Finite Equivalence Relations on Algebraic Varieties and Hidden Symmetries
This paper can be considered as a continuation of Miyanishi's paper which contains a theorem on existence of a quotient of an affine normal or a projective smooth variety by a finite equivalence relation such that every component of the relation projects onto the variety (we call such an equiva...
Saved in:
Published in | Transformation groups Vol. 9; no. 4; pp. 311 - 326 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
New York, NY
Springer
01.10.2004
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper can be considered as a continuation of Miyanishi's paper which contains a theorem on existence of a quotient of an affine normal or a projective smooth variety by a finite equivalence relation such that every component of the relation projects onto the variety (we call such an equivalence relation a wide finite equivalence relation). Later papers of Kollar and Keel-Mori shed new light on the subject and can serve as a base for further studies. The results of the present paper are based on the fact that every wide finite equivalence relation on a normal variety V is determined by an action of a finite group on the normalization of V in some Galois extension of k(V). Hence, such an equivalence relation hides some symmetry of a (ramified) cover of V. One may find some analogy of the situation with the concept of a hidden symmetry considered in physics. An important part of the paper is examples described in Section 6 which show that the main result of the paper (Theorem 2.3) is valid neither in the seminormal case, nor under the additional assumptions that there exists a finite morphism whose fibers contain equivalence classes of a given finite relation. In the nonnormal case, identification of some points described by a finite wide equivalence relation may force identification of some other nonequivalent points. This seems to show that the class of normal varieties and wide equivalence relation is a proper frame for considering the general problems of quotients by finite equivalence relations. |
---|---|
AbstractList | This paper can be considered as a continuation of Miyanishi's paper which contains a theorem on existence of a quotient of an affine normal or a projective smooth variety by a finite equivalence relation such that every component of the relation projects onto the variety (we call such an equivalence relation a wide finite equivalence relation). Later papers of Kollar and Keel-Mori shed new light on the subject and can serve as a base for further studies. The results of the present paper are based on the fact that every wide finite equivalence relation on a normal variety V is determined by an action of a finite group on the normalization of V in some Galois extension of k(V). Hence, such an equivalence relation hides some symmetry of a (ramified) cover of V. One may find some analogy of the situation with the concept of a hidden symmetry considered in physics. An important part of the paper is examples described in Section 6 which show that the main result of the paper (Theorem 2.3) is valid neither in the seminormal case, nor under the additional assumptions that there exists a finite morphism whose fibers contain equivalence classes of a given finite relation. In the nonnormal case, identification of some points described by a finite wide equivalence relation may force identification of some other nonequivalent points. This seems to show that the class of normal varieties and wide equivalence relation is a proper frame for considering the general problems of quotients by finite equivalence relations. |
Author | Bialynicki-Birula, A. |
Author_xml | – sequence: 1 givenname: A. surname: Bialynicki-Birula fullname: Bialynicki-Birula, A. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16380349$$DView record in Pascal Francis |
BookMark | eNp9kMFKAzEQhoMo2FYfwFtAPK5ONtlk91iktQVB0CLeQjabSMo22yZboX16U1sQPHiaYeb7Z-AbonPfeYPQDYF7AiAeIgBQkgGwrAIg2f4MDUiRJkXJP85TDyXNGOX5JRrGuEyI4JwP0HzqvOsNnmy27ku1xmuDX02retf5iDuPx-2nqYNyGr-r4EzvTMTKN3jmmsZ4_LZbrUyfFvEKXVjVRnN9qiO0mE4Wj7Ps-eVp_jh-zjQF2mcGdM5rQSjYqrFa8LpURaUsJTbPi4bVubWiqagAYaxRorSstJTxmqoyFwUdodvj2XXoNlsTe7nstsGnjzLnnDEuOBWJujtRKmrV2qC8dlGug1upsJOE0xIoqxJHjpwOXYzB2F8E5EGsPIqVSaw8iJX7lBF_Mtr1P8L65Kn9J_kNbEp-1A |
CitedBy_id | crossref_primary_10_1142_S0129167X23500805 |
