A data-driven method to construct prediction model of solar stills
The interdisciplinary field between solar desalination and machine learning is the subject of a cutting-edge study. Generally, the studies treat data acquisition and model construction as independent processes, leading to problems such as insufficient dataset size or resource wastage. This study pro...
Saved in:
Published in | Desalination Vol. 587; p. 117946 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.10.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0011-9164 |
DOI | 10.1016/j.desal.2024.117946 |
Cover
Loading…
Abstract | The interdisciplinary field between solar desalination and machine learning is the subject of a cutting-edge study. Generally, the studies treat data acquisition and model construction as independent processes, leading to problems such as insufficient dataset size or resource wastage. This study proposes a data-driven method that integrates data acquisition with model construction processes. By using the Bayesian optimization algorithm, the method accelerates the convergence of model accuracy. By comparing the results of 100 pairs of simulations, it is found that the models using the data-driven method are more accurate than traditional expert-driven methods in 70 % of compared results. Additionally, when it makes a model with the mean absolute percentage error as 5 %, the proposed data-driven method requires 220 additional data on average, compared to 258 with the traditional expert-driven method, representing a 14.7 % reduction. This work offers new ways and a broad application of the interdiscipline between solar desalination and machine learning.
•A new data-driven method is proposed which is superior to the expert-driven method.•Data-driven method integrates data acquisition and model construction in real-time.•The data-driven method is more effective in 70 % of the comparisons.•A 14.7 % reduction in required data size can be achieved. |
---|---|
AbstractList | The interdisciplinary field between solar desalination and machine learning is the subject of a cutting-edge study. Generally, the studies treat data acquisition and model construction as independent processes, leading to problems such as insufficient dataset size or resource wastage. This study proposes a data-driven method that integrates data acquisition with model construction processes. By using the Bayesian optimization algorithm, the method accelerates the convergence of model accuracy. By comparing the results of 100 pairs of simulations, it is found that the models using the data-driven method are more accurate than traditional expert-driven methods in 70 % of compared results. Additionally, when it makes a model with the mean absolute percentage error as 5 %, the proposed data-driven method requires 220 additional data on average, compared to 258 with the traditional expert-driven method, representing a 14.7 % reduction. This work offers new ways and a broad application of the interdiscipline between solar desalination and machine learning.
•A new data-driven method is proposed which is superior to the expert-driven method.•Data-driven method integrates data acquisition and model construction in real-time.•The data-driven method is more effective in 70 % of the comparisons.•A 14.7 % reduction in required data size can be achieved. |
ArticleNumber | 117946 |
Author | Du, Juxin Peng, Guilong Yang, Nuo Sun, Senshan |
