Evaluation of safety-related performance of wearable lower limb exoskeleton robot (WLLER): A systematic review
Wearable lower limb exoskeleton robots (WLLER) have broad development prospects in the military, industrial and medical fields. The intelligent device comes into intimate contact with the human body, and its safety is an essential factor that developers must consider. With the increasing research on...
Saved in:
Published in | Robotics and autonomous systems Vol. 160; p. 104308 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.02.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0921-8890 1872-793X |
DOI | 10.1016/j.robot.2022.104308 |
Cover
Abstract | Wearable lower limb exoskeleton robots (WLLER) have broad development prospects in the military, industrial and medical fields. The intelligent device comes into intimate contact with the human body, and its safety is an essential factor that developers must consider. With the increasing research on the safety of WLLER, its safety test methods and indicators should gradually improve. By examining current test methods and indicators, this study aims to mobilize this information and summarize the most recent safety research. The safety-related studies reviewed in this paper are not limited to evaluating subjects in clinical trials but are concerned with extensive safety research. The focus of our analysis is the test performance indicators. Some functional evaluation indicators are also summarized to explore a broader and more applicable approach on the safety metrics. We found that, in general, most researchers pay attention to the power-assisting performance of WLLER, but the stability and comfort have been largely ignored. At the same time, our analysis also reveals that although there are a wide variety of existing evaluation indicators, uniform and standard test methods and indicators for safety testing of WLLER are still deficient. Based on these results, we identified and discussed several promising research directions that may help the community to attain a widely accepted test method that can objectively evaluate the safety of WLLER. |
---|---|
AbstractList | Wearable lower limb exoskeleton robots (WLLER) have broad development prospects in the military, industrial and medical fields. The intelligent device comes into intimate contact with the human body, and its safety is an essential factor that developers must consider. With the increasing research on the safety of WLLER, its safety test methods and indicators should gradually improve. By examining current test methods and indicators, this study aims to mobilize this information and summarize the most recent safety research. The safety-related studies reviewed in this paper are not limited to evaluating subjects in clinical trials but are concerned with extensive safety research. The focus of our analysis is the test performance indicators. Some functional evaluation indicators are also summarized to explore a broader and more applicable approach on the safety metrics. We found that, in general, most researchers pay attention to the power-assisting performance of WLLER, but the stability and comfort have been largely ignored. At the same time, our analysis also reveals that although there are a wide variety of existing evaluation indicators, uniform and standard test methods and indicators for safety testing of WLLER are still deficient. Based on these results, we identified and discussed several promising research directions that may help the community to attain a widely accepted test method that can objectively evaluate the safety of WLLER. |
ArticleNumber | 104308 |
Author | Yang, Maisi Li, Wenzhuo Yu, Hongliu Gu, Xiaoping Wang, Duojin Jin, Yaoxiang |
Author_xml | – sequence: 1 givenname: Duojin orcidid: 0000-0002-3864-3998 surname: Wang fullname: Wang, Duojin email: duojin.wang@usst.edu.cn organization: Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China – sequence: 2 givenname: Xiaoping surname: Gu fullname: Gu, Xiaoping organization: Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China – sequence: 3 givenname: Wenzhuo surname: Li fullname: Li, Wenzhuo organization: Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China – sequence: 4 givenname: Yaoxiang surname: Jin fullname: Jin, Yaoxiang organization: Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China – sequence: 5 givenname: Maisi surname: Yang fullname: Yang, Maisi organization: Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China – sequence: 6 givenname: Hongliu surname: Yu fullname: Yu, Hongliu organization: Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China |
BookMark | eNqFkM9LwzAUx4NMcFP_Ai856qEzbdI2FTyMMX9AQZCB3kKavEBm24wkbu6_t9s8edDTg_f4fPm-zwSNetcDQlcpmaYkLW5XU-8aF6cZybJhwyjhJ2ic8jJLyoq-j9CYVFmacF6RMzQJYUUIoXlJx6hfbGT7KaN1PXYGB2kg7hIPrYyg8Rq8cb6TvYL9dQvSy6YF3LoteNzarsHw5cIHtBCHgEMJfP1W14vXmzs8w2EXInRDusIeNha2F-jUyDbA5c88R8uHxXL-lNQvj8_zWZ0oSmhMdKEqyhvOG1DQ6LzkVCmquWFVyoqcp4wamoPkwKnJpC4YYYoYUynKNOP0HNFjrPIuBA9GrL3tpN-JlIi9MbESh7Jib0wcjQ1U9YtSNh7URC9t-w97f2Rh-Gr41IugLAzetPWgotDO_sl_A239jIo |
CitedBy_id | crossref_primary_10_1115_1_4066900 crossref_primary_10_3389_fbioe_2025_1551039 crossref_primary_10_1109_JSEN_2024_3352005 crossref_primary_10_1093_jcde_qwaf009 crossref_primary_10_1109_JSEN_2023_3328615 crossref_primary_10_3390_s24031032 crossref_primary_10_1177_17298806231191938 crossref_primary_10_1016_j_bspc_2024_105976 crossref_primary_10_1007_s10846_023_01963_7 crossref_primary_10_1109_TIM_2024_3460880 crossref_primary_10_1109_ACCESS_2024_3472116 |
Cites_doi | 10.3390/app7111182 10.1109/TNSRE.2020.2989481 10.1109/MSPEC.2011.5960158 10.1249/01.mss.0000494432.32096.5e 10.1631/FITEE.1900455 10.5772/7250 10.1097/PHM.0b013e318269d9a3 10.1038/sj.sc.3101853 10.1186/s12984-021-00815-5 10.1186/1743-0003-11-92 10.1109/TNSRE.2008.925074 10.1109/ICORR.2017.8009248 10.1179/2045772312Y.0000000003 10.1108/IR-07-2018-0150 10.1108/IR-09-2018-0199 10.3389/fnbot.2020.00031 10.1016/j.mechmachtheory.2020.103840 10.1161/STROKEAHA.119.025950 10.1109/TMECH.2006.878550 10.1016/j.wneu.2017.10.080 10.1016/j.jocn.2019.07.026 10.1109/TNSRE.2007.903930 10.3390/s22062244 10.1109/BIOROB.2016.7523698 10.1109/TMECH.2020.2990668 10.1186/s12984-020-00765-4 10.1016/j.robot.2014.08.015 10.1016/j.gaitpost.2011.10.002 10.1016/j.apmr.2012.12.020 10.1142/S0219843620500048 10.1109/ACCESS.2020.2985910 10.3389/frobt.2020.553828 10.1109/TNSRE.2021.3136088 10.3390/s19183960 10.1016/j.robot.2019.01.013 10.1007/s12555-019-0260-9 10.1080/17483107.2018.1447610 10.1108/IR-01-2019-0024 10.1016/j.robot.2014.11.014 10.1109/ICRA.2014.6906934 10.1177/0954406218761484 10.1016/j.apergo.2019.05.018 10.1080/10790268.2017.1313932 10.1163/156855311X617506 10.1080/00140139.2010.512982 10.1080/01691864.2013.867284 10.1177/0309364611431481 10.1109/TNSRE.2020.3009317 10.1007/s12369-020-00662-9 10.1109/TNSRE.2014.2346193 10.1115/DETC2017-67599 10.1186/s12984-015-0048-y 10.1186/s12984-017-0274-6 10.1038/s41393-020-0423-9 10.1007/s40430-019-1729-4 10.1007/s12555-019-0243-x 10.1186/s12984-018-0377-8 10.1038/s41598-020-72397-6 10.1097/MRR.0000000000000132 10.1115/DSCC2010-4204 10.1007/s12541-017-0206-1 10.1016/j.robot.2014.10.014 10.1186/s12984-020-00690-6 10.1016/j.robot.2017.06.010 10.1016/j.robot.2014.10.001 10.1007/s12206-020-0534-4 10.1109/TMECH.2019.2916546 10.1155/2018/7435746 10.1007/s12555-013-0386-0 10.3390/s20247216 10.1016/j.robot.2020.103642 10.1186/s12984-018-0393-8 10.1310/sci17-00014 10.1109/TNSRE.2019.2944665 10.1109/TNSRE.2008.2008280 10.1109/TNSRE.2016.2595501 10.1177/0954411921994940 10.3109/17483107.2015.1129455 10.1186/s12984-017-0258-6 10.1142/S0219519419400608 10.1016/j.jbiomech.2016.06.035 10.1163/156855307781746061 10.1109/LRA.2019.2908491 10.1155/2011/284352 10.1186/s12984-019-0585-x 10.1038/s41393-017-0013-7 10.3389/fnins.2019.00259 10.1016/j.apmr.2018.06.020 10.1109/ACCESS.2019.2904296 10.4028/www.scientific.net/AMM.598.546 10.1109/MRA.2014.2360287 10.3390/act9040138 10.1186/s12984-016-0150-9 10.1007/s41315-020-00123-6 10.1109/IROS.2005.1545453 10.1016/j.apmr.2019.09.005 10.1016/j.mechmachtheory.2016.04.012 10.1109/TNSRE.2015.2421052 10.1016/j.bbe.2019.01.002 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. |
Copyright_xml | – notice: 2022 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.robot.2022.104308 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1872-793X |
ExternalDocumentID | 10_1016_j_robot_2022_104308 S092188902200197X |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABIVO ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPGS AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ RXW SBC SCC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K TAE UNMZH WUQ XPP ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c303t-d6c938b88becebd5783cc3d8f4914658143f35ea8e83f2ad6404c0ff9c34d483 |
IEDL.DBID | AIKHN |
ISSN | 0921-8890 |
IngestDate | Thu Apr 24 22:56:37 EDT 2025 Tue Jul 01 01:41:56 EDT 2025 Fri Feb 23 02:39:05 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Wearable lower limb exoskeleton robot Performance indicator Safety Test |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c303t-d6c938b88becebd5783cc3d8f4914658143f35ea8e83f2ad6404c0ff9c34d483 |
ORCID | 0000-0002-3864-3998 |
ParticipantIDs | crossref_primary_10_1016_j_robot_2022_104308 crossref_citationtrail_10_1016_j_robot_2022_104308 elsevier_sciencedirect_doi_10_1016_j_robot_2022_104308 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2023 2023-02-00 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: February 2023 |
PublicationDecade | 2020 |
