Evaluation of safety-related performance of wearable lower limb exoskeleton robot (WLLER): A systematic review

Wearable lower limb exoskeleton robots (WLLER) have broad development prospects in the military, industrial and medical fields. The intelligent device comes into intimate contact with the human body, and its safety is an essential factor that developers must consider. With the increasing research on...

Full description

Saved in:
Bibliographic Details
Published inRobotics and autonomous systems Vol. 160; p. 104308
Main Authors Wang, Duojin, Gu, Xiaoping, Li, Wenzhuo, Jin, Yaoxiang, Yang, Maisi, Yu, Hongliu
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.02.2023
Subjects
Online AccessGet full text
ISSN0921-8890
1872-793X
DOI10.1016/j.robot.2022.104308

Cover

Abstract Wearable lower limb exoskeleton robots (WLLER) have broad development prospects in the military, industrial and medical fields. The intelligent device comes into intimate contact with the human body, and its safety is an essential factor that developers must consider. With the increasing research on the safety of WLLER, its safety test methods and indicators should gradually improve. By examining current test methods and indicators, this study aims to mobilize this information and summarize the most recent safety research. The safety-related studies reviewed in this paper are not limited to evaluating subjects in clinical trials but are concerned with extensive safety research. The focus of our analysis is the test performance indicators. Some functional evaluation indicators are also summarized to explore a broader and more applicable approach on the safety metrics. We found that, in general, most researchers pay attention to the power-assisting performance of WLLER, but the stability and comfort have been largely ignored. At the same time, our analysis also reveals that although there are a wide variety of existing evaluation indicators, uniform and standard test methods and indicators for safety testing of WLLER are still deficient. Based on these results, we identified and discussed several promising research directions that may help the community to attain a widely accepted test method that can objectively evaluate the safety of WLLER.
AbstractList Wearable lower limb exoskeleton robots (WLLER) have broad development prospects in the military, industrial and medical fields. The intelligent device comes into intimate contact with the human body, and its safety is an essential factor that developers must consider. With the increasing research on the safety of WLLER, its safety test methods and indicators should gradually improve. By examining current test methods and indicators, this study aims to mobilize this information and summarize the most recent safety research. The safety-related studies reviewed in this paper are not limited to evaluating subjects in clinical trials but are concerned with extensive safety research. The focus of our analysis is the test performance indicators. Some functional evaluation indicators are also summarized to explore a broader and more applicable approach on the safety metrics. We found that, in general, most researchers pay attention to the power-assisting performance of WLLER, but the stability and comfort have been largely ignored. At the same time, our analysis also reveals that although there are a wide variety of existing evaluation indicators, uniform and standard test methods and indicators for safety testing of WLLER are still deficient. Based on these results, we identified and discussed several promising research directions that may help the community to attain a widely accepted test method that can objectively evaluate the safety of WLLER.
ArticleNumber 104308
Author Yang, Maisi
Li, Wenzhuo
Yu, Hongliu
Gu, Xiaoping
Wang, Duojin
Jin, Yaoxiang
Author_xml – sequence: 1
  givenname: Duojin
  orcidid: 0000-0002-3864-3998
  surname: Wang
  fullname: Wang, Duojin
  email: duojin.wang@usst.edu.cn
  organization: Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
– sequence: 2
  givenname: Xiaoping
  surname: Gu
  fullname: Gu, Xiaoping
  organization: Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
– sequence: 3
  givenname: Wenzhuo
  surname: Li
  fullname: Li, Wenzhuo
  organization: Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
– sequence: 4
  givenname: Yaoxiang
  surname: Jin
  fullname: Jin, Yaoxiang
  organization: Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
– sequence: 5
  givenname: Maisi
  surname: Yang
  fullname: Yang, Maisi
  organization: Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
– sequence: 6
  givenname: Hongliu
  surname: Yu
  fullname: Yu, Hongliu
  organization: Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
BookMark eNqFkM9LwzAUx4NMcFP_Ai856qEzbdI2FTyMMX9AQZCB3kKavEBm24wkbu6_t9s8edDTg_f4fPm-zwSNetcDQlcpmaYkLW5XU-8aF6cZybJhwyjhJ2ic8jJLyoq-j9CYVFmacF6RMzQJYUUIoXlJx6hfbGT7KaN1PXYGB2kg7hIPrYyg8Rq8cb6TvYL9dQvSy6YF3LoteNzarsHw5cIHtBCHgEMJfP1W14vXmzs8w2EXInRDusIeNha2F-jUyDbA5c88R8uHxXL-lNQvj8_zWZ0oSmhMdKEqyhvOG1DQ6LzkVCmquWFVyoqcp4wamoPkwKnJpC4YYYoYUynKNOP0HNFjrPIuBA9GrL3tpN-JlIi9MbESh7Jib0wcjQ1U9YtSNh7URC9t-w97f2Rh-Gr41IugLAzetPWgotDO_sl_A239jIo
CitedBy_id crossref_primary_10_1115_1_4066900
crossref_primary_10_3389_fbioe_2025_1551039
crossref_primary_10_1109_JSEN_2024_3352005
crossref_primary_10_1093_jcde_qwaf009
crossref_primary_10_1109_JSEN_2023_3328615
crossref_primary_10_3390_s24031032
crossref_primary_10_1177_17298806231191938
crossref_primary_10_1016_j_bspc_2024_105976
crossref_primary_10_1007_s10846_023_01963_7
crossref_primary_10_1109_TIM_2024_3460880
crossref_primary_10_1109_ACCESS_2024_3472116
Cites_doi 10.3390/app7111182
10.1109/TNSRE.2020.2989481
10.1109/MSPEC.2011.5960158
10.1249/01.mss.0000494432.32096.5e
10.1631/FITEE.1900455
10.5772/7250
10.1097/PHM.0b013e318269d9a3
10.1038/sj.sc.3101853
10.1186/s12984-021-00815-5
10.1186/1743-0003-11-92
10.1109/TNSRE.2008.925074
10.1109/ICORR.2017.8009248
10.1179/2045772312Y.0000000003
10.1108/IR-07-2018-0150
10.1108/IR-09-2018-0199
10.3389/fnbot.2020.00031
10.1016/j.mechmachtheory.2020.103840
10.1161/STROKEAHA.119.025950
10.1109/TMECH.2006.878550
10.1016/j.wneu.2017.10.080
10.1016/j.jocn.2019.07.026
10.1109/TNSRE.2007.903930
10.3390/s22062244
10.1109/BIOROB.2016.7523698
10.1109/TMECH.2020.2990668
10.1186/s12984-020-00765-4
10.1016/j.robot.2014.08.015
10.1016/j.gaitpost.2011.10.002
10.1016/j.apmr.2012.12.020
10.1142/S0219843620500048
10.1109/ACCESS.2020.2985910
10.3389/frobt.2020.553828
10.1109/TNSRE.2021.3136088
10.3390/s19183960
10.1016/j.robot.2019.01.013
10.1007/s12555-019-0260-9
10.1080/17483107.2018.1447610
10.1108/IR-01-2019-0024
10.1016/j.robot.2014.11.014
10.1109/ICRA.2014.6906934
10.1177/0954406218761484
10.1016/j.apergo.2019.05.018
10.1080/10790268.2017.1313932
10.1163/156855311X617506
10.1080/00140139.2010.512982
10.1080/01691864.2013.867284
10.1177/0309364611431481
10.1109/TNSRE.2020.3009317
10.1007/s12369-020-00662-9
10.1109/TNSRE.2014.2346193
10.1115/DETC2017-67599
10.1186/s12984-015-0048-y
10.1186/s12984-017-0274-6
10.1038/s41393-020-0423-9
10.1007/s40430-019-1729-4
10.1007/s12555-019-0243-x
10.1186/s12984-018-0377-8
10.1038/s41598-020-72397-6
10.1097/MRR.0000000000000132
10.1115/DSCC2010-4204
10.1007/s12541-017-0206-1
10.1016/j.robot.2014.10.014
10.1186/s12984-020-00690-6
10.1016/j.robot.2017.06.010
10.1016/j.robot.2014.10.001
10.1007/s12206-020-0534-4
10.1109/TMECH.2019.2916546
10.1155/2018/7435746
10.1007/s12555-013-0386-0
10.3390/s20247216
10.1016/j.robot.2020.103642
10.1186/s12984-018-0393-8
10.1310/sci17-00014
10.1109/TNSRE.2019.2944665
10.1109/TNSRE.2008.2008280
10.1109/TNSRE.2016.2595501
10.1177/0954411921994940
10.3109/17483107.2015.1129455
10.1186/s12984-017-0258-6
10.1142/S0219519419400608
10.1016/j.jbiomech.2016.06.035
10.1163/156855307781746061
10.1109/LRA.2019.2908491
10.1155/2011/284352
10.1186/s12984-019-0585-x
10.1038/s41393-017-0013-7
10.3389/fnins.2019.00259
10.1016/j.apmr.2018.06.020
10.1109/ACCESS.2019.2904296
10.4028/www.scientific.net/AMM.598.546
10.1109/MRA.2014.2360287
10.3390/act9040138
10.1186/s12984-016-0150-9
10.1007/s41315-020-00123-6
10.1109/IROS.2005.1545453
10.1016/j.apmr.2019.09.005
10.1016/j.mechmachtheory.2016.04.012
10.1109/TNSRE.2015.2421052
10.1016/j.bbe.2019.01.002
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.robot.2022.104308
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-793X
ExternalDocumentID 10_1016_j_robot_2022_104308
S092188902200197X
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPGS
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
RXW
SBC
SCC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TAE
UNMZH
WUQ
XPP
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c303t-d6c938b88becebd5783cc3d8f4914658143f35ea8e83f2ad6404c0ff9c34d483
IEDL.DBID AIKHN
ISSN 0921-8890
IngestDate Thu Apr 24 22:56:37 EDT 2025
Tue Jul 01 01:41:56 EDT 2025
Fri Feb 23 02:39:05 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Wearable lower limb exoskeleton robot
Performance indicator
Safety
Test
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c303t-d6c938b88becebd5783cc3d8f4914658143f35ea8e83f2ad6404c0ff9c34d483
ORCID 0000-0002-3864-3998
ParticipantIDs crossref_primary_10_1016_j_robot_2022_104308
crossref_citationtrail_10_1016_j_robot_2022_104308
elsevier_sciencedirect_doi_10_1016_j_robot_2022_104308
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2023
2023-02-00
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: February 2023
PublicationDecade 2020
PublicationTitle Robotics and autonomous systems
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Gong, Xu, Zhou, Vitiello, Wang (b98) 2020; 17
del Ama, Gil-Agudo, Bravo-Esteban, Perez-Nombela, Pons, Moreno (b69) 2015; 73
Narayan, Kumar Dwivedy (b123) 2021; 235
Ai-Robotics (b26) 2020
van Hedel, Wirz, Curt (b116) 2006; 44
English, Newby, Hackney, DeWitt, Beck, Rovekamp, Rea (b8) 2014; 46
Murray, Ha, Hartigan, Goldfarb (b66) 2015; 23
Kalita, Narayan, Dwivedy (b22) 2020; 13
Goo, Laubscher, Farris, Sawicki (b48) 2020; 9
Pinto-Fernandez, Torricelli, Sanchez-Villamanan, Aller, Mombaur, Conti, Vitiello, Moreno, Pons (b120) 2020; 28
Wang, Wang, van Asseldonk, van der Kooij (b118) 2013
Yang, She, Lu, Fukuda, Shen (b124) 2017; 7
Low, Liu, Yu (b5) 2005
Zha, Sheng, Guo, Qiu, Wang, Chen (b111) 2019; 9
Zeilig, Weingarden, Zwecker, Dudkiewicz, Bloch, Esquenazi (b45) 2012; 35
(b33) 2022
Li, Guan, Han, Tang, Meng, Shi, Penzlin, Yang, Ren, Yang, Li, Leonhardt, Ji (b72) 2020; 8
Yu, Lee, Lee, Kim, Han, Han (b88) 2012; 26
Lim, Kim, Lee, Kim, Shin, Park, Lee, Han (b4) 2015
Karlin (b7) 2011; 48
Calabro, Naro, Russo, Bramanti, Carioti, Balletta, Buda, Manuli, Filoni, Bramanti (b60) 2018; 15
Rodriguez-Fernandez, Lobo-Prat, Font-Llagunes (b126) 2021; 18
Baser, Kizilhan, Kilic (b110) 2020; 34
Wang, Meijneke, van der Kooij (b19) 2013
van Dijsseldonk, van Nes, Geurts, Keijsers (b115) 2020; 10
Wang, Yang, Yang, Deng, Ma, Wei (b109) 2019; 46
Haufe, Schmidt, Duarte, Wolf, Riener, Xiloyannis (b55) 2020; 17
Kaiser, Trost, Aach, Schildhauer, Schwenkreis, Tegenthoff (b35) 2019; 13
Kim, Lee, Jang, Park, Han (b90) 2015; 13
Koseki, Mutsuzaki, Yoshikawa, Endo, Maezawa, Takano, Yozu, Kohno (b76) 2019; 55
Hyun, Park, Ha, Park, Jung (b92) 2017; 95
Chen, Qi, Guo, Yu (b64) 2016; 103
Zhang, Tran, Huang (b84) 2019; 24
Schrade, Datwyler, Stucheli, Studer, Turk, Meboldt, Gassert, Lambercy (b86) 2018; 15
Aldridge Whitehead, Esposito, Wilken (b94) 2016; 49
Fontana, Vertechy, Marcheschi, Salsedo, Bergamasco (b11) 2014; 21
Esquenazi, Talaty, Packel, Saulino (b44) 2012; 91
Chen, Yu, Ge, Fang (b17) 2009
A. Collo, V. Bonnet, G. Venture, A quasi-passive lower limb exoskeleton for partial body weight support, in: 6th IEEE International Conference on Biomedical Robotics and Biomechatronics, BioRob, 2016, pp. 643–648.
