A data-driven method to construct prediction model of solar stills

The interdisciplinary field between solar desalination and machine learning is the subject of a cutting-edge study. Generally, the studies treat data acquisition and model construction as independent processes, leading to problems such as insufficient dataset size or resource wastage. This study pro...

Full description

Saved in:
Bibliographic Details
Published inDesalination Vol. 587; p. 117946
Main Authors Sun, Senshan, Du, Juxin, Peng, Guilong, Yang, Nuo
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.10.2024
Subjects
Online AccessGet full text
ISSN0011-9164
DOI10.1016/j.desal.2024.117946

Cover

Loading…
Abstract The interdisciplinary field between solar desalination and machine learning is the subject of a cutting-edge study. Generally, the studies treat data acquisition and model construction as independent processes, leading to problems such as insufficient dataset size or resource wastage. This study proposes a data-driven method that integrates data acquisition with model construction processes. By using the Bayesian optimization algorithm, the method accelerates the convergence of model accuracy. By comparing the results of 100 pairs of simulations, it is found that the models using the data-driven method are more accurate than traditional expert-driven methods in 70 % of compared results. Additionally, when it makes a model with the mean absolute percentage error as 5 %, the proposed data-driven method requires 220 additional data on average, compared to 258 with the traditional expert-driven method, representing a 14.7 % reduction. This work offers new ways and a broad application of the interdiscipline between solar desalination and machine learning. •A new data-driven method is proposed which is superior to the expert-driven method.•Data-driven method integrates data acquisition and model construction in real-time.•The data-driven method is more effective in 70 % of the comparisons.•A 14.7 % reduction in required data size can be achieved.
AbstractList The interdisciplinary field between solar desalination and machine learning is the subject of a cutting-edge study. Generally, the studies treat data acquisition and model construction as independent processes, leading to problems such as insufficient dataset size or resource wastage. This study proposes a data-driven method that integrates data acquisition with model construction processes. By using the Bayesian optimization algorithm, the method accelerates the convergence of model accuracy. By comparing the results of 100 pairs of simulations, it is found that the models using the data-driven method are more accurate than traditional expert-driven methods in 70 % of compared results. Additionally, when it makes a model with the mean absolute percentage error as 5 %, the proposed data-driven method requires 220 additional data on average, compared to 258 with the traditional expert-driven method, representing a 14.7 % reduction. This work offers new ways and a broad application of the interdiscipline between solar desalination and machine learning. •A new data-driven method is proposed which is superior to the expert-driven method.•Data-driven method integrates data acquisition and model construction in real-time.•The data-driven method is more effective in 70 % of the comparisons.•A 14.7 % reduction in required data size can be achieved.
ArticleNumber 117946
Author Du, Juxin
Peng, Guilong
Yang, Nuo
Sun, Senshan
Author_xml – sequence: 1
  givenname: Senshan
  surname: Sun
  fullname: Sun, Senshan
  organization: School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
– sequence: 2
  givenname: Juxin
  surname: Du
  fullname: Du, Juxin
  organization: School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
– sequence: 3
  givenname: Guilong
  surname: Peng
  fullname: Peng, Guilong
  email: 4195@hnsyu.edu.cn
  organization: School of Mechanical and Energy Engineering, Shaoyang University, Shaoyang 422000, China
– sequence: 4
  givenname: Nuo
  surname: Yang
  fullname: Yang, Nuo
  email: nuo@nudt.edu.cn
  organization: Department of Physics, College of Science, National University of Defense Technology, Changsha 410073, China
