A novel random spectral similar component decomposition method and its application to gear fault diagnosis
•A new signal processing method called RSSCD is proposed, and it is applied to gear fault diagnosis.•The ideas of randomization and sparsification of time–frequency features are utilized to represent the input signal.•The spectral similarity criterion is defined to adaptively recombine the initial s...
Saved in:
Published in | Mechanical systems and signal processing Vol. 208; p. 111032 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.02.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A new signal processing method called RSSCD is proposed, and it is applied to gear fault diagnosis.•The ideas of randomization and sparsification of time–frequency features are utilized to represent the input signal.•The spectral similarity criterion is defined to adaptively recombine the initial signal components.•A fault significance measure index is designed to guide the selection of parameter in sparse random feature representation.•Simulation and two experimental cases are applied to fully validate the proposed method.
Sparse random mode decomposition (SRMD) is a decomposition approach established by combining sparse random feature model with clustering algorithm. It is not subject to the sampling process of signal and can mitigate mode mixing. However, the performance of SRMD is limited by its own hyperparameters, and it is prone to derive inaccurate clustering decomposition results when processing strong noise interference signal. To overcome these defects, a novel method called random spectral similar component decomposition (RSSCD) is proposed. In RSSCD, the time–frequency localized features produced by randomization and sparsification are adopted to represent the input signal. Subsequently, the initial signal components formed by sparse random features are taken as a whole, and the spectral similarity criterion is defined to adaptively form independent random components (RCs), thus improving the accuracy of decomposition. Furthermore, RSSCD is applied to gear fault diagnosis, and a fault significance measure (FSM) index is designed to guide the selection of parameter in sparse random feature representation, which ensures the fault information richness of the required RCs. Finally, the feasibility and effectiveness of RSSCD are fully validated by simulation signals and two experimental cases. The results indicate that RSSCD has excellent decomposition performance and fault feature extraction ability. |
---|---|
AbstractList | •A new signal processing method called RSSCD is proposed, and it is applied to gear fault diagnosis.•The ideas of randomization and sparsification of time–frequency features are utilized to represent the input signal.•The spectral similarity criterion is defined to adaptively recombine the initial signal components.•A fault significance measure index is designed to guide the selection of parameter in sparse random feature representation.•Simulation and two experimental cases are applied to fully validate the proposed method.
Sparse random mode decomposition (SRMD) is a decomposition approach established by combining sparse random feature model with clustering algorithm. It is not subject to the sampling process of signal and can mitigate mode mixing. However, the performance of SRMD is limited by its own hyperparameters, and it is prone to derive inaccurate clustering decomposition results when processing strong noise interference signal. To overcome these defects, a novel method called random spectral similar component decomposition (RSSCD) is proposed. In RSSCD, the time–frequency localized features produced by randomization and sparsification are adopted to represent the input signal. Subsequently, the initial signal components formed by sparse random features are taken as a whole, and the spectral similarity criterion is defined to adaptively form independent random components (RCs), thus improving the accuracy of decomposition. Furthermore, RSSCD is applied to gear fault diagnosis, and a fault significance measure (FSM) index is designed to guide the selection of parameter in sparse random feature representation, which ensures the fault information richness of the required RCs. Finally, the feasibility and effectiveness of RSSCD are fully validated by simulation signals and two experimental cases. The results indicate that RSSCD has excellent decomposition performance and fault feature extraction ability. |
