A novel random spectral similar component decomposition method and its application to gear fault diagnosis

•A new signal processing method called RSSCD is proposed, and it is applied to gear fault diagnosis.•The ideas of randomization and sparsification of time–frequency features are utilized to represent the input signal.•The spectral similarity criterion is defined to adaptively recombine the initial s...

Full description

Saved in:
Bibliographic Details
Published inMechanical systems and signal processing Vol. 208; p. 111032
Main Authors Liu, Feng, Cheng, Junsheng, Hu, Niaoqing, Cheng, Zhe, Yang, Yu
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.02.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A new signal processing method called RSSCD is proposed, and it is applied to gear fault diagnosis.•The ideas of randomization and sparsification of time–frequency features are utilized to represent the input signal.•The spectral similarity criterion is defined to adaptively recombine the initial signal components.•A fault significance measure index is designed to guide the selection of parameter in sparse random feature representation.•Simulation and two experimental cases are applied to fully validate the proposed method. Sparse random mode decomposition (SRMD) is a decomposition approach established by combining sparse random feature model with clustering algorithm. It is not subject to the sampling process of signal and can mitigate mode mixing. However, the performance of SRMD is limited by its own hyperparameters, and it is prone to derive inaccurate clustering decomposition results when processing strong noise interference signal. To overcome these defects, a novel method called random spectral similar component decomposition (RSSCD) is proposed. In RSSCD, the time–frequency localized features produced by randomization and sparsification are adopted to represent the input signal. Subsequently, the initial signal components formed by sparse random features are taken as a whole, and the spectral similarity criterion is defined to adaptively form independent random components (RCs), thus improving the accuracy of decomposition. Furthermore, RSSCD is applied to gear fault diagnosis, and a fault significance measure (FSM) index is designed to guide the selection of parameter in sparse random feature representation, which ensures the fault information richness of the required RCs. Finally, the feasibility and effectiveness of RSSCD are fully validated by simulation signals and two experimental cases. The results indicate that RSSCD has excellent decomposition performance and fault feature extraction ability.
AbstractList •A new signal processing method called RSSCD is proposed, and it is applied to gear fault diagnosis.•The ideas of randomization and sparsification of time–frequency features are utilized to represent the input signal.•The spectral similarity criterion is defined to adaptively recombine the initial signal components.•A fault significance measure index is designed to guide the selection of parameter in sparse random feature representation.•Simulation and two experimental cases are applied to fully validate the proposed method. Sparse random mode decomposition (SRMD) is a decomposition approach established by combining sparse random feature model with clustering algorithm. It is not subject to the sampling process of signal and can mitigate mode mixing. However, the performance of SRMD is limited by its own hyperparameters, and it is prone to derive inaccurate clustering decomposition results when processing strong noise interference signal. To overcome these defects, a novel method called random spectral similar component decomposition (RSSCD) is proposed. In RSSCD, the time–frequency localized features produced by randomization and sparsification are adopted to represent the input signal. Subsequently, the initial signal components formed by sparse random features are taken as a whole, and the spectral similarity criterion is defined to adaptively form independent random components (RCs), thus improving the accuracy of decomposition. Furthermore, RSSCD is applied to gear fault diagnosis, and a fault significance measure (FSM) index is designed to guide the selection of parameter in sparse random feature representation, which ensures the fault information richness of the required RCs. Finally, the feasibility and effectiveness of RSSCD are fully validated by simulation signals and two experimental cases. The results indicate that RSSCD has excellent decomposition performance and fault feature extraction ability.