BookMark eNqF0MFOAyEQgGEONbGtPoEXXmBXWHbZcvBQG7UmTbzomdBhiDR0aQCb-PZurScPeiKTyT_Jx4xMhjggITec1ZxxeburLWYT6oY1bc15r1o5IVPGOK8Ul-0lmeW8G8dGCTEl90tqTTGVTf6IA91jeY-WlkghDrmkDyj0kNB6KD6O62gx0OhojsEkmosPIV-RC2dCxuufd07eHh9eV-tq8_L0vFpuKhBMlApsL9RWLpwVnWsW0IFtpO1QtbyR0HHnoGdW9sIK3imDCwkOOwW8N1sjUIk5Eee7kGLOCZ0-JL836VNzpk90vdPfdH2i6zN9rNSvCnwxJ01Jxod_2rtziyPr6DHpDB4HGP8jIRRto_-z_wJm_HrM
CitedBy_id crossref_primary_10_1016_j_ijheatmasstransfer_2024_126365
Cites_doi 10.1016/j.scib.2023.05.017
10.1016/j.psep.2020.09.068
10.1109/JPROC.2015.2494218
10.1088/1674-1056/ac989f
10.1038/s41586-018-0337-2
10.1038/s41467-023-42992-y
10.1016/j.enconman.2015.05.060
10.1016/j.applthermaleng.2017.09.073
10.1016/j.renene.2020.08.006
10.1016/j.est.2020.102008
10.1016/j.applthermaleng.2020.116233
10.1038/nature14541
10.1016/j.desal.2007.03.009
10.1109/TR.2021.3070863
10.1016/j.cpc.2020.107206
10.1016/j.applthermaleng.2022.118664
10.1093/nsr/nwad125
10.1016/j.jmat.2017.08.002
10.1016/j.egyai.2021.100123
10.1016/j.desal.2023.116829
10.1016/j.rineng.2024.101800
10.1016/0196-8858(85)90002-8
10.1016/j.solener.2021.11.039
10.1016/j.jmat.2023.05.001
10.1016/j.applthermaleng.2019.113997
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.desal.2024.117946
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_desal_2024_117946
S001191642400657X
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABLST
ABMAC
ABNUV
ACDAQ
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLECG
BLXMC
CS3
DU5
EFJIC
ENUVR
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KCYFY
KOM
LX7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSJ
SST
SSZ
T5K
~02
~G-
29F
6TJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABJNI
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
EBS
EJD
FEDTE
FGOYB
HLY
HVGLF
HZ~
NDZJH
R2-
SCE
SSH
WUQ
ZY4
~KM
ID FETCH-LOGICAL-c303t-cd739b68fd35f28c5cd26d5e94126c51ffc70d673d3159ae86cfe59c17aba3e93
IEDL.DBID .~1
ISSN 0011-9164
IngestDate Tue Jul 01 02:26:04 EDT 2025
Thu Apr 24 23:01:03 EDT 2025
Sat Aug 17 15:43:59 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Solar stills
Process optimization
Production predicting
Data acquisition
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c303t-cd739b68fd35f28c5cd26d5e94126c51ffc70d673d3159ae86cfe59c17aba3e93
ParticipantIDs crossref_primary_10_1016_j_desal_2024_117946
crossref_citationtrail_10_1016_j_desal_2024_117946
elsevier_sciencedirect_doi_10_1016_j_desal_2024_117946
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-15
PublicationDateYYYYMMDD 2024-10-15
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-15
  day: 15
PublicationDecade 2020
PublicationTitle Desalination
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References C., C., D. (bb0090) 2021; 70
Peng, Xu, Ji, Sun, Yang (bb0045) 2022; 213
He, Zheng, Ma, Wang, Kong, Zhu (bb0080) 2022; 7
Rajak, Krishnamoorthy, Mishra, Kalia, Nakano, Vashishta, A.I.U.S. Argonne National Lab. ANL (bb0120) 2021; 7
Al-harahsheh, Abu-Arabi, Mousa, Alzghoul (bb0040) 2018; 128
Butler, Davies, Cartwright, Isayev, Walsh (bb0130) 2018; 559
Lattemann, Höpner (bb0010) 2008; 220
Essa, Omara, Abdullah, Shanmugan, Panchal, Kabeel, Sathyamurthy, Alawee, Manokar, Elsheikh (bb0030) 2020; 32
Liu, Ma, Yang, Zou, Shi (bb0085) 2023; 51
Zhang, Wang, Chen, Zeng, Zhang, Wang, E (bb0115) 2020; 253
Maddah, Bassyouni, Abdel-Aziz, Zoromba, Al-Hossainy (bb0015) 2020; 162
Nogueira (bb0155) 2014
Mohamed, Hassan (bb0050) 2022; 231
Sharshir, Kandeal, Ismail, Abdelaziz, Kabeel, Yang (bb0025) 2019; 160
Ibrahim, Dincer (bb0020) 2015; 101
Lai, Robbins (bb0150) 1985; 6
Peng, Sharshir (bb0035) 2023; 565
Liu, Zhao, Ju, Shi (bb0125) 2017; 3
U. Nations (bb0005) 2023
Li, Persaud, Choudhary, DeCost, Greenwood, Hattrick-Simpers (bb0105) 2023; 14
Peng, Sun, Qin, Xu, Du, Sharshir, Kandel, Kabeel, Yang (bb0110) 2023; abs/2307.12594
Liu, Zou, Yang, Shi (bb0095) 2022; 50
Liu, Yang, Yu, Liu, Liu, Lin, Li, Ma, Avdeev, Shi (bb0055) 2023; 9
Ghahramani (bb0140) 2015; 521
Gao, Shen, Sun, Peng, Shen, Wang, Kandeal, Luo, Kabeel, Zhang, Bao, Yang (bb0070) 2023; 32
Abdullah, Joseph, Kandeal, Alawee, Peng, Thakur, Sharshir (bb0135) 2024; 21
Shahriari, Swersky, Wang, Adams, de Freitas (bb0145) 2016; 104
Y. Liu, Z. Yang, X. Zou, S. Ma, D. Liu, M. Avdeev, S. Shi, Data quantity governance for machine learning in materials science, NATL SCI REV, 10 (2023) nwad125.