ArticleNumber | 111032 |
Author | Hu, Niaoqing Cheng, Zhe Liu, Feng Cheng, Junsheng Yang, Yu |
Author_xml | – sequence: 1 givenname: Feng surname: Liu fullname: Liu, Feng organization: College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, PR China – sequence: 2 givenname: Junsheng orcidid: 0000-0003-0135-5340 surname: Cheng fullname: Cheng, Junsheng email: chengjunsheng@hnu.edu.cn organization: College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, PR China – sequence: 3 givenname: Niaoqing surname: Hu fullname: Hu, Niaoqing organization: Laboratory of Science and Technology on Integrated Logistics Support, National University of Defense Technology, Changsha 410073, PR China – sequence: 4 givenname: Zhe surname: Cheng fullname: Cheng, Zhe organization: Laboratory of Science and Technology on Integrated Logistics Support, National University of Defense Technology, Changsha 410073, PR China – sequence: 5 givenname: Yu surname: Yang fullname: Yang, Yu organization: College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, PR China |
BookMark | eNp9kL1OwzAQgC1UJNrCE7D4BRLsOHGSgaGqgCJVYoHZcuxzcZTYkR0q9e1xW2amO-nuu59vhRbOO0DokZKcEsqf-vw0xjjlBSlYTiklrLhBS0pantGC8gVakqZpMlbU5A6tYuwJIW1J-BL1G-z8EQYcpNN-xHECNQc54GhHO8iAlR-ntMzNWMMlj3a23uER5m-vcaKwnSOW0zRYJS-l2eMDJNTInyFhVh5couI9ujVyiPDwF9fo6_Xlc7vL9h9v79vNPlOMsDlTkuu6BKWaqtYdqQxlnWGaguEl63RDZN106RPGoNZtRTmnldLQmsqUMrWwNWLXuSr4GAMYMQU7ynASlIizLtGLiy5x1iWuuhL1fKUgnXa0EERUFpwCbUNSIrS3__K_2MB5Og |
CitedBy_id | crossref_primary_10_1109_JSEN_2024_3400042 crossref_primary_10_1016_j_aei_2024_102673 crossref_primary_10_1016_j_measurement_2024_115124 crossref_primary_10_1016_j_apacoust_2024_109943 |
Cites_doi | 10.1016/j.ymssp.2019.03.024 10.1016/j.measurement.2022.111494 10.1016/j.bspc.2022.104560 10.1016/j.ymssp.2015.04.034 10.1016/j.patcog.2022.109050 10.1142/S1793536909000047 10.1109/TSP.2021.3089291 10.1109/TII.2021.3136144 10.1016/j.acha.2022.08.003 10.1109/TSP.2013.2288675 10.1016/j.ymssp.2016.02.049 10.1109/ICASSP.1983.1172264 10.1016/j.ymssp.2015.04.039 10.1016/j.ymssp.2004.09.001 10.1137/080714488 10.1016/j.ymssp.2018.02.028 10.1016/j.ymssp.2022.109836 10.1016/j.ymssp.2013.02.020 10.1098/rspa.2022.0835 10.1016/j.isatra.2022.10.001 10.1016/j.measurement.2023.112489 10.1016/j.measurement.2017.02.031 10.1109/TR.2022.3215243 10.1016/j.ymssp.2022.109772 10.1016/j.ymssp.2005.12.002 10.1088/1361-6501/ab4488 10.1109/TR.2022.3180273 10.1016/j.jsv.2020.115175 10.1016/j.ymssp.2013.01.017 10.1098/rspa.1998.0193 10.1016/j.measurement.2016.05.059 10.1016/j.sigpro.2019.07.024 10.1016/j.ymssp.2017.12.009 10.1016/j.ymssp.2021.108216 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd |
Copyright_xml | – notice: 2023 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ymssp.2023.111032 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1096-1216 |
ExternalDocumentID | 10_1016_j_ymssp_2023_111032 S0888327023009408 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG5 LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SPD SST SSV SSZ T5K XPP ZMT ZU3 ~G- 29M AAQXK AAXKI AAYXX ABEFU ABFNM ABXDB ACNNM ADFGL ADJOM ADMUD AFJKZ AKRWK ASPBG AVWKF AZFZN CAG CITATION COF EJD FEDTE FGOYB G-2 G8K HLZ HVGLF HZ~ R2- RIG SBC SET WUQ |
ID | FETCH-LOGICAL-c303t-ca6d74ecc857db05f13bf3d1ef643bd80a78b32733e7d9516615cde9f5f4a6433 |
IEDL.DBID | AIKHN |
ISSN | 0888-3270 |
IngestDate | Thu Sep 26 17:52:24 EDT 2024 Sat Feb 24 15:49:10 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Random spectral similar component decomposition Gear fault diagnosis Fault significance measure Spectral similarity criterion |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c303t-ca6d74ecc857db05f13bf3d1ef643bd80a78b32733e7d9516615cde9f5f4a6433 |