ArticleNumber 111032
Author Hu, Niaoqing
Cheng, Zhe
Liu, Feng
Cheng, Junsheng
Yang, Yu
Author_xml – sequence: 1
  givenname: Feng
  surname: Liu
  fullname: Liu, Feng
  organization: College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, PR China
– sequence: 2
  givenname: Junsheng
  orcidid: 0000-0003-0135-5340
  surname: Cheng
  fullname: Cheng, Junsheng
  email: chengjunsheng@hnu.edu.cn
  organization: College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, PR China
– sequence: 3
  givenname: Niaoqing
  surname: Hu
  fullname: Hu, Niaoqing
  organization: Laboratory of Science and Technology on Integrated Logistics Support, National University of Defense Technology, Changsha 410073, PR China
– sequence: 4
  givenname: Zhe
  surname: Cheng
  fullname: Cheng, Zhe
  organization: Laboratory of Science and Technology on Integrated Logistics Support, National University of Defense Technology, Changsha 410073, PR China
– sequence: 5
  givenname: Yu
  surname: Yang
  fullname: Yang, Yu
  organization: College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, PR China
BookMark eNp9kL1OwzAQgC1UJNrCE7D4BRLsOHGSgaGqgCJVYoHZcuxzcZTYkR0q9e1xW2amO-nuu59vhRbOO0DokZKcEsqf-vw0xjjlBSlYTiklrLhBS0pantGC8gVakqZpMlbU5A6tYuwJIW1J-BL1G-z8EQYcpNN-xHECNQc54GhHO8iAlR-ntMzNWMMlj3a23uER5m-vcaKwnSOW0zRYJS-l2eMDJNTInyFhVh5couI9ujVyiPDwF9fo6_Xlc7vL9h9v79vNPlOMsDlTkuu6BKWaqtYdqQxlnWGaguEl63RDZN106RPGoNZtRTmnldLQmsqUMrWwNWLXuSr4GAMYMQU7ynASlIizLtGLiy5x1iWuuhL1fKUgnXa0EERUFpwCbUNSIrS3__K_2MB5Og
CitedBy_id crossref_primary_10_1109_JSEN_2024_3400042
crossref_primary_10_1016_j_aei_2024_102673
crossref_primary_10_1016_j_measurement_2024_115124
crossref_primary_10_1016_j_apacoust_2024_109943
Cites_doi 10.1016/j.ymssp.2019.03.024
10.1016/j.measurement.2022.111494
10.1016/j.bspc.2022.104560
10.1016/j.ymssp.2015.04.034
10.1016/j.patcog.2022.109050
10.1142/S1793536909000047
10.1109/TSP.2021.3089291
10.1109/TII.2021.3136144
10.1016/j.acha.2022.08.003
10.1109/TSP.2013.2288675
10.1016/j.ymssp.2016.02.049
10.1109/ICASSP.1983.1172264
10.1016/j.ymssp.2015.04.039
10.1016/j.ymssp.2004.09.001
10.1137/080714488
10.1016/j.ymssp.2018.02.028
10.1016/j.ymssp.2022.109836
10.1016/j.ymssp.2013.02.020
10.1098/rspa.2022.0835
10.1016/j.isatra.2022.10.001
10.1016/j.measurement.2023.112489
10.1016/j.measurement.2017.02.031
10.1109/TR.2022.3215243
10.1016/j.ymssp.2022.109772
10.1016/j.ymssp.2005.12.002
10.1088/1361-6501/ab4488
10.1109/TR.2022.3180273
10.1016/j.jsv.2020.115175
10.1016/j.ymssp.2013.01.017
10.1098/rspa.1998.0193
10.1016/j.measurement.2016.05.059
10.1016/j.sigpro.2019.07.024
10.1016/j.ymssp.2017.12.009
10.1016/j.ymssp.2021.108216
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.ymssp.2023.111032
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1096-1216
ExternalDocumentID 10_1016_j_ymssp_2023_111032
S0888327023009408
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG5
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SST
SSV
SSZ
T5K
XPP
ZMT
ZU3
~G-
29M
AAQXK
AAXKI
AAYXX
ABEFU
ABFNM
ABXDB
ACNNM
ADFGL
ADJOM
ADMUD
AFJKZ
AKRWK
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EJD
FEDTE
FGOYB
G-2
G8K
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SET
WUQ
ID FETCH-LOGICAL-c303t-ca6d74ecc857db05f13bf3d1ef643bd80a78b32733e7d9516615cde9f5f4a6433
IEDL.DBID AIKHN
ISSN 0888-3270
IngestDate Thu Sep 26 17:52:24 EDT 2024
Sat Feb 24 15:49:10 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Random spectral similar component decomposition
Gear fault diagnosis
Fault significance measure
Spectral similarity criterion
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c303t-ca6d74ecc857db05f13bf3d1ef643bd80a78b32733e7d9516615cde9f5f4a6433
ORCID 0000-0003-0135-5340
ParticipantIDs crossref_primary_10_1016_j_ymssp_2023_111032
elsevier_sciencedirect_doi_10_1016_j_ymssp_2023_111032
PublicationCentury 2000
PublicationDate 2024-02-15
PublicationDateYYYYMMDD 2024-02-15
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-15
  day: 15
PublicationDecade 2020
PublicationTitle Mechanical systems and signal processing
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Kedadouche, Thomas, A. Tahan A (b0105) 2016; 81
Dragomiretskiy, Zosso (b0125) 2013; 62
Kumar, Kumar, Sarangi, Singh (b0010) 2023; 210
Richardson, Schaeffer, Tran, Srmd (b0150) 2023
Li, Cai, Han, Jiang, Ji (b0065) 2020; 166
Feng, Liang, F. Chu F (b0060) 2013; 38
Cheng, Chen, Li, Li, Liu (b0115) 2016; 91
Van Den Berg, Friedlander (b0170) 2009; 31
Park, Kim, Choi (b0120) 2018; 108
Georgoulas, Loutas, Stylios, Kostopoulos (b0100) 2013; 41
Feng, Zhou, Zuo, Chu, Chen (b0180) 2017; 103
M. Al-Sa’d, B. Boashash, M. Gabbouj (b0070) 2021; 69
Moshrefzadeh, Fasana (b0055) 2018; 105
Sun, Yang, Gryllias, Chen (b0190) 2020; 471
Huang, Shen, Long, Wu, Shih, Zheng, Yen, Tung, Liu (b0095) 1998; 454
Yi, Wang, Ran, Zhou, Lin (b0135) 2022; 199
Zhou, Diehl, Tang (b0025) 2023; 185
Sheng, Sun, Li, Ye (b0005) 2023; 135
Tian, Zheng, Zuo, Zhang, Zhang, Zhang (b0075) 2023; 134
Li, Zhang, Qin, Sun (b0085) 2019; 31
Liu, McCalla, Schaeffer (b0165) 2023; 479
Antoni (b0045) 2007; 21
Ni, Ji, Feng, Halkon (b0140) 2022; 164
Hou, Wu, Wu (b0145) 2023; 186
Hashemi, Schaeffer, Shi, Topcu, Tran, Ward (b0155) 2023; 62
Zhao, Liu, Chen, Chen, Li, Xu, Deng (b0090) 2022; 72
Wang, Xiang, Markert, Liang (b0030) 2016; 66
Chen, Shao, Dou, Li, Liu (b0020) 2022; 72
Xin, Li, Jia, Zhong, Dong, Hamzaoui, Antoni (b0080) 2021; 18
Dwyer (b0035) 1983; 8
Ester, Kriegel, Sander, Xu (b0160) 1996; 96
Wu, Huang (b0110) 2009; 01
E. Van Den Berg, M.P. Friedlander, SPGL1: A solver for large-scale sparse reconstruction [Online], (2019) Available: https://friedlander.io/spgl1.