Liu, Wang, Yang, Avdeev, Shi (bb0060) 2023; 68
Wang, Kandeal, Swidan, Sharshir, Abdelaziz, Halim, Kabeel, Yang (bb0065) 2021; 184
Elsheikh, Katekar, Muskens, Deshmukh, Elaziz, Dabour (bb0075) 2021; 148
Zhang (10.1016/j.desal.2024.117946_bb0115) 2020; 253
Li (10.1016/j.desal.2024.117946_bb0105) 2023; 14
Maddah (10.1016/j.desal.2024.117946_bb0015) 2020; 162
Liu (10.1016/j.desal.2024.117946_bb0085) 2023; 51
Liu (10.1016/j.desal.2024.117946_bb0055) 2023; 9
Liu (10.1016/j.desal.2024.117946_bb0060) 2023; 68
Liu (10.1016/j.desal.2024.117946_bb0125) 2017; 3
Abdullah (10.1016/j.desal.2024.117946_bb0135) 2024; 21
Peng (10.1016/j.desal.2024.117946_bb0110) 2023; abs/2307.12594
U. Nations (10.1016/j.desal.2024.117946_bb0005) 2023
Liu (10.1016/j.desal.2024.117946_bb0095) 2022; 50
10.1016/j.desal.2024.117946_bb0100
Nogueira (10.1016/j.desal.2024.117946_bb0155) 2014
Peng (10.1016/j.desal.2024.117946_bb0035) 2023; 565
Ghahramani (10.1016/j.desal.2024.117946_bb0140) 2015; 521
Essa (10.1016/j.desal.2024.117946_bb0030) 2020; 32
Lattemann (10.1016/j.desal.2024.117946_bb0010) 2008; 220
C. (10.1016/j.desal.2024.117946_bb0090) 2021; 70
Gao (10.1016/j.desal.2024.117946_bb0070) 2023; 32
Butler (10.1016/j.desal.2024.117946_bb0130) 2018; 559
Mohamed (10.1016/j.desal.2024.117946_bb0050) 2022; 231
Al-harahsheh (10.1016/j.desal.2024.117946_bb0040) 2018; 128
Peng (10.1016/j.desal.2024.117946_bb0045) 2022; 213
Wang (10.1016/j.desal.2024.117946_bb0065) 2021; 184
He (10.1016/j.desal.2024.117946_bb0080) 2022; 7
Elsheikh (10.1016/j.desal.2024.117946_bb0075) 2021; 148
Rajak (10.1016/j.desal.2024.117946_bb0120) 2021; 7
Sharshir (10.1016/j.desal.2024.117946_bb0025) 2019; 160
Shahriari (10.1016/j.desal.2024.117946_bb0145) 2016; 104
Lai (10.1016/j.desal.2024.117946_bb0150) 1985; 6
Ibrahim (10.1016/j.desal.2024.117946_bb0020) 2015; 101
References_xml – volume: 521
  start-page: 452
  year: 2015
  end-page: 459
  ident: bb0140
  article-title: Probabilistic machine learning and artificial intelligence
  publication-title: NATURE
– volume: 21
  year: 2024
  ident: bb0135
  article-title: Application of machine learning modeling in prediction of solar still performance: a comprehensive survey
  publication-title: RESULTS ENG
– volume: 7
  start-page: 1
  year: 2021
  end-page: 9
  ident: bb0120
  article-title: Autonomous reinforcement learning agent for chemical vapor deposition synthesis of quantum materials
  publication-title: npj Comput. Mater.