Author_xml | – sequence: 1 givenname: Senshan surname: Sun fullname: Sun, Senshan organization: School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China – sequence: 2 givenname: Juxin surname: Du fullname: Du, Juxin organization: School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China – sequence: 3 givenname: Guilong surname: Peng fullname: Peng, Guilong email: 4195@hnsyu.edu.cn organization: School of Mechanical and Energy Engineering, Shaoyang University, Shaoyang 422000, China – sequence: 4 givenname: Nuo surname: Yang fullname: Yang, Nuo email: nuo@nudt.edu.cn organization: Department of Physics, College of Science, National University of Defense Technology, Changsha 410073, China |
BookMark | eNqF0MFOAyEQgGEONbGtPoEXXmBXWHbZcvBQG7UmTbzomdBhiDR0aQCb-PZurScPeiKTyT_Jx4xMhjggITec1ZxxeburLWYT6oY1bc15r1o5IVPGOK8Ul-0lmeW8G8dGCTEl90tqTTGVTf6IA91jeY-WlkghDrmkDyj0kNB6KD6O62gx0OhojsEkmosPIV-RC2dCxuufd07eHh9eV-tq8_L0vFpuKhBMlApsL9RWLpwVnWsW0IFtpO1QtbyR0HHnoGdW9sIK3imDCwkOOwW8N1sjUIk5Eee7kGLOCZ0-JL836VNzpk90vdPfdH2i6zN9rNSvCnwxJ01Jxod_2rtziyPr6DHpDB4HGP8jIRRto_-z_wJm_HrM |
CitedBy_id | crossref_primary_10_1016_j_ijheatmasstransfer_2024_126365 |
Cites_doi | 10.1016/j.scib.2023.05.017 10.1016/j.psep.2020.09.068 10.1109/JPROC.2015.2494218 10.1088/1674-1056/ac989f 10.1038/s41586-018-0337-2 10.1038/s41467-023-42992-y 10.1016/j.enconman.2015.05.060 10.1016/j.applthermaleng.2017.09.073 10.1016/j.renene.2020.08.006 10.1016/j.est.2020.102008 10.1016/j.applthermaleng.2020.116233 10.1038/nature14541 10.1016/j.desal.2007.03.009 10.1109/TR.2021.3070863 10.1016/j.cpc.2020.107206 10.1016/j.applthermaleng.2022.118664 10.1093/nsr/nwad125 10.1016/j.jmat.2017.08.002 10.1016/j.egyai.2021.100123 10.1016/j.desal.2023.116829 10.1016/j.rineng.2024.101800 10.1016/0196-8858(85)90002-8 10.1016/j.solener.2021.11.039 10.1016/j.jmat.2023.05.001 10.1016/j.applthermaleng.2019.113997 |
ContentType | Journal Article |
Copyright | 2024 Elsevier B.V. |
Copyright_xml | – notice: 2024 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.desal.2024.117946 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_desal_2024_117946 S001191642400657X |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABLST ABMAC ABNUV ACDAQ ACGFS ACRLP ADBBV ADEWK ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHJVU AHPOS AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLECG BLXMC CS3 DU5 EFJIC ENUVR EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KCYFY KOM LX7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSG SSJ SST SSZ T5K ~02 ~G- 29F 6TJ AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABJNI ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EBS EJD FEDTE FGOYB HLY HVGLF HZ~ NDZJH R2- SCE SSH WUQ ZY4 ~KM |
ID | FETCH-LOGICAL-c303t-cd739b68fd35f28c5cd26d5e94126c51ffc70d673d3159ae86cfe59c17aba3e93 |
IEDL.DBID | .~1 |
ISSN | 0011-9164 |
IngestDate | Tue Jul 01 02:26:04 EDT 2025 Thu Apr 24 23:01:03 EDT 2025 Sat Aug 17 15:43:59 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Solar stills Process optimization Production predicting Data acquisition Machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c303t-cd739b68fd35f28c5cd26d5e94126c51ffc70d673d3159ae86cfe59c17aba3e93 |
ParticipantIDs | crossref_primary_10_1016_j_desal_2024_117946 crossref_citationtrail_10_1016_j_desal_2024_117946 elsevier_sciencedirect_doi_10_1016_j_desal_2024_117946 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-10-15 |