ORCID | 0000-0003-0135-5340 |
ParticipantIDs | crossref_primary_10_1016_j_ymssp_2023_111032 elsevier_sciencedirect_doi_10_1016_j_ymssp_2023_111032 |
PublicationCentury | 2000 |
PublicationDate | 2024-02-15 |
PublicationDateYYYYMMDD | 2024-02-15 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Mechanical systems and signal processing |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Kedadouche, Thomas, A. Tahan A (b0105) 2016; 81 Dragomiretskiy, Zosso (b0125) 2013; 62 Kumar, Kumar, Sarangi, Singh (b0010) 2023; 210 Richardson, Schaeffer, Tran, Srmd (b0150) 2023 Li, Cai, Han, Jiang, Ji (b0065) 2020; 166 Feng, Liang, F. Chu F (b0060) 2013; 38 Cheng, Chen, Li, Li, Liu (b0115) 2016; 91 Van Den Berg, Friedlander (b0170) 2009; 31 Park, Kim, Choi (b0120) 2018; 108 Georgoulas, Loutas, Stylios, Kostopoulos (b0100) 2013; 41 Feng, Zhou, Zuo, Chu, Chen (b0180) 2017; 103 M. Al-Sa’d, B. Boashash, M. Gabbouj (b0070) 2021; 69 Moshrefzadeh, Fasana (b0055) 2018; 105 Sun, Yang, Gryllias, Chen (b0190) 2020; 471 Huang, Shen, Long, Wu, Shih, Zheng, Yen, Tung, Liu (b0095) 1998; 454 Yi, Wang, Ran, Zhou, Lin (b0135) 2022; 199 Zhou, Diehl, Tang (b0025) 2023; 185 Sheng, Sun, Li, Ye (b0005) 2023; 135 Tian, Zheng, Zuo, Zhang, Zhang, Zhang (b0075) 2023; 134 Li, Zhang, Qin, Sun (b0085) 2019; 31 Liu, McCalla, Schaeffer (b0165) 2023; 479 Antoni (b0045) 2007; 21 Ni, Ji, Feng, Halkon (b0140) 2022; 164 Hou, Wu, Wu (b0145) 2023; 186 Hashemi, Schaeffer, Shi, Topcu, Tran, Ward (b0155) 2023; 62 Zhao, Liu, Chen, Chen, Li, Xu, Deng (b0090) 2022; 72 Wang, Xiang, Markert, Liang (b0030) 2016; 66 Chen, Shao, Dou, Li, Liu (b0020) 2022; 72 Xin, Li, Jia, Zhong, Dong, Hamzaoui, Antoni (b0080) 2021; 18 Dwyer (b0035) 1983; 8 Ester, Kriegel, Sander, Xu (b0160) 1996; 96 Wu, Huang (b0110) 2009; 01 E. Van Den Berg, M.P. Friedlander, SPGL1: A solver for large-scale sparse reconstruction [Online], (2019) Available: https://friedlander.io/spgl1. Peng, Smith, Borghesani, Randall, Peng (b0185) 2019; 127 Antoni (b0050) 2016; 74 Ashraf, Shafiq, Sajjad, Waris, Gilani, Boutaayamou, Brüls (b0130) 2023; 82 Antoni (b0040) 2006; 20 Pan, Zhang, Cheng, Zheng (b0015) 2023; 72 Ashraf (10.1016/j.ymssp.2023.111032_b0130) 2023; 82 Feng (10.1016/j.ymssp.2023.111032_b0060) 2013; 38 M. Al-Sa’d, B. Boashash, M. Gabbouj (10.1016/j.ymssp.2023.111032_b0070) 2021; 69 Wang (10.1016/j.ymssp.2023.111032_b0030) 2016; 66 Zhou (10.1016/j.ymssp.2023.111032_b0025) 2023; 185 Ni (10.1016/j.ymssp.2023.111032_b0140) 2022; 164 Cheng (10.1016/j.ymssp.2023.111032_b0115) 2016; 91 Sheng (10.1016/j.ymssp.2023.111032_b0005) 2023; 135 Pan (10.1016/j.ymssp.2023.111032_b0015) 2023; 72 Kedadouche (10.1016/j.ymssp.2023.111032_b0105) 2016; 81 Park (10.1016/j.ymssp.2023.111032_b0120) 2018; 108 Sun (10.1016/j.ymssp.2023.111032_b0190) 2020; 471 Huang (10.1016/j.ymssp.2023.111032_b0095) 1998; 454 Li (10.1016/j.ymssp.2023.111032_b0065) 2020; 166 Ester (10.1016/j.ymssp.2023.111032_b0160) 1996; 96 Li (10.1016/j.ymssp.2023.111032_b0085) 2019; 31 Zhao (10.1016/j.ymssp.2023.111032_b0090) 2022; 72 Moshrefzadeh (10.1016/j.ymssp.2023.111032_b0055) 2018; 105 Peng (10.1016/j.ymssp.2023.111032_b0185) 2019; 127 Wu (10.1016/j.ymssp.2023.111032_b0110) 2009; 01 Liu (10.1016/j.ymssp.2023.111032_b0165) 2023; 479 Dragomiretskiy (10.1016/j.ymssp.2023.111032_b0125) 2013; 62 10.1016/j.ymssp.2023.111032_b0175 Kumar (10.1016/j.ymssp.2023.111032_b0010) 2023; 210 Georgoulas (10.1016/j.ymssp.2023.111032_b0100) 2013; 41 Chen (10.1016/j.ymssp.2023.111032_b0020) 2022; 72 Feng (10.1016/j.ymssp.2023.111032_b0180) 2017; 103 Antoni (10.1016/j.ymssp.2023.111032_b0045) 2007; 21 Yi (10.1016/j.ymssp.2023.111032_b0135) 2022; 199 Tian (10.1016/j.ymssp.2023.111032_b0075) 2023; 134 Hashemi (10.1016/j.ymssp.2023.111032_b0155) 2023; 62 Dwyer (10.1016/j.ymssp.2023.111032_b0035) 1983; 8 Antoni (10.1016/j.ymssp.2023.111032_b0050) 2016; 74 Richardson (10.1016/j.ymssp.2023.111032_b0150) 2023 Antoni (10.1016/j.ymssp.2023.111032_b0040) 2006; 20 Hou (10.1016/j.ymssp.2023.111032_b0145) 2023; 186 Van Den Berg (10.1016/j.ymssp.2023.111032_b0170) 2009; 31 Xin (10.1016/j.ymssp.2023.111032_b0080) 2021; 18 |