Chang, Nandor, Li, Kobetic, Foglyano, Schnellenberger, Audu, Pinault, Quinn, Triolo (b62) 2017; 14
Chen, Zhong, Zhao, Ma, Qin, Liao (b21) 2019; 7
Kong, Jeon (b28) 2006; 11
van Asseldonk, Veneman, Ekkelenkamp, Buurke, van der Helm, van der Kooij (b80) 2008; 16
Kim, Seo, Shin, Kim, Kang (b10) 2015
Bortole, Venkatakrishnan, Zhu, Moreno, Francisco, Pons, Contreras-Vidal (b65) 2015; 12
Moon, Ji, Jang, Hwang, Shin, Lee, Han, Han, Lee, Jang, Park, Kim (b79) 2017; 18
Kubota, Nakata, Eguchi, Kawamoto, Kamibayashi, Sakane, Sankai, Ochiai (b41) 2013; 94
Sirlantzis, Larsen, Kanumuru, Oprea (b128) 2019
Xu, Huang, Cheng, Qiu, Xiang, Shi, Ma (b117) 2020; 4
Giovacchini, Vannetti, Fantozzi, Cempini, Cortese, Parri, Yan, Lefeber, Vitiello (b87) 2015; 73
Yoshimoto, Shimizu, Hiroi, Kawaki, Sato, Nagasawa (b102) 2015; 38
Xiang, Ding, Zong, Liu, Cheng, He, He (b56) 2020; 58
Strausser, Kazerooni (b12) 2011
Jeong, Woo, Kong (b107) 2020; 18
Nilsson, Vreede, Haglund, Kawamoto, Sankai, Borg (b40) 2014; 11
Zhou, Chen, Chen, Bai, Zhang, Wang (b49) 2020; 150
Neuhaus, Noorden, Craig, Torres, Kirschbaum, Pratt (b18) 2011
Panizzolo, Galiana, Asbeck, Siviy, Schmidt, Holt, Walsh (b91) 2016; 13
Bae, Park, Moon, Chun, Chun, Choi (b96) 2020; 18
D. Zanotto, P. Stegall, S.K. Agrawal, Adaptive assist-as-needed controller to improve gait symmetry in robot-assisted gait training, in: 2014 IEEE International Conference on Robotics and Automation, 2014, pp. 724–729.
(b34) 2021
Chen, Ma, Qin, Gao, Chan, Law, Qin, Liao (b29) 2016; 5
Maleki, Badri, Shayestehepour, Arazpour, Farahmand, Mousavi, Abdolahi, Farkhondeh, Head, Golchin, Mardani (b74) 2019; 14
McIntosh, Charbonneau, Bensaada, Bhatiya, Ho (b54) 2019; 101
Sankai (b3) 2010
Lee, Lee, Seo, Lee, Chang, Choi, Ryu, Kim (b85) 2019; 50
Baunsgaard, Nissen, Brust, Frotzler, Ribeill, Kalke, Leon, Gomez, Samuelsson, Antepohl, Holmstrom, Marklund, Glott, Opheim, Benito, Murillo, Nachtegaal, Faber, Biering-Sorensen (b61) 2017; 56
Khan, Livingstone, Hurd, Duchcherer, Misiaszek, Gorassini, Manns, Yang (b113) 2019; 16
Wang, Zhang, Liu, Liu, Han, Wang, Ferreira, Dong, Zhang (b127) 2022; 11
(b32) 2019
Natali, Sadeghi, Mondini, Bottenberg, Hartigan, Eyto, O’Sullivan, Rocon, Stadler, Mazzolai, Caldwell, Ortiz (b112) 2020; 14
Joudzadeh, Hadi, Tarvirdizadeh, Borooghani, Ahpour (b99) 2019; 46
Emmens, van Asseldonk, van der Kooij (b104) 2018; 15
Ueno, Watanabe, Kawamoto, Shimizu, Endo, Shimizu, Ishikawa, Kadone, Ohto, Kamada, Marushima, Hada, Muroi, Sankai, Ishikawa, Matsumura, Yamazaki (b43) 2019; 68
Bai, Gou, Wang, Dong, Que, Ling, Wang, Zhou, Chen, Pang, Zhang, Cheng (b58) 2019; 19
Lovrenovic, Doumit (b75) 2019; 39
Oh, Baek, Song, Mohammed, Jeon, Kong (b68) 2015; 73
Yatsugi, Morishita, Fukuda, Kotani, Yagi, Abe, Shiota, Inoue (b38) 2018; 2018
Setoguchi, Kinoshita, Kamada, Sakamoto, Kise, Kotani, Goto, Shiota, Inoue, Yamamoto (b42) 2020; 6
Kw, Muller, Lee (b24) 2014
Mizukami, Yoshikawa, Kawamoto, Sano, Koseki, Asakwa, Iwamoto, Nagata, Tsurushima, Nakai, Marushima, Sankai, Matsumura (b39) 2016; 12
Ha, Murray, Goldfarb (b23) 2016; 24
Lerner, Damiano, Park, Gravunder, Bulea (b51) 2017; 25
Agrawal, Banala, Fattah, Sangwan, Krishnamoorthy, Scholz, Hsu (b46) 2007; 15
Kwon, Park, Ku, Jeong, Paik, Park (b73) 2019; 4
Kian, Widanapathirana, Joseph, Lai, Begg (b125) 2022; 22
Sanz-Merodio, Cestari, Arevalo, Carrillo, Garcia (b20) 2014; 28
Liu, Wang (b97) 2020; 25
Y. Şahin, F.M. Botsali, M. Kalyoncu, M. Tinkir, U. Onen, N. Yilmaz, O.K. Baykan, A. Cakan, Force feedback control of lower extremity exoskeleton assisting of load carrying human, in: 4th International Conference on Mechanics; Simulation and Control, ICMSC, 2014, pp. 546–550.
L.F. Yeung, C. Ockenfeld, M.K. Pang, H.W. Wai, O.Y. Soo, S.W. Li, K.Y. Tong, Design of an exoskeleton ankle robot for robot-assisted gait training of stroke patients, in: 2017 International Conference on Rehabilitation Robotics, 2017, pp. 211–215.
Tefertiller, Hays, Jones, Jayaraman, Hartigan, Bushnik, Forrest (b59) 2018; 24
Chinimilli, Qiao, Sorkhabadi, Jhawar, Fong, Zhang (b82) 2019; 114
Luger, Seibt, Cobb, Rieger, Steinhilber (b114) 2019; 80
A. Zoss, H. Kazerooni, A. Chu, On the mechanical design of the Berkeley Lower Extremity Exoskeleton (BLEEX), in: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005, pp. 3465–3472.
Fick, Makinson (b1) 1971
Yang, Wang, Zhu, Xi, Wu (b52) 2018; 233
Nam, Lee, Park, Lee, Nam, Park, Yu, Choi, Kwon (b57) 2019; 100
Banala, Kim, Agrawal, Scholz (b27) 2009; 17
(b30) 2014
Baser, Kizilhan, Kilic (b89) 2019; 41
Wojtara, Sasaki, Konosu, Yamashita, Shimoda, Alnajjar, Kimura (b101) 2012; 35
Jansen, Grasmuecke, Meindl, Tegenthoff, Schwenkreis, Kaiser, Wessling, Schildhauer, Fisahn, Aach (b37) 2018; 110
Fourier Intelligence (b25) 2020
Nam, Park, Lee, Nam, Choi, Yu, Zhu, Zhang, Lee, Kwon (b71) 2020; 52
Gregorczyk, Hasselquist, Schiffman, Bensel, Obusek, Gutekunst (b6) 2010; 53
Aguirre-Ollinger, Narayan, Yu (b78) 2019; 27
Wang, Pei, Hou, Fan, Yang, Herr (b83) 2020; 21
Kawamoto, Kanbe, Sankai (b14) 2003
Yang, Wang, Zhu, Liu, Yang, Ma, Wei (b106) 2020; 47
C.A. Laubscher, R.J. Farris, J.T. Sawicki, Design and Preliminary Evaluation of a Powered Pediatric Lower Limb Orthosis, in: Asme 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2017, pp. 1–9.
Zhong, Cao, Guo, McDaid, Peng, Miao, Xie, Zhang (b81) 2020; 133
Sarajchi, Al-Hares, Sirlantzis (b122) 2021; 29
Suzuki, Mito, Kawamoto, Hasegawa, Sankai (b13) 2007; 21
Birch, Graham, Priestley, Heywood, Sakel, Gall, Nunn, Signal (b63) 2017; 14
Moon, Kim, Hong (b100) 2019; 19
Kubota, Abe, Kadone, Fujii, Shimizu, Marushima, Ueno, Kawamoto, Hada, Matsumura, Sankai, Yamazaki (b36) 2017; 42
Aphiratsakun, Parnichku (b16) 2009; 6
Puyuelo-Quintana, Cano-de-la Cuerda, Plaza-Flores, Garces-Castellote, Sanz-Merodio, Goni-Arana, Marin-Ojea, Garcia-Armada (b53) 2020; 17
Esquenazi, Talaty, Packel, Saulino (b15) 2012; 91
Rajasekaran, Aranda, Casals, Pons (b103) 2015; 73
Raj, Neuhaus, Moucheboeuf, Noorden, Lecoutre (b119) 2011; 2011
Yoshikawa, Mutsuzaki, Koseki, Endo, Hashizume, Nakazawa, Aoyama, Yozu, Kohno (b70) 2020; 11
Yang, Zhang, Zhang, Yang (b105) 2020; 20
Hidayah, Bishop, Jin, Chamarthy, Stein, Agrawal (b77) 2020; 28
Fasola, Baud, Vouga, Ijspeert, Bouri (b108) 2020; 7
Arazpour, Chitsazan, Hutchins, Ghomshe, Mousavi, Takamjani, Aminian, Rahgozar, Bani (b50) 2012; 36
(b31) 2019
T.A. Swift, K.A. Strausser, A.B. Zoss, H. Kazerooni, Asme; Control and Experimental Results for Post Stroke Gait Rehabilitation with a Prototype Mobile Medical Exoskeleton, in: ASME 2010 Dynamic Systems and Control Conference, 2010, pp. 405–411.
