Purine nucleosides and nucleotides stimulate proliferation of a wide range of cell types
Presumptive astrocytes isolated from 10-day white Leghorn chick embryos, Factor VIII-positive human brain capillary endothelial cells, meningeal fibroblasts from 10-day chick embryos, Swiss mouse 3T3 cells, and human astrocytoma cell lines, SKMG-1 and U373, were rendered quiescent when placed in cul...
Saved in:
Published in | In vitro cellular & developmental biology Vol. 28A; no. 7-8; p. 529 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.07.1992
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Abstract | Presumptive astrocytes isolated from 10-day white Leghorn chick embryos, Factor VIII-positive human brain capillary endothelial cells, meningeal fibroblasts from 10-day chick embryos, Swiss mouse 3T3 cells, and human astrocytoma cell lines, SKMG-1 and U373, were rendered quiescent when placed in culture medium that contained 0 or 0.2% serum for 48 h; their proliferation was markedly reduced and they incorporated [3H]thymidine at a low rate. [3H]Thymidine incorporation and cell proliferation were induced in all types of cells by addition of guanosine, GMP, GDP, GTP, and to a lesser extent, adenosine, AMP, ADP or ATP to the culture medium. The stimulation of proliferation by adenosine and guanosine was abolished by 1,3-dipropyl-7-methylxanthine (DPMX), an adenosine A2 receptor antagonist, but not by 1,3-dipropyl-8-(2-amino-4-chorophenyl)xanthine (PACPX), an A1 antagonist. Stimulation of proliferation by the nucleotides was not abolished by either DPMX or PACPX. The P2 receptor agonists, alpha, beta-methyleneATP and 2-methylthioATP, also stimulated [3H]thymidine incorporation into the cells with peak activity at approximately 3.5 and 0.03 nM, respectively. These data imply that adenosine and guanosine stimulate proliferation of these cell types through activation of an adenosine A2 receptor, and the stimulation of cell proliferation by the nucleotides may be due to the activation of purinergic P2y receptors. As the primary cultures grew older their growth rate slowed. The capacity of the purine nucleosides and nucleotides to stimulate their growth diminished concomitantly. The 3T3 cells showed neither decreased growth with increased passages nor reduced response to the purines. In contrast, although the doubling time of the immortalized human astrocytoma cell lines SKMG-1 and U373 remained constant, the responsiveness to purinergic stimulation of the U373 cells decreased but that of the SKMG-1 did not. These data are compatible with a decrease in the number, or the ligand-binding affinity of the purinergic receptors, or a decreased coupling of purinergic receptors to intracellular mediators in primary cells aged in tissue culture. |
---|---|
AbstractList | Presumptive astrocytes isolated from 10-day white Leghorn chick embryos, Factor VIII-positive human brain capillary endothelial cells, meningeal fibroblasts from 10-day chick embryos, Swiss mouse 3T3 cells, and human astrocytoma cell lines, SKMG-1 and U373, were rendered quiescent when placed in culture medium that contained 0 or 0.2% serum for 48 h; their proliferation was markedly reduced and they incorporated [3H]thymidine at a low rate. [3H]Thymidine incorporation and cell proliferation were