References_xml | – volume: 135 start-page: 188 year: 2023 end-page: 198 ident: b0005 article-title: Research on gear crack fault diagnosis model based on permanent magnet motor current signal publication-title: ISA Trans. contributor: fullname: Ye – volume: 210 year: 2023 ident: b0010 article-title: Gearbox fault diagnosis: A higher order moments approach publication-title: Measurement contributor: fullname: Singh – volume: 91 start-page: 140 year: 2016 end-page: 154 ident: b0115 article-title: Study on planetary gear fault diagnosis based on entropy feature fusion of ensemble empirical mode decomposition publication-title: Measurement contributor: fullname: Liu – volume: 186 year: 2023 ident: b0145 article-title: An operating condition information-guided iterative variational mode decomposition method based on Mahalanobis distance criterion for surge characteristic frequency extraction of the centrifugal compressor publication-title: Mech. Syst. Signal Process. contributor: fullname: Wu – volume: 72 start-page: 1 year: 2023 end-page: 8 ident: b0015 article-title: Symplectic geometry transformation based periodic segment method: Algorithm and Applications publication-title: IEEE Trans. Instrum. Meas. contributor: fullname: Zheng – volume: 31 year: 2019 ident: b0085 article-title: K-SVD-based WVD enhancement algorithm for planetary gearbox fault diagnosis under a CNN framework publication-title: Meas. Sci. Technol. contributor: fullname: Sun – volume: 82 year: 2023 ident: b0130 article-title: Variational mode decomposition for surface and intramuscular EMG signal denoising publication-title: Biomed. Signal Process. Control contributor: fullname: Brüls – volume: 185 year: 2023 ident: b0025 article-title: Deep convolutional generative adversarial network with semi-supervised learning enabled physics elucidation for extended gear fault diagnosis under data limitations publication-title: Mech. Syst. Signal Process. contributor: fullname: Tang – volume: 105 start-page: 294 year: 2018 end-page: 318 ident: b0055 article-title: The Autogram: An effective approach for selecting the optimal demodulation band in rolling element bearings diagnosis publication-title: Mech. Syst. Signal Process. contributor: fullname: Fasana – volume: 72 start-page: 1029 year: 2022 end-page: 1037 ident: b0020 article-title: Data augmentation and intelligent fault diagnosis of planetary gearbox using ILoFGAN under extremely limited samples publication-title: IEEE Trans. Reliab. contributor: fullname: Liu – volume: 31 start-page: 890 year: 2009 end-page: 912 ident: b0170 article-title: Probing the Pareto frontier for basis pursuit solutions publication-title: SIAM J. Sci. Comput. contributor: fullname: Friedlander – volume: 96 start-page: 226 year: 1996 end-page: 231 ident: b0160 article-title: A density-based algorithm for discovering clusters in large spatial databases with noise publication-title: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining contributor: fullname: Xu – volume: 108 start-page: 262 year: 2018 end-page: 275 ident: b0120 article-title: Gear fault diagnosis using transmission error and ensemble empirical mode decomposition publication-title: Mech. Syst. Signal Process. contributor: fullname: Choi – volume: 164 year: 2022 ident: b0140 article-title: A fault information-guided variational mode decomposition (FIVMD) method for rolling element bearings diagnosis publication-title: Mech. Syst. Signal Process. contributor: fullname: Halkon – volume: 66 start-page: 679 year: 2016 end-page: 698 ident: b0030 article-title: Spectral kurtosis for fault detection, diagnosis and prognostics of rotating machines: A review with applications publication-title: Mech. Syst. Signal Process. contributor: fullname: Liang – volume: 18 start-page: 7285 year: 2021 end-page: 7295 ident: b0080 article-title: Fault diagnosis of wheelset bearings in high-speed trains using logarithmic short-time Fourier transform and modified self-calibrated residual network publication-title: IEEE Trans. Ind. Inform. contributor: fullname: Antoni – volume: 81 start-page: 88 