Fourier Intelligence (10.1016/j.robot.2022.104308_b25) 2020
Bai (10.1016/j.robot.2022.104308_b58) 2019; 19
Chang (10.1016/j.robot.2022.104308_b62) 2017; 14
Yang (10.1016/j.robot.2022.104308_b105) 2020; 20
Chen (10.1016/j.robot.2022.104308_b64) 2016; 103
Setoguchi (10.1016/j.robot.2022.104308_b42) 2020; 6
Chen (10.1016/j.robot.2022.104308_b29) 2016; 5
Baunsgaard (10.1016/j.robot.2022.104308_b61) 2017; 56
Ueno (10.1016/j.robot.2022.104308_b43) 2019; 68
Neuhaus (10.1016/j.robot.2022.104308_b18) 2011
Sirlantzis (10.1016/j.robot.2022.104308_b128) 2019
Zhang (10.1016/j.robot.2022.104308_b84) 2019; 24
10.1016/j.robot.2022.104308_b121
Baser (10.1016/j.robot.2022.104308_b110) 2020; 34
Baser (10.1016/j.robot.2022.104308_b89) 2019; 41
Moon (10.1016/j.robot.2022.104308_b100) 2019; 19
Lee (10.1016/j.robot.2022.104308_b85) 2019; 50
Narayan (10.1016/j.robot.2022.104308_b123) 2021; 235
Kim (10.1016/j.robot.2022.104308_b90) 2015; 13
Birch (10.1016/j.robot.2022.104308_b63) 2017; 14
Giovacchini (10.1016/j.robot.2022.104308_b87) 2015; 73
Yoshimoto (10.1016/j.robot.2022.104308_b102) 2015; 38
Kubota (10.1016/j.robot.2022.104308_b41) 2013; 94
Zeilig (10.1016/j.robot.2022.104308_b45) 2012; 35
van Dijsseldonk (10.1016/j.robot.2022.104308_b115) 2020; 10
(10.1016/j.robot.2022.104308_b32) 2019
Goo (10.1016/j.robot.2022.104308_b48) 2020; 9
English (10.1016/j.robot.2022.104308_b8) 2014; 46
Zhong (10.1016/j.robot.2022.104308_b81) 2020; 133
Hyun (10.1016/j.robot.2022.104308_b92) 2017; 95
Ha (10.1016/j.robot.2022.104308_b23) 2016; 24
Kubota (10.1016/j.robot.2022.104308_b36) 2017; 42
Yang (10.1016/j.robot.2022.104308_b52) 2018; 233
Calabro (10.1016/j.robot.2022.104308_b60) 2018; 15
Ai-Robotics (10.1016/j.robot.2022.104308_b26) 2020
Rajasekaran (10.1016/j.robot.2022.104308_b103) 2015; 73
Aguirre-Ollinger (10.1016/j.robot.2022.104308_b78) 2019; 27
Jansen (10.1016/j.robot.2022.104308_b37) 2018; 110
10.1016/j.robot.2022.104308_b47
Wojtara (10.1016/j.robot.2022.104308_b101) 2012; 35
Liu (10.1016/j.robot.2022.104308_b97) 2020; 25
(10.1016/j.robot.2022.104308_b34) 2021
van Hedel (10.1016/j.robot.2022.104308_b116) 2006; 44
Khan (10.1016/j.robot.2022.104308_b113) 2019; 16
Chinimilli (10.1016/j.robot.2022.104308_b82) 2019; 114
Panizzolo (10.1016/j.robot.2022.104308_b91) 2016; 13
Kong (10.1016/j.robot.2022.104308_b28) 2006; 11
Gong (10.1016/j.robot.2022.104308_b98) 2020; 17
McIntosh (10.1016/j.robot.2022.104308_b54) 2019; 101
Raj (10.1016/j.robot.2022.104308_b119) 2011; 2011
Yatsugi (10.1016/j.robot.2022.104308_b38) 2018; 2018
Karlin (10.1016/j.robot.2022.104308_b7) 2011; 48
Yang (10.1016/j.robot.2022.104308_b106) 2020; 47
Sarajchi (10.1016/j.robot.2022.104308_b122) 2021; 29
Suzuki (10.1016/j.robot.2022.104308_b13) 2007; 21
Pinto-Fernandez (10.1016/j.robot.2022.104308_b120) 2020; 28
(10.1016/j.robot.2022.104308_b33) 2022
Nam (10.1016/j.robot.2022.104308_b71) 2020; 52
Xu (10.1016/j.robot.2022.104308_b117) 2020; 4
Kalita (10.1016/j.robot.2022.104308_b22) 2020; 13
Puyuelo-Quintana (10.1016/j.robot.2022.104308_b53) 2020; 17
Schrade (10.1016/j.robot.2022.104308_b86) 2018; 15
Yang (10.1016/j.robot.2022.104308_b124) 2017; 7
(10.1016/j.robot.2022.104308_b31) 2019
Agrawal (10.1016/j.robot.2022.104308_b46) 2007; 15
Natali (10.1016/j.robot.2022.104308_b112) 2020; 14
Wang (10.1016/j.robot.2022.104308_b83) 2020; 21
Kim (10.1016/j.robot.2022.104308_b10) 2015
Lerner (10.1016/j.robot.2022.104308_b51) 2017; 25
Xiang (10.1016/j.robot.2022.104308_b56) 2020; 58
Chen (10.1016/j.robot.2022.104308_b21) 2019; 7
Esquenazi (10.1016/j.robot.2022.104308_b15) 2012; 91
10.1016/j.robot.2022.104308_b2
Lim (10.1016/j.robot.2022.104308_b4) 2015
Kian (10.1016/j.robot.2022.104308_b125) 2022; 22
10.1016/j.robot.2022.104308_b67
Fontana (10.1016/j.robot.2022.104308_b11) 2014; 21
Moon (10.1016/j.robot.2022.104308_b79) 2017; 18
Wang (10.1016/j.robot.2022.104308_b109) 2019; 46
Wang (10.1016/j.robot.2022.104308_b118) 2013
Koseki (10.1016/j.robot.2022.104308_b76) 2019; 55
del Ama (10.1016/j.robot.2022.104308_b69) 2015; 73
Rodriguez-Fernandez (10.1016/j.robot.2022.104308_b126) 2021; 18
Esquenazi (10.1016/j.robot.2022.104308_b44) 2012; 91
Wang (10.1016/j.robot.2022.104308_b127) 2022; 11
Lovrenovic (10.1016/j.robot.2022.104308_b75) 2019; 39
Emmens (10.1016/j.robot.2022.104308_b104) 2018; 15
Kw (10.1016/j.robot.2022.104308_b24) 2014
Arazpour (10.1016/j.robot.2022.104308_b50) 2012; 36
Maleki (10.1016/j.robot.2022.104308_b74) 2019; 14
Chen (10.1016/j.robot.2022.104308_b17) 2009
Zhou (10.1016/j.robot.2022.104308_b49) 2020; 150
Strausser (10.1016/j.robot.2022.104308_b12) 2011
Aldridge Whitehead (10.1016/j.robot.2022.104308_b94) 2016; 49
Fasola (10.1016/j.robot.2022.104308_b108) 2020; 7
Joudzadeh (10.1016/j.robot.2022.104308_b99) 2019; 46
Kawamoto (10.1016/j.robot.2022.104308_b14) 2003
Bortole (10.1016/j.robot.2022.104308_b65) 2015; 12
Hidayah (10.1016/j.robot.2022.104308_b77) 2020; 28
Zha (10.1016/j.robot.2022.104308_b111) 2019; 9
Nam (10.1016/j.robot.2022.104308_b57) 2019; 100
Tefertiller (10.1016/j.robot.2022.104308_b59) 2018; 24
Sankai (10.1016/j.robot.2022.104308_b3) 2010
Haufe (10.1016/j.robot.2022.104308_b55) 2020; 17
Luger (10.1016/j.robot.2022.104308_b114) 2019; 80
Gregorczyk (10.1016/j.robot.2022.104308_b6) 2010; 53
Aphiratsakun (10.1016/j.robot.2022.104308_b16) 2009; 6
Kwon (10.1016/j.robot.2022.104308_b73) 2019; 4
Low (10.1016/j.robot.2022.104308_b5) 2005
10.1016/j.robot.2022.104308_b93
van Asseldonk (10.1016/j.robot.2022.104308_b80) 2008; 16
(10.1016/j.robot.2022.104308_b30) 2014
Fick (10.1016/j.robot.2022.104308_b1) 1971
Wang (10.1016/j.robot.2022.104308_b19) 2013
Nilsson (10.1016/j.robot.2022.104308_b40) 2014; 11
10.1016/j.robot.2022.104308_b9
Kaiser (10.1016/j.robot.2022.104308_b35) 2019; 13
Oh (10.1016/j.robot.2022.104308_b68) 2015; 73
Mizukami (10.1016/j.robot.2022.104308_b39) 2016; 12
Yu (10.1016/j.robot.2022.104308_b88) 2012; 26
Murray (10.1016/j.robot.2022.104308_b66) 2015; 23
Banala (10.1016/j.robot.2022.104308_b27) 2009; 17
Yoshikawa (10.1016/j.robot.2022.104308_b70) 2020; 11
Bae (10.1016/j.robot.2022.104308_b96) 2020; 18
Li (10.1016/j.robot.2022.104308_b72) 2020; 8
Sanz-Merodio (10.1016/j.robot.2022.104308_b20) 2014; 28
Jeong (10.1016/j.robot.2022.104308_b107) 2020; 18
10.1016/j.robot.2022.104308_b95
References_xml – volume: 12
  start-page: 197
  year: 2016
  end-page: 204
  ident: b39
  article-title: Gait training of subacute stroke patients using a hybrid assistive limb: a pilot study
  publication-title: Disabil. Rehabil. Assist. Technol.
– start-page: 5345
  year: 2015
  end-page: 5350
  ident: b4
  article-title: Development of a lower extremity exoskeleton robot with a quasi-anthropomorphic design approach for load carriage
  publication-title: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems
– volume: 68
  start-page: 101
  year: 2019
  end-page: 104
  ident: b43
  article-title: Feasibility and safety of robot suit HAL treatment for adolescents and adults with cerebral palsy
  publication-title: J. Clin. Neurosci.
– reference: L.F. Yeung, C. Ockenfeld, M.K. Pang, H.W. Wai, O.Y. Soo, S.W. Li, K.Y. Tong, Design of an exoskeleton ankle robot for robot-assisted gait training of stroke patients, in: 2017 International Conference on Rehabilitation Robotics, 2017, pp. 211–215.
– start-page: 4911
  year: 2011
  end-page: 4916
  ident: b12
  article-title: The development and testing of a human machine interface for a mobile medical exoskeleton
  publication-title: 2011 IEEE/RSJ International Conference on Intelligent Robots & Systems
– volume: 24
  start-page: 455
  year: 2016
  end-page: 466
  ident: b23
  article-title: An approach for the cooperative control of FES with a powered exoskeleton during level walking for persons with paraplegia
  publication-title: IEEE T. Neur. Sys. Reh.
– volume: 2018
  year: 2018
  ident: b38
  article-title: Feasibility of neurorehabilitation using a hybrid assistive limb for patients who underwent spine surgery
  publication-title: Appl. Bionics Biomech.
– volume: 73
  start-page: 123
  year: 2015
  end-page: 134
  ident: b87
  article-title: A light-weight active orthosis for hip movement assistance
  publication-title: Robot. Auton. Syst.
– year: 2022
  ident: b33
  article-title: 21-Food and Drugs
– volume: 6
  start-page: 319
  year: 2009
  end-page: 328
  ident: b16
  article-title: Balancing control of AIT leg exoskeleton using ZMP based FLC
  publication-title: Int. J. Adv. Robot. Syst.
– volume: 95
  start-page: 181
  year: 2017
  end-page: 195
  ident: b92
  article-title: Biomechanical design of an agile. electricity-powered lower-limb exoskeleton for weight-bearing assistance
  publication-title: Robot. Auton. Syst.
– start-page: 577
  year: 2015
  end-page: 582
  ident: b10
  article-title: Locomotion control strategy of hydraulic lower extremity exoskeleton robot
  publication-title: 2015 IEEE International Conference on Advanced Intelligent Mechatronics
– volume: 56
  start-page: 106
  year: 2017
  end-page: 116
  ident: b61
  article-title: Gait training after spinal cord injury: safety. feasibility and gait function following 8 weeks of training with the exoskeletons from ekso bionics
  publication-title: Spinal Cord
– volume: 80
  start-page: 152
  year: 2019
  end-page: 160
  ident: b114
  article-title: Influence of a passive lower-limb exoskeleton during simulated industrial work tasks on physical load. upper body posture. postural control and discomfort
  publication-title: Appl. Ergon.
– year: 2019
  ident: b32
  article-title: Medical electrical equipment – part 2-78: Particular requirements for basic safety and essential performance of medical robots for rehabilitation, assessment
  publication-title: Compensation Or Alleviation
– volume: 110
  start-page: 73
  year: 2018
  end-page: 78
  ident: b37
  article-title: Hybrid assistive limb exoskeleton HAL in the rehabilitation of chronic spinal cord injury: Proof of concept. the results in 21 patients
  publication-title: World Neurosurg.