Peng, Smith, Borghesani, Randall, Peng (b0185) 2019; 127
Antoni (b0050) 2016; 74
Ashraf, Shafiq, Sajjad, Waris, Gilani, Boutaayamou, Brüls (b0130) 2023; 82
Antoni (b0040) 2006; 20
Pan, Zhang, Cheng, Zheng (b0015) 2023; 72
Ashraf (10.1016/j.ymssp.2023.111032_b0130) 2023; 82
Feng (10.1016/j.ymssp.2023.111032_b0060) 2013; 38
M. Al-Sa’d, B. Boashash, M. Gabbouj (10.1016/j.ymssp.2023.111032_b0070) 2021; 69
Wang (10.1016/j.ymssp.2023.111032_b0030) 2016; 66
Zhou (10.1016/j.ymssp.2023.111032_b0025) 2023; 185
Ni (10.1016/j.ymssp.2023.111032_b0140) 2022; 164
Cheng (10.1016/j.ymssp.2023.111032_b0115) 2016; 91
Sheng (10.1016/j.ymssp.2023.111032_b0005) 2023; 135
Pan (10.1016/j.ymssp.2023.111032_b0015) 2023; 72
Kedadouche (10.1016/j.ymssp.2023.111032_b0105) 2016; 81
Park (10.1016/j.ymssp.2023.111032_b0120) 2018; 108
Sun (10.1016/j.ymssp.2023.111032_b0190) 2020; 471
Huang (10.1016/j.ymssp.2023.111032_b0095) 1998; 454
Li (10.1016/j.ymssp.2023.111032_b0065) 2020; 166
Ester (10.1016/j.ymssp.2023.111032_b0160) 1996; 96
Li (10.1016/j.ymssp.2023.111032_b0085) 2019; 31
Zhao (10.1016/j.ymssp.2023.111032_b0090) 2022; 72
Moshrefzadeh (10.1016/j.ymssp.2023.111032_b0055) 2018; 105
Peng (10.1016/j.ymssp.2023.111032_b0185) 2019; 127
Wu (10.1016/j.ymssp.2023.111032_b0110) 2009; 01
Liu (10.1016/j.ymssp.2023.111032_b0165) 2023; 479
Dragomiretskiy (10.1016/j.ymssp.2023.111032_b0125) 2013; 62
10.1016/j.ymssp.2023.111032_b0175
Kumar (10.1016/j.ymssp.2023.111032_b0010) 2023; 210
Georgoulas (10.1016/j.ymssp.2023.111032_b0100) 2013; 41
Chen (10.1016/j.ymssp.2023.111032_b0020) 2022; 72
Feng (10.1016/j.ymssp.2023.111032_b0180) 2017; 103
Antoni (10.1016/j.ymssp.2023.111032_b0045) 2007; 21
Yi (10.1016/j.ymssp.2023.111032_b0135) 2022; 199
Tian (10.1016/j.ymssp.2023.111032_b0075) 2023; 134
Hashemi (10.1016/j.ymssp.2023.111032_b0155) 2023; 62
Dwyer (10.1016/j.ymssp.2023.111032_b0035) 1983; 8
Antoni (10.1016/j.ymssp.2023.111032_b0050) 2016; 74
Richardson (10.1016/j.ymssp.2023.111032_b0150) 2023
Antoni (10.1016/j.ymssp.2023.111032_b0040) 2006; 20
Hou (10.1016/j.ymssp.2023.111032_b0145) 2023; 186
Van Den Berg (10.1016/j.ymssp.2023.111032_b0170) 2009; 31
Xin (10.1016/j.ymssp.2023.111032_b0080) 2021; 18
References_xml – volume: 135
  start-page: 188
  year: 2023
  end-page: 198
  ident: b0005
  article-title: Research on gear crack fault diagnosis model based on permanent magnet motor current signal
  publication-title: ISA Trans.