year: 2016 end-page: 107 ident: b0105 article-title: A comparative study between empirical wavelet transforms and empirical mode decomposition Methods: Application to bearing defect diagnosis publication-title: Mech. Syst. Signal Process. contributor: fullname: A. Tahan A – volume: 166 year: 2020 ident: b0065 article-title: Adaptive short-time Fourier transform and synchrosqueezing transform for non-stationary signal separation publication-title: Signal Process. contributor: fullname: Ji – volume: 72 start-page: 692 year: 2022 end-page: 702 ident: b0090 article-title: Intelligent diagnosis using continuous wavelet transform and gauss convolutional deep belief network publication-title: IEEE Trans. Reliab. contributor: fullname: Deng – volume: 41 start-page: 510 year: 2013 end-page: 525 ident: b0100 article-title: Bearing fault detection based on hybrid ensemble detector and empirical mode decomposition publication-title: Mech. Syst. Signal Process. contributor: fullname: Kostopoulos – volume: 103 start-page: 106 year: 2017 end-page: 132 ident: b0180 article-title: Atomic decomposition and sparse representation for complex signal analysis in machinery fault diagnosis: A review with examples publication-title: Measurement contributor: fullname: Chen – volume: 38 start-page: 165 year: 2013 end-page: 205 ident: b0060 article-title: Recent advances in time–frequency analysis methods for machinery fault diagnosis: A review with application examples publication-title: Mech. Syst. Signal Process. contributor: fullname: F. Chu F – volume: 199 year: 2022 ident: b0135 article-title: Power spectral density-guided variational mode decomposition for the compound fault diagnosis of rolling bearings publication-title: Measurement contributor: fullname: Lin – volume: 134 year: 2023 ident: b0075 article-title: Multi-stage image denoising with the wavelet transform publication-title: Pattern Recognit. contributor: fullname: Zhang – start-page: 1 year: 2023 end-page: 28 ident: b0150 article-title: Sparse random mode decomposition publication-title: Commun. Appl. Math. Comput. contributor: fullname: Srmd – volume: 8 start-page: 607 year: 1983 end-page: 610 ident: b0035 article-title: Detection of non-Gaussian signals by frequency domain kurtosis estimation, IEEE Int publication-title: Conf. Acoust. Speech Signal Process. contributor: fullname: Dwyer – volume: 20 start-page: 282 year: 2006 end-page: 307 ident: b0040 article-title: The spectral kurtosis: a useful tool for characterising non-stationary signals publication-title: Mech. Syst. Signal Process. contributor: fullname: Antoni – volume: 21 start-page: 108 year: 2007 end-page: 124 ident: b0045 article-title: Fast computation of the kurtogram for the detection of transient faults publication-title: Mech. Syst. Signal Process. contributor: fullname: Antoni – volume: 69 start-page: 3963 year: 2021 end-page: 3976 ident: b0070 article-title: Design of an optimal piece-wise spline Wigner-Ville distribution for TFD performance evaluation and comparison publication-title: IEEE Trans. Signal Process. contributor: fullname: M. Al-Sa’d, B. Boashash, M. Gabbouj – volume: 62 start-page: 310 year: 2023 end-page: 330 ident: b0155 article-title: Generalization bounds for sparse random feature expansions publication-title: Appl. Comput. Harmon. Anal. contributor: fullname: Ward – volume: 62 start-page: 531 year: 2013 end-page: 544 ident: b0125 article-title: Variational mode decomposition publication-title: IEEE Trans. Signal Process. contributor: fullname: Zosso – volume: 127 start-page: 531 year: 2019 end-page: 550 ident: b0185 article-title: Comprehensive planet gear diagnostics: Use of transmission error and mesh phasing to distinguish localised fault types and identify faulty gears publication-title: Mech. Syst. Signal Process. contributor: fullname: Peng – volume: 454 start-page: 903 year: 1998 end-page: 995 ident: b0095 article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis publication-title: Proc. r. Soc. A-Math. Phys. Eng. Sci. contributor: fullname: Liu – volume: 479 start-page: 20220835 year: 2023 ident: b0165 article-title: Random feature models for learning interacting dynamical systems publication-title: Proc. r. Soc. A contributor: fullname: Schaeffer – volume: 01 start-page: 1 year: 2009 end-page: 41 ident: b0110 article-title: Ensemble empirical mode decomposition: a noise-assisted data analysis method publication-title: Adv. Adapt. Data Anal. contributor: fullname: Huang – volume: 74 start-page: 73 year: 2016 end-page: 94 ident: b0050 article-title: The infogram: Entropic evidence of the signature of repetitive transients publication-title: Mech. Syst. Signal Process. contributor: fullname: Antoni – volume: 471 year: 2020 ident: b0190 article-title: Cyclostationary modeling for local fault diagnosis of planetary gear vibration signals publication-title: J. Sound Vib. contributor: fullname: Chen – volume: 127 start-page: 531 year: 2019 ident: 10.1016/j.ymssp.2023.111032_b0185 article-title: Comprehensive planet gear diagnostics: Use of transmission error and mesh phasing to distinguish localised fault types and identify faulty gears publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2019.03.024 contributor: fullname: Peng – volume: 96 start-page: 226 issue: 34 year: 1996 ident: 10.1016/j.ymssp.2023.111032_b0160 article-title: A density-based algorithm for discovering clusters in large spatial databases with noise publication-title: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining contributor: fullname: Ester – volume: 199 year: 2022 ident: 10.1016/j.ymssp.2023.111032_b0135 article-title: Power spectral density-guided variational mode decomposition for the compound fault diagnosis of rolling bearings publication-title: Measurement doi: 10.1016/j.measurement.2022.111494 contributor: fullname: Yi – volume: 82 year: 2023 ident: 10.1016/j.ymssp.2023.111032_b0130 article-title: Variational mode decomposition for surface and intramuscular EMG signal denoising publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2022.104560 contributor: fullname: Ashraf – volume: 74 start-page: 73 year: 2016 ident: 10.1016/j.ymssp.2023.111032_b0050 article-title: The infogram: Entropic evidence of the signature of repetitive transients publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2015.04.034 contributor: fullname: Antoni – volume: 134 year: 2023 ident: 10.1016/j.ymssp.2023.111032_b0075 article-title: Multi-stage image denoising with the wavelet transform publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2022.109050 contributor: fullname: Tian – volume: 01 start-page: 1 issue: 01 year: 2009 ident: 10.1016/j.ymssp.2023.111032_b0110 article-title: Ensemble empirical mode decomposition: a noise-assisted data analysis method publication-title: Adv. Adapt. Data Anal. doi: 10.1142/S1793536909000047 contributor: fullname: Wu – volume: 69 start-page: 3963 year: 2021 ident: 10.1016/j.ymssp.2023.111032_b0070 article-title: Design of an optimal piece-wise spline Wigner-Ville distribution for TFD performance evaluation and comparison publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2021.3089291 contributor: fullname: M. Al-Sa’d, B. Boashash, M. Gabbouj – volume: 18 start-page: 7285 issue: 10 year: 2021 ident: 10.1016/j.ymssp.2023.111032_b0080 article-title: Fault diagnosis of wheelset bearings in high-speed trains using logarithmic short-time Fourier transform and modified self-calibrated residual network publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2021.3136144 contributor: fullname: Xin – volume: 62 start-page: 310 year: 2023 ident: 10.1016/j.ymssp.2023.111032_b0155 article-title: Generalization bounds for sparse random feature expansions publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2022.08.003 contributor: fullname: Hashemi – volume: 62 start-page: 531 issue: 3 year: 2013 ident: 10.1016/j.ymssp.2023.111032_b0125 article-title: Variational mode decomposition publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2013.2288675 contributor: fullname: Dragomiretskiy – volume: 81 start-page: 88 year: 2016 ident: 10.1016/j.ymssp.2023.111032_b0105 article-title: A comparative study between empirical wavelet