– volume: 15
  start-page: 50
  year: 2018
  ident: b104
  article-title: Effects of a powered ankle-foot orthosis on perturbed standing balance
  publication-title: J. Neuroeng. Rehabil.
– volume: 14
  start-page: 31
  year: 2020
  ident: b112
  article-title: Pneumatic quasi-passive actuation for soft assistive lower limbs exoskeleton
  publication-title: Front. Neurorobotics
– volume: 11
  year: 2022
  ident: b127
  article-title: A review on the rehabilitation exoskeletons for the lower limbs of the elderly and the disabled
  publication-title: Electronics
– start-page: 311
  year: 2019
  end-page: 345
  ident: b128
  article-title: 11 - Robotics
  publication-title: Handbook of Electronic Assistive Technology
– start-page: 67
  year: 2003
  end-page: 72
  ident: b14
  article-title: Power assist method for HAL-3 estimating operator’s intention based on motion information
  publication-title: The 12th IEEE International Workshop on Robot and Human Interactive Communication
– volume: 114
  start-page: 66
  year: 2019
  end-page: 76
  ident: b82
  article-title: Automatic virtual impedance adaptation of a knee exoskeleton for personalized walking assistance
  publication-title: Robot. Auton. Syst.
– volume: 13
  start-page: 259
  year: 2019
  ident: b35
  article-title: A randomized and controlled crossover study investigating the improvement of walking and posture functions in chronic stroke patients using HAL exoskeleton-the HALESTRO study (HAL-exoskeleton stroke study)
  publication-title: Front. Neurosci.
– volume: 7
  start-page: 33809
  year: 2019
  end-page: 33821
  ident: b21
  article-title: Reference joint trajectories generation of CUHK-EXO exoskeleton for system balance in walking assistance
  publication-title: IEEE Access
– volume: 41
  start-page: 226
  year: 2019
  end-page: 240
  ident: b89
  article-title: Biomimetic compliant lower limb exoskeleton (BioComEx) and its experimental evaluation
  publication-title: J. Braz. Soc. Mech. Sci.
– volume: 4
  start-page: 278
  year: 2020
  end-page: 293
  ident: b117
  article-title: Stair-ascent strategies and performance evaluation for a lower limb exoskeleton
  publication-title: Int. J. Intell. Robot.
– reference: T.A. Swift, K.A. Strausser, A.B. Zoss, H. Kazerooni, Asme; Control and Experimental Results for Post Stroke Gait Rehabilitation with a Prototype Mobile Medical Exoskeleton, in: ASME 2010 Dynamic Systems and Control Conference, 2010, pp. 405–411.
– volume: 26
  start-page: 561
  year: 2012
  end-page: 580
  ident: b88
  article-title: Design of an under-actuated exoskeleton system for walking assist while load carrying
  publication-title: Adv. Robot.
– volume: 47
  start-page: 281
  year: 2020
  end-page: 292
  ident: b106
  article-title: A stepping gait trajectory design based on hip height variation of swing leg for the balance of lower extremity exoskeleton
  publication-title: Ind. Robot.
– year: 2020
  ident: b26
  article-title: Ailegs
– reference: Y. Şahin, F.M. Botsali, M. Kalyoncu, M. Tinkir, U. Onen, N. Yilmaz, O.K. Baykan, A. Cakan, Force feedback control of lower extremity exoskeleton assisting of load carrying human, in: 4th International Conference on Mechanics; Simulation and Control, ICMSC, 2014, pp. 546–550.
– start-page: 25
  year: 2010
  end-page: 34
  ident: b3
  article-title: HAL: Hybrid assistive limb based on cybernics
  publication-title: Robotics Research - the 13th International Symposium
– reference: C.A. Laubscher, R.J. Farris, J.T. Sawicki, Design and Preliminary Evaluation of a Powered Pediatric Lower Limb Orthosis, in: Asme 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2017, pp. 1–9.
– volume: 15
  start-page: 35
  year: 2018
  ident: b60
  article-title: Shaping neuroplasticity by using powered exoskeletons in patients with stroke: a randomized clinical trial
  publication-title: J. Neuroeng. Rehabil.
– volume: 7
  year: 2020
  ident: b108
  article-title: Bioinspired postural controllers for a locked-ankle exoskeleton targeting complete SCI users
  publication-title: Front. Robot. Ai
– year: 2019
  ident: b31
  article-title: Medical electrical equipment – part 2-77: Particular requirements for the basic safety and essential performance of robotically assisted surgical equipment
– volume: 58
  start-page: 787
  year: 2020
  end-page: 794
  ident: b56
  article-title: The safety and feasibility of a new rehabilitation robotic exoskeleton for assisting individuals with lower extremity motor complete lesions following spinal cord injury (SCI): an observational study
  publication-title: Spinal Cord
– volume: 34
  start-page: 2597
  year: 2020
  end-page: 2607
  ident: b110
  article-title: Employing variable impedance (stiffness/damping) hybrid actuators on lower limb exoskeleton robots for stable and safe walking trajectory tracking
  publication-title: J. Mech. Sci. Technol.
– volume: 28
  start-page: 329
  year: 2014
  end-page: 338
  ident: b20
  article-title: Generation and control of adaptive gaits in lower-limb exoskeletons for motion assistance
  publication-title: Adv. Robot.
– volume: 42
  start-page: 128
  year: 2017
  end-page: 136
  ident: b36
  article-title: Walking ability following hybrid assistive limb treatment for a patient with chronic myelopathy after surgery for cervical ossification of the posterior longitudinal ligament
  publication-title: J. Spinal Cord Med.
– reference: A. Zoss, H. Kazerooni, A. Chu, On the mechanical design of the Berkeley Lower Extremity Exoskeleton (BLEEX), in: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005, pp. 3465–3472.
– volume: 101
  start-page: 113
  year: 2019
  end-page: 120
  ident: b54
  article-title: The safety and feasibility of exoskeletal assisted walking in acute rehabilitation following spinal cord injury
  publication-title: Arch. Phys. Med. Rehabil.
– volume: 21
  start-page: 723
  year: 2020
  end-page: 739
  ident: b83
  article-title: An untethered cable-driven ankle exoskeleton with plantarflexion-dorsiflexion bidirectional movement assistance
  publication-title: Front. Inform. Tech. El.
– volume: 5
  start-page: 26
  year: 2016
  end-page: 37
  ident: b29
  article-title: Recent developments and challenges of lower extremity exoskeletons
  publication-title: J. Orthop. Transl.
– volume: 20
  start-page: 1
  year: 2020
  end-page: 17
  ident: b105
  article-title: Lower limb exoskeleton gait planning based on crutch and human–machine foot combined center of pressure
  publication-title: Sensors
– volume: 11
  start-page: 428
  year: 2006
  end-page: 432
  ident: b28
  article-title: Design and control of an exoskeleton for the elderly and patients
  publication-title: IEEE/ASME T. Mech.
– volume: 21
  start-page: 34
  year: 2014
  end-page: 44
  ident: b11
  article-title: The body extender: A full-body exoskeleton for the transport and handling of heavy loads
  publication-title: IEEE Robot. Autom. Mag.
– volume: 38
  start-page: 338
  year: 2015
  end-page: 343
  ident: b102
  article-title: Feasibility and efficacy of high-speed gait training with a voluntary driven exoskeleton robot for gait and balance dysfunction in patients with chronic stroke: nonrandomized pilot study with concurrent control
  publication-title: Int. J. Rehabil. Res.
– volume: 15
  year: 2018
  ident: b86
  article-title: Development of VariLeg; an exoskeleton with variable stiffness actuation: first results and user evaluation from the CYBATHLON 2016
  publication-title: J. Neuroeng. Rehabil.
– volume: 25
  start-page: 650
  year: 2017
  end-page: 659
  ident: b51
  article-title: A robotic exoskeleton for treatment of crouch gait in children with cerebral palsy: Design and initial application
  publication-title: IEEE T. Neur. Sys. Reh.
– volume: 73
  start-page: 68
  year: 2015
  end-page: 77
  ident: b68
  article-title: A generalized control framework of assistive controllers and its application to lower limb exoskeletons
  publication-title: Robot. Auton. Syst.
– volume: 11
  start-page: 92
  year: 2014
  ident: b40
  article-title: Gait training early after stroke with a new exoskeleton–the hybrid assistive limb: a study of safety and feasibility
  publication-title: J. Neuroeng. Rehabil.
– volume: 18
  start-page: 114
  year: 2020
  end-page: 123
  ident: b107
  article-title: A study on weight support and balance control method for assisting squat movement with a wearable robot
  publication-title: Angel-Suit. Int. J. Control Autom.
– year: 1971
  ident: b1
  article-title: Hardiman I prototype for machine augmentation of human strength and endurance
– volume: 24
  start-page: 1508
  year: 2019
  end-page: 1519
  ident: b84
  article-title: Admittance shaping-based assistive control of SEA-driven robotic hip exoskeleton
  publication-title: IEEE-ASME T. Mech.
– volume: 9
  start-page: 1
  year: 2019
  end-page: 15
  ident: b111
  article-title: The exoskeleton balance assistance control strategy based on single step balance assessment
  publication-title: Appl. Sci-Basel
– volume: 14
  start-page: 48
  year: 2017
  ident: b62
  article-title: A muscle-driven approach to restore stepping with an exoskeleton for individuals with paraplegia
  publication-title: J. Neuroeng. Rehabil.
– volume: 35
  start-page: 96
  year: 2012
  end-page: 101
  ident: b45
  article-title: Safety and tolerance of the ReWalk exoskeleton suit for ambulation by people with complete spinal cord injury: A pilot study
  publication-title: J. Spinal Cord Med.
– volume: 14
  start-page: 333
  year: 2019
  end-page: 337
  ident: b74
  article-title: Design and analysis of an original powered foot clearance creator mechanism for walking in patients with spinal cord injury
  publication-title: Disabil. Rehabil-Assi.
– volume: 91
  start-page: 911
  year: 2012
  end-page: 921
  ident: b44
  article-title: The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury
  publication-title: Am. J. Phys. Med. Rehab.
– volume: 55
  start-page: 1
  year: 2019
  end-page: 11
  ident: b76
  article-title: Gait training using the honda walking assistive devicea (R) in a patient who underwent total hip arthroplasty: A single-subject study
  publication-title: Med. Lith.
– volume: 94
  start-page: 1080
  year: 2013
  end-page: 1087
  ident: b41
  article-title: Feasibility of rehabilitation training with a newly developed wearable robot for patients with limited mobility
  publication-title: Arch. Phys. Med. Rehabil.
– volume: 52
  start-page: 1
  year: 2020
  end-page: 7
  ident: b71
  article-title: Future effects of electromechanically assisted gait trainer (EXOWALK) in patients with chronic stroke: A randomized controlled trial
  publication-title: J. Rehabil. Med.
– volume: 235
  start-page: 530
  year: 2021
  end-page: 545
  ident: b123
  article-title: Preliminary design and development of a low-cost lower-limb exoskeleton system for paediatric rehabilitation
  publication-title: Proc. Inst. Mech. Eng. H.
– volume: 16
  start-page: 145
  year: 2019
  ident: b113
  article-title: Retraining walking over ground in a powered exoskeleton after spinal cord injury: a prospective cohort study to examine functional gains and neuroplasticity
  publication-title: J. Neuroeng. Rehabil.
– volume: 46
  start-page: 290
  year: 2019
  end-page: 299
  ident: b99
  article-title: Design and fabrication of a lower limb exoskeleton to assist in stair ascending
  publication-title: Ind. Robot.
– start-page: 1039
  year: 2009
  end-page: 1043
  ident: b17
  article-title: WPAL for human power assist during walking using dynamic equation
  publication-title: 2009 International Conference on Mechatronics and Automation
– start-page: 1
  year: 2013
  end-page: 8
  ident: b19
  article-title: Modeling; design; and optimization of mindwalker series elastic joint
  publication-title: 2013 IEEE International Conference on Rehabilitation Robotics
– volume: 4
  start-page: 2547
  year: 2019
  end-page: 2552
  ident: b73
  article-title: A soft wearable robotic ankle-foot-orthosis for post-stroke patients
  publication-title: IEEE Robot. Autom. Let.