  contributor:
    fullname: Ye
– volume: 210
  year: 2023
  ident: b0010
  article-title: Gearbox fault diagnosis: A higher order moments approach
  publication-title: Measurement
  contributor:
    fullname: Singh
– volume: 91
  start-page: 140
  year: 2016
  end-page: 154
  ident: b0115
  article-title: Study on planetary gear fault diagnosis based on entropy feature fusion of ensemble empirical mode decomposition
  publication-title: Measurement
  contributor:
    fullname: Liu
– volume: 186
  year: 2023
  ident: b0145
  article-title: An operating condition information-guided iterative variational mode decomposition method based on Mahalanobis distance criterion for surge characteristic frequency extraction of the centrifugal compressor
  publication-title: Mech. Syst. Signal Process.
  contributor:
    fullname: Wu
– volume: 72
  start-page: 1
  year: 2023
  end-page: 8
  ident: b0015
  article-title: Symplectic geometry transformation based periodic segment method: Algorithm and Applications
  publication-title: IEEE Trans. Instrum. Meas.
  contributor:
    fullname: Zheng
– volume: 31
  year: 2019
  ident: b0085
  article-title: K-SVD-based WVD enhancement algorithm for planetary gearbox fault diagnosis under a CNN framework
  publication-title: Meas. Sci. Technol.
  contributor:
    fullname: Sun
– volume: 82
  year: 2023
  ident: b0130
  article-title: Variational mode decomposition for surface and intramuscular EMG signal denoising
  publication-title: Biomed. Signal Process. Control
  contributor:
    fullname: Brüls
– volume: 185
  year: 2023
  ident: b0025
  article-title: Deep convolutional generative adversarial network with semi-supervised learning enabled physics elucidation for extended gear fault diagnosis under data limitations
  publication-title: Mech. Syst. Signal Process.
  contributor:
    fullname: Tang
– volume: 105
  start-page: 294
  year: 2018
  end-page: 318
  ident: b0055
  article-title: The Autogram: An effective approach for selecting the optimal demodulation band in rolling element bearings diagnosis
  publication-title: Mech. Syst. Signal Process.
  contributor:
    fullname: Fasana
– volume: 72
  start-page: 1029
  year: 2022
  end-page: 1037
  ident: b0020
  article-title: Data augmentation and intelligent fault diagnosis of planetary gearbox using ILoFGAN under extremely limited samples
  publication-title: IEEE Trans. Reliab.
  contributor:
    fullname: Liu
– volume: 31
  start-page: 890
  year: 2009
  end-page: 912
  ident: b0170
  article-title: Probing the Pareto frontier for basis pursuit solutions
  publication-title: SIAM J. Sci. Comput.
  contributor:
    fullname: Friedlander
– volume: 96
  start-page: 226
  year: 1996
  end-page: 231
  ident: b0160
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
  publication-title: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining
  contributor:
    fullname: Xu
– volume: 108
  start-page: 262
  year: 2018
  end-page: 275
  ident: b0120
  article-title: Gear fault diagnosis using transmission error and ensemble empirical mode decomposition
  publication-title: Mech. Syst. Signal Process.
  contributor:
    fullname: Choi
– volume: 164
  year: 2022
  ident: b0140
  article-title: A fault information-guided variational mode decomposition (FIVMD) method for rolling element bearings diagnosis
  publication-title: Mech. Syst. Signal Process.
  contributor:
    fullname: Halkon
– volume: 66
  start-page: 679
  year: 2016
  end-page: 698
  ident: b0030
  article-title: Spectral kurtosis for fault detection, diagnosis and prognostics of rotating machines: A review with applications
  publication-title: Mech. Syst. Signal Process.
  contributor:
    fullname: Liang
– volume: 18
  start-page: 7285
  year: 2021
  end-page: 7295
  ident: b0080
  article-title: Fault diagnosis of wheelset bearings in high-speed trains using logarithmic short-time Fourier transform and modified self-calibrated residual network
  publication-title: IEEE Trans. Ind. Inform.
  contributor:
    fullname: Antoni
– volume: 81
  start-page: 88
  year: 2016
  end-page: 107
  ident: b0105
  article-title: A comparative study between empirical wavelet transforms and empirical mode decomposition Methods: Application to bearing defect diagnosis
  publication-title: Mech. Syst. Signal Process.
  contributor:
    fullname: A. Tahan A
– volume: 166
  year: 2020
  ident: b0065
  article-title: Adaptive short-time Fourier transform and synchrosqueezing transform for non-stationary signal separation
  publication-title: Signal Process.