– year: 2023
  ident: bb0005
  article-title: The United Nations World Water Development Report 2023: Partnerships and Cooperation for Water
– volume: 565
  year: 2023
  ident: bb0035
  article-title: Progress and performance of multi-stage solar still – a review
  publication-title: DESALINATION
– volume: 253
  year: 2020
  ident: bb0115
  article-title: DP-GEN: a concurrent learning platform for the generation of reliable deep learning based potential energy models, COMPUT
  publication-title: PHYS. COMMUN.
– volume: 101
  start-page: 379
  year: 2015
  end-page: 392
  ident: bb0020
  article-title: A solar desalination system: Exergetic performance assessment
  publication-title: ENERG. CONVERS. MANAGE.
– volume: 70
  start-page: 831
  year: 2021
  end-page: 847
  ident: bb0090
  article-title: Data evaluation and enhancement for quality improvement of machine learning
  publication-title: IEEE T. RELIAB.
– volume: 14
  start-page: 7283
  year: 2023
  ident: bb0105
  article-title: Exploiting redundancy in large materials datasets for efficient machine learning with less data
  publication-title: Nat. Commun.
– volume: 68
  start-page: 1259
  year: 2023
  end-page: 1270
  ident: bb0060
  article-title: Auto-MatRegressor: liberating machine learning alchemists
  publication-title: Sci. Bull.
– volume: 3
  start-page: 159
  year: 2017
  end-page: 177
  ident: bb0125
  article-title: Materials discovery and design using machine learning
  publication-title: J. MATERIOMICS
– volume: 104
  start-page: 148
  year: 2016
  end-page: 175
  ident: bb0145
  article-title: Taking the human out of the loop: a review of Bayesian optimization
  publication-title: P. IEEE
– volume: 32
  year: 2020
  ident: bb0030
  article-title: Wall-suspended trays inside stepped distiller with Al2O3/paraffin wax mixture and vapor suction: experimental implementation
  publication-title: J. ENERGY STORAGE
– volume: 162
  start-page: 489
  year: 2020
  end-page: 503
  ident: bb0015
  article-title: Performance estimation of a mini-passive solar still via machine learning
  publication-title: RENEW. ENERG.
– volume: 160
  year: 2019
  ident: bb0025
  article-title: Augmentation of a pyramid solar still performance using evacuated tubes and nanofluid: experimental approach
  publication-title: Appl. Therm. Eng.
– volume: 51
  start-page: 427
  year: 2023
  end-page: 437
  ident: bb0085
  article-title: A data quality and quantity governance for machine learning in materials science
  publication-title: J. Chin. Ceram. Soc.
– volume: 7
  year: 2022
  ident: bb0080
  article-title: Artificial intelligence application in a renewable energy-driven desalination system: a critical review
  publication-title: Energy and AI
– volume: abs/2307.12594
  year: 2023
  ident: bb0110
  article-title: Optimized data collection and analysis process for studying solar-thermal desalination by machine learning
  publication-title: ArXiv
– volume: 148
  start-page: 273
  year: 2021
  end-page: 282
  ident: bb0075
  article-title: Utilization of LSTM neural network for water production forecasting of a stepped solar still with a corrugated absorber plate
  publication-title: PROCESS SAF. ENVIRON.
– volume: 184
  year: 2021
  ident: bb0065
  article-title: Prediction of tubular solar still performance by machine learning integrated with Bayesian optimization algorithm
  publication-title: Appl. Therm. Eng.