– volume: 233
  start-page: 1087
  year: 2018
  end-page: 1098
  ident: b52
  article-title: Development and control of a robotic lower limb exoskeleton for paraplegic patients
  publication-title: Proc. Inst. Mech. Eng. Part C
– volume: 18
  start-page: 196
  year: 2020
  end-page: 205
  ident: b96
  article-title: A robotic gait training system with stair-climbing mode based on a unique exoskeleton structure with active foot plates
  publication-title: Int. J. Control Autom.
– reference: D. Zanotto, P. Stegall, S.K. Agrawal, Adaptive assist-as-needed controller to improve gait symmetry in robot-assisted gait training, in: 2014 IEEE International Conference on Robotics and Automation, 2014, pp. 724–729.
– volume: 11
  start-page: 1
  year: 2020
  end-page: 8
  ident: b70
  article-title: Gait training using a wearable robotic device for non-traumatic spinal cord injury: A case report
  publication-title: Geriatr. Orthop. Surg.
– volume: 13
  start-page: 463
  year: 2015
  end-page: 474
  ident: b90
  article-title: Design of an exoskeleton with minimized energy consumption based on using elastic and dissipative elements
  publication-title: Int. J. Control Autom.
– volume: 23
  start-page: 441
  year: 2015
  end-page: 449
  ident: b66
  article-title: An assistive control approach for a lower-limb exoskeleton to facilitate recovery of walking following stroke
  publication-title: IEEE T. Neur. Sys. Reh.
– volume: 73
  start-page: 16
  year: 2015
  end-page: 23
  ident: b103
  article-title: An adaptive control strategy for postural stability using a wearable robot
  publication-title: Robot. Auton. Syst.
– volume: 150
  year: 2020
  ident: b49
  article-title: Design of a passive lower limb exoskeleton for walking assistance with gravity compensation
  publication-title: Mech. Mach. Theory
– volume: 17
  start-page: 135
  year: 2020
  ident: b55
  article-title: Activity-based training with the myosuit: a safety and feasibility study across diverse gait disorders
  publication-title: J. Neuroeng. Rehabil.
– volume: 100
  start-page: 26
  year: 2019
  end-page: 31
  ident: b57
  article-title: Effects of electromechanical exoskeleton-assisted gait training on walking ability of stroke patients: A randomized controlled trial
  publication-title: Arch. Phys. Med. Rehabil.
– start-page: 1
  year: 2011
  end-page: 8
  ident: b18
  article-title: Design and evaluation of mina: A robotic orthosis for paraplegics
  publication-title: 2011 IEEE International Conference on Rehabilitation Robotics
– volume: 73
  start-page: 44
  year: 2015
  end-page: 58
  ident: b69
  article-title: Hybrid therapy of walking with kinesis overground robot for persons with incomplete spinal cord injury: A feasibility study
  publication-title: Robot. Auton. Syst.
– volume: 2011
  start-page: 1
  year: 2011
  end-page: 8
  ident: b119
  article-title: Mina: A sensorimotor robotic orthosis for mobility assistance
  publication-title: J. Robot.
– volume: 36
  start-page: 125
  year: 2012
  end-page: 130
  ident: b50
  article-title: Design and simulation of a new powered gait orthosis for paraplegic patients
  publication-title: Prosthet. Orthot. Int.
– volume: 7
  year: 2017
  ident: b124
  article-title: State of the art: Bipedal robots for lower limb rehabilitation
  publication-title: Appl. Sci.
– volume: 44
  start-page: 352
  year: 2006
  end-page: 356
  ident: b116
  article-title: Improving walking assessment in subjects with an incomplete spinal cord injury: responsiveness
  publication-title: Spinal Cord
– volume: 8
  start-page: 66338
  year: 2020
  end-page: 66352
  ident: b72
  article-title: Design and preliminary validation of a lower limb exoskeleton with compact and modular actuation
  publication-title: IEEE Access
– volume: 29
  start-page: 2695
  year: 2021
  end-page: 2720
  ident: b122
  article-title: Wearable lower-limb exoskeleton for children with cerebral palsy: A systematic review of mechanical design, actuation type, control strategy, and clinical evaluation
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 9
  start-page: 138
  year: 2020
  ident: b48
  article-title: Design and evaluation of a pediatric lower-limb exoskeleton joint actuator
  publication-title: Actuators
– volume: 15
  start-page: 410
  year: 2007
  end-page: 420
  ident: b46
  article-title: Assessment of motion of a swing leg and gait rehabilitation with a gravity balancing exoskeleton
  publication-title: IEEE T. Neur. Sys. Reh.
– volume: 17
  start-page: 2
  year: 2009
  end-page: 8
  ident: b27
  article-title: Robot assisted gait training with active leg exoskeleton (ALEX)
  publication-title: IEEE T. Neur. Sys. Reh.
– volume: 49
  start-page: 2899
  year: 2016
  end-page: 2908
  ident: b94
  article-title: Stair ascent and descent biomechanical adaptations while using a custom ankle-foot orthosis
  publication-title: J. Biomech.
– volume: 22
  year: 2022
  ident: b125
  article-title: Application of wearable sensors in actuation and control of powered ankle exoskeletons: A comprehensive review
  publication-title: Sensors (Basel)
– volume: 48
  start-page: 25
  year: 2011
  ident: b7
  article-title: Raiding iron man’s closet [geek life]
  publication-title: IEEE Spectr.
– volume: 133
  year: 2020
  ident: b81
  article-title: Fuzzy logic compliance adaptation for an assist-as-needed controller on the gait rehabilitation exoskeleton (GAREX)
  publication-title: Robot. Auton. Syst.
– volume: 24
  start-page: 78
  year: 2018
  end-page: 85
  ident: b59
  article-title: Initial outcomes from a multicenter study utilizing the indego powered exoskeleton in spinal cord injury
  publication-title: Top. Spinal Cord Inj.
– volume: 25
  start-page: 2722
  year: 2020
  end-page: 2732
  ident: b97
  article-title: Real-time locomotion mode recognition and assistive torque control for unilateral Knee exoskeleton on different terrains
  publication-title: IEEE-ASME T. Mech.
– start-page: 1
  year: 2014
  end-page: 2
  ident: b24
  article-title: Toward exoskeleton control based on steady state visual evoked potentials
  publication-title: 2014 International Winter Workshop on Brain-Computer Interface
– volume: 14
  start-page: 60
  year: 2017
  ident: b63
  article-title: Results of the first interim analysis of the RAPPER II trial in patients with spinal cord injury: ambulation and functional exercise programs in the REX powered walking aid
  publication-title: J. Neuroeng. Rehabil.
– volume: 10
  start-page: 15600
  year: 2020
  ident: b115
  article-title: Exoskeleton home and community use in people with complete spinal cord injury
  publication-title: Sci. Rep.
– start-page: 965
  year: 2013
  end-page: 970
  ident: b118
  article-title: Actively controlled lateral gait assistance in a lower limb exoskeleton
  publication-title: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems
– volume: 46
  start-page: 608
  year: 2019
  end-page: 621
  ident: b109
  article-title: A rehabilitation gait for the balance of human and lower extremity exoskeleton system based on the transfer of gravity center
  publication-title: Ind. Robot.
– volume: 16
  start-page: 360
  year: 2008
  end-page: 370
  ident: b80
  article-title: The effects on kinematics and muscle activity of walking in a robotic gait trainer during zero-force control
  publication-title: IEEE T. Neur. Sys. Reh.
– volume: 91
  start-page: 911
  year: 2012
  end-page: 921
  ident: b15
  article-title: The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury
  publication-title: Am. J. Phys. Med. Rehab.
– volume: 46
  start-page: 419
  year: 2014
  ident: b8
  article-title: Comparison of Knee and Ankle dynamometry between NASA’s X1 exoskeleton and biodex system 4.
  publication-title: Med. Sci. Sports Exercise
– year: 2021
  ident: b34
  article-title: H2020 project
– volume: 17
  start-page: 1
  year: 2020
  end-page: 18
  ident: b98
  article-title: BPNN-based real-time recognition of locomotion modes for an active Pelvis orthosis with different assistive strategies
  publication-title: Int. J. Hum. Robot.
– volume: 13
  start-page: 43
  year: 2016
  ident: b91
  article-title: A biologically-inspired multi-joint soft exosuit that can reduce the energy cost of loaded walking
  publication-title: J. Neuroeng. Rehabil.
– volume: 28
  start-page: 1984
  year: 2020
  end-page: 1993
  ident: b77
  article-title: Gait adaptation using a cable-driven active leg exoskeleton (c-ALEX) with post-stroke participants
  publication-title: IEEE T. Neur. Sys. Reh.
– volume: 103
  start-page: 51
  year: 2016
  end-page: 56
  ident: b64
  article-title: Mechanical design and evaluation of a compact portable knee-ankle-foot robot for gait rehabilitation
  publication-title: Mech. Mach. Theory
– start-page: 1099
  year: 2005
  end-page: 1106
  ident: b5
  article-title: Development of NTU wearable exoskeleton system for assistive technologies
  publication-title: IEEE International Conference Mechatronics & Automation
– year: 2020
  ident: b25
  article-title: Fourier X2 lower-limb exoskeleton robot
– volume: 39
  start-page: 992
  year: 2019
  end-page: 1004
  ident: b75
  article-title: Development and testing of a passive walking assist exoskeleton
  publication-title: Biocybern. Biomed. Eng.
– volume: 35
  start-page: 316
  year: 2012
  end-page: 321
  ident: b101
  article-title: Artificial balancer–supporting device for postural reflex
  publication-title: Gait Posture
– year: 2014
  ident: b30
  article-title: Robots and robotic devices — Safety requirements for personal care robots
– reference: A. Collo, V. Bonnet, G. Venture, A quasi-passive lower limb exoskeleton for partial body weight support, in: 6th IEEE International Conference on Biomedical Robotics and Biomechatronics, BioRob, 2016, pp. 643–648.
– volume: 18
  start-page: 22
  year: 2021
  ident: b126
  article-title: Systematic review on wearable lower-limb exoskeletons for gait training in neuromuscular impairments
  publication-title: J. Neuroeng. Rehabil.
– volume: 18
  start-page: 1773
  year: 2017
  end-page: 1781
  ident: b79
  article-title: Gait analysis of hemiplegic patients in ambulatory rehabilitation training using a wearable lower-limb robot: A pilot study
  publication-title: Int. J. Precis. Eng. Man.
– volume: 19
  year: 2019
  ident: b58
  article-title: Effect of lower extremity exoskeleton robot improving walking function and activity in patients with complete spinal cord injury
  publication-title: J. Mech. Med. Biol.
– volume: 19
  start-page: 1
  year: 2019
  end-page: 19
  ident: b100
  article-title: Development of a single leg Knee exoskeleton and sensing Knee center of rotation change for intention detection
  publication-title: Sensors
– volume: 21
  start-page: 1441
  year: 2007
  end-page: 1469
  ident: b13
  article-title: Intention-based walking support for paraplegia patients with robot suit HAL
  publication-title: Adv. Robot.
– volume: 13
  start-page: 775
  year: 2020
  end-page: 793
  ident: b22
  article-title: Development of active lower limb robotic-based orthosis and exoskeleton devices: A systematic review
  publication-title: Int. J. Soc. Robot.
– volume: 50
  start-page: 3545
  year: 2019
  end-page: 3552
  ident: b85
  article-title: Training for walking efficiency with a wearable hip-assist robot in patients with stroke: A pilot randomized controlled trial
  publication-title: Stroke
– volume: 53
  start-page: 1263
  year: 2010
  end-page: 1275
  ident: b6
  article-title: Effects of a lower-body exoskeleton device on metabolic cost and gait biomechanics during load carriage
  publication-title: Ergonomics
– volume: 6
  start-page: 1
  year: 2020
  end-page: 9
  ident: b42
  article-title: Hybrid assistive limb improves restricted hip extension after total hip arthroplasty
  publication-title: Assist. Technol.
– volume: 12
  start-page: 54
  year: 2015
  ident: b65
  article-title: The H2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study
  publication-title: J. Neuroeng. Rehabil.
– volume: 27
  start-page: 2305
  year: 2019
  end-page: 2314
  ident: b78
  article-title: Phase-synchronized assistive torque control for the correction of kinematic anomalies in the gait cycle
  publication-title: IEEE T. Neur. Sys. Reh.
– volume: 28
  start-page: 1573
  year: 2020
  end-page: 1583
  ident: b120
  article-title: Performance evaluation of lower limb exoskeletons: A systematic review
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 17
  start-page: 60
  year: 2020
  ident: b53
  article-title: A new lower limb portable exoskeleton for gait assistance in neurological patients: a proof of concept study
  publication-title: J. Neuroeng. Rehabil.