  contributor:
    fullname: Ji
– volume: 72
  start-page: 692
  year: 2022
  end-page: 702
  ident: b0090
  article-title: Intelligent diagnosis using continuous wavelet transform and gauss convolutional deep belief network
  publication-title: IEEE Trans. Reliab.
  contributor:
    fullname: Deng
– volume: 41
  start-page: 510
  year: 2013
  end-page: 525
  ident: b0100
  article-title: Bearing fault detection based on hybrid ensemble detector and empirical mode decomposition
  publication-title: Mech. Syst. Signal Process.
  contributor:
    fullname: Kostopoulos
– volume: 103
  start-page: 106
  year: 2017
  end-page: 132
  ident: b0180
  article-title: Atomic decomposition and sparse representation for complex signal analysis in machinery fault diagnosis: A review with examples
  publication-title: Measurement
  contributor:
    fullname: Chen
– volume: 38
  start-page: 165
  year: 2013
  end-page: 205
  ident: b0060
  article-title: Recent advances in time–frequency analysis methods for machinery fault diagnosis: A review with application examples
  publication-title: Mech. Syst. Signal Process.
  contributor:
    fullname: F. Chu F
– volume: 199
  year: 2022
  ident: b0135
  article-title: Power spectral density-guided variational mode decomposition for the compound fault diagnosis of rolling bearings
  publication-title: Measurement
  contributor:
    fullname: Lin
– volume: 134
  year: 2023
  ident: b0075
  article-title: Multi-stage image denoising with the wavelet transform
  publication-title: Pattern Recognit.
  contributor:
    fullname: Zhang
– start-page: 1
  year: 2023
  end-page: 28
  ident: b0150
  article-title: Sparse random mode decomposition
  publication-title: Commun. Appl. Math. Comput.
  contributor:
    fullname: Srmd
– volume: 8
  start-page: 607
  year: 1983
  end-page: 610
  ident: b0035
  article-title: Detection of non-Gaussian signals by frequency domain kurtosis estimation, IEEE Int
  publication-title: Conf. Acoust. Speech Signal Process.
  contributor:
    fullname: Dwyer
– volume: 20
  start-page: 282
  year: 2006
  end-page: 307
  ident: b0040
  article-title: The spectral kurtosis: a useful tool for characterising non-stationary signals
  publication-title: Mech. Syst. Signal Process.
  contributor:
    fullname: Antoni
– volume: 21
  start-page: 108
  year: 2007
  end-page: 124
  ident: b0045
  article-title: Fast computation of the kurtogram for the detection of transient faults
  publication-title: Mech. Syst. Signal Process.
  contributor:
    fullname: Antoni
– volume: 69
  start-page: 3963
  year: 2021
  end-page: 3976
  ident: b0070
  article-title: Design of an optimal piece-wise spline Wigner-Ville distribution for TFD performance evaluation and comparison
  publication-title: IEEE Trans. Signal Process.
  contributor:
    fullname: M. Al-Sa’d, B. Boashash, M. Gabbouj
– volume: 62
  start-page: 310
  year: 2023
  end-page: 330
  ident: b0155
  article-title: Generalization bounds for sparse random feature expansions
  publication-title: Appl. Comput. Harmon. Anal.
  contributor:
    fullname: Ward
– volume: 62
  start-page: 531
  year: 2013
  end-page: 544
  ident: b0125
  article-title: Variational mode decomposition
  publication-title: IEEE Trans. Signal Process.
  contributor:
    fullname: Zosso
– volume: 127
  start-page: 531
  year: 2019
  end-page: 550
  ident: b0185
  article-title: Comprehensive planet gear diagnostics: Use of transmission error and mesh phasing to distinguish localised fault types and identify faulty gears
  publication-title: Mech. Syst. Signal Process.
  contributor:
    fullname: Peng
– volume: 454
  start-page: 903
  year: 1998
  end-page: 995
  ident: b0095
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proc. r. Soc. A-Math. Phys. Eng. Sci.
  contributor:
    fullname: Liu
– volume: 479
  start-page: 20220835
  year: 2023
  ident: b0165
  article-title: Random feature models for learning interacting dynamical systems
  publication-title: Proc. r. Soc. A
  contributor:
    fullname: Schaeffer
– volume: 01
  start-page: 1
  year: 2009
  end-page: 41
  ident: b0110
  article-title: Ensemble empirical mode decomposition: a noise-assisted data analysis method
  publication-title: Adv. Adapt. Data Anal.
  contributor:
    fullname: Huang
– volume: 74
  start-page: 73
  year: 2016
  end-page: 94
  ident: b0050
  article-title: The infogram: Entropic evidence of the signature of repetitive transients
  publication-title: Mech. Syst. Signal Process.
  contributor:
    fullname: Antoni
– volume: 471
  year: 2020
  ident: b0190
  article-title: Cyclostationary modeling for local fault diagnosis of planetary gear vibration signals
  publication-title: J. Sound Vib.