induced in all types of cells by addition of guanosine, GMP, GDP, GTP, and to a lesser extent, adenosine, AMP, ADP or ATP to the culture medium. The stimulation of proliferation by adenosine and guanosine was abolished by 1,3-dipropyl-7-methylxanthine (DPMX), an adenosine A2 receptor antagonist, but not by 1,3-dipropyl-8-(2-amino-4-chorophenyl)xanthine (PACPX), an A1 antagonist. Stimulation of proliferation by the nucleotides was not abolished by either DPMX or PACPX. The P2 receptor agonists, alpha, beta-methyleneATP and 2-methylthioATP, also stimulated [3H]thymidine incorporation into the cells with peak activity at approximately 3.5 and 0.03 nM, respectively. These data imply that adenosine and guanosine stimulate proliferation of these cell types through activation of an adenosine A2 receptor, and the stimulation of cell proliferation by the nucleotides may be due to the activation of purinergic P2y receptors. As the primary cultures grew older their growth rate slowed. The capacity of the purine nucleosides and nucleotides to stimulate their growth diminished concomitantly. The 3T3 cells showed neither decreased growth with increased passages nor reduced response to the purines. In contrast, although the doubling time of the immortalized human astrocytoma cell lines SKMG-1 and U373 remained constant, the responsiveness to purinergic stimulation of the U373 cells decreased but that of the SKMG-1 did not. These data are compatible with a decrease in the number, or the ligand-binding affinity of the purinergic receptors, or a decreased coupling of purinergic receptors to intracellular mediators in primary cells aged in tissue culture. |
Author | DeForge, S Gysbers, J W Costello, P Rathbone, M P Middlemiss, P J Del Maestro, R F |
Author_xml | – sequence: 1 givenname: M P surname: Rathbone fullname: Rathbone, M P organization: Department of Biomedical Sciences (Neurosciences), McMaster University, Hamilton, Ontario, Canada – sequence: 2 givenname: P J surname: Middlemiss fullname: Middlemiss, P J – sequence: 3 givenname: J W surname: Gysbers fullname: Gysbers, J W – sequence: 4 givenname: S surname: DeForge fullname: DeForge, S – sequence: 5 givenname: P surname: Costello fullname: Costello, P – sequence: 6 givenname: R F surname: Del Maestro fullname: Del Maestro, R F |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/1522046$$D View this record in MEDLINE/PubMed |
BookMark | eNotz81KxDAUBeAsRsaZ0Y17IS9QTXLTpF3q4IzCgC4U3A1J741U2rQ0LTJv719Xhw8OB86aLWIXibErKW6kEPb2fieUAS3BLthKFAVkBRh9ztYpfQoBwii1ZEuZKyW0WbH3l2moI_E4VQ11qUZK3EWcPf45jXU7NW4k3g9dUwca3Fh3kXeBO_71U-GDix_064qaho-nntIFOwuuSXQ554a97R5et4_Z4Xn_tL07ZBUIGDMEr1UFCMGA8hrLwqOpPIrCg0eNQUqbo7WWbJk7cAZdqSlYBWh8qbXasOv_3X7yLeGxH-rWDafj_FB9A21gUxQ |
CitedBy_id | crossref_primary_10_1016_j_biocel_2012_06_023 crossref_primary_10_1177_0963689718799040 crossref_primary_10_1046_j_1471_4159_1999_0722074_x crossref_primary_10_1016_j_pharmthera_2007_07_004 crossref_primary_10_1177_112067210401400402 crossref_primary_10_3390_ijms241612820 crossref_primary_10_1111_srt_13466 crossref_primary_10_1016_j_neuroscience_2006_03_074 crossref_primary_10_1080_09546634_2020_1748857 crossref_primary_10_1680_jbibn_20_00038 crossref_primary_10_1007_s11302_006_9022_2 crossref_primary_10_1517_13543784_4_7_637 