PublicationTitle | Robotics and autonomous systems |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Gong, Xu, Zhou, Vitiello, Wang (b98) 2020; 17 del Ama, Gil-Agudo, Bravo-Esteban, Perez-Nombela, Pons, Moreno (b69) 2015; 73 Narayan, Kumar Dwivedy (b123) 2021; 235 Ai-Robotics (b26) 2020 van Hedel, Wirz, Curt (b116) 2006; 44 English, Newby, Hackney, DeWitt, Beck, Rovekamp, Rea (b8) 2014; 46 Murray, Ha, Hartigan, Goldfarb (b66) 2015; 23 Kalita, Narayan, Dwivedy (b22) 2020; 13 Goo, Laubscher, Farris, Sawicki (b48) 2020; 9 Pinto-Fernandez, Torricelli, Sanchez-Villamanan, Aller, Mombaur, Conti, Vitiello, Moreno, Pons (b120) 2020; 28 Wang, Wang, van Asseldonk, van der Kooij (b118) 2013 Yang, She, Lu, Fukuda, Shen (b124) 2017; 7 Low, Liu, Yu (b5) 2005 Zha, Sheng, Guo, Qiu, Wang, Chen (b111) 2019; 9 Zeilig, Weingarden, Zwecker, Dudkiewicz, Bloch, Esquenazi (b45) 2012; 35 (b33) 2022 Li, Guan, Han, Tang, Meng, Shi, Penzlin, Yang, Ren, Yang, Li, Leonhardt, Ji (b72) 2020; 8 Yu, Lee, Lee, Kim, Han, Han (b88) 2012; 26 Lim, Kim, Lee, Kim, Shin, Park, Lee, Han (b4) 2015 Karlin (b7) 2011; 48 Calabro, Naro, Russo, Bramanti, Carioti, Balletta, Buda, Manuli, Filoni, Bramanti (b60) 2018; 15 Rodriguez-Fernandez, Lobo-Prat, Font-Llagunes (b126) 2021; 18 Baser, Kizilhan, Kilic (b110) 2020; 34 Wang, Meijneke, van der Kooij (b19) 2013 van Dijsseldonk, van Nes, Geurts, Keijsers (b115) 2020; 10 Wang, Yang, Yang, Deng, Ma, Wei (b109) 2019; 46 Haufe, Schmidt, Duarte, Wolf, Riener, Xiloyannis (b55) 2020; 17 Kaiser, Trost, Aach, Schildhauer, Schwenkreis, Tegenthoff (b35) 2019; 13 Kim, Lee, Jang, Park, Han (b90) 2015; 13 Koseki, Mutsuzaki, Yoshikawa, Endo, Maezawa, Takano, Yozu, Kohno (b76) 2019; 55 Hyun, Park, Ha, Park, Jung (b92) 2017; 95 Chen, Qi, Guo, Yu (b64) 2016; 103 Zhang, Tran, Huang (b84) 2019; 24 Schrade, Datwyler, Stucheli, Studer, Turk, Meboldt, Gassert, Lambercy (b86) 2018; 15 Aldridge Whitehead, Esposito, Wilken (b94) 2016; 49 Fontana, Vertechy, Marcheschi, Salsedo, Bergamasco (b11) 2014; 21 Esquenazi, Talaty, Packel, Saulino (b44) 2012; 91 Chen, Yu, Ge, Fang (b17) 2009 A. Collo, V. Bonnet, G. Venture, A quasi-passive lower limb exoskeleton for partial body weight support, in: 6th IEEE International Conference on Biomedical Robotics and Biomechatronics, BioRob, 2016, pp. 643–648. Chang, Nandor, Li, Kobetic, Foglyano, Schnellenberger, Audu, Pinault, Quinn, Triolo (b62) 2017; 14 Chen, Zhong, Zhao, Ma, Qin, Liao (b21) 2019; 7 Kong, Jeon (b28) 2006; 11 van Asseldonk, Veneman, Ekkelenkamp, Buurke, van der Helm, van der Kooij (b80) 2008; 16 Kim, Seo, Shin, Kim, Kang (b10) 2015 Bortole, Venkatakrishnan, Zhu, Moreno, Francisco, Pons, Contreras-Vidal (b65) 2015; 12 Moon, Ji, Jang, Hwang, Shin, Lee, Han, Han, Lee, Jang, Park, Kim (b79) 2017; 18 Kubota, Nakata, Eguchi, Kawamoto, Kamibayashi, Sakane, Sankai, Ochiai (b41) 2013; 94 Sirlantzis, Larsen, Kanumuru, Oprea (b128) 2019 Xu, Huang, Cheng, Qiu, Xiang, Shi, Ma (b117) 2020; 4 Giovacchini, Vannetti, Fantozzi, Cempini, Cortese, Parri, Yan, Lefeber, Vitiello (b87) 2015; 73 Yoshimoto, Shimizu, Hiroi, Kawaki, Sato, Nagasawa (b102) 2015; 38 Xiang, Ding, Zong, Liu, Cheng, He, He (b56) 2020; 58 Strausser, Kazerooni (b12) 2011 Jeong, Woo, Kong (b107) 2020; 18 Nilsson, Vreede, Haglund, Kawamoto, Sankai, Borg (b40) 2014; 11 Zhou, Chen, Chen, Bai, Zhang, Wang (b49) 2020; 150 Neuhaus, Noorden, Craig, Torres, Kirschbaum, Pratt (b18) 2011 Panizzolo, Galiana, Asbeck, Siviy, Schmidt, Holt, Walsh (b91) 2016; 13 Bae, Park, Moon, Chun, Chun, Choi (b96) 2020; 18 D. Zanotto, P. Stegall, S.K. Agrawal, Adaptive assist-as-needed controller to improve gait symmetry in robot-assisted gait training, in: 2014 IEEE International Conference on Robotics and Automation, 2014, pp. 724–729. (b34) 2021 Chen, Ma, Qin, Gao, Chan, Law, Qin, Liao (b29) 2016; 5 Maleki, Badri, Shayestehepour, Arazpour, Farahmand, Mousavi, Abdolahi, Farkhondeh, Head, Golchin, Mardani (b74) 2019; 14 McIntosh, Charbonneau, Bensaada, Bhatiya, Ho (b54) 2019; 101 Sankai (b3) 2010 Lee, Lee, Seo, Lee, Chang, Choi, Ryu, Kim (b85) 2019; 50 Baunsgaard, Nissen, Brust, Frotzler, Ribeill, Kalke, Leon, Gomez, Samuelsson, Antepohl, Holmstrom, Marklund, Glott, Opheim, Benito, Murillo, Nachtegaal, Faber, Biering-Sorensen (b61) 2017; 56 Khan, Livingstone, Hurd, Duchcherer, Misiaszek, Gorassini, Manns, Yang (b113) 2019; 16 Wang, Zhang, Liu, Liu, Han, Wang, Ferreira, Dong, Zhang (b127) 2022; 11 (b32) 2019 Natali, Sadeghi, Mondini, Bottenberg, Hartigan, Eyto, O’Sullivan, Rocon, Stadler, Mazzolai, Caldwell, Ortiz (b112) 2020; 14 Joudzadeh, Hadi, Tarvirdizadeh, Borooghani, Ahpour (b99) 2019; 46 Emmens, van Asseldonk, van der Kooij (b104) 2018; 15 Ueno, Watanabe, Kawamoto, Shimizu, Endo, Shimizu, Ishikawa, Kadone, Ohto, Kamada, Marushima, Hada, Muroi, Sankai, Ishikawa, Matsumura, Yamazaki (b43) 2019; 68 Bai, Gou, Wang, Dong, Que, Ling, Wang, Zhou, Chen, Pang, Zhang, Cheng (b58) 2019; 19 Lovrenovic, Doumit (b75) 2019; 39 Oh, Baek, Song, Mohammed, Jeon, Kong (b68) 2015; 73 Yatsugi, Morishita, Fukuda, Kotani, Yagi, Abe, Shiota, Inoue (b38) 2018; 2018 Setoguchi, Kinoshita, Kamada, Sakamoto, Kise, Kotani, Goto, Shiota, Inoue, Yamamoto (b42) 2020; 6 Kw, Muller, Lee (b24) 2014 Mizukami, Yoshikawa, Kawamoto, Sano, Koseki, Asakwa, Iwamoto, Nagata, Tsurushima, Nakai, Marushima, Sankai, Matsumura (b39) 2016; 12 Ha, Murray, Goldfarb (b23) 2016; 24 Lerner, Damiano, Park, Gravunder, Bulea (b51) 2017; 25 Agrawal, Banala, Fattah, Sangwan, Krishnamoorthy, Scholz, Hsu (b46) 2007; 15 Kwon, Park, Ku, Jeong, Paik, Park (b73) 2019; 4 Kian, Widanapathirana, Joseph, Lai, Begg (b125) 2022; 22 Sanz-Merodio, Cestari, Arevalo, Carrillo, Garcia (b20) 2014; 28 Liu, Wang (b97) 2020; 25 Y. Şahin, F.M. Botsali, M. Kalyoncu, M. Tinkir, U. Onen, N. Yilmaz, O.K. Baykan, A. Cakan, Force feedback control of lower extremity exoskeleton assisting of load carrying human, in: 4th International Conference on Mechanics; Simulation and Control, ICMSC, 2014, pp. 546–550. L.F. Yeung, C. Ockenfeld, M.K. Pang, H.W. Wai, O.Y. Soo, S.W. Li, K.Y. Tong, Design of an exoskeleton ankle robot for robot-assisted gait training of stroke patients, in: 2017 International Conference on Rehabilitation Robotics, 2017, pp. 211–215. Tefertiller, Hays, Jones, Jayaraman, Hartigan, Bushnik, Forrest (b59) 2018; 24 Chinimilli, Qiao, Sorkhabadi, Jhawar, Fong, Zhang (b82) 2019; 114 Luger, Seibt, Cobb, Rieger, Steinhilber (b114) 2019; 80 A. Zoss, H. Kazerooni, A. Chu, On the mechanical design of the Berkeley Lower Extremity Exoskeleton (BLEEX), in: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005, pp. 3465–3472. Fick, Makinson (b1) 1971 Yang, Wang, Zhu, Xi, Wu (b52) 2018; 233 Nam, Lee, Park, Lee, Nam, Park, Yu, Choi, Kwon (b57) 2019; 100 Banala, Kim, Agrawal, Scholz (b27) 2009; 17 (b30) 2014 Baser, Kizilhan, Kilic (b89) 2019; 41 Wojtara, Sasaki, Konosu, Yamashita, Shimoda, Alnajjar, Kimura (b101) 2012; 35 Jansen, Grasmuecke, Meindl, Tegenthoff, Schwenkreis, Kaiser, Wessling, Schildhauer, Fisahn, Aach (b37) 2018; 110 Fourier Intelligence (b25) 2020 Nam, Park, Lee, Nam, Choi, Yu, Zhu, Zhang, Lee, Kwon (b71) 2020; 52 Gregorczyk, Hasselquist, Schiffman, Bensel, Obusek, Gutekunst (b6) 2010; 53 Aguirre-Ollinger, Narayan, Yu (b78) 2019; 27 Wang, Pei, Hou, Fan, Yang, Herr (b83) 2020; 21 Kawamoto, Kanbe, Sankai (b14) 2003 Yang, Wang, Zhu, Liu, Yang, Ma, Wei (b106) 2020; 47 C.A. Laubscher, R.J. Farris, J.T. Sawicki, Design and Preliminary Evaluation of a Powered Pediatric Lower Limb Orthosis, in: Asme 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2017, pp. 1–9. Zhong, Cao, Guo, McDaid, Peng, Miao, Xie, Zhang (b81) 2020; 133 Sarajchi, Al-Hares, Sirlantzis (b122) 2021; 29 Suzuki, Mito, Kawamoto, Hasegawa, Sankai (b13) 2007; 21 Birch, Graham, Priestley, Heywood, Sakel, Gall, Nunn, Signal (b63) 2017; 14 Moon, Kim, Hong (b100) 2019; 19 Kubota, Abe, Kadone, Fujii, Shimizu, Marushima, Ueno, Kawamoto, Hada, Matsumura, Sankai, Yamazaki (b36) 2017; 42 Aphiratsakun, Parnichku (b16) 2009; 6 Puyuelo-Quintana, Cano-de-la Cuerda, Plaza-Flores, Garces-Castellote, Sanz-Merodio, Goni-Arana, Marin-Ojea, Garcia-Armada (b53) 2020; 17 Esquenazi, Talaty, Packel, Saulino (b15) 2012; 91 Rajasekaran, Aranda, Casals, Pons (b103) 2015; 73 Raj, Neuhaus, Moucheboeuf, Noorden, Lecoutre (b119) 2011; 2011 Yoshikawa, Mutsuzaki, Koseki, Endo, Hashizume, Nakazawa, Aoyama, Yozu, Kohno (b70) 2020; 11 Yang, Zhang, Zhang, Yang (b105) 2020; 20 Hidayah, Bishop, Jin, Chamarthy, Stein, Agrawal (b77) 2020; 28 Fasola, Baud, Vouga, Ijspeert, Bouri (b108) 2020; 7 Arazpour, Chitsazan, Hutchins, Ghomshe, Mousavi, Takamjani, Aminian, Rahgozar, Bani (b50) 2012; 36 (b31) 2019 T.A. Swift, K.A. Strausser, A.B. Zoss, H. Kazerooni, Asme; Control and Experimental Results for Post Stroke Gait Rehabilitation with a Prototype Mobile Medical Exoskeleton, in: ASME 2010 Dynamic Systems and Control Conference, 2010, pp. 405–411. Fourier Intelligence (10.1016/j.robot.2022.104308_b25) 2020 Bai (10.1016/j.robot.2022.104308_b58) 2019; 19 Chang (10.1016/j.robot.2022.104308_b62) 2017; 14 Yang (10.1016/j.robot.2022.104308_b105) 2020; 20 Chen (10.1016/j.robot.2022.104308_b64) 2016; 103 Setoguchi (10.1016/j.robot.2022.104308_b42) 2020; 6 Chen (10.1016/j.robot.2022.104308_b29) 2016; 5 Baunsgaard (10.1016/j.robot.2022.104308_b61) 2017; 56 Ueno (10.1016/j.robot.2022.104308_b43) 2019; 68 Neuhaus (10.1016/j.robot.2022.104308_b18) 2011 Sirlantzis (10.1016/j.robot.2022.104308_b128) 2019 Zhang (10.1016/j.robot.2022.104308_b84) 2019; 24 10.1016/j.robot.2022.104308_b121 Baser (10.1016/j.robot.2022.104308_b110) 2020; 34 Baser (10.1016/j.robot.2022.104308_b89) 2019; 41 Moon (10.1016/j.robot.2022.104308_b100) 2019; 19 Lee (10.1016/j.robot.2022.104308_b85) 2019; 50 Narayan (10.1016/j.robot.2022.104308_b123) 2021; 235 Kim (10.1016/j.robot.2022.104308_b90) 2015; 13 Birch (10.1016/j.robot.2022.104308_b63) 2017; 14 Giovacchini (10.1016/j.robot.2022.104308_b87) 2015; 73 Yoshimoto (10.1016/j.robot.2022.104308_b102) 2015; 38 Kubota (10.1016/j.robot.2022.104308_b41) 2013; 94 Zeilig (10.1016/j.robot.2022.104308_b45) 2012; 35 van Dijsseldonk (10.1016/j.robot.2022.104308_b115) 2020; 10 (10.1016/j.robot.2022.104308_b32) 2019 Goo (10.1016/j.robot.2022.104308_b48) 2020; 9 English (10.1016/j.robot.2022.104308_b8) 2014; 46 Zhong (10.1016/j.robot.2022.104308_b81) 2020; 133 Hyun (10.1016/j.robot.2022.104308_b92) 2017; 95 Ha (10.1016/j.robot.2022.104308_b23) 2016; 24 Kubota (10.1016/j.robot.2022.104308_b36) 2017; 42 Yang (10.1016/j.robot.2022.104308_b52) 2018; 233 Calabro (10.1016/j.robot.2022.104308_b60) 2018; 15 Ai-Robotics (10.1016/j.robot.2022.104308_b26) 2020 Rajasekaran (10.1016/j.robot.2022.104308_b103) 2015; 73 Aguirre-Ollinger (10.1016/j.robot.2022.104308_b78) 2019; 27 Jansen (10.1016/j.robot.2022.104308_b37) 2018; 110 10.1016/j.robot.2022.104308_b47 Wojtara (10.1016/j.robot.2022.104308_b101) 2012; 35 Liu (10.1016/j.robot.2022.104308_b97) 2020; 25 (10.1016/j.robot.2022.104308_b34) 2021 van Hedel (10.1016/j.robot.2022.104308_b116) 2006; 44 Khan (10.1016/j.robot.2022.104308_b113) 2019; 16 Chinimilli (10.1016/j.robot.2022.104308_b82) 2019; 114 Panizzolo (10.1016/j.robot.2022.104308_b91) 2016; 13 Kong (10.1016/j.robot.2022.104308_b28) 2006; 11 Gong (10.1016/j.robot.2022.104308_b98) 2020; 17 McIntosh (10.1016/j.robot.2022.104308_b54) 2019; 101 Raj (10.1016/j.robot.2022.104308_b119) 2011; 2011 Yatsugi (10.1016/j.robot.2022.104308_b38) 2018; 2018 Karlin (10.1016/j.robot.2022.104308_b7) 2011; 48 Yang (10.1016/j.robot.2022.104308_b106) 2020; 47 