  contributor:
    fullname: Chen
– volume: 127
  start-page: 531
  year: 2019
  ident: 10.1016/j.ymssp.2023.111032_b0185
  article-title: Comprehensive planet gear diagnostics: Use of transmission error and mesh phasing to distinguish localised fault types and identify faulty gears
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2019.03.024
  contributor:
    fullname: Peng
– volume: 96
  start-page: 226
  issue: 34
  year: 1996
  ident: 10.1016/j.ymssp.2023.111032_b0160
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
  publication-title: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining
  contributor:
    fullname: Ester
– volume: 199
  year: 2022
  ident: 10.1016/j.ymssp.2023.111032_b0135
  article-title: Power spectral density-guided variational mode decomposition for the compound fault diagnosis of rolling bearings
  publication-title: Measurement
  doi: 10.1016/j.measurement.2022.111494
  contributor:
    fullname: Yi
– volume: 82
  year: 2023
  ident: 10.1016/j.ymssp.2023.111032_b0130
  article-title: Variational mode decomposition for surface and intramuscular EMG signal denoising
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2022.104560
  contributor:
    fullname: Ashraf
– volume: 74
  start-page: 73
  year: 2016
  ident: 10.1016/j.ymssp.2023.111032_b0050
  article-title: The infogram: Entropic evidence of the signature of repetitive transients
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2015.04.034
  contributor:
    fullname: Antoni
– volume: 134
  year: 2023
  ident: 10.1016/j.ymssp.2023.111032_b0075
  article-title: Multi-stage image denoising with the wavelet transform
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2022.109050
  contributor:
    fullname: Tian
– volume: 01
  start-page: 1
  issue: 01
  year: 2009
  ident: 10.1016/j.ymssp.2023.111032_b0110
  article-title: Ensemble empirical mode decomposition: a noise-assisted data analysis method
  publication-title: Adv. Adapt. Data Anal.
  doi: 10.1142/S1793536909000047
  contributor:
    fullname: Wu
– volume: 69
  start-page: 3963
  year: 2021
  ident: 10.1016/j.ymssp.2023.111032_b0070
  article-title: Design of an optimal piece-wise spline Wigner-Ville distribution for TFD performance evaluation and comparison
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2021.3089291
  contributor:
    fullname: M. Al-Sa’d, B. Boashash, M. Gabbouj
– volume: 18
  start-page: 7285
  issue: 10
  year: 2021
  ident: 10.1016/j.ymssp.2023.111032_b0080
  article-title: Fault diagnosis of wheelset bearings in high-speed trains using logarithmic short-time Fourier transform and modified self-calibrated residual network
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2021.3136144
  contributor:
    fullname: Xin
– volume: 62
  start-page: 310
  year: 2023
  ident: 10.1016/j.ymssp.2023.111032_b0155
  article-title: Generalization bounds for sparse random feature expansions
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2022.08.003
  contributor:
    fullname: Hashemi
– volume: 62
  start-page: 531
  issue: 3
  year: 2013
  ident: 10.1016/j.ymssp.2023.111032_b0125
  article-title: Variational mode decomposition
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2013.2288675
  contributor:
    fullname: Dragomiretskiy
– volume: 81
  start-page: 88
  year: 2016
  ident: 10.1016/j.ymssp.2023.111032_b0105
  article-title: A comparative study between empirical wavelet transforms and empirical mode decomposition Methods: Application to bearing defect diagnosis
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2016.02.049
  contributor:
    fullname: Kedadouche
– volume: 8
  start-page: 607
  year: 1983
  ident: 10.1016/j.ymssp.2023.111032_b0035
  article-title: Detection of non-Gaussian signals by frequency domain kurtosis estimation, IEEE Int
  publication-title: Conf. Acoust. Speech Signal Process.
  doi: 10.1109/ICASSP.1983.1172264
  contributor:
    fullname: Dwyer
– volume: 66
  start-page: 679
  year: 2016
  ident: 10.1016/j.ymssp.2023.111032_b0030
  article-title: Spectral kurtosis for fault detection, diagnosis and prognostics of rotating machines: A review with applications
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2015.04.039
  contributor:
    fullname: Wang
– volume: 20
  start-page: 282
  issue: 2
  year: 2006
  ident: 10.1016/j.ymssp.2023.111032_b0040
  article-title: The spectral kurtosis: a useful tool for characterising non-stationary signals
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2004.09.001
  contributor:
    fullname: Antoni
– volume: 72
  start-page: 1
  year: 2023
  ident: 10.1016/j.ymssp.2023.111032_b0015
  article-title: Symplectic geometry transformation based periodic segment method: Algorithm and Applications
  publication-title: IEEE Trans. Instrum. Meas.