– year: 2014
  ident: bb0155
  article-title: Bayesian Optimization: Open Source Constrained Global Optimization Tool for Python
– volume: 9
  start-page: 798
  year: 2023
  end-page: 816
  ident: bb0055
  article-title: Generative artificial intelligence and its applications in materials science: current situation and future perspectives
  publication-title: J. MATERIOMICS
– volume: 231
  start-page: 88
  year: 2022
  end-page: 103
  ident: bb0050
  article-title: Investigation the performance of new designed solar still of rhombus shaped based on new model
  publication-title: Sol. Energy
– volume: 220
  start-page: 1
  year: 2008
  end-page: 15
  ident: bb0010
  article-title: Environmental impact and impact assessment of seawater desalination
  publication-title: DESALINATION
– volume: 32
  start-page: 35
  year: 2023
  end-page: 41
  ident: bb0070
  article-title: Forecasting solar still performance from conventional weather data variation by machine learning method
  publication-title: CHINESE PHYS B
– volume: 128
  start-page: 1030
  year: 2018
  end-page: 1040
  ident: bb0040
  article-title: Solar desalination using solar still enhanced by external solar collector and PCM
  publication-title: Appl. Therm. Eng.
– volume: 50
  start-page: 863
  year: 2022
  end-page: 876
  ident: bb0095
  article-title: Machine learning embedded with materials domain knowledge
  publication-title: Journal of the Chinese Ceramic Society
– volume: 6
  start-page: 4
  year: 1985
  end-page: 22
  ident: bb0150
  article-title: Asymptotically efficient adaptive allocation rules
  publication-title: Adv. Appl. Math.
– reference: Y. Liu, Z. Yang, X. Zou, S. Ma, D. Liu, M. Avdeev, S. Shi, Data quantity governance for machine learning in materials science, NATL SCI REV, 10 (2023) nwad125.
– volume: 559
  start-page: 547
  year: 2018
  end-page: 555
  ident: bb0130
  article-title: Machine learning for molecular and materials science
  publication-title: NATURE
– volume: 213
  year: 2022
  ident: bb0045
  article-title: A study on the upper limit efficiency of solar still by optimizing the mass transfer
  publication-title: Appl. Therm. Eng.
– volume: abs/2307.12594
  year: 2023
  ident: 10.1016/j.desal.2024.117946_bb0110
  article-title: Optimized data collection and analysis process for studying solar-thermal desalination by machine learning
  publication-title: ArXiv
– volume: 68
  start-page: 1259
  year: 2023
  ident: 10.1016/j.desal.2024.117946_bb0060
  article-title: Auto-MatRegressor: liberating machine learning alchemists
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2023.05.017
– volume: 148
  start-page: 273
  year: 2021
  ident: 10.1016/j.desal.2024.117946_bb0075
  article-title: Utilization of LSTM neural network for water production forecasting of a stepped solar still with a corrugated absorber plate
  publication-title: PROCESS SAF. ENVIRON.
  doi: 10.1016/j.psep.2020.09.068
– volume: 104
  start-page: 148
  year: 2016
  ident: 10.1016/j.desal.2024.117946_bb0145
  article-title: Taking the human out of the loop: a review of Bayesian optimization
  publication-title: P. IEEE
  doi: 10.1109/JPROC.2015.2494218
– year: 2023
  ident: 10.1016/j.desal.2024.117946_bb0005
– volume: 32
  start-page: 35
  year: 2023
  ident: 10.1016/j.desal.2024.117946_bb0070
  article-title: Forecasting solar still performance from conventional weather data variation by machine learning method
  publication-title: CHINESE PHYS B
  doi: 10.1088/1674-1056/ac989f
– volume: 50
  start-page: 863
  year: 2022
  ident: 10.1016/j.desal.2024.117946_bb0095
  article-title: Machine learning embedded with materials domain knowledge
  publication-title: Journal of the Chinese Ceramic Society
– volume: 7
  start-page: 1
  year: 2021
  ident: 10.1016/j.desal.2024.117946_bb0120
  article-title: Autonomous reinforcement learning agent for chemical vapor deposition synthesis of quantum materials
  publication-title: npj Comput. Mater.