Sarajchi (10.1016/j.robot.2022.104308_b122) 2021; 29 Suzuki (10.1016/j.robot.2022.104308_b13) 2007; 21 Pinto-Fernandez (10.1016/j.robot.2022.104308_b120) 2020; 28 (10.1016/j.robot.2022.104308_b33) 2022 Nam (10.1016/j.robot.2022.104308_b71) 2020; 52 Xu (10.1016/j.robot.2022.104308_b117) 2020; 4 Kalita (10.1016/j.robot.2022.104308_b22) 2020; 13 Puyuelo-Quintana (10.1016/j.robot.2022.104308_b53) 2020; 17 Schrade (10.1016/j.robot.2022.104308_b86) 2018; 15 Yang (10.1016/j.robot.2022.104308_b124) 2017; 7 (10.1016/j.robot.2022.104308_b31) 2019 Agrawal (10.1016/j.robot.2022.104308_b46) 2007; 15 Natali (10.1016/j.robot.2022.104308_b112) 2020; 14 Wang (10.1016/j.robot.2022.104308_b83) 2020; 21 Kim (10.1016/j.robot.2022.104308_b10) 2015 Lerner (10.1016/j.robot.2022.104308_b51) 2017; 25 Xiang (10.1016/j.robot.2022.104308_b56) 2020; 58 Chen (10.1016/j.robot.2022.104308_b21) 2019; 7 Esquenazi (10.1016/j.robot.2022.104308_b15) 2012; 91 10.1016/j.robot.2022.104308_b2 Lim (10.1016/j.robot.2022.104308_b4) 2015 Kian (10.1016/j.robot.2022.104308_b125) 2022; 22 10.1016/j.robot.2022.104308_b67 Fontana (10.1016/j.robot.2022.104308_b11) 2014; 21 Moon (10.1016/j.robot.2022.104308_b79) 2017; 18 Wang (10.1016/j.robot.2022.104308_b109) 2019; 46 Wang (10.1016/j.robot.2022.104308_b118) 2013 Koseki (10.1016/j.robot.2022.104308_b76) 2019; 55 del Ama (10.1016/j.robot.2022.104308_b69) 2015; 73 Rodriguez-Fernandez (10.1016/j.robot.2022.104308_b126) 2021; 18 Esquenazi (10.1016/j.robot.2022.104308_b44) 2012; 91 Wang (10.1016/j.robot.2022.104308_b127) 2022; 11 Lovrenovic (10.1016/j.robot.2022.104308_b75) 2019; 39 Emmens (10.1016/j.robot.2022.104308_b104) 2018; 15 Kw (10.1016/j.robot.2022.104308_b24) 2014 Arazpour (10.1016/j.robot.2022.104308_b50) 2012; 36 Maleki (10.1016/j.robot.2022.104308_b74) 2019; 14 Chen (10.1016/j.robot.2022.104308_b17) 2009 Zhou (10.1016/j.robot.2022.104308_b49) 2020; 150 Strausser (10.1016/j.robot.2022.104308_b12) 2011 Aldridge Whitehead (10.1016/j.robot.2022.104308_b94) 2016; 49 Fasola (10.1016/j.robot.2022.104308_b108) 2020; 7 Joudzadeh (10.1016/j.robot.2022.104308_b99) 2019; 46 Kawamoto (10.1016/j.robot.2022.104308_b14) 2003 Bortole (10.1016/j.robot.2022.104308_b65) 2015; 12 Hidayah (10.1016/j.robot.2022.104308_b77) 2020; 28 Zha (10.1016/j.robot.2022.104308_b111) 2019; 9 Nam (10.1016/j.robot.2022.104308_b57) 2019; 100 Tefertiller (10.1016/j.robot.2022.104308_b59) 2018; 24 Sankai (10.1016/j.robot.2022.104308_b3) 2010 Haufe (10.1016/j.robot.2022.104308_b55) 2020; 17 Luger (10.1016/j.robot.2022.104308_b114) 2019; 80 Gregorczyk (10.1016/j.robot.2022.104308_b6) 2010; 53 Aphiratsakun (10.1016/j.robot.2022.104308_b16) 2009; 6 Kwon (10.1016/j.robot.2022.104308_b73) 2019; 4 Low (10.1016/j.robot.2022.104308_b5) 2005 10.1016/j.robot.2022.104308_b93 van Asseldonk (10.1016/j.robot.2022.104308_b80) 2008; 16 (10.1016/j.robot.2022.104308_b30) 2014 Fick (10.1016/j.robot.2022.104308_b1) 1971 Wang (10.1016/j.robot.2022.104308_b19) 2013 Nilsson (10.1016/j.robot.2022.104308_b40) 2014; 11 10.1016/j.robot.2022.104308_b9 Kaiser (10.1016/j.robot.2022.104308_b35) 2019; 13 Oh (10.1016/j.robot.2022.104308_b68) 2015; 73 Mizukami (10.1016/j.robot.2022.104308_b39) 2016; 12 Yu (10.1016/j.robot.2022.104308_b88) 2012; 26 Murray (10.1016/j.robot.2022.104308_b66) 2015; 23 Banala (10.1016/j.robot.2022.104308_b27) 2009; 17 Yoshikawa (10.1016/j.robot.2022.104308_b70) 2020; 11 Bae (10.1016/j.robot.2022.104308_b96) 2020; 18 Li (10.1016/j.robot.2022.104308_b72) 2020; 8 Sanz-Merodio (10.1016/j.robot.2022.104308_b20) 2014; 28 Jeong (10.1016/j.robot.2022.104308_b107) 2020; 18 10.1016/j.robot.2022.104308_b95 |
References_xml | – volume: 12 start-page: 197 year: 2016 end-page: 204 ident: b39 article-title: Gait training of subacute stroke patients using a hybrid assistive limb: a pilot study publication-title: Disabil. Rehabil. Assist. Technol. – start-page: 5345 year: 2015 end-page: 5350 ident: b4 article-title: Development of a lower extremity exoskeleton robot with a quasi-anthropomorphic design approach for load carriage publication-title: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems – volume: 68 start-page: 101 year: 2019 end-page: 104 ident: b43 article-title: Feasibility and safety of robot suit HAL treatment for adolescents and adults with cerebral palsy publication-title: J. Clin. Neurosci. – reference: L.F. Yeung, C. Ockenfeld, M.K. Pang, H.W. Wai, O.Y. Soo, S.W. Li, K.Y. Tong, Design of an exoskeleton ankle robot for robot-assisted gait training of stroke patients, in: 2017 International Conference on Rehabilitation Robotics, 2017, pp. 211–215. – start-page: 4911 year: 2011 end-page: 4916 ident: b12 article-title: The development and testing of a human machine interface for a mobile medical exoskeleton publication-title: 2011 IEEE/RSJ International Conference on Intelligent Robots & Systems – volume: 24 start-page: 455 year: 2016 end-page: 466 ident: b23 article-title: An approach for the cooperative control of FES with a powered exoskeleton during level walking for persons with paraplegia publication-title: IEEE T. Neur. Sys. Reh. – volume: 2018 year: 2018 ident: b38 article-title: Feasibility of neurorehabilitation using a hybrid assistive limb for patients who underwent spine surgery publication-title: Appl. Bionics Biomech. – volume: 73 start-page: 123 year: 2015 end-page: 134 ident: b87 article-title: A light-weight active orthosis for hip movement assistance publication-title: Robot. Auton. Syst. – year: 2022 ident: b33 article-title: 21-Food and Drugs – volume: 6 start-page: 319 year: 2009 end-page: 328 ident: b16 article-title: Balancing control of AIT leg exoskeleton using ZMP based FLC publication-title: Int. J. Adv. Robot. Syst. – volume: 95 start-page: 181 year: 2017 end-page: 195 ident: b92 article-title: Biomechanical design of an agile. electricity-powered lower-limb exoskeleton for weight-bearing assistance publication-title: Robot. Auton. Syst. – start-page: 577 year: 2015 end-page: 582 ident: b10 article-title: Locomotion control strategy of hydraulic lower extremity exoskeleton robot publication-title: 2015 IEEE International Conference on Advanced Intelligent Mechatronics – volume: 56 start-page: 106 year: 2017 end-page: 116 ident: b61 article-title: Gait training after spinal cord injury: safety. feasibility and gait function following 8 weeks of training with the exoskeletons from ekso bionics publication-title: Spinal Cord – volume: 80 start-page: 152 year: 2019 end-page: 160 ident: b114 article-title: Influence of a passive lower-limb exoskeleton during simulated industrial work tasks on physical load. upper body posture. postural control and discomfort publication-title: Appl. Ergon. – year: 2019 ident: b32 article-title: Medical electrical equipment – part 2-78: Particular requirements for basic safety and essential performance of medical robots for rehabilitation, assessment publication-title: Compensation Or Alleviation – volume: 110 start-page: 73 year: 2018 end-page: 78 ident: b37 article-title: Hybrid assistive limb exoskeleton HAL in the rehabilitation of chronic spinal cord injury: Proof of concept. the results in 21 patients publication-title: World Neurosurg. – volume: 15 start-page: 50 year: 2018 ident: b104 article-title: Effects of a powered ankle-foot orthosis on perturbed standing balance publication-title: J. Neuroeng. Rehabil. – volume: 14 start-page: 31 year: 2020 ident: b112 article-title: Pneumatic quasi-passive actuation for soft assistive lower limbs exoskeleton publication-title: Front. Neurorobotics – volume: 11 year: 2022 ident: b127 article-title: A review on the rehabilitation exoskeletons for the lower limbs of the elderly and the disabled publication-title: Electronics – start-page: 311 year: 2019 end-page: 345 ident: b128 article-title: 11 - Robotics publication-title: Handbook of Electronic Assistive Technology – start-page: 67 year: 2003 end-page: 72 ident: b14 article-title: Power assist method for HAL-3 estimating operator’s intention based on motion information publication-title: The 12th IEEE International Workshop on Robot and Human Interactive Communication – volume: 114 start-page: 66 year: 2019 end-page: 76 ident: b82 article-title: Automatic virtual impedance adaptation of a knee exoskeleton for personalized walking assistance publication-title: Robot. Auton. Syst. – volume: 13 start-page: 259 year: 2019 ident: b35 article-title: A randomized and controlled crossover study investigating the improvement of walking and posture functions in chronic stroke patients using HAL exoskeleton-the HALESTRO study (HAL-exoskeleton stroke study) publication-title: Front. Neurosci. – volume: 7 start-page: 33809 year: 2019 end-page: 33821 ident: b21 article-title: Reference joint trajectories generation of CUHK-EXO exoskeleton for system balance in walking assistance publication-title: IEEE Access – volume: 41 start-page: 226 year: 2019 end-page: 240 ident: b89 article-title: Biomimetic compliant lower limb exoskeleton (BioComEx) and its experimental evaluation publication-title: J. Braz. Soc. Mech. Sci. – volume: 4 start-page: 278 year: 2020 end-page: 293 ident: b117 article-title: Stair-ascent strategies and performance evaluation for a lower limb exoskeleton publication-title: Int. J. Intell. Robot. – reference: T.A. Swift, K.A. Strausser, A.B. Zoss, H. Kazerooni, Asme; Control and Experimental Results for Post Stroke Gait Rehabilitation with a Prototype Mobile Medical Exoskeleton, in: ASME 2010 Dynamic Systems and Control Conference, 2010, pp. 405–411. – volume: 26 start-page: 561 year: 2012 end-page: 580 ident: b88 article-title: Design of an under-actuated exoskeleton system for walking assist while load carrying publication-title: Adv. Robot. – volume: 47 start-page: 281 year: 2020 end-page: 292 ident: b106 article-title: A stepping gait trajectory design based on hip height variation of swing leg for the balance of lower extremity exoskeleton publication-title: Ind. Robot. – year: 2020 ident: b26 article-title: Ailegs – reference: Y. Şahin, F.M. Botsali, M. Kalyoncu, M. Tinkir, U. Onen, N. Yilmaz, O.K. Baykan, A. Cakan, Force feedback control of lower extremity exoskeleton assisting of load carrying human, in: 4th International Conference on Mechanics; Simulation and Control, ICMSC, 2014, pp. 546–550. – start-page: 25 year: 2010 end-page: 34 ident: b3 article-title: HAL: Hybrid assistive limb based on cybernics publication-title: Robotics Research - the 13th International Symposium – reference: C.A. Laubscher, R.J. Farris, J.T. Sawicki, Design and Preliminary