crossref_primary_10_1002_glia_20002 crossref_primary_10_1016_0091_3057_94_90017_5 crossref_primary_10_1111_ejn_13172 crossref_primary_10_1111_j_1365_2184_2008_00547_x crossref_primary_10_1002_glia_440070207 crossref_primary_10_1002__SICI_1098_1136_199912_28_3_190__AID_GLIA3_3_0_CO_2_0 crossref_primary_10_1113_jphysiol_2005_102194 crossref_primary_10_1016_S0736_5748_00_00084_8 crossref_primary_10_1111_j_1600_0609_1998_tb01019_x crossref_primary_10_3109_10428199709039014 crossref_primary_10_3390_molecules26102976 crossref_primary_10_1002_jcp_1041600303 crossref_primary_10_1111_dth_12299 crossref_primary_10_1007_s00238_024_02209_x crossref_primary_10_1002_art_42288 crossref_primary_10_1016_S0163_7258_03_00084_6 crossref_primary_10_1111_jnc_14937 crossref_primary_10_1002__SICI_1099_0844_199906_17_2_107__AID_CBF815_3_0_CO_2 crossref_primary_10_1074_jbc_274_37_26454 crossref_primary_10_1007_s11302_006_9011_5 crossref_primary_10_1016_j_micron_2007_05_003 crossref_primary_10_1080_15257770802143913 crossref_primary_10_1016_j_neuroscience_2004_06_073 crossref_primary_10_1016_j_rehab_2019_09_010 crossref_primary_10_18632_aging_202962 crossref_primary_10_1111_j_1365_2184_2005_00349_x crossref_primary_10_1016_S0197_0186_99_00162_X crossref_primary_10_1016_j_taap_2010_01_007 crossref_primary_10_1080_15257770_2016_1268693 crossref_primary_10_1111_1523_1747_ep12606228 crossref_primary_10_1016_S0009_2797_98_00079_9 crossref_primary_10_1016_S0024_3205_99_00104_6 crossref_primary_10_1111_j_1743_6109_2006_00105_x crossref_primary_10_1007_s11302_006_9021_3 crossref_primary_10_1046_j_1471_4159_2001_00241_x crossref_primary_10_1007_s11302_013_9378_z crossref_primary_10_1002_jnr_21765 crossref_primary_10_1007_s11302_024_09988_9 crossref_primary_10_1016_S0301_472X_01_00622_1 crossref_primary_10_1016_j_npep_2019_102004 crossref_primary_10_1038_372333a0 crossref_primary_10_1007_s10337_013_2507_6 crossref_primary_10_1038_s41416_023_02196_z crossref_primary_10_1016_j_bmc_2003_09_043 crossref_primary_10_1515_bc_2010_106 crossref_primary_10_1016_S0024_3205_03_00547_2 crossref_primary_10_1155_2022_6496773 crossref_primary_10_1016_j_cca_2007_09_001 crossref_primary_10_1016_S0301_0082_99_00017_9 crossref_primary_10_1016_S0303_7207_03_00197_7 crossref_primary_10_1046_j_1523_1747_2000_00145_x crossref_primary_10_1016_0736_5748_95_00083_6 crossref_primary_10_1002__SICI_1098_1136_19990101_25_1_93__AID_GLIA9_3_0_CO_2_N crossref_primary_10_1016_j_jid_2016_07_028 crossref_primary_10_1016_S0022_2143_98_90161_5 crossref_primary_10_1155_2017_7320953 crossref_primary_10_1016_S0024_3205_98_00532_3 crossref_primary_10_1002_ddr_10216 crossref_primary_10_1002_jnr_490380104 crossref_primary_10_1161_CIRCRESAHA_107_150110 crossref_primary_10_1371_journal_pone_0004715 crossref_primary_10_1002_glia_10055 crossref_primary_10_1038_sj_bjp_0704524 |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM |
DOI | 10.1007/BF02634137 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Biology |
ExternalDocumentID | 1522046 |
Genre | Research Support, Non-U.S. Gov't Journal Article Comparative Study |
GroupedDBID | -~X .55 .GJ 28- 29~ 2~F 3O- 40D 40E 53G 5GY 5RE 95- 95. 95~ AAHKG AAXTN ABBHK ABPLY ABTLG ABXSQ ACGFS ADACV AEEJZ AEUPB AFAZZ AGUYK AHXOZ ALMA_UNASSIGNED_HOLDINGS AQVQM ASPBG AVWKF AZFZN BBWZM CBGCD CGR CS3 CUY CVF DATOO DOOOF ECM EIF F5P GTFYD HTVGU IPSME JAAYA JBMMH JBS JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST M4Y MVM N2Q NF0 NPM NU0 QOK RHV RNI ROL RZK SA0 SBY SDM SOJ WH7 WK6 X7M ZGI ~EX |