PublicationDateYYYYMMDD | 2024-10-15 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Desalination |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | C., C., D. (bb0090) 2021; 70 Peng, Xu, Ji, Sun, Yang (bb0045) 2022; 213 He, Zheng, Ma, Wang, Kong, Zhu (bb0080) 2022; 7 Rajak, Krishnamoorthy, Mishra, Kalia, Nakano, Vashishta, A.I.U.S. Argonne National Lab. ANL (bb0120) 2021; 7 Al-harahsheh, Abu-Arabi, Mousa, Alzghoul (bb0040) 2018; 128 Butler, Davies, Cartwright, Isayev, Walsh (bb0130) 2018; 559 Lattemann, Höpner (bb0010) 2008; 220 Essa, Omara, Abdullah, Shanmugan, Panchal, Kabeel, Sathyamurthy, Alawee, Manokar, Elsheikh (bb0030) 2020; 32 Liu, Ma, Yang, Zou, Shi (bb0085) 2023; 51 Zhang, Wang, Chen, Zeng, Zhang, Wang, E (bb0115) 2020; 253 Maddah, Bassyouni, Abdel-Aziz, Zoromba, Al-Hossainy (bb0015) 2020; 162 Nogueira (bb0155) 2014 Mohamed, Hassan (bb0050) 2022; 231 Sharshir, Kandeal, Ismail, Abdelaziz, Kabeel, Yang (bb0025) 2019; 160 Ibrahim, Dincer (bb0020) 2015; 101 Lai, Robbins (bb0150) 1985; 6 Peng, Sharshir (bb0035) 2023; 565 Liu, Zhao, Ju, Shi (bb0125) 2017; 3 U. Nations (bb0005) 2023 Li, Persaud, Choudhary, DeCost, Greenwood, Hattrick-Simpers (bb0105) 2023; 14 Peng, Sun, Qin, Xu, Du, Sharshir, Kandel, Kabeel, Yang (bb0110) 2023; abs/2307.12594 Liu, Zou, Yang, Shi (bb0095) 2022; 50 Liu, Yang, Yu, Liu, Liu, Lin, Li, Ma, Avdeev, Shi (bb0055) 2023; 9 Ghahramani (bb0140) 2015; 521 Gao, Shen, Sun, Peng, Shen, Wang, Kandeal, Luo, Kabeel, Zhang, Bao, Yang (bb0070) 2023; 32 Abdullah, Joseph, Kandeal, Alawee, Peng, Thakur, Sharshir (bb0135) 2024; 21 Shahriari, Swersky, Wang, Adams, de Freitas (bb0145) 2016; 104 Y. Liu, Z. Yang, X. Zou, S. Ma, D. Liu, M. Avdeev, S. Shi, Data quantity governance for machine learning in materials science, NATL SCI REV, 10 (2023) nwad125. Liu, Wang, Yang, Avdeev, Shi (bb0060) 2023; 68 Wang, Kandeal, Swidan, Sharshir, Abdelaziz, Halim, Kabeel, Yang (bb0065) 2021; 184 Elsheikh, Katekar, Muskens, Deshmukh, Elaziz, Dabour (bb0075) 2021; 148 Zhang (10.1016/j.desal.2024.117946_bb0115) 2020; 253 Li (10.1016/j.desal.2024.117946_bb0105) 2023; 14 Maddah (10.1016/j.desal.2024.117946_bb0015) 2020; 162 Liu (10.1016/j.desal.2024.117946_bb0085) 2023; 51 Liu (10.1016/j.desal.2024.117946_bb0055) 2023; 9 Liu (10.1016/j.desal.2024.117946_bb0060) 2023; 68 Liu (10.1016/j.desal.2024.117946_bb0125) 2017; 3 Abdullah (10.1016/j.desal.2024.117946_bb0135) 2024; 21 Peng (10.1016/j.desal.2024.117946_bb0110) 2023; abs/2307.12594 U. Nations (10.1016/j.desal.2024.117946_bb0005) 2023 Liu (10.1016/j.desal.2024.117946_bb0095) 2022; 50 10.1016/j.desal.2024.117946_bb0100 Nogueira (10.1016/j.desal.2024.117946_bb0155) 2014 Peng (10.1016/j.desal.2024.117946_bb0035) 2023; 565 Ghahramani (10.1016/j.desal.2024.117946_bb0140) 2015; 521 Essa (10.1016/j.desal.2024.117946_bb0030) 2020; 32 Lattemann (10.1016/j.desal.2024.117946_bb0010) 2008; 220 C. (10.1016/j.desal.2024.117946_bb0090) 2021; 70 Gao (10.1016/j.desal.2024.117946_bb0070) 2023; 32 Butler (10.1016/j.desal.2024.117946_bb0130) 2018; 559 Mohamed (10.1016/j.desal.2024.117946_bb0050) 2022; 231 Al-harahsheh (10.1016/j.desal.2024.117946_bb0040) 2018; 128 Peng (10.1016/j.desal.2024.117946_bb0045) 2022; 213 Wang (10.1016/j.desal.2024.117946_bb0065) 2021; 184 He (10.1016/j.desal.2024.117946_bb0080) 2022; 7 Elsheikh (10.1016/j.desal.2024.117946_bb0075) 2021; 148 Rajak (10.1016/j.desal.2024.117946_bb0120) 2021; 7 Sharshir (10.1016/j.desal.2024.117946_bb0025) 2019; 160 Shahriari (10.1016/j.desal.2024.117946_bb0145) 2016; 104 Lai (10.1016/j.desal.2024.117946_bb0150) 1985; 6 Ibrahim (10.1016/j.desal.2024.117946_bb0020) 2015; 101 |