Evaluation of a Powered Pediatric Lower Limb Orthosis, in: Asme 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2017, pp. 1–9. – volume: 15 start-page: 35 year: 2018 ident: b60 article-title: Shaping neuroplasticity by using powered exoskeletons in patients with stroke: a randomized clinical trial publication-title: J. Neuroeng. Rehabil. – volume: 7 year: 2020 ident: b108 article-title: Bioinspired postural controllers for a locked-ankle exoskeleton targeting complete SCI users publication-title: Front. Robot. Ai – year: 2019 ident: b31 article-title: Medical electrical equipment – part 2-77: Particular requirements for the basic safety and essential performance of robotically assisted surgical equipment – volume: 58 start-page: 787 year: 2020 end-page: 794 ident: b56 article-title: The safety and feasibility of a new rehabilitation robotic exoskeleton for assisting individuals with lower extremity motor complete lesions following spinal cord injury (SCI): an observational study publication-title: Spinal Cord – volume: 34 start-page: 2597 year: 2020 end-page: 2607 ident: b110 article-title: Employing variable impedance (stiffness/damping) hybrid actuators on lower limb exoskeleton robots for stable and safe walking trajectory tracking publication-title: J. Mech. Sci. Technol. – volume: 28 start-page: 329 year: 2014 end-page: 338 ident: b20 article-title: Generation and control of adaptive gaits in lower-limb exoskeletons for motion assistance publication-title: Adv. Robot. – volume: 42 start-page: 128 year: 2017 end-page: 136 ident: b36 article-title: Walking ability following hybrid assistive limb treatment for a patient with chronic myelopathy after surgery for cervical ossification of the posterior longitudinal ligament publication-title: J. Spinal Cord Med. – reference: A. Zoss, H. Kazerooni, A. Chu, On the mechanical design of the Berkeley Lower Extremity Exoskeleton (BLEEX), in: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005, pp. 3465–3472. – volume: 101 start-page: 113 year: 2019 end-page: 120 ident: b54 article-title: The safety and feasibility of exoskeletal assisted walking in acute rehabilitation following spinal cord injury publication-title: Arch. Phys. Med. Rehabil. – volume: 21 start-page: 723 year: 2020 end-page: 739 ident: b83 article-title: An untethered cable-driven ankle exoskeleton with plantarflexion-dorsiflexion bidirectional movement assistance publication-title: Front. Inform. Tech. El. – volume: 5 start-page: 26 year: 2016 end-page: 37 ident: b29 article-title: Recent developments and challenges of lower extremity exoskeletons publication-title: J. Orthop. Transl. – volume: 20 start-page: 1 year: 2020 end-page: 17 ident: b105 article-title: Lower limb exoskeleton gait planning based on crutch and human–machine foot combined center of pressure publication-title: Sensors – volume: 11 start-page: 428 year: 2006 end-page: 432 ident: b28 article-title: Design and control of an exoskeleton for the elderly and patients publication-title: IEEE/ASME T. Mech. – volume: 21 start-page: 34 year: 2014 end-page: 44 ident: b11 article-title: The body extender: A full-body exoskeleton for the transport and handling of heavy loads publication-title: IEEE Robot. Autom. Mag. – volume: 38 start-page: 338 year: 2015 end-page: 343 ident: b102 article-title: Feasibility and efficacy of high-speed gait training with a voluntary driven exoskeleton robot for gait and balance dysfunction in patients with chronic stroke: nonrandomized pilot study with concurrent control publication-title: Int. J. Rehabil. Res. – volume: 15 year: 2018 ident: b86 article-title: Development of VariLeg; an exoskeleton with variable stiffness actuation: first results and user evaluation from the CYBATHLON 2016 publication-title: J. Neuroeng. Rehabil. – volume: 25 start-page: 650 year: 2017 end-page: 659 ident: b51 article-title: A robotic exoskeleton for treatment of crouch gait in children with cerebral palsy: Design and initial application publication-title: IEEE T. Neur. Sys. Reh. – volume: 73 start-page: 68 year: 2015 end-page: 77 ident: b68 article-title: A generalized control framework of assistive controllers and its application to lower limb exoskeletons publication-title: Robot. Auton. Syst. – volume: 11 start-page: 92 year: 2014 ident: b40 article-title: Gait training early after stroke with a new exoskeleton–the hybrid assistive limb: a study of safety and feasibility publication-title: J. Neuroeng. Rehabil. – volume: 18 start-page: 114 year: 2020 end-page: 123 ident: b107 article-title: A study on weight support and balance control method for assisting squat movement with a wearable robot publication-title: Angel-Suit. Int. J. Control Autom. – year: 1971 ident: b1 article-title: Hardiman I prototype for machine augmentation of human strength and endurance – volume: 24 start-page: 1508 year: 2019 end-page: 1519 ident: b84 article-title: Admittance shaping-based assistive control of SEA-driven robotic hip exoskeleton publication-title: IEEE-ASME T. Mech. – volume: 9 start-page: 1 year: 2019 end-page: 15 ident: b111 article-title: The exoskeleton balance assistance control strategy based on single step balance assessment publication-title: Appl. Sci-Basel – volume: 14 start-page: 48 year: 2017 ident: b62 article-title: A muscle-driven approach to restore stepping with an exoskeleton for individuals with paraplegia publication-title: J. Neuroeng. Rehabil. – volume: 35 start-page: 96 year: 2012 end-page: 101 ident: b45 article-title: Safety and tolerance of the ReWalk exoskeleton suit for ambulation by people with complete spinal cord injury: A pilot study publication-title: J. Spinal Cord Med. – volume: 14 start-page: 333 year: 2019 end-page: 337 ident: b74 article-title: Design and analysis of an original powered foot clearance creator mechanism for walking in patients with spinal cord injury publication-title: Disabil. Rehabil-Assi. – volume: 91 start-page: 911 year: 2012 end-page: 921 ident: b44 article-title: The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury publication-title: Am. J. Phys. Med. Rehab. – volume: 55 start-page: 1 year: 2019 end-page: 11 ident: b76 article-title: Gait training using the honda walking assistive devicea (R) in a patient who underwent total hip arthroplasty: A single-subject study publication-title: Med. Lith. – volume: 94 start-page: 1080 year: 2013 end-page: 1087 ident: b41 article-title: Feasibility of rehabilitation training with a newly developed wearable robot for patients with limited mobility publication-title: Arch. Phys. Med. Rehabil. – volume: 52 start-page: 1 year: 2020 end-page: 7 ident: b71 article-title: Future effects of electromechanically assisted gait trainer (EXOWALK) in patients with chronic stroke: A randomized controlled trial publication-title: J. Rehabil. Med. – volume: 235 start-page: 530 year: 2021 end-page: 545 ident: b123 article-title: Preliminary design and development of a low-cost lower-limb exoskeleton system for paediatric rehabilitation publication-title: Proc. Inst. Mech. Eng. H. – volume: 16 start-page: 145 year: 2019 ident: b113 article-title: Retraining walking over ground in a powered exoskeleton after spinal cord injury: a prospective cohort study to examine functional gains and neuroplasticity publication-title: J. Neuroeng. Rehabil. – volume: 46 start-page: 290 year: 2019 end-page: 299 ident: b99 article-title: Design and fabrication of a lower limb exoskeleton to assist in stair ascending publication-title: Ind. Robot. – start-page: 1039 year: 2009 end-page: 1043 ident: b17 article-title: WPAL for human power assist during walking using dynamic equation publication-title: 2009 International Conference on Mechatronics and Automation – start-page: 1 year: 2013 end-page: 8 ident: b19 article-title: Modeling; design; and optimization of mindwalker series elastic joint publication-title: 2013 IEEE International Conference on Rehabilitation Robotics – volume: 4 start-page: 2547 year: 2019 end-page: 2552 ident: b73 article-title: A soft wearable robotic ankle-foot-orthosis for post-stroke patients publication-title: IEEE Robot. Autom. Let. – volume: 233 start-page: 1087 year: 2018 end-page: 1098 ident: b52 article-title: Development and control of a robotic lower limb exoskeleton for paraplegic patients publication-title: Proc. Inst. Mech. Eng. Part C – volume: 18 start-page: 196 year: 2020 end-page: 205 ident: b96 article-title: A robotic gait training system with stair-climbing mode based on a unique exoskeleton structure with active foot plates publication-title: Int. J. Control Autom. – reference: D. Zanotto, P. Stegall, S.K. Agrawal, Adaptive assist-as-needed controller to improve gait symmetry in robot-assisted gait training, in: 2014 IEEE International Conference on Robotics and Automation, 2014, pp. 724–729. – volume: 11 start-page: 1 year: 2020 end-page: 8 ident: b70 article-title: Gait training using a wearable robotic device for non-traumatic spinal cord injury: A case report publication-title: Geriatr. Orthop. Surg. – volume: 13 start-page: 463 year: 2015 end-page: 474 ident: b90 article-title: Design of an exoskeleton with minimized energy consumption based on using elastic and dissipative elements publication-title: Int. J. Control Autom. – volume: 23 start-page: 441 year: 2015 end-page: 449 ident: b66 article-title: An assistive control approach for a lower-limb exoskeleton to facilitate recovery of walking following stroke publication-title: IEEE T. Neur. Sys. Reh. – volume: 73 start-page: 16 year: 2015 end-page: 23 ident: b103 article-title: An adaptive control strategy for postural stability using a wearable robot publication-title: Robot. Auton. Syst. – volume: 150 year: 2020 ident: b49 article-title: Design of a passive lower limb exoskeleton for walking assistance with gravity compensation publication-title: Mech. Mach. Theory – volume: 17 start-page: 135 year: 2020 ident: b55 article-title: Activity-based training with the myosuit: a safety and feasibility study across diverse gait disorders publication-title: J. Neuroeng. Rehabil. – volume: 100 start-page: 26 year: 2019 end-page: 31 ident: b57 article-title: Effects of electromechanical exoskeleton-assisted gait training on walking ability of stroke patients: A randomized controlled trial publication-title: Arch. Phys. Med. Rehabil. – start-page: 1 year: 2011 end-page: 8 ident: b18 article-title: Design and evaluation of mina: A robotic orthosis for paraplegics publication-title: 2011 IEEE International Conference on Rehabilitation