– volume: 9
  start-page: 1
  issue: 5
  year: 2019
  ident: 10.1016/j.robot.2022.104308_b111
  article-title: The exoskeleton balance assistance control strategy based on single step balance assessment
  publication-title: Appl. Sci-Basel
– volume: 7
  year: 2017
  ident: 10.1016/j.robot.2022.104308_b124
  article-title: State of the art: Bipedal robots for lower limb rehabilitation
  publication-title: Appl. Sci.
  doi: 10.3390/app7111182
– volume: 28
  start-page: 1573
  year: 2020
  ident: 10.1016/j.robot.2022.104308_b120
  article-title: Performance evaluation of lower limb exoskeletons: A systematic review
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2020.2989481
– volume: 48
  start-page: 25
  issue: 8
  year: 2011
  ident: 10.1016/j.robot.2022.104308_b7
  article-title: Raiding iron man’s closet [geek life]
  publication-title: IEEE Spectr.
  doi: 10.1109/MSPEC.2011.5960158
– volume: 46
  start-page: 419
  year: 2014
  ident: 10.1016/j.robot.2022.104308_b8
  article-title: Comparison of Knee and Ankle dynamometry between NASA’s X1 exoskeleton and biodex system 4.
  publication-title: Med. Sci. Sports Exercise
  doi: 10.1249/01.mss.0000494432.32096.5e
– volume: 21
  start-page: 723
  issue: 5
  year: 2020
  ident: 10.1016/j.robot.2022.104308_b83
  article-title: An untethered cable-driven ankle exoskeleton with plantarflexion-dorsiflexion bidirectional movement assistance
  publication-title: Front. Inform. Tech. El.
  doi: 10.1631/FITEE.1900455
– volume: 6
  start-page: 319
  issue: 4
  year: 2009
  ident: 10.1016/j.robot.2022.104308_b16
  article-title: Balancing control of AIT leg exoskeleton using ZMP based FLC
  publication-title: Int. J. Adv. Robot. Syst.
  doi: 10.5772/7250
– volume: 91
  start-page: 911
  issue: 11
  year: 2012
  ident: 10.1016/j.robot.2022.104308_b15
  article-title: The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury
  publication-title: Am. J. Phys. Med. Rehab.
  doi: 10.1097/PHM.0b013e318269d9a3
– volume: 11
  start-page: 1
  year: 2020
  ident: 10.1016/j.robot.2022.104308_b70
  article-title: Gait training using a wearable robotic device for non-traumatic spinal cord injury: A case report
  publication-title: Geriatr. Orthop. Surg.
– volume: 44
  start-page: 352
  issue: 6
  year: 2006
  ident: 10.1016/j.robot.2022.104308_b116
  article-title: Improving walking assessment in subjects with an incomplete spinal cord injury: responsiveness
  publication-title: Spinal Cord
  doi: 10.1038/sj.sc.3101853
– volume: 18
  start-page: 22
  year: 2021
  ident: 10.1016/j.robot.2022.104308_b126
  article-title: Systematic review on wearable lower-limb exoskeletons for gait training in neuromuscular impairments
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/s12984-021-00815-5
– volume: 11
  start-page: 92
  year: 2014
  ident: 10.1016/j.robot.2022.104308_b40
  article-title: Gait training early after stroke with a new exoskeleton–the hybrid assistive limb: a study of safety and feasibility
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/1743-0003-11-92
– volume: 16
  start-page: 360
  issue: 4
  year: 2008
  ident: 10.1016/j.robot.2022.104308_b80
  article-title: The effects on kinematics and muscle activity of walking in a robotic gait trainer during zero-force control
  publication-title: IEEE T. Neur. Sys. Reh.
  doi: 10.1109/TNSRE.2008.925074
– ident: 10.1016/j.robot.2022.104308_b93
  doi: 10.1109/ICORR.2017.8009248
– volume: 35
  start-page: 96
  issue: 2
  year: 2012
  ident: 10.1016/j.robot.2022.104308_b45
  article-title: Safety and tolerance of the ReWalk exoskeleton suit for ambulation by people with complete spinal cord injury: A pilot study
  publication-title: J. Spinal Cord Med.
  doi: 10.1179/2045772312Y.0000000003
– start-page: 965
  year: 2013
  ident: 10.1016/j.robot.2022.104308_b118
  article-title: Actively controlled lateral gait assistance in a lower limb exoskeleton
– start-page: 4911
  year: 2011
  ident: 10.1016/j.robot.2022.104308_b12
  article-title: The development and testing of a human machine interface for a mobile medical exoskeleton
– volume: 46
  start-page: 608
  issue: 5
  year: 2019
  ident: 10.1016/j.robot.2022.104308_b109
  article-title: A rehabilitation gait for the balance of human and lower extremity exoskeleton system based on the transfer of gravity center
  publication-title: Ind. Robot.
  doi: 10.1108/IR-07-2018-0150
– volume: 46
  start-page: 290
  issue: 2
  year: 2019
  ident: 10.1016/j.robot.2022.104308_b99
  article-title: Design and fabrication of a lower limb exoskeleton to assist in stair ascending
  publication-title: Ind. Robot.
  doi: 10.1108/IR-09-2018-0199
– volume: 14
  start-page: 31
  year: 2020
  ident: 10.1016/j.robot.2022.104308_b112
  article-title: Pneumatic quasi-passive actuation for soft assistive lower limbs exoskeleton
  publication-title: Front. Neurorobotics
  doi: 10.3389/fnbot.2020.00031
– volume: 150
  year: 2020
  ident: 10.1016/j.robot.2022.104308_b49
  article-title: Design of a passive lower limb exoskeleton for walking assistance with gravity compensation
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2020.103840
– volume: 50
  start-page: 3545
  issue: 12
  year: 2019
  ident: 10.1016/j.robot.2022.104308_b85
  article-title: Training for walking efficiency with a wearable hip-assist robot in patients with stroke: A pilot randomized controlled trial
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.119.025950
– start-page: 1
  year: 2014
  ident: 10.1016/j.robot.2022.104308_b24
  article-title: Toward exoskeleton control based on steady state visual evoked potentials
– volume: 11
  start-page: 428
  issue: 4
  year: 2006
  ident: 10.1016/j.robot.2022.104308_b28
  article-title: Design and control of an exoskeleton for the elderly and patients
  publication-title: IEEE/ASME T. Mech.
  doi: 10.1109/TMECH.2006.878550
– volume: 110
  start-page: 73
  year: 2018
  ident: 10.1016/j.robot.2022.104308_b37
  article-title: Hybrid assistive limb exoskeleton HAL in the rehabilitation of chronic spinal cord injury: Proof of concept. the results in 21 patients
  publication-title: World Neurosurg.
  doi: 10.1016/j.wneu.2017.10.080
– volume: 68
  start-page: 101
  year: 2019
  ident: 10.1016/j.robot.2022.104308_b43
  article-title: Feasibility and safety of robot suit HAL treatment for adolescents and adults with cerebral palsy
  publication-title: J. Clin. Neurosci.
  doi: 10.1016/j.jocn.2019.07.026
– volume: 15
  start-page: 410
  issue: 3
  year: 2007
  ident: 10.1016/j.robot.2022.104308_b46
  article-title: Assessment of motion of a swing leg and gait rehabilitation with a gravity balancing exoskeleton
  publication-title: IEEE T. Neur. Sys. Reh.
  doi: 10.1109/TNSRE.2007.903930
– volume: 22
  year: 2022
  ident: 10.1016/j.robot.2022.104308_b125
  article-title: Application of wearable sensors in actuation and control of powered ankle exoskeletons: A comprehensive review
  publication-title: Sensors (Basel)
  doi: 10.3390/s22062244
– volume: 15
  issue: 18
  year: 2018
  ident: 10.1016/j.robot.2022.104308_b86
  article-title: Development of VariLeg; an exoskeleton with variable stiffness actuation: first results and user evaluation from the CYBATHLON 2016
  publication-title: J. Neuroeng. Rehabil.
– start-page: 1099
  year: 2005
  ident: 10.1016/j.robot.2022.104308_b5
  article-title: Development of NTU wearable exoskeleton system for assistive technologies
– start-page: 577
  year: 2015
  ident: 10.1016/j.robot.2022.104308_b10
  article-title: Locomotion control strategy of hydraulic lower extremity exoskeleton robot
– ident: 10.1016/j.robot.2022.104308_b95
  doi: 10.1109/BIOROB.2016.7523698
– volume: 25
  start-page: 2722
  issue: 6
  year: 2020
  ident: 10.1016/j.robot.2022.104308_b97
  article-title: Real-time locomotion mode recognition and assistive torque control for unilateral Knee exoskeleton on different terrains
  publication-title: IEEE-ASME T. Mech.
  doi: 10.1109/TMECH.2020.2990668
– volume: 17
  start-page: 135
  issue: 1
  year: 2020
  ident: 10.1016/j.robot.2022.104308_b55
  article-title: Activity-based training with the myosuit: a safety and feasibility study across diverse gait disorders
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/s12984-020-00765-4
– volume: 73
  start-page: 123
  year: 2015
  ident: 10.1016/j.robot.2022.104308_b87
  article-title: A light-weight active orthosis for hip movement assistance
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/j.robot.2014.08.015
– volume: 35
  start-page: 316
  issue: 2
  year: 2012
  ident: 10.1016/j.robot.2022.104308_b101
  article-title: Artificial balancer–supporting device for postural reflex
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2011.10.002
– volume: 94
  start-page: 1080
  issue: 6
  year: 2013
  ident: 10.1016/j.robot.2022.104308_b41
  article-title: Feasibility of rehabilitation training with a newly developed wearable robot for patients with limited mobility
  publication-title: Arch. Phys. Med. Rehabil.
  doi: 10.1016/j.apmr.2012.12.020
– year: 2014
  ident: 10.1016/j.robot.2022.104308_b30
– volume: 17
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.robot.2022.104308_b98
  article-title: BPNN-based real-time recognition of locomotion modes for an active Pelvis orthosis with different assistive strategies
  publication-title: Int. J. Hum. Robot.
  doi: 10.1142/S0219843620500048
– volume: 8
  start-page: 66338
  year: 2020
  ident: 10.1016/j.robot.2022.104308_b72
  article-title: Design and preliminary validation of a lower limb exoskeleton with compact and modular actuation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2985910
– start-page: 1039
  year: 2009
  ident: 10.1016/j.robot.2022.104308_b17
  article-title: WPAL for human power assist during walking using dynamic equation
– volume: 7
  year: 2020
  ident: 10.1016/j.robot.2022.104308_b108
  article-title: Bioinspired postural controllers for a locked-ankle exoskeleton targeting complete SCI users
  publication-title: Front. Robot. Ai
  doi: 10.3389/frobt.2020.553828
– volume: 29
  start-page: 2695
  year: 2021
  ident: 10.1016/j.robot.2022.104308_b122
  article-title: Wearable lower-limb exoskeleton for children with cerebral palsy: A systematic review of mechanical design, actuation type, control strategy, and clinical evaluation
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2021.3136088
– volume: 19
  start-page: 1
  issue: 18
  year: 2019
  ident: 10.1016/j.robot.2022.104308_b100
  article-title: Development of a single leg Knee exoskeleton and sensing Knee center of rotation change for intention detection
  publication-title: Sensors
  doi: 10.3390/s19183960
– start-page: 1
  year: 2013
  ident: 10.1016/j.robot.2022.104308_b19
  article-title: Modeling; design; and optimization of mindwalker series elastic joint
– volume: 114
  start-page: 66
  year: 2019
  ident: 10.1016/j.robot.2022.104308_b82
  article-title: Automatic virtual impedance adaptation of a knee exoskeleton for personalized walking assistance
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/j.robot.2019.01.013
– volume: 18
  start-page: 196
  issue: 1
  year: 2020
  ident: 10.1016/j.robot.2022.104308_b96
  article-title: A robotic gait training system with stair-climbing mode based on a unique exoskeleton structure with active foot plates
  publication-title: Int. J. Control Autom.
  doi: 10.1007/s12555-019-0260-9
– volume: 14
  start-page: 333
  issue: 4
  year: 2019
  ident: 10.1016/j.robot.2022.104308_b74
  article-title: Design and analysis of an original powered foot clearance creator mechanism for walking in patients with spinal cord injury
  publication-title: Disabil. Rehabil-Assi.