transforms and empirical mode decomposition Methods: Application to bearing defect diagnosis publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2016.02.049 contributor: fullname: Kedadouche – volume: 8 start-page: 607 year: 1983 ident: 10.1016/j.ymssp.2023.111032_b0035 article-title: Detection of non-Gaussian signals by frequency domain kurtosis estimation, IEEE Int publication-title: Conf. Acoust. Speech Signal Process. doi: 10.1109/ICASSP.1983.1172264 contributor: fullname: Dwyer – volume: 66 start-page: 679 year: 2016 ident: 10.1016/j.ymssp.2023.111032_b0030 article-title: Spectral kurtosis for fault detection, diagnosis and prognostics of rotating machines: A review with applications publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2015.04.039 contributor: fullname: Wang – volume: 20 start-page: 282 issue: 2 year: 2006 ident: 10.1016/j.ymssp.2023.111032_b0040 article-title: The spectral kurtosis: a useful tool for characterising non-stationary signals publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2004.09.001 contributor: fullname: Antoni – volume: 72 start-page: 1 year: 2023 ident: 10.1016/j.ymssp.2023.111032_b0015 article-title: Symplectic geometry transformation based periodic segment method: Algorithm and Applications publication-title: IEEE Trans. Instrum. Meas. contributor: fullname: Pan – volume: 31 start-page: 890 issue: 2 year: 2009 ident: 10.1016/j.ymssp.2023.111032_b0170 article-title: Probing the Pareto frontier for basis pursuit solutions publication-title: SIAM J. Sci. Comput. doi: 10.1137/080714488 contributor: fullname: Van Den Berg – volume: 108 start-page: 262 year: 2018 ident: 10.1016/j.ymssp.2023.111032_b0120 article-title: Gear fault diagnosis using transmission error and ensemble empirical mode decomposition publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2018.02.028 contributor: fullname: Park – volume: 186 year: 2023 ident: 10.1016/j.ymssp.2023.111032_b0145 article-title: An operating condition information-guided iterative variational mode decomposition method based on Mahalanobis distance criterion for surge characteristic frequency extraction of the centrifugal compressor publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2022.109836 contributor: fullname: Hou – volume: 41 start-page: 510 issue: 1–2 year: 2013 ident: 10.1016/j.ymssp.2023.111032_b0100 article-title: Bearing fault detection based on hybrid ensemble detector and empirical mode decomposition publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2013.02.020 contributor: fullname: Georgoulas – volume: 479 start-page: 20220835 issue: 2275 year: 2023 ident: 10.1016/j.ymssp.2023.111032_b0165 article-title: Random feature models for learning interacting dynamical systems publication-title: Proc. r. Soc. A doi: 10.1098/rspa.2022.0835 contributor: fullname: Liu – volume: 135 start-page: 188 year: 2023 ident: 10.1016/j.ymssp.2023.111032_b0005 article-title: Research on gear crack fault diagnosis model based on permanent magnet motor current signal publication-title: ISA Trans. doi: 10.1016/j.isatra.2022.10.001 contributor: fullname: Sheng – volume: 210 year: 2023 ident: 10.1016/j.ymssp.2023.111032_b0010 article-title: Gearbox fault diagnosis: A higher order moments approach publication-title: Measurement doi: 10.1016/j.measurement.2023.112489 contributor: fullname: Kumar – volume: 103 start-page: 106 year: 2017 ident: 10.1016/j.ymssp.2023.111032_b0180 article-title: Atomic decomposition and sparse representation for complex signal analysis in machinery fault diagnosis: A review with examples publication-title: Measurement doi: 10.1016/j.measurement.2017.02.031 contributor: fullname: Feng – volume: 72 start-page: 1029 issue: 3 year: 2022 ident: 10.1016/j.ymssp.2023.111032_b0020 article-title: Data augmentation and intelligent fault diagnosis of planetary gearbox using ILoFGAN under extremely limited samples publication-title: IEEE Trans. Reliab. doi: 10.1109/TR.2022.3215243 contributor: fullname: Chen – volume: 185 year: 2023 ident: 10.1016/j.ymssp.2023.111032_b0025 article-title: Deep convolutional generative adversarial