Robotics – volume: 73 start-page: 44 year: 2015 end-page: 58 ident: b69 article-title: Hybrid therapy of walking with kinesis overground robot for persons with incomplete spinal cord injury: A feasibility study publication-title: Robot. Auton. Syst. – volume: 2011 start-page: 1 year: 2011 end-page: 8 ident: b119 article-title: Mina: A sensorimotor robotic orthosis for mobility assistance publication-title: J. Robot. – volume: 36 start-page: 125 year: 2012 end-page: 130 ident: b50 article-title: Design and simulation of a new powered gait orthosis for paraplegic patients publication-title: Prosthet. Orthot. Int. – volume: 7 year: 2017 ident: b124 article-title: State of the art: Bipedal robots for lower limb rehabilitation publication-title: Appl. Sci. – volume: 44 start-page: 352 year: 2006 end-page: 356 ident: b116 article-title: Improving walking assessment in subjects with an incomplete spinal cord injury: responsiveness publication-title: Spinal Cord – volume: 8 start-page: 66338 year: 2020 end-page: 66352 ident: b72 article-title: Design and preliminary validation of a lower limb exoskeleton with compact and modular actuation publication-title: IEEE Access – volume: 29 start-page: 2695 year: 2021 end-page: 2720 ident: b122 article-title: Wearable lower-limb exoskeleton for children with cerebral palsy: A systematic review of mechanical design, actuation type, control strategy, and clinical evaluation publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 9 start-page: 138 year: 2020 ident: b48 article-title: Design and evaluation of a pediatric lower-limb exoskeleton joint actuator publication-title: Actuators – volume: 15 start-page: 410 year: 2007 end-page: 420 ident: b46 article-title: Assessment of motion of a swing leg and gait rehabilitation with a gravity balancing exoskeleton publication-title: IEEE T. Neur. Sys. Reh. – volume: 17 start-page: 2 year: 2009 end-page: 8 ident: b27 article-title: Robot assisted gait training with active leg exoskeleton (ALEX) publication-title: IEEE T. Neur. Sys. Reh. – volume: 49 start-page: 2899 year: 2016 end-page: 2908 ident: b94 article-title: Stair ascent and descent biomechanical adaptations while using a custom ankle-foot orthosis publication-title: J. Biomech. – volume: 22 year: 2022 ident: b125 article-title: Application of wearable sensors in actuation and control of powered ankle exoskeletons: A comprehensive review publication-title: Sensors (Basel) – volume: 48 start-page: 25 year: 2011 ident: b7 article-title: Raiding iron man’s closet [geek life] publication-title: IEEE Spectr. – volume: 133 year: 2020 ident: b81 article-title: Fuzzy logic compliance adaptation for an assist-as-needed controller on the gait rehabilitation exoskeleton (GAREX) publication-title: Robot. Auton. Syst. – volume: 24 start-page: 78 year: 2018 end-page: 85 ident: b59 article-title: Initial outcomes from a multicenter study utilizing the indego powered exoskeleton in spinal cord injury publication-title: Top. Spinal Cord Inj. – volume: 25 start-page: 2722 year: 2020 end-page: 2732 ident: b97 article-title: Real-time locomotion mode recognition and assistive torque control for unilateral Knee exoskeleton on different terrains publication-title: IEEE-ASME T. Mech. – start-page: 1 year: 2014 end-page: 2 ident: b24 article-title: Toward exoskeleton control based on steady state visual evoked potentials publication-title: 2014 International Winter Workshop on Brain-Computer Interface – volume: 14 start-page: 60 year: 2017 ident: b63 article-title: Results of the first interim analysis of the RAPPER II trial in patients with spinal cord injury: ambulation and functional exercise programs in the REX powered walking aid publication-title: J. Neuroeng. Rehabil. – volume: 10 start-page: 15600 year: 2020 ident: b115 article-title: Exoskeleton home and community use in people with complete spinal cord injury publication-title: Sci. Rep. – start-page: 965 year: 2013 end-page: 970 ident: b118 article-title: Actively controlled lateral gait assistance in a lower limb exoskeleton publication-title: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems – volume: 46 start-page: 608 year: 2019 end-page: 621 ident: b109 article-title: A rehabilitation gait for the balance of human and lower extremity exoskeleton system based on the transfer of gravity center publication-title: Ind. Robot. – volume: 16 start-page: 360 year: 2008 end-page: 370 ident: b80 article-title: The effects on kinematics and muscle activity of walking in a robotic gait trainer during zero-force control publication-title: IEEE T. Neur. Sys. Reh. – volume: 91 start-page: 911 year: 2012 end-page: 921 ident: b15 article-title: The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury publication-title: Am. J. Phys. Med. Rehab. – volume: 46 start-page: 419 year: 2014 ident: b8 article-title: Comparison of Knee and Ankle dynamometry between NASA’s X1 exoskeleton and biodex system 4. publication-title: Med. Sci. Sports Exercise – year: 2021 ident: b34 article-title: H2020 project – volume: 17 start-page: 1 year: 2020 end-page: 18 ident: b98 article-title: BPNN-based real-time recognition of locomotion modes for an active Pelvis orthosis with different assistive strategies publication-title: Int. J. Hum. Robot. – volume: 13 start-page: 43 year: 2016 ident: b91 article-title: A biologically-inspired multi-joint soft exosuit that can reduce the energy cost of loaded walking publication-title: J. Neuroeng. Rehabil. – volume: 28 start-page: 1984 year: 2020 end-page: 1993 ident: b77 article-title: Gait adaptation using a cable-driven active leg exoskeleton (c-ALEX) with post-stroke participants publication-title: IEEE T. Neur. Sys. Reh. – volume: 103 start-page: 51 year: 2016 end-page: 56 ident: b64 article-title: Mechanical design and evaluation of a compact portable knee-ankle-foot robot for gait rehabilitation publication-title: Mech. Mach. Theory – start-page: 1099 year: 2005 end-page: 1106 ident: b5 article-title: Development of NTU wearable exoskeleton system for assistive technologies publication-title: IEEE International Conference Mechatronics & Automation – year: 2020 ident: b25 article-title: Fourier X2 lower-limb exoskeleton robot – volume: 39 start-page: 992 year: 2019 end-page: 1004 ident: b75 article-title: Development and testing of a passive walking assist exoskeleton publication-title: Biocybern. Biomed. Eng. – volume: 35 start-page: 316 year: 2012 end-page: 321 ident: b101 article-title: Artificial balancer–supporting device for postural reflex publication-title: Gait Posture – year: 2014 ident: b30 article-title: Robots and robotic devices — Safety requirements for personal care robots – reference: A. Collo, V. Bonnet, G. Venture, A quasi-passive lower limb exoskeleton for partial body weight support, in: 6th IEEE International Conference on Biomedical Robotics and Biomechatronics, BioRob, 2016, pp. 643–648. – volume: 18 start-page: 22 year: 2021 ident: b126 article-title: Systematic review on wearable lower-limb exoskeletons for gait training in neuromuscular impairments publication-title: J. Neuroeng. Rehabil. – volume: 18 start-page: 1773 year: 2017 end-page: 1781 ident: b79 article-title: Gait analysis of hemiplegic patients in ambulatory rehabilitation training using a wearable lower-limb robot: A pilot study publication-title: Int. J. Precis. Eng. Man. – volume: 19 year: 2019 ident: b58 article-title: Effect of lower extremity exoskeleton robot improving walking function and activity in patients with complete spinal cord injury publication-title: J. Mech. Med. Biol. – volume: 19 start-page: 1 year: 2019 end-page: 19 ident: b100 article-title: Development of a single leg Knee exoskeleton and sensing Knee center of rotation change for intention detection publication-title: Sensors – volume: 21 start-page: 1441 year: 2007 end-page: 1469 ident: b13 article-title: Intention-based walking support for paraplegia patients with robot suit HAL publication-title: Adv. Robot. – volume: 13 start-page: 775 year: 2020 end-page: 793 ident: b22 article-title: Development of active lower limb robotic-based orthosis and exoskeleton devices: A systematic review publication-title: Int. J. Soc. Robot. – volume: 50 start-page: 3545 year: 2019 end-page: 3552 ident: b85 article-title: Training for walking efficiency with a wearable hip-assist robot in patients with stroke: A pilot randomized controlled trial publication-title: Stroke – volume: 53 start-page: 1263 year: 2010 end-page: 1275 ident: b6 article-title: Effects of a lower-body exoskeleton device on metabolic cost and gait biomechanics during load carriage publication-title: Ergonomics – volume: 6 start-page: 1 year: 2020 end-page: 9 ident: b42 article-title: Hybrid assistive limb improves restricted hip extension after total hip arthroplasty publication-title: Assist. Technol. – volume: 12 start-page: 54 year: 2015 ident: b65 article-title: The H2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study publication-title: J. Neuroeng. Rehabil. – volume: 27 start-page: 2305 year: 2019 end-page: 2314 ident: b78 article-title: Phase-synchronized assistive torque control for the correction of kinematic anomalies in the gait cycle publication-title: IEEE T. Neur. Sys. Reh. – volume: 28 start-page: 1573 year: 2020 end-page: 1583 ident: b120 article-title: Performance evaluation of lower limb exoskeletons: A systematic review publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 17 start-page: 60 year: 2020 ident: b53 article-title: A new lower limb portable exoskeleton for gait assistance in neurological patients: a proof of concept study publication-title: J. Neuroeng. Rehabil. – volume: 9 start-page: 1 issue: 5 year: 2019 ident: 10.1016/j.robot.2022.104308_b111 article-title: The exoskeleton balance assistance control strategy based on single step balance assessment publication-title: Appl. Sci-Basel – volume: 7 year: 2017 ident: 10.1016/j.robot.2022.104308_b124 article-title: State of the art: Bipedal robots for lower limb rehabilitation publication-title: Appl. Sci. doi: 10.3390/app7111182 – volume: 28 start-page: 1573 year: 2020 ident: 10.1016/j.robot.2022.104308_b120 article-title: Performance evaluation of lower limb exoskeletons: A systematic review publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2020.2989481 – volume: 48 start-page: 25 issue: 8 year: 2011 ident: 10.1016/j.robot.2022.104308_b7 article-title: Raiding iron man’s closet [geek life] publication-title: IEEE Spectr. doi: 10.1109/MSPEC.2011.5960158 – volume: 46 