References_xml | – volume: 521 start-page: 452 year: 2015 end-page: 459 ident: bb0140 article-title: Probabilistic machine learning and artificial intelligence publication-title: NATURE – volume: 21 year: 2024 ident: bb0135 article-title: Application of machine learning modeling in prediction of solar still performance: a comprehensive survey publication-title: RESULTS ENG – volume: 7 start-page: 1 year: 2021 end-page: 9 ident: bb0120 article-title: Autonomous reinforcement learning agent for chemical vapor deposition synthesis of quantum materials publication-title: npj Comput. Mater. – year: 2023 ident: bb0005 article-title: The United Nations World Water Development Report 2023: Partnerships and Cooperation for Water – volume: 565 year: 2023 ident: bb0035 article-title: Progress and performance of multi-stage solar still – a review publication-title: DESALINATION – volume: 253 year: 2020 ident: bb0115 article-title: DP-GEN: a concurrent learning platform for the generation of reliable deep learning based potential energy models, COMPUT publication-title: PHYS. COMMUN. – volume: 101 start-page: 379 year: 2015 end-page: 392 ident: bb0020 article-title: A solar desalination system: Exergetic performance assessment publication-title: ENERG. CONVERS. MANAGE. – volume: 70 start-page: 831 year: 2021 end-page: 847 ident: bb0090 article-title: Data evaluation and enhancement for quality improvement of machine learning publication-title: IEEE T. RELIAB. – volume: 14 start-page: 7283 year: 2023 ident: bb0105 article-title: Exploiting redundancy in large materials datasets for efficient machine learning with less data publication-title: Nat. Commun. – volume: 68 start-page: 1259 year: 2023 end-page: 1270 ident: bb0060 article-title: Auto-MatRegressor: liberating machine learning alchemists publication-title: Sci. Bull. – volume: 3 start-page: 159 year: 2017 end-page: 177 ident: bb0125 article-title: Materials discovery and design using machine learning publication-title: J. MATERIOMICS – volume: 104 start-page: 148 year: 2016 end-page: 175 ident: bb0145 article-title: Taking the human out of the loop: a review of Bayesian optimization publication-title: P. IEEE – volume: 32 year: 2020 ident: bb0030 article-title: Wall-suspended trays inside stepped distiller with Al2O3/paraffin wax mixture and vapor suction: experimental implementation publication-title: J. ENERGY STORAGE – volume: 162 start-page: 489 year: 2020 end-page: 503 ident: bb0015 article-title: Performance estimation of a mini-passive solar still via machine learning publication-title: RENEW. ENERG. – volume: 160 year: 2019 ident: bb0025 article-title: Augmentation of a pyramid solar still performance using evacuated tubes and nanofluid: experimental approach publication-title: Appl. Therm. Eng. – volume: 51 start-page: 427 year: 2023 end-page: 437 ident: bb0085 article-title: A data quality and quantity governance for machine learning in materials science publication-title: J. Chin. Ceram. Soc. – volume: 7 year: 2022 ident: bb0080 article-title: Artificial intelligence application in a renewable energy-driven desalination system: a critical review publication-title: Energy and AI – volume: abs/2307.12594 year: 2023 ident: bb0110 article-title: Optimized data collection and analysis process for studying solar-thermal desalination by machine learning publication-title: ArXiv – volume: 148 start-page: 273 year: 2021 end-page: 282 ident: bb0075 article-title: Utilization of LSTM neural network for water production forecasting of a stepped solar still with a corrugated absorber plate publication-title: PROCESS SAF. ENVIRON. – volume: 184 year: 2021 ident: bb0065 article-title: Prediction of tubular solar still performance by machine learning integrated with Bayesian optimization algorithm publication-title: Appl. Therm. Eng. – year: 2014 ident: bb0155 article-title: Bayesian Optimization: Open Source Constrained Global Optimization Tool for Python – volume: 9 start-page: 798 year: 2023 end-page: 816 ident: bb0055 article-title: Generative artificial intelligence and its applications in materials science: current situation