  doi: 10.1080/17483107.2018.1447610
– volume: 47
  start-page: 281
  issue: 2
  year: 2020
  ident: 10.1016/j.robot.2022.104308_b106
  article-title: A stepping gait trajectory design based on hip height variation of swing leg for the balance of lower extremity exoskeleton
  publication-title: Ind. Robot.
  doi: 10.1108/IR-01-2019-0024
– volume: 73
  start-page: 16
  year: 2015
  ident: 10.1016/j.robot.2022.104308_b103
  article-title: An adaptive control strategy for postural stability using a wearable robot
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/j.robot.2014.11.014
– ident: 10.1016/j.robot.2022.104308_b121
  doi: 10.1109/ICRA.2014.6906934
– volume: 11
  year: 2022
  ident: 10.1016/j.robot.2022.104308_b127
  article-title: A review on the rehabilitation exoskeletons for the lower limbs of the elderly and the disabled
  publication-title: Electronics
– volume: 233
  start-page: 1087
  issue: 3
  year: 2018
  ident: 10.1016/j.robot.2022.104308_b52
  article-title: Development and control of a robotic lower limb exoskeleton for paraplegic patients
  publication-title: Proc. Inst. Mech. Eng. Part C
  doi: 10.1177/0954406218761484
– start-page: 25
  year: 2010
  ident: 10.1016/j.robot.2022.104308_b3
  article-title: HAL: Hybrid assistive limb based on cybernics
– volume: 80
  start-page: 152
  year: 2019
  ident: 10.1016/j.robot.2022.104308_b114
  article-title: Influence of a passive lower-limb exoskeleton during simulated industrial work tasks on physical load. upper body posture. postural control and discomfort
  publication-title: Appl. Ergon.
  doi: 10.1016/j.apergo.2019.05.018
– volume: 42
  start-page: 128
  issue: 1
  year: 2017
  ident: 10.1016/j.robot.2022.104308_b36
  article-title: Walking ability following hybrid assistive limb treatment for a patient with chronic myelopathy after surgery for cervical ossification of the posterior longitudinal ligament
  publication-title: J. Spinal Cord Med.
  doi: 10.1080/10790268.2017.1313932
– volume: 26
  start-page: 561
  issue: 5–6
  year: 2012
  ident: 10.1016/j.robot.2022.104308_b88
  article-title: Design of an under-actuated exoskeleton system for walking assist while load carrying
  publication-title: Adv. Robot.
  doi: 10.1163/156855311X617506
– volume: 53
  start-page: 1263
  year: 2010
  ident: 10.1016/j.robot.2022.104308_b6
  article-title: Effects of a lower-body exoskeleton device on metabolic cost and gait biomechanics during load carriage
  publication-title: Ergonomics
  doi: 10.1080/00140139.2010.512982
– volume: 28
  start-page: 329
  issue: 5
  year: 2014
  ident: 10.1016/j.robot.2022.104308_b20
  article-title: Generation and control of adaptive gaits in lower-limb exoskeletons for motion assistance
  publication-title: Adv. Robot.
  doi: 10.1080/01691864.2013.867284
– year: 2019
  ident: 10.1016/j.robot.2022.104308_b32
  article-title: Medical electrical equipment – part 2-78: Particular requirements for basic safety and essential performance of medical robots for rehabilitation, assessment
– volume: 36
  start-page: 125
  issue: 1
  year: 2012
  ident: 10.1016/j.robot.2022.104308_b50
  article-title: Design and simulation of a new powered gait orthosis for paraplegic patients
  publication-title: Prosthet. Orthot. Int.
  doi: 10.1177/0309364611431481
– volume: 55
  start-page: 1
  issue: 3
  year: 2019
  ident: 10.1016/j.robot.2022.104308_b76
  article-title: Gait training using the honda walking assistive devicea (R) in a patient who underwent total hip arthroplasty: A single-subject study
  publication-title: Med. Lith.
– volume: 28
  start-page: 1984
  issue: 9
  year: 2020
  ident: 10.1016/j.robot.2022.104308_b77
  article-title: Gait adaptation using a cable-driven active leg exoskeleton (c-ALEX) with post-stroke participants
  publication-title: IEEE T. Neur. Sys. Reh.
  doi: 10.1109/TNSRE.2020.3009317
– volume: 13
  start-page: 775
  year: 2020
  ident: 10.1016/j.robot.2022.104308_b22
  article-title: Development of active lower limb robotic-based orthosis and exoskeleton devices: A systematic review
  publication-title: Int. J. Soc. Robot.
  doi: 10.1007/s12369-020-00662-9
– volume: 23
  start-page: 441
  issue: 3
  year: 2015
  ident: 10.1016/j.robot.2022.104308_b66
  article-title: An assistive control approach for a lower-limb exoskeleton to facilitate recovery of walking following stroke
  publication-title: IEEE T. Neur. Sys. Reh.
  doi: 10.1109/TNSRE.2014.2346193
– volume: 52
  start-page: 1
  issue: 9
  year: 2020
  ident: 10.1016/j.robot.2022.104308_b71
  article-title: Future effects of electromechanically assisted gait trainer (EXOWALK) in patients with chronic stroke: A randomized controlled trial
  publication-title: J. Rehabil. Med.
– ident: 10.1016/j.robot.2022.104308_b47
  doi: 10.1115/DETC2017-67599
– volume: 12
  start-page: 54
  issue: 1
  year: 2015
  ident: 10.1016/j.robot.2022.104308_b65
  article-title: The H2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/s12984-015-0048-y
– volume: 14
  start-page: 60
  year: 2017
  ident: 10.1016/j.robot.2022.104308_b63
  article-title: Results of the first interim analysis of the RAPPER II trial in patients with spinal cord injury: ambulation and functional exercise programs in the REX powered walking aid
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/s12984-017-0274-6
– volume: 58
  start-page: 787
  year: 2020
  ident: 10.1016/j.robot.2022.104308_b56
  article-title: The safety and feasibility of a new rehabilitation robotic exoskeleton for assisting individuals with lower extremity motor complete lesions following spinal cord injury (SCI): an observational study
  publication-title: Spinal Cord
  doi: 10.1038/s41393-020-0423-9
– volume: 41
  start-page: 226
  issue: 5
  year: 2019
  ident: 10.1016/j.robot.2022.104308_b89
  article-title: Biomimetic compliant lower limb exoskeleton (BioComEx) and its experimental evaluation
  publication-title: J. Braz. Soc. Mech. Sci.
  doi: 10.1007/s40430-019-1729-4
– volume: 18
  start-page: 114
  issue: 1
  year: 2020
  ident: 10.1016/j.robot.2022.104308_b107
  article-title: A study on weight support and balance control method for assisting squat movement with a wearable robot
  publication-title: Angel-Suit. Int. J. Control Autom.
  doi: 10.1007/s12555-019-0243-x
– volume: 91
  start-page: 911
  issue: 11
  year: 2012
  ident: 10.1016/j.robot.2022.104308_b44
  article-title: The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury
  publication-title: Am. J. Phys. Med. Rehab.
  doi: 10.1097/PHM.0b013e318269d9a3
– volume: 15
  start-page: 35
  year: 2018
  ident: 10.1016/j.robot.2022.104308_b60
  article-title: Shaping neuroplasticity by using powered exoskeletons in patients with stroke: a randomized clinical trial
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/s12984-018-0377-8
– year: 2022
  ident: 10.1016/j.robot.2022.104308_b33
– volume: 6
  start-page: 1
  year: 2020
  ident: 10.1016/j.robot.2022.104308_b42
  article-title: Hybrid assistive limb improves restricted hip extension after total hip arthroplasty
  publication-title: Assist. Technol.
– volume: 10
  start-page: 15600
  issue: 1
  year: 2020
  ident: 10.1016/j.robot.2022.104308_b115
  article-title: Exoskeleton home and community use in people with complete spinal cord injury
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-72397-6
– start-page: 1
  year: 2011
  ident: 10.1016/j.robot.2022.104308_b18
  article-title: Design and evaluation of mina: A robotic orthosis for paraplegics
– volume: 38
  start-page: 338
  issue: 4
  year: 2015
  ident: 10.1016/j.robot.2022.104308_b102
  article-title: Feasibility and efficacy of high-speed gait training with a voluntary driven exoskeleton robot for gait and balance dysfunction in patients with chronic stroke: nonrandomized pilot study with concurrent control
  publication-title: Int. J. Rehabil. Res.
  doi: 10.1097/MRR.0000000000000132
– ident: 10.1016/j.robot.2022.104308_b67
  doi: 10.1115/DSCC2010-4204
– volume: 18
  start-page: 1773
  issue: 12
  year: 2017
  ident: 10.1016/j.robot.2022.104308_b79
  article-title: Gait analysis of hemiplegic patients in ambulatory rehabilitation training using a wearable lower-limb robot: A pilot study
  publication-title: Int. J. Precis. Eng. Man.
  doi: 10.1007/s12541-017-0206-1
– volume: 73
  start-page: 44
  year: 2015
  ident: 10.1016/j.robot.2022.104308_b69
  article-title: Hybrid therapy of walking with kinesis overground robot for persons with incomplete spinal cord injury: A feasibility study
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/j.robot.2014.10.014
– volume: 17
  start-page: 60
  issue: 1
  year: 2020
  ident: 10.1016/j.robot.2022.104308_b53
  article-title: A new lower limb portable exoskeleton for gait assistance in neurological patients: a proof of concept study
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/s12984-020-00690-6
– volume: 95
  start-page: 181
  year: 2017
  ident: 10.1016/j.robot.2022.104308_b92
  article-title: Biomechanical design of an agile. electricity-powered lower-limb exoskeleton for weight-bearing assistance
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/j.robot.2017.06.010
– volume: 73
  start-page: 68
  year: 2015
  ident: 10.1016/j.robot.2022.104308_b68
  article-title: A generalized control framework of assistive controllers and its application to lower limb exoskeletons
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/j.robot.2014.10.001
– volume: 34
  start-page: 2597
  issue: 6
  year: 2020
  ident: 10.1016/j.robot.2022.104308_b110
  article-title: Employing variable impedance (stiffness/damping) hybrid actuators on lower limb exoskeleton robots for stable and safe walking trajectory tracking
  publication-title: J. Mech. Sci. Technol.
  doi: 10.1007/s12206-020-0534-4
– volume: 24
  start-page: 1508
  issue: 4
  year: 2019
  ident: 10.1016/j.robot.2022.104308_b84
  article-title: Admittance shaping-based assistive control of SEA-driven robotic hip exoskeleton
  publication-title: IEEE-ASME T. Mech.
  doi: 10.1109/TMECH.2019.2916546
– volume: 2018
  year: 2018
  ident: 10.1016/j.robot.2022.104308_b38
  article-title: Feasibility of neurorehabilitation using a hybrid assistive limb for patients who underwent spine surgery
  publication-title: Appl. Bionics Biomech.
  doi: 10.1155/2018/7435746
– volume: 13
  start-page: 463
  issue: 2
  year: 2015
  ident: 10.1016/j.robot.2022.104308_b90
  article-title: Design of an exoskeleton with minimized energy consumption based on using elastic and dissipative elements
  publication-title: Int. J. Control Autom.
  doi: 10.1007/s12555-013-0386-0
– volume: 20
  start-page: 1
  issue: 24
  year: 2020
  ident: 10.1016/j.robot.2022.104308_b105
  article-title: Lower limb exoskeleton gait planning based on crutch and human–machine foot combined center of pressure
  publication-title: Sensors
  doi: 10.3390/s20247216
– volume: 133
  year: 2020
  ident: 10.1016/j.robot.2022.104308_b81
  article-title: Fuzzy logic compliance adaptation for an assist-as-needed controller on the gait rehabilitation exoskeleton (GAREX)
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/j.robot.2020.103642
– volume: 15
  start-page: 50
  year: 2018
  ident: 10.1016/j.robot.2022.104308_b104
  article-title: Effects of a powered ankle-foot orthosis on perturbed standing balance
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/s12984-018-0393-8
– volume: 24
  start-page: 78
  issue: 1
  year: 2018
  ident: 10.1016/j.robot.2022.104308_b59
  article-title: Initial outcomes from a multicenter study utilizing the indego powered exoskeleton in spinal cord injury
  publication-title: Top. Spinal Cord Inj.