– volume: 559
  start-page: 547
  year: 2018
  ident: 10.1016/j.desal.2024.117946_bb0130
  article-title: Machine learning for molecular and materials science
  publication-title: NATURE
  doi: 10.1038/s41586-018-0337-2
– volume: 14
  start-page: 7283
  year: 2023
  ident: 10.1016/j.desal.2024.117946_bb0105
  article-title: Exploiting redundancy in large materials datasets for efficient machine learning with less data
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-42992-y
– volume: 101
  start-page: 379
  year: 2015
  ident: 10.1016/j.desal.2024.117946_bb0020
  article-title: A solar desalination system: Exergetic performance assessment
  publication-title: ENERG. CONVERS. MANAGE.
  doi: 10.1016/j.enconman.2015.05.060
– volume: 128
  start-page: 1030
  year: 2018
  ident: 10.1016/j.desal.2024.117946_bb0040
  article-title: Solar desalination using solar still enhanced by external solar collector and PCM
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.09.073
– volume: 162
  start-page: 489
  year: 2020
  ident: 10.1016/j.desal.2024.117946_bb0015
  article-title: Performance estimation of a mini-passive solar still via machine learning
  publication-title: RENEW. ENERG.
  doi: 10.1016/j.renene.2020.08.006
– volume: 32
  year: 2020
  ident: 10.1016/j.desal.2024.117946_bb0030
  article-title: Wall-suspended trays inside stepped distiller with Al2O3/paraffin wax mixture and vapor suction: experimental implementation
  publication-title: J. ENERGY STORAGE
  doi: 10.1016/j.est.2020.102008
– volume: 184
  year: 2021
  ident: 10.1016/j.desal.2024.117946_bb0065
  article-title: Prediction of tubular solar still performance by machine learning integrated with Bayesian optimization algorithm
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2020.116233
– volume: 521
  start-page: 452
  year: 2015
  ident: 10.1016/j.desal.2024.117946_bb0140
  article-title: Probabilistic machine learning and artificial intelligence
  publication-title: NATURE
  doi: 10.1038/nature14541
– volume: 220
  start-page: 1
  year: 2008
  ident: 10.1016/j.desal.2024.117946_bb0010
  article-title: Environmental impact and impact assessment of seawater desalination
  publication-title: DESALINATION
  doi: 10.1016/j.desal.2007.03.009
– volume: 70
  start-page: 831
  year: 2021
  ident: 10.1016/j.desal.2024.117946_bb0090
  article-title: Data evaluation and enhancement for quality improvement of machine learning
  publication-title: IEEE T. RELIAB.
  doi: 10.1109/TR.2021.3070863
– volume: 253
  year: 2020
  ident: 10.1016/j.desal.2024.117946_bb0115
  article-title: DP-GEN: a concurrent learning platform for the generation of reliable deep learning based potential energy models, COMPUT
  publication-title: PHYS. COMMUN.
  doi: 10.1016/j.cpc.2020.107206
– year: 2014
  ident: 10.1016/j.desal.2024.117946_bb0155
– volume: 213
  year: 2022
  ident: 10.1016/j.desal.2024.117946_bb0045
  article-title: A study on the upper limit efficiency of solar still by optimizing the mass transfer
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2022.118664
– ident: 10.1016/j.desal.2024.117946_bb0100
  doi: 10.1093/nsr/nwad125
– volume: 3
  start-page: 159
  year: 2017
  ident: 10.1016/j.desal.2024.117946_bb0125
  article-title: Materials discovery and design using machine learning
  publication-title: J. MATERIOMICS
  doi: 10.1016/j.jmat.2017.08.002
– volume: 7
  year: 2022
  ident: 10.1016/j.desal.2024.117946_bb0080
  article-title: Artificial intelligence application in a renewable energy-driven desalination system: a critical review
  publication-title: Energy and AI
  doi: 10.1016/j.egyai.2021.100123
– volume: 565
  year: 2023
  ident: 10.1016/j.desal.2024.117946_bb0035
  article-title: Progress and performance of multi-stage solar still – a review
  publication-title: DESALINATION
  doi: 10.1016/j.desal.2023.116829
– volume: 21
  year: 2024
  ident: 10.1016/j.desal.2024.117946_bb0135
  article-title: Application of machine learning modeling in prediction of solar still performance: a comprehensive survey
  publication-title: RESULTS ENG
  doi: 10.1016/j.rineng.2024.101800
– volume: 6
  start-page: 4
  year: 1985
  ident: 10.1016/j.desal.2024.117946_bb0150
  article-title: Asymptotically efficient adaptive allocation rules
  publication-title: Adv. Appl. Math.
  doi: 10.1016/0196-8858(85)90002-8
– volume: 231
  start-page: 88
  year: 2022
  ident: 10.1016/j.desal.2024.117946_bb0050
  article-title: Investigation the performance of new designed solar still of rhombus shaped based on new model
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2021.11.039
– volume: 9
  start-page: 798
  year: 2023
  ident: 10.1016/j.desal.2024.117946_bb0055
  article-title: Generative artificial intelligence and its applications in materials science: current situation and future perspectives
  publication-title: J. MATERIOMICS
  doi: 10.1016/j.jmat.2023.05.001
– volume: 51
  start-page: 427
  year: 2023
  ident: 10.1016/j.desal.2024.117946_bb0085
  article-title: A data quality and quantity governance for machine learning in materials science
  publication-title: J. Chin. Ceram. Soc.
