Finite Equivalence Relations on Algebraic Varieties and Hidden Symmetries

This paper can be considered as a continuation of Miyanishi's paper which contains a theorem on existence of a quotient of an affine normal or a projective smooth variety by a finite equivalence relation such that every component of the relation projects onto the variety (we call such an equiva...

Full description

Saved in:
Bibliographic Details
Published inTransformation groups Vol. 9; no. 4; pp. 311 - 326
Main Author Bialynicki-Birula, A.
Format Journal Article
LanguageEnglish
Published New York, NY Springer 01.10.2004
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper can be considered as a continuation of Miyanishi's paper which contains a theorem on existence of a quotient of an affine normal or a projective smooth variety by a finite equivalence relation such that every component of the relation projects onto the variety (we call such an equivalence relation a wide finite equivalence relation). Later papers of Kollar and Keel-Mori shed new light on the subject and can serve as a base for further studies. The results of the present paper are based on the fact that every wide finite equivalence relation on a normal variety V is determined by an action of a finite group on the normalization of V in some Galois extension of k(V). Hence, such an equivalence relation hides some symmetry of a (ramified) cover of V. One may find some analogy of the situation with the concept of a hidden symmetry considered in physics. An important part of the paper is examples described in Section 6 which show that the main result of the paper (Theorem 2.3) is valid neither in the seminormal case, nor under the additional assumptions that there exists a finite morphism whose fibers contain equivalence classes of a given finite relation. In the nonnormal case, identification of some points described by a finite wide equivalence relation may force identification of some other nonequivalent points. This seems to show that the class of normal varieties and wide equivalence relation is a proper frame for considering the general problems of quotients by finite equivalence relations.
AbstractList This paper can be considered as a continuation of Miyanishi's paper which contains a theorem on existence of a quotient of an affine normal or a projective smooth variety by a finite equivalence relation such that every component of the relation projects onto the variety (we call such an equivalence relation a wide finite equivalence relation). Later papers of Kollar and Keel-Mori shed new light on the subject and can serve as a base for further studies. The results of the present paper are based on the fact that every wide finite equivalence relation on a normal variety V is determined by an action of a finite group on the normalization of V in some Galois extension of k(V). Hence, such an equivalence relation hides some symmetry of a (ramified) cover of V. One may find some analogy of the situation with the concept of a hidden symmetry considered in physics. An important part of the paper is examples described in Section 6 which show that the main result of the paper (Theorem 2.3) is valid neither in the seminormal case, nor under the additional assumptions that there exists a finite morphism whose fibers contain equivalence classes of a given finite relation. In the nonnormal case, identification of some points described by a finite wide equivalence relation may force identification of some other nonequivalent points. This seems to show that the class of normal varieties and wide equivalence relation is a proper frame for considering the general problems of quotients by finite equivalence relations.
Author Bialynicki-Birula, A.
Author_xml – sequence: 1
  givenname: A.
  surname: Bialynicki-Birula
  fullname: Bialynicki-Birula, A.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16380349$$DView record in Pascal Francis
BookMark eNp9kMFKAzEQhoMo2FYfwFtAPK5ONtlk91iktQVB0CLeQjabSMo22yZboX16U1sQPHiaYeb7Z-AbonPfeYPQDYF7AiAeIgBQkgGwrAIg2f4MDUiRJkXJP85TDyXNGOX5JRrGuEyI4JwP0HzqvOsNnmy27ku1xmuDX02retf5iDuPx-2nqYNyGr-r4EzvTMTKN3jmmsZ4_LZbrUyfFvEKXVjVRnN9qiO0mE4Wj7Ps-eVp_jh-zjQF2mcGdM5rQSjYqrFa8LpURaUsJTbPi4bVubWiqagAYaxRorSstJTxmqoyFwUdodvj2XXoNlsTe7nstsGnjzLnnDEuOBWJujtRKmrV2qC8dlGug1upsJOE0xIoqxJHjpwOXYzB2F8E5EGsPIqVSaw8iJX7lBF_Mtr1P8L65Kn9J_kNbEp-1A