and future perspectives publication-title: J. MATERIOMICS – volume: 231 start-page: 88 year: 2022 end-page: 103 ident: bb0050 article-title: Investigation the performance of new designed solar still of rhombus shaped based on new model publication-title: Sol. Energy – volume: 220 start-page: 1 year: 2008 end-page: 15 ident: bb0010 article-title: Environmental impact and impact assessment of seawater desalination publication-title: DESALINATION – volume: 32 start-page: 35 year: 2023 end-page: 41 ident: bb0070 article-title: Forecasting solar still performance from conventional weather data variation by machine learning method publication-title: CHINESE PHYS B – volume: 128 start-page: 1030 year: 2018 end-page: 1040 ident: bb0040 article-title: Solar desalination using solar still enhanced by external solar collector and PCM publication-title: Appl. Therm. Eng. – volume: 50 start-page: 863 year: 2022 end-page: 876 ident: bb0095 article-title: Machine learning embedded with materials domain knowledge publication-title: Journal of the Chinese Ceramic Society – volume: 6 start-page: 4 year: 1985 end-page: 22 ident: bb0150 article-title: Asymptotically efficient adaptive allocation rules publication-title: Adv. Appl. Math. – reference: Y. Liu, Z. Yang, X. Zou, S. Ma, D. Liu, M. Avdeev, S. Shi, Data quantity governance for machine learning in materials science, NATL SCI REV, 10 (2023) nwad125. – volume: 559 start-page: 547 year: 2018 end-page: 555 ident: bb0130 article-title: Machine learning for molecular and materials science publication-title: NATURE – volume: 213 year: 2022 ident: bb0045 article-title: A study on the upper limit efficiency of solar still by optimizing the mass transfer publication-title: Appl. Therm. Eng. – volume: abs/2307.12594 year: 2023 ident: 10.1016/j.desal.2024.117946_bb0110 article-title: Optimized data collection and analysis process for studying solar-thermal desalination by machine learning publication-title: ArXiv – volume: 68 start-page: 1259 year: 2023 ident: 10.1016/j.desal.2024.117946_bb0060 article-title: Auto-MatRegressor: liberating machine learning alchemists publication-title: Sci. Bull. doi: 10.1016/j.scib.2023.05.017 – volume: 148 start-page: 273 year: 2021 ident: 10.1016/j.desal.2024.117946_bb0075 article-title: Utilization of LSTM neural network for water production forecasting of a stepped solar still with a corrugated absorber plate publication-title: PROCESS SAF. ENVIRON. doi: 10.1016/j.psep.2020.09.068 – volume: 104 start-page: 148 year: 2016 ident: 10.1016/j.desal.2024.117946_bb0145 article-title: Taking the human out of the loop: a review of Bayesian optimization publication-title: P. IEEE doi: 10.1109/JPROC.2015.2494218 – year: 2023 ident: 10.1016/j.desal.2024.117946_bb0005 – volume: 32 start-page: 35 year: 2023 ident: 10.1016/j.desal.2024.117946_bb0070 article-title: Forecasting solar still performance from conventional weather data variation by machine learning method publication-title: CHINESE PHYS B doi: 10.1088/1674-1056/ac989f – volume: 50 start-page: 863 year: 2022 ident: 10.1016/j.desal.2024.117946_bb0095 article-title: Machine learning embedded with materials domain knowledge publication-title: Journal of the Chinese Ceramic Society – volume: 7 start-page: 1 year: 2021 ident: 10.1016/j.desal.2024.117946_bb0120 article-title: Autonomous reinforcement learning agent for chemical vapor deposition synthesis of quantum materials publication-title: npj Comput. Mater. – volume: 559 start-page: 547 year: 2018 ident: 10.1016/j.desal.2024.117946_bb0130 article-title: Machine learning for molecular and materials science publication-title: NATURE doi: 