start-page: 419 year: 2014 ident: 10.1016/j.robot.2022.104308_b8 article-title: Comparison of Knee and Ankle dynamometry between NASA’s X1 exoskeleton and biodex system 4. publication-title: Med. Sci. Sports Exercise doi: 10.1249/01.mss.0000494432.32096.5e – volume: 21 start-page: 723 issue: 5 year: 2020 ident: 10.1016/j.robot.2022.104308_b83 article-title: An untethered cable-driven ankle exoskeleton with plantarflexion-dorsiflexion bidirectional movement assistance publication-title: Front. Inform. Tech. El. doi: 10.1631/FITEE.1900455 – volume: 6 start-page: 319 issue: 4 year: 2009 ident: 10.1016/j.robot.2022.104308_b16 article-title: Balancing control of AIT leg exoskeleton using ZMP based FLC publication-title: Int. J. Adv. Robot. Syst. doi: 10.5772/7250 – volume: 91 start-page: 911 issue: 11 year: 2012 ident: 10.1016/j.robot.2022.104308_b15 article-title: The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury publication-title: Am. J. Phys. Med. Rehab. doi: 10.1097/PHM.0b013e318269d9a3 – volume: 11 start-page: 1 year: 2020 ident: 10.1016/j.robot.2022.104308_b70 article-title: Gait training using a wearable robotic device for non-traumatic spinal cord injury: A case report publication-title: Geriatr. Orthop. Surg. – volume: 44 start-page: 352 issue: 6 year: 2006 ident: 10.1016/j.robot.2022.104308_b116 article-title: Improving walking assessment in subjects with an incomplete spinal cord injury: responsiveness publication-title: Spinal Cord doi: 10.1038/sj.sc.3101853 – volume: 18 start-page: 22 year: 2021 ident: 10.1016/j.robot.2022.104308_b126 article-title: Systematic review on wearable lower-limb exoskeletons for gait training in neuromuscular impairments publication-title: J. Neuroeng. Rehabil. doi: 10.1186/s12984-021-00815-5 – volume: 11 start-page: 92 year: 2014 ident: 10.1016/j.robot.2022.104308_b40 article-title: Gait training early after stroke with a new exoskeleton–the hybrid assistive limb: a study of safety and feasibility publication-title: J. Neuroeng. Rehabil. doi: 10.1186/1743-0003-11-92 – volume: 16 start-page: 360 issue: 4 year: 2008 ident: 10.1016/j.robot.2022.104308_b80 article-title: The effects on kinematics and muscle activity of walking in a robotic gait trainer during zero-force control publication-title: IEEE T. Neur. Sys. Reh. doi: 10.1109/TNSRE.2008.925074 – ident: 10.1016/j.robot.2022.104308_b93 doi: 10.1109/ICORR.2017.8009248 – volume: 35 start-page: 96 issue: 2 year: 2012 ident: 10.1016/j.robot.2022.104308_b45 article-title: Safety and tolerance of the ReWalk exoskeleton suit for ambulation by people with complete spinal cord injury: A pilot study publication-title: J. Spinal Cord Med. doi: 10.1179/2045772312Y.0000000003 – start-page: 965 year: 2013 ident: 10.1016/j.robot.2022.104308_b118 article-title: Actively controlled lateral gait assistance in a lower limb exoskeleton – start-page: 4911 year: 2011 ident: 10.1016/j.robot.2022.104308_b12 article-title: The development and testing of a human machine interface for a mobile medical exoskeleton – volume: 46 start-page: 608 issue: 5 year: 2019 ident: 10.1016/j.robot.2022.104308_b109 article-title: A rehabilitation gait for the balance of human and lower extremity exoskeleton system based on the transfer of gravity center publication-title: Ind. Robot. doi: 10.1108/IR-07-2018-0150 – volume: 46 start-page: 290 issue: 2 year: 2019 ident: 10.1016/j.robot.2022.104308_b99 article-title: Design and fabrication of a lower limb exoskeleton to assist in stair ascending publication-title: Ind. Robot. doi: 10.1108/IR-09-2018-0199 – volume: 14 start-page: 31 year: 2020 ident: 10.1016/j.robot.2022.104308_b112 article-title: Pneumatic quasi-passive actuation for soft assistive lower limbs exoskeleton publication-title: Front. Neurorobotics doi: 10.3389/fnbot.2020.00031 – volume: 150 year: 2020 ident: 10.1016/j.robot.2022.104308_b49 article-title: Design of a passive lower limb exoskeleton for walking assistance with gravity compensation publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2020.103840 – volume: 50 start-page: 3545 issue: 12 year: 2019 ident: 10.1016/j.robot.2022.104308_b85 article-title: Training for walking efficiency with a wearable hip-assist robot in patients with stroke: A pilot randomized controlled trial publication-title: Stroke doi: 10.1161/STROKEAHA.119.025950 – start-page: 1 year: 2014 ident: 10.1016/j.robot.2022.104308_b24 article-title: Toward exoskeleton control based on steady state visual evoked potentials – volume: 11 start-page: 428 issue: 4 year: 2006 ident: 10.1016/j.robot.2022.104308_b28 article-title: Design and control of an exoskeleton for the elderly and patients publication-title: IEEE/ASME T. Mech. doi: 10.1109/TMECH.2006.878550 – volume: 110 start-page: 73 year: 2018 ident: 10.1016/j.robot.2022.104308_b37 article-title: Hybrid assistive limb exoskeleton HAL in the rehabilitation of chronic spinal cord injury: Proof of concept. the results in 21 patients publication-title: World Neurosurg. doi: 10.1016/j.wneu.2017.10.080 – volume: 68 start-page: 101 year: 2019 ident: 10.1016/j.robot.2022.104308_b43 article-title: Feasibility and safety of robot suit HAL treatment for adolescents and adults with cerebral palsy publication-title: J. Clin. Neurosci. doi: 10.1016/j.jocn.2019.07.026 – volume: 15 start-page: 410 issue: 3 year: 2007 ident: 10.1016/j.robot.2022.104308_b46 article-title: Assessment of motion of a swing leg and gait rehabilitation with a gravity balancing exoskeleton publication-title: IEEE T. Neur. Sys. Reh. doi: 10.1109/TNSRE.2007.903930 – volume: 22 year: 2022 ident: 10.1016/j.robot.2022.104308_b125 article-title: Application of wearable sensors in actuation and control of powered ankle exoskeletons: A comprehensive review publication-title: Sensors (Basel) doi: 10.3390/s22062244 – volume: 15 issue: 18 year: 2018 ident: 10.1016/j.robot.2022.104308_b86 article-title: Development of VariLeg; an exoskeleton with variable stiffness actuation: first results and user evaluation from the CYBATHLON 2016 publication-title: J. Neuroeng. Rehabil. – start-page: 1099 year: 2005 ident: 10.1016/j.robot.2022.104308_b5 article-title: Development of NTU wearable exoskeleton system for assistive technologies – start-page: 577 year: 2015 ident: 10.1016/j.robot.2022.104308_b10 article-title: Locomotion control strategy of hydraulic lower extremity exoskeleton robot – ident: 10.1016/j.robot.2022.104308_b95 doi: 10.1109/BIOROB.2016.7523698 – volume: 25 start-page: 2722 issue: 6 year: 2020 ident: 10.1016/j.robot.2022.104308_b97 article-title: Real-time locomotion mode recognition and assistive torque control for unilateral Knee exoskeleton on different terrains publication-title: IEEE-ASME T. Mech. doi: 10.1109/TMECH.2020.2990668 – volume: 17 start-page: 135 issue: 1 year: 2020 ident: 10.1016/j.robot.2022.104308_b55 article-title: Activity-based training with the myosuit: a safety and feasibility study across diverse gait disorders publication-title: J. Neuroeng. Rehabil. doi: 10.1186/s12984-020-00765-4 – volume: 73 start-page: 123 year: 2015 ident: 10.1016/j.robot.2022.104308_b87 article-title: A light-weight active orthosis for hip movement assistance publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2014.08.015 – volume: 35 start-page: 316 issue: 2 year: 2012 ident: 10.1016/j.robot.2022.104308_b101 article-title: Artificial balancer–supporting device for postural reflex publication-title: Gait Posture doi: 10.1016/j.gaitpost.2011.10.002 – volume: 94 start-page: 1080 issue: 6 year: 2013 ident: 10.1016/j.robot.2022.104308_b41 article-title: Feasibility of rehabilitation training with a newly developed wearable robot for patients with limited mobility publication-title: Arch. Phys. Med. Rehabil. doi: 10.1016/j.apmr.2012.12.020 – year: 2014 ident: 10.1016/j.robot.2022.104308_b30 – volume: 17 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.robot.2022.104308_b98 article-title: BPNN-based real-time recognition of locomotion modes for an active Pelvis orthosis with different assistive strategies publication-title: Int. J. Hum. Robot. doi: 10.1142/S0219843620500048 – volume: 8 start-page: 66338 year: 2020 ident: 10.1016/j.robot.2022.104308_b72 article-title: Design and preliminary validation of a lower limb exoskeleton with compact and modular actuation publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2985910 – start-page: 1039 year: 2009 ident: 10.1016/j.robot.2022.104308_b17 article-title: WPAL for human power assist during walking using dynamic equation – volume: 7 year: 2020 ident: 10.1016/j.robot.2022.104308_b108 article-title: Bioinspired postural controllers for a locked-ankle exoskeleton targeting complete SCI users publication-title: Front. Robot. Ai doi: 10.3389/frobt.2020.553828 – volume: 29 start-page: 2695 year: 2021 ident: 10.1016/j.robot.2022.104308_b122 article-title: Wearable lower-limb exoskeleton for children with cerebral palsy: A systematic review of mechanical design, actuation type, control strategy, and clinical evaluation publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2021.3136088 – volume: 19 start-page: 1 issue: 18 year: 2019 ident: 10.1016/j.robot.2022.104308_b100 article-title: Development of a single leg Knee exoskeleton and sensing Knee center of rotation change for intention detection publication-title: Sensors doi: 10.3390/s19183960 – start-page: 1 year: 2013 ident: 10.1016/j.robot.2022.104308_b19 article-title: Modeling; design; and optimization of mindwalker series elastic joint – volume: 114 start-page: 66 year: 2019 ident: 10.1016/j.robot.2022.104308_b82 article-title: Automatic virtual impedance adaptation of a knee exoskeleton for personalized walking assistance publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2019.01.013 – volume: 18 start-page: 196 issue: 1 year: 2020 ident: 10.1016/j.robot.2022.104308_b96 article-title: A robotic gait training system with stair-climbing mode based on a unique exoskeleton structure with active foot plates publication-title: Int. J. Control Autom. doi: 10.1007/s12555-019-0260-9 – volume: 14 start-page: 333 issue: 4 year: 2019 ident: 10.1016/j.robot.2022.104308_b74 article-title: Design and analysis of an original powered foot clearance creator mechanism for walking in patients with spinal cord injury publication-title: Disabil. Rehabil-Assi. doi: 10.1080/17483107.2018.1447610 – volume: 47 start-page: 281 issue: 2 year: 2020 ident: 10.1016/j.robot.2022.104308_b106 article-title: A stepping gait trajectory design based on hip height variation of swing leg for the balance of