  doi: 10.1310/sci17-00014
– volume: 27
  start-page: 2305
  issue: 11
  year: 2019
  ident: 10.1016/j.robot.2022.104308_b78
  article-title: Phase-synchronized assistive torque control for the correction of kinematic anomalies in the gait cycle
  publication-title: IEEE T. Neur. Sys. Reh.
  doi: 10.1109/TNSRE.2019.2944665
– volume: 17
  start-page: 2
  issue: 1
  year: 2009
  ident: 10.1016/j.robot.2022.104308_b27
  article-title: Robot assisted gait training with active leg exoskeleton (ALEX)
  publication-title: IEEE T. Neur. Sys. Reh.
  doi: 10.1109/TNSRE.2008.2008280
– volume: 25
  start-page: 650
  issue: 6
  year: 2017
  ident: 10.1016/j.robot.2022.104308_b51
  article-title: A robotic exoskeleton for treatment of crouch gait in children with cerebral palsy: Design and initial application
  publication-title: IEEE T. Neur. Sys. Reh.
  doi: 10.1109/TNSRE.2016.2595501
– volume: 235
  start-page: 530
  year: 2021
  ident: 10.1016/j.robot.2022.104308_b123
  article-title: Preliminary design and development of a low-cost lower-limb exoskeleton system for paediatric rehabilitation
  publication-title: Proc. Inst. Mech. Eng. H.
  doi: 10.1177/0954411921994940
– volume: 12
  start-page: 197
  issue: 2
  year: 2016
  ident: 10.1016/j.robot.2022.104308_b39
  article-title: Gait training of subacute stroke patients using a hybrid assistive limb: a pilot study
  publication-title: Disabil. Rehabil. Assist. Technol.
  doi: 10.3109/17483107.2015.1129455
– volume: 14
  start-page: 48
  year: 2017
  ident: 10.1016/j.robot.2022.104308_b62
  article-title: A muscle-driven approach to restore stepping with an exoskeleton for individuals with paraplegia
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/s12984-017-0258-6
– start-page: 311
  year: 2019
  ident: 10.1016/j.robot.2022.104308_b128
  article-title: 11 - Robotics
– year: 2020
  ident: 10.1016/j.robot.2022.104308_b25
– volume: 19
  issue: 8
  year: 2019
  ident: 10.1016/j.robot.2022.104308_b58
  article-title: Effect of lower extremity exoskeleton robot improving walking function and activity in patients with complete spinal cord injury
  publication-title: J. Mech. Med. Biol.
  doi: 10.1142/S0219519419400608
– volume: 49
  start-page: 2899
  issue: 13
  year: 2016
  ident: 10.1016/j.robot.2022.104308_b94
  article-title: Stair ascent and descent biomechanical adaptations while using a custom ankle-foot orthosis
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2016.06.035
– volume: 21
  start-page: 1441
  year: 2007
  ident: 10.1016/j.robot.2022.104308_b13
  article-title: Intention-based walking support for paraplegia patients with robot suit HAL
  publication-title: Adv. Robot.
  doi: 10.1163/156855307781746061
– volume: 4
  start-page: 2547
  issue: 3
  year: 2019
  ident: 10.1016/j.robot.2022.104308_b73
  article-title: A soft wearable robotic ankle-foot-orthosis for post-stroke patients
  publication-title: IEEE Robot. Autom. Let.
  doi: 10.1109/LRA.2019.2908491
– volume: 2011
  start-page: 1
  year: 2011
  ident: 10.1016/j.robot.2022.104308_b119
  article-title: Mina: A sensorimotor robotic orthosis for mobility assistance
  publication-title: J. Robot.
  doi: 10.1155/2011/284352
– volume: 16
  start-page: 145
  issue: 1
  year: 2019
  ident: 10.1016/j.robot.2022.104308_b113
  article-title: Retraining walking over ground in a powered exoskeleton after spinal cord injury: a prospective cohort study to examine functional gains and neuroplasticity
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/s12984-019-0585-x
– volume: 56
  start-page: 106
  issue: 2
  year: 2017
  ident: 10.1016/j.robot.2022.104308_b61
  article-title: Gait training after spinal cord injury: safety. feasibility and gait function following 8 weeks of training with the exoskeletons from ekso bionics
  publication-title: Spinal Cord
  doi: 10.1038/s41393-017-0013-7
– volume: 13
  start-page: 259
  year: 2019
  ident: 10.1016/j.robot.2022.104308_b35
  article-title: A randomized and controlled crossover study investigating the improvement of walking and posture functions in chronic stroke patients using HAL exoskeleton-the HALESTRO study (HAL-exoskeleton stroke study)
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2019.00259
– volume: 100
  start-page: 26
  issue: 1
  year: 2019
  ident: 10.1016/j.robot.2022.104308_b57
  article-title: Effects of electromechanical exoskeleton-assisted gait training on walking ability of stroke patients: A randomized controlled trial
  publication-title: Arch. Phys. Med. Rehabil.
  doi: 10.1016/j.apmr.2018.06.020
– volume: 5
  start-page: 26
  year: 2016
  ident: 10.1016/j.robot.2022.104308_b29
  article-title: Recent developments and challenges of lower extremity exoskeletons
  publication-title: J. Orthop. Transl.
– volume: 7
  start-page: 33809
  year: 2019
  ident: 10.1016/j.robot.2022.104308_b21
  article-title: Reference joint trajectories generation of CUHK-EXO exoskeleton for system balance in walking assistance
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2904296
– ident: 10.1016/j.robot.2022.104308_b9
  doi: 10.4028/www.scientific.net/AMM.598.546
– volume: 21
  start-page: 34
  year: 2014
  ident: 10.1016/j.robot.2022.104308_b11
  article-title: The body extender: A full-body exoskeleton for the transport and handling of heavy loads
  publication-title: IEEE Robot. Autom. Mag.
  doi: 10.1109/MRA.2014.2360287
– year: 1971
  ident: 10.1016/j.robot.2022.104308_b1
– year: 2020
  ident: 10.1016/j.robot.2022.104308_b26
– volume: 9
  start-page: 138
  issue: 4
  year: 2020
  ident: 10.1016/j.robot.2022.104308_b48
  article-title: Design and evaluation of a pediatric lower-limb exoskeleton joint actuator
  publication-title: Actuators
  doi: 10.3390/act9040138
– year: 2021
  ident: 10.1016/j.robot.2022.104308_b34
– volume: 13
  start-page: 43
  issue: 1
  year: 2016
  ident: 10.1016/j.robot.2022.104308_b91
  article-title: A biologically-inspired multi-joint soft exosuit that can reduce the energy cost of loaded walking
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/s12984-016-0150-9
– volume: 4
  start-page: 278
  issue: 3
  year: 2020
  ident: 10.1016/j.robot.2022.104308_b117
  article-title: Stair-ascent strategies and performance evaluation for a lower limb exoskeleton
  publication-title: Int. J. Intell. Robot.
  doi: 10.1007/s41315-020-00123-6
– year: 2019
  ident: 10.1016/j.robot.2022.104308_b31
– ident: 10.1016/j.robot.2022.104308_b2
  doi: 10.1109/IROS.2005.1545453
– volume: 101
  start-page: 113
  issue: 1
  year: 2019
  ident: 10.1016/j.robot.2022.104308_b54
  article-title: The safety and feasibility of exoskeletal assisted walking in acute rehabilitation following spinal cord injury
  publication-title: Arch. Phys. Med. Rehabil.
  doi: 10.1016/j.apmr.2019.09.005
– start-page: 5345
  year: 2015
  ident: 10.1016/j.robot.2022.104308_b4
  article-title: Development of a lower extremity exoskeleton robot with a quasi-anthropomorphic design approach for load carriage
– start-page: 67
  year: 2003
  ident: 10.1016/j.robot.2022.104308_b14
  article-title: Power assist method for HAL-3 estimating operator’s intention based on motion information
– volume: 103
  start-page: 51
  year: 2016
  ident: 10.1016/j.robot.2022.104308_b64
  article-title: Mechanical design and evaluation of a compact portable knee-ankle-foot robot for gait rehabilitation
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2016.04.012
– volume: 24
  start-page: 455
  issue: 4
  year: 2016
  ident: 10.1016/j.robot.2022.104308_b23
  article-title: An approach for the cooperative control of FES with a powered exoskeleton during level walking for persons with paraplegia
  publication-title: IEEE T. Neur. Sys. Reh.
  doi: 10.1109/TNSRE.2015.2421052
– volume: 39
  start-page: 992
  issue: 4
  year: 2019
  ident: 10.1016/j.robot.2022.104308_b75
  article-title: Development and testing of a passive walking assist exoskeleton
  publication-title: Biocybern. Biomed. Eng.
  doi: 10.1016/j.bbe.2019.01.002
SSID ssj0003573
Score 2.4498818
Snippet Wearable lower limb exoskeleton robots (WLLER) have broad development prospects in the military, industrial and medical fields. The intelligent device comes...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104308
SubjectTerms Performance indicator
Safety
Test
Wearable lower limb exoskeleton robot
Title Evaluation of safety-related performance of wearable lower limb exoskeleton robot (WLLER): A systematic review
URI https://dx.doi.org/10.1016/j.robot.2022.104308
Volume 160
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4gXvRgfEZ8kD140MRK7W7bXW-EQFDQg4_Arem-EhQpAYx68be72wdiYjh4atruJNvZ6XyTzMw3ACfSjS-pCrCjpW9HmGHmxFxqJ-SYKEJkKFLGm9u7oP1Ebvp-vwSNohfGllXmvj_z6am3zp_Ucm3WxoNB7cFlBp5smsyWBbGwvwKrHmaBX4bV-nWnfTd3yNjPEs1mvWMFCvKhtMxrkvDE1lR6nk13Yjtm8i-AWgCd1iZs5NEiqmcb2oKSGm3D-gKH4A6MmnO-bpRoNI21mn06aYuKkmj80xdg374bu7a9Umhoh6Oh4eCVI_WRTF8M-JggEKXbRKe9brd5f3aF6uiH6BllTS678NhqPjbaTj5EwREGnWaODATDlFNqDktxaX5QLASWVBNmnKRPTbyksa9iqijWXiwD4hLhas0EJpJQvAflUTJS-4CU8QUqFNz1mCTcRH5UmlvClSuZS3RYAa9QXCRygnE752IYFZVkz1H6GZHVdpRpuwLnc6Fxxq-xfHlQnEj0y0wigwDLBA_-K3gIa3bCfFaofQTl2eRNHZs4ZMarsHLxdVnNrc1eO_e9zjeuhd_X
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGYAB8RTl6YEBJExD7CQOW1UVFUg7QBHdovglFUpStUHAwm_HzqMtEurAmOROcs7nu5P83XcAnAoruqLSxUgJx4wwwz6KmFDIY5hIQoTHM8abTtdtP5G7vtOvgGbZC2NglUXsz2N6Fq2LN_XCmvXRYFB_tHydnsw1mYEF-V5_CSwTB3sG13f5PcN5YCe_ZtbSyIiX1EMZyGucsMQgKm3bXHZiM2Tyr_Q0l3JuNsB6USvCRr6cTVCR8RZYm2MQ3AZxa8rWDRMFJ5GS6RfKGlSkgKNZV4D5-qG92nRKwaEZjQaHgzcG5WcyedWpR5eAMFsmPHsOgtbD-TVswBnNM8xbXHZA76bVa7ZRMUIBcZ2bUiRc7mPKKNVbJZnQxxNzjgVVxNch0qG6WlLYkRGVFCs7Ei6xCLeU8jkmglC8C6pxEss9AKWOBNLjzLJ9QZiu-6jQj4RJS_gWUV4N2KXhQl7Qi5spF8OwxJG9hNlvhMbaYW7tGriYKo1ydo3F4m65I-EvJwl1_F-kuP9fxROw0u51gjC47d4fgFUzaz6HbB-Cajp-l0e6IknZceZxP5dN3v8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+safety-related+performance+of+wearable+lower+limb+exoskeleton+robot+%28WLLER%29%3A+A+systematic+review&rft.jtitle=Robotics+and+autonomous+systems&rft.au=Wang%2C+Duojin&rft.au=Gu%2C+Xiaoping&rft.au=Li%2C+Wenzhuo&rft.au=Jin%2C+Yaoxiang&rft.date=2023-02-01&rft.pub=Elsevier+B.V&rft.issn=0921-8890&rft.eissn=1872-793X&rft.volume=160&rft_id=info:doi/10.1016%2Fj.robot.2022.104308&rft.externalDocID=S092188902200197X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-8890&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-8890&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-8890&client=summon