10.1038/s41586-018-0337-2 – volume: 14 start-page: 7283 year: 2023 ident: 10.1016/j.desal.2024.117946_bb0105 article-title: Exploiting redundancy in large materials datasets for efficient machine learning with less data publication-title: Nat. Commun. doi: 10.1038/s41467-023-42992-y – volume: 101 start-page: 379 year: 2015 ident: 10.1016/j.desal.2024.117946_bb0020 article-title: A solar desalination system: Exergetic performance assessment publication-title: ENERG. CONVERS. MANAGE. doi: 10.1016/j.enconman.2015.05.060 – volume: 128 start-page: 1030 year: 2018 ident: 10.1016/j.desal.2024.117946_bb0040 article-title: Solar desalination using solar still enhanced by external solar collector and PCM publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2017.09.073 – volume: 162 start-page: 489 year: 2020 ident: 10.1016/j.desal.2024.117946_bb0015 article-title: Performance estimation of a mini-passive solar still via machine learning publication-title: RENEW. ENERG. doi: 10.1016/j.renene.2020.08.006 – volume: 32 year: 2020 ident: 10.1016/j.desal.2024.117946_bb0030 article-title: Wall-suspended trays inside stepped distiller with Al2O3/paraffin wax mixture and vapor suction: experimental implementation publication-title: J. ENERGY STORAGE doi: 10.1016/j.est.2020.102008 – volume: 184 year: 2021 ident: 10.1016/j.desal.2024.117946_bb0065 article-title: Prediction of tubular solar still performance by machine learning integrated with Bayesian optimization algorithm publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2020.116233 – volume: 521 start-page: 452 year: 2015 ident: 10.1016/j.desal.2024.117946_bb0140 article-title: Probabilistic machine learning and artificial intelligence publication-title: NATURE doi: 10.1038/nature14541 – volume: 220 start-page: 1 year: 2008 ident: 10.1016/j.desal.2024.117946_bb0010 article-title: Environmental impact and impact assessment of seawater desalination publication-title: DESALINATION doi: 10.1016/j.desal.2007.03.009 – volume: 70 start-page: 831 year: 2021 ident: 10.1016/j.desal.2024.117946_bb0090 article-title: Data evaluation and enhancement for quality improvement of machine learning publication-title: IEEE T. RELIAB. doi: 10.1109/TR.2021.3070863 – volume: 253 year: 2020 ident: 10.1016/j.desal.2024.117946_bb0115 article-title: DP-GEN: a concurrent learning platform for the generation of reliable deep learning based potential energy models, COMPUT publication-title: PHYS. COMMUN. doi: 10.1016/j.cpc.2020.107206 – year: 2014 ident: 10.1016/j.desal.2024.117946_bb0155 – volume: 213 year: 2022 ident: 10.1016/j.desal.2024.117946_bb0045 article-title: A study on the upper limit efficiency of solar still by optimizing the mass transfer publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2022.118664 – ident: 10.1016/j.desal.2024.117946_bb0100 doi: 10.1093/nsr/nwad125 – volume: 3 start-page: 159 year: 2017 ident: 10.1016/j.desal.2024.117946_bb0125 article-title: Materials discovery and design using machine learning publication-title: J. MATERIOMICS doi: 10.1016/j.jmat.2017.08.002 – volume: 7 year: 2022 ident: 10.1016/j.desal.2024.117946_bb0080 article-title: Artificial intelligence application in a renewable energy-driven desalination system: a critical review publication-title: Energy and AI doi: 10.1016/j.egyai.2021.100123 – volume: 565 year: 2023 ident: 10.1016/j.desal.2024.117946_bb0035 article-title: Progress and performance of multi-stage solar still – a review publication-title: DESALINATION doi: 10.1016/j.desal.2023.116829 – volume: 21 year: 2024 ident: 10.1016/j.desal.2024.117946_bb0135 article-title: Application of machine learning modeling in prediction of