ID | FETCH-LOGICAL-c303t-d3b42c3d3f632b4d98bd6cbd08b3bd4df1175d777e795a3a6da94ef723d6b9442 |
ISSN | 0883-8364 |
IngestDate | Tue Oct 15 23:07:51 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7-8 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c303t-d3b42c3d3f632b4d98bd6cbd08b3bd4df1175d777e795a3a6da94ef723d6b9442 |
PMID | 1522046 |
ParticipantIDs | pubmed_primary_1522046 |
PublicationCentury | 1900 |
PublicationDate | 1992-07-01 |
PublicationDateYYYYMMDD | 1992-07-01 |
PublicationDate_xml | – month: 07 year: 1992 text: 1992-07-01 day: 01 |
PublicationDecade | 1990 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | In vitro cellular & developmental biology |
PublicationTitleAlternate | In Vitro Cell Dev Biol |
PublicationYear | 1992 |
SSID | ssj0030622 |
Score | 1.6499364 |
Snippet | Presumptive astrocytes isolated from 10-day white Leghorn chick embryos, Factor VIII-positive human brain capillary endothelial cells, meningeal fibroblasts... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 529 |
SubjectTerms | Adenine Nucleotides - pharmacology Adenosine - antagonists & inhibitors Adenosine - pharmacology Animals Astrocytes Cell Division - drug effects Cell Line Cells, Cultured - drug effects Cellular Senescence Chick Embryo Endothelium, Vascular Fibroblasts Guanine Nucleotides - pharmacology Guanosine - antagonists & inhibitors Guanosine - pharmacology Humans Meninges Mice Receptors, Purinergic Xanthines - pharmacology |
Title | Purine nucleosides and nucleotides stimulate proliferation of a wide range of cell types |
URI | https://www.ncbi.nlm.nih.gov/pubmed/1522046 |
Volume | 28A |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFLYKExKXicHQgG3ygVvkKbUd2zkiNsaQijiA1BuKY0ebNBoEAcSu-8f3nu02gbFp4xLVcRq1-T47z5_fD0J2fWnl2BYF494oJsu8ZJVynLnaucKjhR1iqybH6vBMHk2L6Wj0c-C1dNPZD_WPJ-NKnoMqnANcMUr2P5Bd3BROwGfAF46AMBz_CeMTlMp9NsOcxC3W3YwJl2O7C20YwRdYoQvjodrv6MeysBGr7A4uya4wvCB4l6OMh5Ls9dBi_TLLbr91V23oDj6rSBbX-xoBximTU79n1H21bZRKJ30A2SRoIcCrWBug35D6fH9tU6m2o2yh-Xz0ByjX9_KsS8F6vR9rP4UJZkTMUz6fb7nZGxBLMzOYP4sof_w2r-dzb3Wu8LWrhxcBJpcXAWGwRXgeFc2_dj7KsJ16lsiSNjhVHqPgE1_msKCKG1HzP_Iww236NatkJd3j0eIkGCmna-RlWl3QvUiVV2TkZ-tkJdYbvd8g00gYOiAMBcLQAWHogjD0AWFo29CKImFoIAy2kRE0EOY1OTv4dLp_yFJpDVaDzdIxJ6zktXCiUYJb6Upjnaqty40V1knXYAZXp7X2uiwqAcO3KqVvNBdO2VJKvkmWZ0CkN4Rq-KqphKp1w6WSeYU56Bo_9sXYNqUwW2QzPpLzy5g_5Tw9q-0_deyQ1Z5Mb8mLBoarfwe2X2ffB3R-AaKXWbE |
link.rule.ids | 783 |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Purine+nucleosides+and+nucleotides+stimulate+proliferation+of+a+wide+range+of+cell+types&rft.jtitle=In+vitro+cellular+%26+developmental+biology&rft.au=Rathbone%2C+M+P&rft.au=Middlemiss%2C+P+J&rft.au=Gysbers%2C+J+W&rft.au=DeForge%2C+S&rft.date=1992-07-01&rft.issn=0883-8364&rft.volume=28A&rft.issue=7-8&rft.spage=529&rft_id=info:doi/10.1007%2FBF02634137&rft_id=info%3Apmid%2F1522046&rft_id=info%3Apmid%2F1522046&rft.externalDocID=1522046 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0883-8364&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0883-8364&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0883-8364&client=summon |