  contributor:
    fullname: Pan
– volume: 31
  start-page: 890
  issue: 2
  year: 2009
  ident: 10.1016/j.ymssp.2023.111032_b0170
  article-title: Probing the Pareto frontier for basis pursuit solutions
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/080714488
  contributor:
    fullname: Van Den Berg
– volume: 108
  start-page: 262
  year: 2018
  ident: 10.1016/j.ymssp.2023.111032_b0120
  article-title: Gear fault diagnosis using transmission error and ensemble empirical mode decomposition
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2018.02.028
  contributor:
    fullname: Park
– volume: 186
  year: 2023
  ident: 10.1016/j.ymssp.2023.111032_b0145
  article-title: An operating condition information-guided iterative variational mode decomposition method based on Mahalanobis distance criterion for surge characteristic frequency extraction of the centrifugal compressor
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2022.109836
  contributor:
    fullname: Hou
– volume: 41
  start-page: 510
  issue: 1–2
  year: 2013
  ident: 10.1016/j.ymssp.2023.111032_b0100
  article-title: Bearing fault detection based on hybrid ensemble detector and empirical mode decomposition
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2013.02.020
  contributor:
    fullname: Georgoulas
– volume: 479
  start-page: 20220835
  issue: 2275
  year: 2023
  ident: 10.1016/j.ymssp.2023.111032_b0165
  article-title: Random feature models for learning interacting dynamical systems
  publication-title: Proc. r. Soc. A
  doi: 10.1098/rspa.2022.0835
  contributor:
    fullname: Liu
– volume: 135
  start-page: 188
  year: 2023
  ident: 10.1016/j.ymssp.2023.111032_b0005
  article-title: Research on gear crack fault diagnosis model based on permanent magnet motor current signal
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2022.10.001
  contributor:
    fullname: Sheng
– volume: 210
  year: 2023
  ident: 10.1016/j.ymssp.2023.111032_b0010
  article-title: Gearbox fault diagnosis: A higher order moments approach
  publication-title: Measurement
  doi: 10.1016/j.measurement.2023.112489
  contributor:
    fullname: Kumar
– volume: 103
  start-page: 106
  year: 2017
  ident: 10.1016/j.ymssp.2023.111032_b0180
  article-title: Atomic decomposition and sparse representation for complex signal analysis in machinery fault diagnosis: A review with examples
  publication-title: Measurement
  doi: 10.1016/j.measurement.2017.02.031
  contributor:
    fullname: Feng
– volume: 72
  start-page: 1029
  issue: 3
  year: 2022
  ident: 10.1016/j.ymssp.2023.111032_b0020
  article-title: Data augmentation and intelligent fault diagnosis of planetary gearbox using ILoFGAN under extremely limited samples
  publication-title: IEEE Trans. Reliab.
  doi: 10.1109/TR.2022.3215243
  contributor:
    fullname: Chen
– volume: 185
  year: 2023
  ident: 10.1016/j.ymssp.2023.111032_b0025
  article-title: Deep convolutional generative adversarial network with semi-supervised learning enabled physics elucidation for extended gear fault diagnosis under data limitations
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2022.109772
  contributor:
    fullname: Zhou
– volume: 21
  start-page: 108
  issue: 1
  year: 2007
  ident: 10.1016/j.ymssp.2023.111032_b0045
  article-title: Fast computation of the kurtogram for the detection of transient faults
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2005.12.002
  contributor:
    fullname: Antoni
– volume: 31
  issue: 2
  year: 2019
  ident: 10.1016/j.ymssp.2023.111032_b0085
  article-title: K-SVD-based WVD enhancement algorithm for planetary gearbox fault diagnosis under a CNN framework
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/ab4488
  contributor:
    fullname: Li
– start-page: 1
  year: 2023
  ident: 10.1016/j.ymssp.2023.111032_b0150
  article-title: Sparse random mode decomposition
  publication-title: Commun. Appl. Math. Comput.
  contributor:
    fullname: Richardson
– volume: 72
  start-page: 692
  issue: 2
  year: 2022
  ident: 10.1016/j.ymssp.2023.111032_b0090
  article-title: Intelligent diagnosis using continuous wavelet transform and gauss convolutional deep belief network
  publication-title: IEEE Trans. Reliab.
  doi: 10.1109/TR.2022.3180273
  contributor:
    fullname: Zhao
– volume: 471
  year: 2020
  ident: 10.1016/j.ymssp.2023.111032_b0190
  article-title: Cyclostationary modeling for local fault diagnosis of planetary gear vibration signals
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2020.115175
  contributor:
    fullname: Sun
– volume: 38
  start-page: 165
  issue: 1
  year: 2013
  ident: 10.1016/j.ymssp.2023.111032_b0060
  article-title: Recent advances in time–frequency analysis methods for machinery fault diagnosis: A review with application examples
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2013.01.017
  contributor:
    fullname: Feng
– volume: 454
  start-page: 903
  issue: 1971
  year: 1998
  ident: 10.1016/j.ymssp.2023.111032_b0095
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proc. r. Soc. A-Math. Phys. Eng. Sci.