– volume: 160
  year: 2019
  ident: 10.1016/j.desal.2024.117946_bb0025
  article-title: Augmentation of a pyramid solar still performance using evacuated tubes and nanofluid: experimental approach
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2019.113997
SSID ssj0012933
Score 2.4486666
Snippet The interdisciplinary field between solar desalination and machine learning is the subject of a cutting-edge study. Generally, the studies treat data...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 117946
SubjectTerms Data acquisition
Machine learning
Process optimization
Production predicting
Solar stills
Title A data-driven method to construct prediction model of solar stills
URI https://dx.doi.org/10.1016/j.desal.2024.117946
Volume 587
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LawIxEB7EXtpD6ZPah-TQY1c3m02ye7RSsS31VMHbks0DLOKKeu5vb2YfYqF46HGXDIQvyXwTMvMNwKNNQxUrSgNOc4ktzKIgTxwLrEi40UwYXkpsfEzEeBq_zfisBcOmFgbTKmvfX_n00lvXf_o1mv3VfI41vihO5uPnGHlUzrCCPZa4y3vfuzQPpLPqldnPB0c3ykNljpexG4XvD1HcK6XSxN_stMc4ozM4rUNFMqhmcw4tu7yAkz0BwUt4HhBM8QzMGp0WqdpBk21BdFErw5LVGp9iEH5Sdr0hhSMbvM8Sf7gXi80VTEcvn8NxUHdFCLSnm22gjWRpLhJnGHdRork2kYfUpjGNhObUOS1DIyQzzIcqyiZCO8tTTaXKFbMpu4b2sljaGyC58-jQUKvQidibpY7i9Sv151IwF8oORA0ama4lw7FzxSJrcsO-shLCDCHMKgg78LQzWlWKGYeHiwbm7NfCZ96nHzK8_a_hHRzjFxIQ5ffQ9qthH3xksc275dbpwtHg9X08-QFJacxf
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La8JAEB6sHtoeSp_UPvfQY1Oz2ewmOVqpaH2cFLyFZB_QIirq_6c7yUYsFA-9JhkI32RnZjOz3wfwohM_CzNKPU7zCCXMAi-PDfO0iLmSTCheUGyMxqI3DT9nfFaDTnUWBscqXewvY3oRrd2VlkOztfr6wjO-SE5m6-cQ82g0O4IGslPxOjTa_UFvvGsmBE5RHv8GokFFPlSMeSm9ybAFEYRvBVua-DtB7SWd7jmcuWqRtMsXuoCaXlzC6R6H4BW8twlOeXpqjXGLlIrQZLskcunIYclqjd0Y9AAphG_I0pANbmmJXd_z-eYapt2PSafnOWEET9qMs_WkiliSi9goxk0QSy5VYFHVSUgDITk1Rka-EhFTzFYrmY6FNJonkkZZnjGdsBuoL5YLfQskNxYd6svMNyK0ZomhuANL7NIUzPhRE4IKjVQ61nAUr5in1XjYd1pAmCKEaQlhE153RquSNOPw46KCOf3l-9SG9UOGd_81fIbj3mQ0TIf98eAeTvAO5iPKH6BuPaMfbaGxzZ_ch_QDXsnPEA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+data-driven+method+to+construct+prediction+model+of+solar+stills&rft.jtitle=Desalination&rft.au=Sun%2C+Senshan&rft.au=Du%2C+Juxin&rft.au=Peng%2C+Guilong&rft.au=Yang%2C+Nuo&rft.date=2024-10-15&rft.issn=0011-9164&rft.volume=587&rft.spage=117946&rft_id=info:doi/10.1016%2Fj.desal.2024.117946&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_desal_2024_117946
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0011-9164&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0011-9164&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0011-9164&client=summon