lower extremity exoskeleton publication-title: Ind. Robot. doi: 10.1108/IR-01-2019-0024 – volume: 73 start-page: 16 year: 2015 ident: 10.1016/j.robot.2022.104308_b103 article-title: An adaptive control strategy for postural stability using a wearable robot publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2014.11.014 – ident: 10.1016/j.robot.2022.104308_b121 doi: 10.1109/ICRA.2014.6906934 – volume: 11 year: 2022 ident: 10.1016/j.robot.2022.104308_b127 article-title: A review on the rehabilitation exoskeletons for the lower limbs of the elderly and the disabled publication-title: Electronics – volume: 233 start-page: 1087 issue: 3 year: 2018 ident: 10.1016/j.robot.2022.104308_b52 article-title: Development and control of a robotic lower limb exoskeleton for paraplegic patients publication-title: Proc. Inst. Mech. Eng. Part C doi: 10.1177/0954406218761484 – start-page: 25 year: 2010 ident: 10.1016/j.robot.2022.104308_b3 article-title: HAL: Hybrid assistive limb based on cybernics – volume: 80 start-page: 152 year: 2019 ident: 10.1016/j.robot.2022.104308_b114 article-title: Influence of a passive lower-limb exoskeleton during simulated industrial work tasks on physical load. upper body posture. postural control and discomfort publication-title: Appl. Ergon. doi: 10.1016/j.apergo.2019.05.018 – volume: 42 start-page: 128 issue: 1 year: 2017 ident: 10.1016/j.robot.2022.104308_b36 article-title: Walking ability following hybrid assistive limb treatment for a patient with chronic myelopathy after surgery for cervical ossification of the posterior longitudinal ligament publication-title: J. Spinal Cord Med. doi: 10.1080/10790268.2017.1313932 – volume: 26 start-page: 561 issue: 5–6 year: 2012 ident: 10.1016/j.robot.2022.104308_b88 article-title: Design of an under-actuated exoskeleton system for walking assist while load carrying publication-title: Adv. Robot. doi: 10.1163/156855311X617506 – volume: 53 start-page: 1263 year: 2010 ident: 10.1016/j.robot.2022.104308_b6 article-title: Effects of a lower-body exoskeleton device on metabolic cost and gait biomechanics during load carriage publication-title: Ergonomics doi: 10.1080/00140139.2010.512982 – volume: 28 start-page: 329 issue: 5 year: 2014 ident: 10.1016/j.robot.2022.104308_b20 article-title: Generation and control of adaptive gaits in lower-limb exoskeletons for motion assistance publication-title: Adv. Robot. doi: 10.1080/01691864.2013.867284 – year: 2019 ident: 10.1016/j.robot.2022.104308_b32 article-title: Medical electrical equipment – part 2-78: Particular requirements for basic safety and essential performance of medical robots for rehabilitation, assessment – volume: 36 start-page: 125 issue: 1 year: 2012 ident: 10.1016/j.robot.2022.104308_b50 article-title: Design and simulation of a new powered gait orthosis for paraplegic patients publication-title: Prosthet. Orthot. Int. doi: 10.1177/0309364611431481 – volume: 55 start-page: 1 issue: 3 year: 2019 ident: 10.1016/j.robot.2022.104308_b76 article-title: Gait training using the honda walking assistive devicea (R) in a patient who underwent total hip arthroplasty: A single-subject study publication-title: Med. Lith. – volume: 28 start-page: 1984 issue: 9 year: 2020 ident: 10.1016/j.robot.2022.104308_b77 article-title: Gait adaptation using a cable-driven active leg exoskeleton (c-ALEX) with post-stroke participants publication-title: IEEE T. Neur. Sys. Reh. doi: 10.1109/TNSRE.2020.3009317 – volume: 13 start-page: 775 year: 2020 ident: 10.1016/j.robot.2022.104308_b22 article-title: Development of active lower limb robotic-based orthosis and exoskeleton devices: A systematic review publication-title: Int. J. Soc. Robot. doi: 10.1007/s12369-020-00662-9 – volume: 23 start-page: 441 issue: 3 year: 2015 ident: 10.1016/j.robot.2022.104308_b66 article-title: An assistive control approach for a lower-limb exoskeleton to facilitate recovery of walking following stroke publication-title: IEEE T. Neur. Sys. Reh. doi: 10.1109/TNSRE.2014.2346193 – volume: 52 start-page: 1 issue: 9 year: 2020 ident: 10.1016/j.robot.2022.104308_b71 article-title: Future effects of electromechanically assisted gait trainer (EXOWALK) in patients with chronic stroke: A randomized controlled trial publication-title: J. Rehabil. Med. – ident: 10.1016/j.robot.2022.104308_b47 doi: 10.1115/DETC2017-67599 – volume: 12 start-page: 54 issue: 1 year: 2015 ident: 10.1016/j.robot.2022.104308_b65 article-title: The H2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study publication-title: J. Neuroeng. Rehabil. doi: 10.1186/s12984-015-0048-y – volume: 14 start-page: 60 year: 2017 ident: 10.1016/j.robot.2022.104308_b63 article-title: Results of the first interim analysis of the RAPPER II trial in patients with spinal cord injury: ambulation and functional exercise programs in the REX powered walking aid publication-title: J. Neuroeng. Rehabil. doi: 10.1186/s12984-017-0274-6 – volume: 58 start-page: 787 year: 2020 ident: 10.1016/j.robot.2022.104308_b56 article-title: The safety and feasibility of a new rehabilitation robotic exoskeleton for assisting individuals with lower extremity motor complete lesions following spinal cord injury (SCI): an observational study publication-title: Spinal Cord doi: 10.1038/s41393-020-0423-9 – volume: 41 start-page: 226 issue: 5 year: 2019 ident: 10.1016/j.robot.2022.104308_b89 article-title: Biomimetic compliant lower limb exoskeleton (BioComEx) and its experimental evaluation publication-title: J. Braz. Soc. Mech. Sci. doi: 10.1007/s40430-019-1729-4 – volume: 18 start-page: 114 issue: 1 year: 2020 ident: 10.1016/j.robot.2022.104308_b107 article-title: A study on weight support and balance control method for assisting squat movement with a wearable robot publication-title: Angel-Suit. Int. J. Control Autom. doi: 10.1007/s12555-019-0243-x – volume: 91 start-page: 911 issue: 11 year: 2012 ident: 10.1016/j.robot.2022.104308_b44 article-title: The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury publication-title: Am. J. Phys. Med. Rehab. doi: 10.1097/PHM.0b013e318269d9a3 – volume: 15 start-page: 35 year: 2018 ident: 10.1016/j.robot.2022.104308_b60 article-title: Shaping neuroplasticity by using powered exoskeletons in patients with stroke: a randomized clinical trial publication-title: J. Neuroeng. Rehabil. doi: 10.1186/s12984-018-0377-8 – year: 2022 ident: 10.1016/j.robot.2022.104308_b33 – volume: 6 start-page: 1 year: 2020 ident: 10.1016/j.robot.2022.104308_b42 article-title: Hybrid assistive limb improves restricted hip extension after total hip arthroplasty publication-title: Assist. Technol. – volume: 10 start-page: 15600 issue: 1 year: 2020 ident: 10.1016/j.robot.2022.104308_b115 article-title: Exoskeleton home and community use in people with complete spinal cord injury publication-title: Sci. Rep. doi: 10.1038/s41598-020-72397-6 – start-page: 1 year: 2011 ident: 10.1016/j.robot.2022.104308_b18 article-title: Design and evaluation of mina: A robotic orthosis for paraplegics – volume: 38 start-page: 338 issue: 4 year: 2015 ident: 10.1016/j.robot.2022.104308_b102 article-title: Feasibility and efficacy of high-speed gait training with a voluntary driven exoskeleton robot for gait and balance dysfunction in patients with chronic stroke: nonrandomized pilot study with concurrent control publication-title: Int. J. Rehabil. Res. doi: 10.1097/MRR.0000000000000132 – ident: 10.1016/j.robot.2022.104308_b67 doi: 10.1115/DSCC2010-4204 – volume: 18 start-page: 1773 issue: 12 year: 2017 ident: 10.1016/j.robot.2022.104308_b79 article-title: Gait analysis of hemiplegic patients in ambulatory rehabilitation training using a wearable lower-limb robot: A pilot study publication-title: Int. J. Precis. Eng. Man. doi: 10.1007/s12541-017-0206-1 – volume: 73 start-page: 44 year: 2015 ident: 10.1016/j.robot.2022.104308_b69 article-title: Hybrid therapy of walking with kinesis overground robot for persons with incomplete spinal cord injury: A feasibility study publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2014.10.014 – volume: 17 start-page: 60 issue: 1 year: 2020 ident: 10.1016/j.robot.2022.104308_b53 article-title: A new lower limb portable exoskeleton for gait assistance in neurological patients: a proof of concept study publication-title: J. Neuroeng. Rehabil. doi: 10.1186/s12984-020-00690-6 – volume: 95 start-page: 181 year: 2017 ident: 10.1016/j.robot.2022.104308_b92 article-title: Biomechanical design of an agile. electricity-powered lower-limb exoskeleton for weight-bearing assistance publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2017.06.010 – volume: 73 start-page: 68 year: 2015 ident: 10.1016/j.robot.2022.104308_b68 article-title: A generalized control framework of assistive controllers and its application to lower limb exoskeletons publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2014.10.001 – volume: 34 start-page: 2597 issue: 6 year: 2020 ident: 10.1016/j.robot.2022.104308_b110 article-title: Employing variable impedance (stiffness/damping) hybrid actuators on lower limb exoskeleton robots for stable and safe walking trajectory tracking publication-title: J. Mech. Sci. Technol. doi: 10.1007/s12206-020-0534-4 – volume: 24 start-page: 1508 issue: 4 year: 2019 ident: 10.1016/j.robot.2022.104308_b84 article-title: Admittance shaping-based assistive control of SEA-driven robotic hip exoskeleton publication-title: IEEE-ASME T. Mech. doi: 10.1109/TMECH.2019.2916546 – volume: 2018 year: 2018 ident: 10.1016/j.robot.2022.104308_b38 article-title: Feasibility of neurorehabilitation using a hybrid assistive limb for patients who underwent spine surgery publication-title: Appl. Bionics Biomech. doi: 10.1155/2018/7435746 – volume: 13 start-page: 463 issue: 2 year: 2015 ident: 10.1016/j.robot.2022.104308_b90 article-title: Design of an exoskeleton with minimized energy consumption based on using elastic and dissipative elements publication-title: Int. J. Control Autom. doi: 10.1007/s12555-013-0386-0 – volume: 20 start-page: 1 issue: 24 year: 2020 ident: 10.1016/j.robot.2022.104308_b105 article-title: Lower limb exoskeleton gait planning based on crutch and human–machine foot combined center of pressure publication-title: Sensors doi: 10.3390/s20247216 – volume: 133 year: 2020 ident: 10.1016/j.robot.2022.104308_b81 article-title: Fuzzy logic compliance adaptation for an assist-as-needed controller on the gait rehabilitation exoskeleton (GAREX) publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2020.103642 – volume: 15 start-page: 50 year: 2018 ident: 10.1016/j.robot.2022.104308_b104 