  doi: 10.1098/rspa.1998.0193
  contributor:
    fullname: Huang
– ident: 10.1016/j.ymssp.2023.111032_b0175
– volume: 91
  start-page: 140
  year: 2016
  ident: 10.1016/j.ymssp.2023.111032_b0115
  article-title: Study on planetary gear fault diagnosis based on entropy feature fusion of ensemble empirical mode decomposition
  publication-title: Measurement
  doi: 10.1016/j.measurement.2016.05.059
  contributor:
    fullname: Cheng
– volume: 166
  year: 2020
  ident: 10.1016/j.ymssp.2023.111032_b0065
  article-title: Adaptive short-time Fourier transform and synchrosqueezing transform for non-stationary signal separation
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2019.07.024
  contributor:
    fullname: Li
– volume: 105
  start-page: 294
  year: 2018
  ident: 10.1016/j.ymssp.2023.111032_b0055
  article-title: The Autogram: An effective approach for selecting the optimal demodulation band in rolling element bearings diagnosis
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2017.12.009
  contributor:
    fullname: Moshrefzadeh
– volume: 164
  year: 2022
  ident: 10.1016/j.ymssp.2023.111032_b0140
  article-title: A fault information-guided variational mode decomposition (FIVMD) method for rolling element bearings diagnosis
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2021.108216
  contributor:
    fullname: Ni
SSID ssj0009406
Score 2.4917297
Snippet •A new signal processing method called RSSCD is proposed, and it is applied to gear fault diagnosis.•The ideas of randomization and sparsification of...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 111032
SubjectTerms Fault significance measure
Gear fault diagnosis
Random spectral similar component decomposition
Spectral similarity criterion
Title A novel random spectral similar component decomposition method and its application to gear fault diagnosis
URI https://dx.doi.org/10.1016/j.ymssp.2023.111032
Volume 208
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH7M7aIH8SfOHyMHj8atbdJ0xzEcU2EXHexWmiaRjm0dayd48W_3pT9wgnjw1pY8CF-S932hX14AbrkMDHOkT2PcX1GmuKDSNRHlTHAukeFxSVm3xcQfT9nTjM8aMKzPwlhbZZX7y5xeZOvqS7dCs7tOku4Lrg-cjsKKaFsELtiDFtKRi1O7NXh8Hk--a--y4opN257agLr4UGHz-lhmma1b6Xo2e_Q893eC2iGd0REcVmqRDMoOHUNDr07gYKeG4CnMB2SVvusFQdJR6ZIURyc3GJQlywS3rcSaxtMVcgtRunguXVqkvDuaYBRJ8ozs_MkmeUrecAUQE20XGFa68ZLsDKajh9fhmFYXKNAYmSmnceQrwXCQAi6U7HHjeNJ4ytEGdYhUQS8SgUREPE8LhVILuZrHSvcNNyzCJt45NFfYwwsgLMadhY9aifuaKeNEKgj6Vn0JZWKXu224q1EL12WdjLA2kM3DAuTQghyWILfBr5ENfwx3iJn8r8DL_wZewT6-MWu4dvg1NPPNVt-gnshlB_buP51ONWu-AKZky-o
link.rule.ids 315,783,787,4510,24129,27937,27938,45598,45692
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED2VMgAD4lOUTw-MmDaJnaRjVVEVKF1opW5RHMcoVZtWTYrEwm_nHCeiSIiBLbJ9knU-33tWns8At1z4ilnCpRGeryiT3KPCViHlzONcIMLjltJqi6HbH7OnCZ_UoFvdhdGyyjL3m5xeZOuypVl6s7lMkuYr7g8MR0-TaF0Ezt-CbabLjWNQ339-6zywyzVU0qd6eFV6qBB5fcyzTFettB2dO1qO_Ts8bUBO7wD2S65IOmY6h1CL0yPY26ggeAzTDkkX7_GMIOTIxZwUFydXaJQl8wQPrURLxhcpIguRcfFtNFrEvBxN0IokeUY2_mOTfEHeMP6JCtczNDNavCQ7gXHvYdTt0_L5BBohLuU0Cl3pMVwin3tStLiyHKEcacUKWYiQfiv0fIEecZzYk0i0EKl5JOO24oqFOMQ5hXqKMzwDwiI8V7jIlLgbM6msUPp-W3MvT6rI5nYD7iqvBUtTJSOo5GPToHByoJ0cGCc3wK08G_xY7ADz-F-G5_81vIGd_uhlEAweh88XsIs9TEuvLX4J9Xy1jq-QWeTiuoicL31GzMM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+random+spectral+similar+component+decomposition+method+and+its+application+to+gear+fault+diagnosis&rft.jtitle=Mechanical+systems+and+signal+processing&rft.au=Liu%2C+Feng&rft.au=Cheng%2C+Junsheng&rft.au=Hu%2C+Niaoqing&rft.au=Cheng%2C+Zhe&rft.date=2024-02-15&rft.issn=0888-3270&rft.volume=208&rft.spage=111032&rft_id=info:doi/10.1016%2Fj.ymssp.2023.111032&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ymssp_2023_111032
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-3270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-3270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-3270&client=summon