAQafqOoC1H--L2VeQAtxp1XWtEWDWrykNV45YvyE6CVhNizTguA_WN32tlxBifouCoVcc99zSlqqOIMHe0ABM8Rn1j8K6Az8Ida5g66_YV5hRrBK43zwlu7hIB7byM8ozG2NE9jMudrXOYltKQrDAr4OYYGI8tuNo9BPXqBpoOn9_7Qq4YmeNLsRhtPJUrSJINBe1xwP5OS-VwLKogUAU8yIqUSmnIptOSmdpJU8YD7XdE1_wqUsfASNYtVoa4QDpjImOZK-TKOuGQiiSU39iSLKY_8sIVI7axUVkRxGGyxTGvp2CK1Hk7Bw6nzcAs9bI1KB9TY_zqtVyH9FRepSfn7DK__a3iDDuHKCfZuUdOso7ozhcdGtG1ktdFBb_QyHP8AsenaRA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3Pa8IwFMeDc4dth7GfzP3MYcd1tmkTk6PIRDeVgQreSpKmUhEtUwa77G9ffrTiYHjYtemD8pK8vJLv-zwAHn0sQ5Zi6THKhBdFQsdBhFKP4CBM_CDlyLZk6Q9IZxy9TvCkAlplLYyRVRax38V0G62LJ_XCm_U8y-pDQ1oxCQsy1SaU0T2wH-nta9oYPH9vdB4GF-MuLK1qiwQlesiKvLJZ_mmolQjZy05LgP3jeNo6cton4LjIFWHTfc4pqKjFGTjaIgieAz60_FfDzoAfap456vYX5AVrBC5TmC28lYsIsPnehROCocV5apMpX8E8y01NuoJGAj-FpsLIwpv1sJGPXoBx-2XU6nhF1wRP6uNo7SmmJGGJ6bTHBfcTKanPU0EEkiLgLEFSKpESLkUquU6eJFE84H5DNPTPAqE0vATVxXKhrgAMqEhoypXyJY64pIJhybU9SjDhkR_WACqdFcsCKW46W8zjUjs2i62HY-Ph2Hm4Bp42Rrkjaux-nZSzEP9aGLGO-bsMr_9r-AAOOqN-L-51B2834NCMOPXeLajqOVV3OgtZi3u7yn4Azajb0g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+reliability+analysis+of+in-service+API+X65+natural+gas+pipeline+using+statistical+data&rft.jtitle=The+International+journal+of+pressure+vessels+and+piping&rft.au=Baek%2C+Jong-hyun&rft.au=Jang%2C+Yun-chan&rft.au=Kim%2C+Ik-joong&rft.au=Yoo%2C+Jung-soo&rft.date=2022-10-01&rft.pub=Elsevier+Ltd&rft.issn=0308-0161&rft.eissn=1879-3541&rft.volume=199&rft_id=info:doi/10.1016%2Fj.ijpvp.2022.104699&rft.externalDocID=S0308016122000898
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0308-0161&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0308-0161&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0308-0161&client=summon