CitedBy_id crossref_primary_10_1142_S0129167X23500805
ContentType Journal Article
Copyright 2005 INIST-CNRS
Birkhauser Boston 2004.
Copyright_xml – notice: 2005 INIST-CNRS
– notice: Birkhauser Boston 2004.
DBID AAYXX
CITATION
IQODW
DOI 10.1007/s00031-004-9001-z
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1531-586X
EndPage 326
ExternalDocumentID 16380349
10_1007_s00031_004_9001_z
GroupedDBID -Y2
-~C
.86
.VR
06D
0R~
0VY
123
199
1N0
1SB
203
29Q
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYXX
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFFNX
AFGCZ
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
CITATION
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9R
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
ZWQNP
~EX
ABRTQ
IQODW
ID FETCH-LOGICAL-c303t-e0c26b7130f9dfc76b8a59af31f225d4b2ff7d93707efea78f48f346b3a82753
ISSN 1083-4362
IngestDate Fri Jul 25 11:06:59 EDT 2025
Mon Jul 21 09:14:41 EDT 2025
Tue Jul 01 02:08:02 EDT 2025
Thu Apr 24 23:06:07 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Equivalence relation
Equivalence classes
Group action
Algebraic variety
Hidden symmetry
Existence theorem
Finite group
Morphism
Galois extension
Quotient
Algebraic geometry
Language English
License https://www.springer.com/tdm
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c303t-e0c26b7130f9dfc76b8a59af31f225d4b2ff7d93707efea78f48f346b3a82753
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2664467637
PQPubID 2044135
PageCount 16
ParticipantIDs proquest_journals_2664467637
pascalfrancis_primary_16380349
crossref_primary_10_1007_s00031_004_9001_z
crossref_citationtrail_10_1007_s00031_004_9001_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2004-10-00
PublicationDateYYYYMMDD 2004-10-01
PublicationDate_xml – month: 10
  year: 2004
  text: 2004-10-00
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: Heidelberg
PublicationTitle Transformation groups
PublicationYear 2004
Publisher Springer
Springer Nature B.V
Publisher_xml – name: Springer
– name: Springer Nature B.V
SSID ssj0017666
Score 1.6137493
Snippet This paper can be considered as a continuation of Miyanishi's paper which contains a theorem on existence of a quotient of an affine normal or a projective...
SourceID proquest
pascalfrancis
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 311
SubjectTerms Algebra
Algebraic geometry
Equivalence
Exact sciences and technology
Existence theorems
Mathematics
Quotients
Sciences and techniques of general use
Symmetry
Title Finite Equivalence Relations on Algebraic Varieties and Hidden Symmetries
URI https://www.proquest.com/docview/2664467637
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFLcYu2xC0z5FN0A-7LTKKI0dOzl2E6hDglOZuEW2Y0_RSvhoe6B__Z7txE1hmwaXKIqalzTv-b3f8_tC6DNVeZVSY4hMM01YJTVRorCkkIWslKg489Hz0zM-OWcnF9lFN8O9rS5ZqEO9-mNdyVO4CteAr65K9hGcjUThApwDf-EIHIbjf_H4uHaIcXh0s6yBrF-jveS2Zjie_XRx4VoPfziX2PVO9cGCiesbAuv67vLSD9Sa9yHqtAdlgYYv--jtpcvZXVPrXzX5Wt8uZ2FX9nBj74DFLLRO3QEAI4y2-tB0KnBEstzPF4w6suiJAuvpO9pqymA6aSh-f6CVQyKG61gFpN1rFC6Ra7U2QV3Y_Z5livmCsbeyJ1ECidKRKFfP0PMU_AM3uuI8HcfwkeA-SB3_XhfOTnz32M232AAkO9dyDmvDhqEmD-yzBx3T1-hV6y3gcWD9G7Rlmrfo5WlstTt_h74HIcA9IcBRCPBVg6MQ4CgEGIQAByHAayF4j6bHR9NvE9LOxyAagMeCmESnXAlAIbaorBZc5TIrpKUjC1q6Yiq1VlSAPxNhrJEityy3lHFFZZ6Cm_oBbTdXjdlF2HAFhCRVtgA8arUCLzzJZSpsVvFsZAYo6b5Rqdve8W6Eyaz8K2cG6Eu85To0TvnXjw82Pvz6DjAProPSAO11nCjbBTgvAVsysPOcio-Pedgn9GK9FvbQ9uJ2afYBWS7UgZei3044dfA
linkProvider Springer Nature
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Finite+Equivalence+Relations+on+Algebraic+Varieties+and+Hidden+Symmetries&rft.jtitle=Transformation+groups&rft.au=Bialynicki-Birula%2C+A.&rft.date=2004-10-01&rft.issn=1083-4362&rft.eissn=1531-586X&rft.volume=9&rft.issue=4&rft.spage=311&rft.epage=326&rft_id=info:doi/10.1007%2Fs00031-004-9001-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00031_004_9001_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1083-4362&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1083-4362&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1083-4362&client=summon