article-title: Effects of a powered ankle-foot orthosis on perturbed standing balance publication-title: J. Neuroeng. Rehabil. doi: 10.1186/s12984-018-0393-8 – volume: 24 start-page: 78 issue: 1 year: 2018 ident: 10.1016/j.robot.2022.104308_b59 article-title: Initial outcomes from a multicenter study utilizing the indego powered exoskeleton in spinal cord injury publication-title: Top. Spinal Cord Inj. doi: 10.1310/sci17-00014 – volume: 27 start-page: 2305 issue: 11 year: 2019 ident: 10.1016/j.robot.2022.104308_b78 article-title: Phase-synchronized assistive torque control for the correction of kinematic anomalies in the gait cycle publication-title: IEEE T. Neur. Sys. Reh. doi: 10.1109/TNSRE.2019.2944665 – volume: 17 start-page: 2 issue: 1 year: 2009 ident: 10.1016/j.robot.2022.104308_b27 article-title: Robot assisted gait training with active leg exoskeleton (ALEX) publication-title: IEEE T. Neur. Sys. Reh. doi: 10.1109/TNSRE.2008.2008280 – volume: 25 start-page: 650 issue: 6 year: 2017 ident: 10.1016/j.robot.2022.104308_b51 article-title: A robotic exoskeleton for treatment of crouch gait in children with cerebral palsy: Design and initial application publication-title: IEEE T. Neur. Sys. Reh. doi: 10.1109/TNSRE.2016.2595501 – volume: 235 start-page: 530 year: 2021 ident: 10.1016/j.robot.2022.104308_b123 article-title: Preliminary design and development of a low-cost lower-limb exoskeleton system for paediatric rehabilitation publication-title: Proc. Inst. Mech. Eng. H. doi: 10.1177/0954411921994940 – volume: 12 start-page: 197 issue: 2 year: 2016 ident: 10.1016/j.robot.2022.104308_b39 article-title: Gait training of subacute stroke patients using a hybrid assistive limb: a pilot study publication-title: Disabil. Rehabil. Assist. Technol. doi: 10.3109/17483107.2015.1129455 – volume: 14 start-page: 48 year: 2017 ident: 10.1016/j.robot.2022.104308_b62 article-title: A muscle-driven approach to restore stepping with an exoskeleton for individuals with paraplegia publication-title: J. Neuroeng. Rehabil. doi: 10.1186/s12984-017-0258-6 – start-page: 311 year: 2019 ident: 10.1016/j.robot.2022.104308_b128 article-title: 11 - Robotics – year: 2020 ident: 10.1016/j.robot.2022.104308_b25 – volume: 19 issue: 8 year: 2019 ident: 10.1016/j.robot.2022.104308_b58 article-title: Effect of lower extremity exoskeleton robot improving walking function and activity in patients with complete spinal cord injury publication-title: J. Mech. Med. Biol. doi: 10.1142/S0219519419400608 – volume: 49 start-page: 2899 issue: 13 year: 2016 ident: 10.1016/j.robot.2022.104308_b94 article-title: Stair ascent and descent biomechanical adaptations while using a custom ankle-foot orthosis publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2016.06.035 – volume: 21 start-page: 1441 year: 2007 ident: 10.1016/j.robot.2022.104308_b13 article-title: Intention-based walking support for paraplegia patients with robot suit HAL publication-title: Adv. Robot. doi: 10.1163/156855307781746061 – volume: 4 start-page: 2547 issue: 3 year: 2019 ident: 10.1016/j.robot.2022.104308_b73 article-title: A soft wearable robotic ankle-foot-orthosis for post-stroke patients publication-title: IEEE Robot. Autom. Let. doi: 10.1109/LRA.2019.2908491 – volume: 2011 start-page: 1 year: 2011 ident: 10.1016/j.robot.2022.104308_b119 article-title: Mina: A sensorimotor robotic orthosis for mobility assistance publication-title: J. Robot. doi: 10.1155/2011/284352 – volume: 16 start-page: 145 issue: 1 year: 2019 ident: 10.1016/j.robot.2022.104308_b113 article-title: Retraining walking over ground in a powered exoskeleton after spinal cord injury: a prospective cohort study to examine functional gains and neuroplasticity publication-title: J. Neuroeng. Rehabil. doi: 10.1186/s12984-019-0585-x – volume: 56 start-page: 106 issue: 2 year: 2017 ident: 10.1016/j.robot.2022.104308_b61 article-title: Gait training after spinal cord injury: safety. feasibility and gait function following 8 weeks of training with the exoskeletons from ekso bionics publication-title: Spinal Cord doi: 10.1038/s41393-017-0013-7 – volume: 13 start-page: 259 year: 2019 ident: 10.1016/j.robot.2022.104308_b35 article-title: A randomized and controlled crossover study investigating the improvement of walking and posture functions in chronic stroke patients using HAL exoskeleton-the HALESTRO study (HAL-exoskeleton stroke study) publication-title: Front. Neurosci. doi: 10.3389/fnins.2019.00259 – volume: 100 start-page: 26 issue: 1 year: 2019 ident: 10.1016/j.robot.2022.104308_b57 article-title: Effects of electromechanical exoskeleton-assisted gait training on walking ability of stroke patients: A randomized controlled trial publication-title: Arch. Phys. Med. Rehabil. doi: 10.1016/j.apmr.2018.06.020 – volume: 5 start-page: 26 year: 2016 ident: 10.1016/j.robot.2022.104308_b29 article-title: Recent developments and challenges of lower extremity exoskeletons publication-title: J. Orthop. Transl. – volume: 7 start-page: 33809 year: 2019 ident: 10.1016/j.robot.2022.104308_b21 article-title: Reference joint trajectories generation of CUHK-EXO exoskeleton for system balance in walking assistance publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2904296 – ident: 10.1016/j.robot.2022.104308_b9 doi: 10.4028/www.scientific.net/AMM.598.546 – volume: 21 start-page: 34 year: 2014 ident: 10.1016/j.robot.2022.104308_b11 article-title: The body extender: A full-body exoskeleton for the transport and handling of heavy loads publication-title: IEEE Robot. Autom. Mag. doi: 10.1109/MRA.2014.2360287 – year: 1971 ident: 10.1016/j.robot.2022.104308_b1 – year: 2020 ident: 10.1016/j.robot.2022.104308_b26 – volume: 9 start-page: 138 issue: 4 year: 2020 ident: 10.1016/j.robot.2022.104308_b48 article-title: Design and evaluation of a pediatric lower-limb exoskeleton joint actuator publication-title: Actuators doi: 10.3390/act9040138 – year: 2021 ident: 10.1016/j.robot.2022.104308_b34 – volume: 13 start-page: 43 issue: 1 year: 2016 ident: 10.1016/j.robot.2022.104308_b91 article-title: A biologically-inspired multi-joint soft exosuit that can reduce the energy cost of loaded walking publication-title: J. Neuroeng. Rehabil. doi: 10.1186/s12984-016-0150-9 – volume: 4 start-page: 278 issue: 3 year: 2020 ident: 10.1016/j.robot.2022.104308_b117 article-title: Stair-ascent strategies and performance evaluation for a lower limb exoskeleton publication-title: Int. J. Intell. Robot. doi: 10.1007/s41315-020-00123-6 – year: 2019 ident: 10.1016/j.robot.2022.104308_b31 – ident: 10.1016/j.robot.2022.104308_b2 doi: 10.1109/IROS.2005.1545453 – volume: 101 start-page: 113 issue: 1 year: 2019 ident: 10.1016/j.robot.2022.104308_b54 article-title: The safety and feasibility of exoskeletal assisted walking in acute rehabilitation following spinal cord injury publication-title: Arch. Phys. Med. Rehabil. doi: 10.1016/j.apmr.2019.09.005 – start-page: 5345 year: 2015 ident: 10.1016/j.robot.2022.104308_b4 article-title: Development of a lower extremity exoskeleton robot with a quasi-anthropomorphic design approach for load carriage – start-page: 67 year: 2003 ident: 10.1016/j.robot.2022.104308_b14 article-title: Power assist method for HAL-3 estimating operator’s intention based on motion information – volume: 103 start-page: 51 year: 2016 ident: 10.1016/j.robot.2022.104308_b64 article-title: Mechanical design and evaluation of a compact portable knee-ankle-foot robot for gait rehabilitation publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2016.04.012 – volume: 24 start-page: 455 issue: 4 year: 2016 ident: 10.1016/j.robot.2022.104308_b23 article-title: An approach for the cooperative control of FES with a powered exoskeleton during level walking for persons with paraplegia publication-title: IEEE T. Neur. Sys. Reh. doi: 10.1109/TNSRE.2015.2421052 – volume: 39 start-page: 992 issue: 4 year: 2019 ident: 10.1016/j.robot.2022.104308_b75 article-title: Development and testing of a passive walking assist exoskeleton publication-title: Biocybern. Biomed. Eng. doi: 10.1016/j.bbe.2019.01.002 |
SSID | ssj0003573 |
Score | 2.4498818 |
Snippet | Wearable lower limb exoskeleton robots (WLLER) have broad development prospects in the military, industrial and medical fields. The intelligent device comes... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 104308 |
SubjectTerms | Performance indicator Safety Test Wearable lower limb exoskeleton robot |
Title | Evaluation of safety-related performance of wearable lower limb exoskeleton robot (WLLER): A systematic review |
URI | https://dx.doi.org/10.1016/j.robot.2022.104308 |
Volume | 160 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4gXvRgfEZ8kD140MRK7W7bXW-EQFDQg4_Arem-EhQpAYx68be72wdiYjh4atruJNvZ6XyTzMw3ACfSjS-pCrCjpW9HmGHmxFxqJ-SYKEJkKFLGm9u7oP1Ebvp-vwSNohfGllXmvj_z6am3zp_Ucm3WxoNB7cFlBp5smsyWBbGwvwKrHmaBX4bV-nWnfTd3yNjPEs1mvWMFCvKhtMxrkvDE1lR6nk13Yjtm8i-AWgCd1iZs5NEiqmcb2oKSGm3D-gKH4A6MmnO-bpRoNI21mn06aYuKkmj80xdg374bu7a9Umhoh6Oh4eCVI_WRTF8M-JggEKXbRKe9brd5f3aF6uiH6BllTS678NhqPjbaTj5EwREGnWaODATDlFNqDktxaX5QLASWVBNmnKRPTbyksa9iqijWXiwD4hLhas0EJpJQvAflUTJS-4CU8QUqFNz1mCTcRH5UmlvClSuZS3RYAa9QXCRygnE752IYFZVkz1H6GZHVdpRpuwLnc6Fxxq-xfHlQnEj0y0wigwDLBA_-K3gIa3bCfFaofQTl2eRNHZs4ZMarsHLxdVnNrc1eO_e9zjeuhd_X |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGYAB8RTl6YEBJExD7CQOW1UVFUg7QBHdovglFUpStUHAwm_HzqMtEurAmOROcs7nu5P83XcAnAoruqLSxUgJx4wwwz6KmFDIY5hIQoTHM8abTtdtP5G7vtOvgGbZC2NglUXsz2N6Fq2LN_XCmvXRYFB_tHydnsw1mYEF-V5_CSwTB3sG13f5PcN5YCe_ZtbSyIiX1EMZyGucsMQgKm3bXHZiM2Tyr_Q0l3JuNsB6USvCRr6cTVCR8RZYm2MQ3AZxa8rWDRMFJ5GS6RfKGlSkgKNZV4D5-qG92nRKwaEZjQaHgzcG5WcyedWpR5eAMFsmPHsOgtbD-TVswBnNM8xbXHZA76bVa7ZRMUIBcZ2bUiRc7mPKKNVbJZnQxxNzjgVVxNch0qG6WlLYkRGVFCs7Ei6xCLeU8jkmglC8C6pxEss9AKWOBNLjzLJ9QZiu-6jQj4RJS_gWUV4N2KXhQl7Qi5spF8OwxJG9hNlvhMbaYW7tGriYKo1ydo3F4m65I-EvJwl1_F-kuP9fxROw0u51gjC47d4fgFUzaz6HbB-Cajp-l0e6IknZceZxP5dN3v8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+safety-related+performance+of+wearable+lower+limb+exoskeleton+robot+%28WLLER%29%3A+A+systematic+review&rft.jtitle=Robotics+and+autonomous+systems&rft.au=Wang%2C+Duojin&rft.au=Gu%2C+Xiaoping&rft.au=Li%2C+Wenzhuo&rft.au=Jin%2C+Yaoxiang&rft.date=2023-02-01&rft.pub=Elsevier+B.V&rft.issn=0921-8890&rft.eissn=1872-793X&rft.volume=160&rft_id=info:doi/10.1016%2Fj.robot.2022.104308&rft.externalDocID=S092188902200197X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-8890&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-8890&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-8890&client=summon |