solar still performance: a comprehensive survey publication-title: RESULTS ENG doi: 10.1016/j.rineng.2024.101800 – volume: 6 start-page: 4 year: 1985 ident: 10.1016/j.desal.2024.117946_bb0150 article-title: Asymptotically efficient adaptive allocation rules publication-title: Adv. Appl. Math. doi: 10.1016/0196-8858(85)90002-8 – volume: 231 start-page: 88 year: 2022 ident: 10.1016/j.desal.2024.117946_bb0050 article-title: Investigation the performance of new designed solar still of rhombus shaped based on new model publication-title: Sol. Energy doi: 10.1016/j.solener.2021.11.039 – volume: 9 start-page: 798 year: 2023 ident: 10.1016/j.desal.2024.117946_bb0055 article-title: Generative artificial intelligence and its applications in materials science: current situation and future perspectives publication-title: J. MATERIOMICS doi: 10.1016/j.jmat.2023.05.001 – volume: 51 start-page: 427 year: 2023 ident: 10.1016/j.desal.2024.117946_bb0085 article-title: A data quality and quantity governance for machine learning in materials science publication-title: J. Chin. Ceram. Soc. – volume: 160 year: 2019 ident: 10.1016/j.desal.2024.117946_bb0025 article-title: Augmentation of a pyramid solar still performance using evacuated tubes and nanofluid: experimental approach publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2019.113997 |
SSID | ssj0012933 |
Score | 2.4486666 |
Snippet | The interdisciplinary field between solar desalination and machine learning is the subject of a cutting-edge study. Generally, the studies treat data... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 117946 |
SubjectTerms | Data acquisition Machine learning Process optimization Production predicting Solar stills |
Title | A data-driven method to construct prediction model of solar stills |
URI | https://dx.doi.org/10.1016/j.desal.2024.117946 |
Volume | 587 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LawIxEB7EXtpD6ZPah-TQY1c3m02ye7RSsS31VMHbks0DLOKKeu5vb2YfYqF46HGXDIQvyXwTMvMNwKNNQxUrSgNOc4ktzKIgTxwLrEi40UwYXkpsfEzEeBq_zfisBcOmFgbTKmvfX_n00lvXf_o1mv3VfI41vihO5uPnGHlUzrCCPZa4y3vfuzQPpLPqldnPB0c3ykNljpexG4XvD1HcK6XSxN_stMc4ozM4rUNFMqhmcw4tu7yAkz0BwUt4HhBM8QzMGp0WqdpBk21BdFErw5LVGp9iEH5Sdr0hhSMbvM8Sf7gXi80VTEcvn8NxUHdFCLSnm22gjWRpLhJnGHdRork2kYfUpjGNhObUOS1DIyQzzIcqyiZCO8tTTaXKFbMpu4b2sljaGyC58-jQUKvQidibpY7i9Sv151IwF8oORA0ama4lw7FzxSJrcsO-shLCDCHMKgg78LQzWlWKGYeHiwbm7NfCZ96nHzK8_a_hHRzjFxIQ5ffQ9qthH3xksc275dbpwtHg9X08-QFJacxf |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La8JAEB6sHtoeSp_UPvfQY1Oz2ewmOVqpaH2cFLyFZB_QIirq_6c7yUYsFA-9JhkI32RnZjOz3wfwohM_CzNKPU7zCCXMAi-PDfO0iLmSTCheUGyMxqI3DT9nfFaDTnUWBscqXewvY3oRrd2VlkOztfr6wjO-SE5m6-cQ82g0O4IGslPxOjTa_UFvvGsmBE5RHv8GokFFPlSMeSm9ybAFEYRvBVua-DtB7SWd7jmcuWqRtMsXuoCaXlzC6R6H4BW8twlOeXpqjXGLlIrQZLskcunIYclqjd0Y9AAphG_I0pANbmmJXd_z-eYapt2PSafnOWEET9qMs_WkiliSi9goxk0QSy5VYFHVSUgDITk1Rka-EhFTzFYrmY6FNJonkkZZnjGdsBuoL5YLfQskNxYd6svMNyK0ZomhuANL7NIUzPhRE4IKjVQ61nAUr5in1XjYd1pAmCKEaQlhE153RquSNOPw46KCOf3l-9SG9UOGd_81fIbj3mQ0TIf98eAeTvAO5iPKH6BuPaMfbaGxzZ_ch_QDXsnPEA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+data-driven+method+to+construct+prediction+model+of+solar+stills&rft.jtitle=Desalination&rft.au=Sun%2C+Senshan&rft.au=Du%2C+Juxin&rft.au=Peng%2C+Guilong&rft.au=Yang%2C+Nuo&rft.date=2024-10-15&rft.issn=0011-9164&rft.volume=587&rft.spage=117946&rft_id=info:doi/10.1016%2Fj.desal.2024.117946&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_desal_2024_117946 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0011-9164&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0011-9164&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0011-9164&client=summon |