ContentType | Journal Article |
Copyright | 2005 INIST-CNRS Birkhauser Boston 2004. |
Copyright_xml | – notice: 2005 INIST-CNRS – notice: Birkhauser Boston 2004. |
DBID | AAYXX CITATION IQODW |
DOI | 10.1007/s00031-004-9001-z |
DatabaseName | CrossRef Pascal-Francis |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1531-586X |
EndPage | 326 |
ExternalDocumentID | 16380349 10_1007_s00031_004_9001_z |
GroupedDBID | -Y2 -~C .86 .VR 06D 0R~ 0VY 123 199 1N0 1SB 203 29Q 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYXX AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSTC ACZOJ ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFFNX AFGCZ AFHIU AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGWIL AGWZB AGYKE AHAVH AHBYD AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG CITATION COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9R PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ZWQNP ~EX ABRTQ IQODW |
ID | FETCH-LOGICAL-c303t-e0c26b7130f9dfc76b8a59af31f225d4b2ff7d93707efea78f48f346b3a82753 |
ISSN | 1083-4362 |
IngestDate | Fri Jul 25 11:06:59 EDT 2025 Mon Jul 21 09:14:41 EDT 2025 Tue Jul 01 02:08:02 EDT 2025 Thu Apr 24 23:06:07 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Equivalence relation Equivalence classes Group action Algebraic variety Hidden symmetry Existence theorem Finite group Morphism Galois extension Quotient Algebraic geometry |
Language | English |
License | https://www.springer.com/tdm CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c303t-e0c26b7130f9dfc76b8a59af31f225d4b2ff7d93707efea78f48f346b3a82753 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2664467637 |
PQPubID | 2044135 |
PageCount | 16 |
ParticipantIDs | proquest_journals_2664467637 pascalfrancis_primary_16380349 crossref_primary_10_1007_s00031_004_9001_z crossref_citationtrail_10_1007_s00031_004_9001_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2004-10-00 |
PublicationDateYYYYMMDD | 2004-10-01 |
PublicationDate_xml | – month: 10 year: 2004 text: 2004-10-00 |
PublicationDecade | 2000 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY – name: Heidelberg |
PublicationTitle | Transformation groups |
PublicationYear | 2004 |
Publisher | Springer Springer Nature B.V |
Publisher_xml | – name: Springer – name: Springer Nature B.V |
SSID | ssj0017666 |
Score | 1.6137493 |
Snippet | This paper can be considered as a continuation of Miyanishi's paper which contains a theorem on existence of a quotient of an affine normal or a projective... |
SourceID | proquest pascalfrancis crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 311 |
SubjectTerms | Algebra Algebraic geometry Equivalence Exact sciences and technology Existence theorems Mathematics Quotients Sciences and techniques of general use Symmetry |
Title | Finite Equivalence Relations on Algebraic Varieties and Hidden Symmetries |
URI | https://www.proquest.com/docview/2664467637 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFLcYu2xC0z5FN0A-7LTKKI0dOzl2E6hDglOZuEW2Y0_RSvhoe6B__Z7txE1hmwaXKIqalzTv-b3f8_tC6DNVeZVSY4hMM01YJTVRorCkkIWslKg489Hz0zM-OWcnF9lFN8O9rS5ZqEO9-mNdyVO4CteAr65K9hGcjUThApwDf-EIHIbjf_H4uHaIcXh0s6yBrF-jveS2Zjie_XRx4VoPfziX2PVO9cGCiesbAuv67vLSD9Sa9yHqtAdlgYYv--jtpcvZXVPrXzX5Wt8uZ2FX9nBj74DFLLRO3QEAI4y2-tB0KnBEstzPF4w6suiJAuvpO9pqymA6aSh-f6CVQyKG61gFpN1rFC6Ra7U2QV3Y_Z5livmCsbeyJ1ECidKRKFfP0PMU_AM3uuI8HcfwkeA-SB3_XhfOTnz32M232AAkO9dyDmvDhqEmD-yzBx3T1-hV6y3gcWD9G7Rlmrfo5WlstTt_h74HIcA9IcBRCPBVg6MQ4CgEGIQAByHAayF4j6bHR9NvE9LOxyAagMeCmESnXAlAIbaorBZc5TIrpKUjC1q6Yiq1VlSAPxNhrJEityy3lHFFZZ6Cm_oBbTdXjdlF2HAFhCRVtgA8arUCLzzJZSpsVvFsZAYo6b5Rqdve8W6Eyaz8K2cG6Eu85To0TvnXjw82Pvz6DjAProPSAO11nCjbBTgvAVsysPOcio-Pedgn9GK9FvbQ9uJ2afYBWS7UgZei3044dfA |
linkProvider | Springer Nature |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Finite+Equivalence+Relations+on+Algebraic+Varieties+and+Hidden+Symmetries&rft.jtitle=Transformation+groups&rft.au=Bialynicki-Birula%2C+A.&rft.date=2004-10-01&rft.issn=1083-4362&rft.eissn=1531-586X&rft.volume=9&rft.issue=4&rft.spage=311&rft.epage=326&rft_id=info:doi/10.1007%2Fs00031-004-9001-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00031_004_9001_z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1083-4362&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1083-4362&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1083-4362&client=summon |