network with semi-supervised learning enabled physics elucidation for extended gear fault diagnosis under data limitations publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2022.109772 contributor: fullname: Zhou – volume: 21 start-page: 108 issue: 1 year: 2007 ident: 10.1016/j.ymssp.2023.111032_b0045 article-title: Fast computation of the kurtogram for the detection of transient faults publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2005.12.002 contributor: fullname: Antoni – volume: 31 issue: 2 year: 2019 ident: 10.1016/j.ymssp.2023.111032_b0085 article-title: K-SVD-based WVD enhancement algorithm for planetary gearbox fault diagnosis under a CNN framework publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/ab4488 contributor: fullname: Li – start-page: 1 year: 2023 ident: 10.1016/j.ymssp.2023.111032_b0150 article-title: Sparse random mode decomposition publication-title: Commun. Appl. Math. Comput. contributor: fullname: Richardson – volume: 72 start-page: 692 issue: 2 year: 2022 ident: 10.1016/j.ymssp.2023.111032_b0090 article-title: Intelligent diagnosis using continuous wavelet transform and gauss convolutional deep belief network publication-title: IEEE Trans. Reliab. doi: 10.1109/TR.2022.3180273 contributor: fullname: Zhao – volume: 471 year: 2020 ident: 10.1016/j.ymssp.2023.111032_b0190 article-title: Cyclostationary modeling for local fault diagnosis of planetary gear vibration signals publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2020.115175 contributor: fullname: Sun – volume: 38 start-page: 165 issue: 1 year: 2013 ident: 10.1016/j.ymssp.2023.111032_b0060 article-title: Recent advances in time–frequency analysis methods for machinery fault diagnosis: A review with application examples publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2013.01.017 contributor: fullname: Feng – volume: 454 start-page: 903 issue: 1971 year: 1998 ident: 10.1016/j.ymssp.2023.111032_b0095 article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis publication-title: Proc. r. Soc. A-Math. Phys. Eng. Sci. doi: 10.1098/rspa.1998.0193 contributor: fullname: Huang – ident: 10.1016/j.ymssp.2023.111032_b0175 – volume: 91 start-page: 140 year: 2016 ident: 10.1016/j.ymssp.2023.111032_b0115 article-title: Study on planetary gear fault diagnosis based on entropy feature fusion of ensemble empirical mode decomposition publication-title: Measurement doi: 10.1016/j.measurement.2016.05.059 contributor: fullname: Cheng – volume: 166 year: 2020 ident: 10.1016/j.ymssp.2023.111032_b0065 article-title: Adaptive short-time Fourier transform and synchrosqueezing transform for non-stationary signal separation publication-title: Signal Process. doi: 10.1016/j.sigpro.2019.07.024 contributor: fullname: Li – volume: 105 start-page: 294 year: 2018 ident: 10.1016/j.ymssp.2023.111032_b0055 article-title: The Autogram: An effective approach for selecting the optimal demodulation band in rolling element bearings diagnosis publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2017.12.009 contributor: fullname: Moshrefzadeh – volume: 164 year: 2022 ident: 10.1016/j.ymssp.2023.111032_b0140 article-title: A fault information-guided variational mode decomposition (FIVMD) method for rolling element bearings diagnosis publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2021.108216 contributor: fullname: Ni |
SSID | ssj0009406 |
Score | 2.4917297 |
Snippet | •A new signal processing method called RSSCD is proposed, and it is applied to gear fault diagnosis.•The ideas of randomization and sparsification of... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 111032 |
SubjectTerms | Fault significance measure Gear fault diagnosis Random spectral similar component decomposition Spectral similarity criterion |
Title | A novel random spectral similar component decomposition method and its application to gear fault diagnosis |
URI | https://dx.doi.org/10.1016/j.ymssp.2023.111032 |
Volume | 208 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH7M7aIH8SfOHyMHj8atbdJ0xzEcU2EXHexWmiaRjm0dayd48W_3pT9wgnjw1pY8CF-S932hX14AbrkMDHOkT2PcX1GmuKDSNRHlTHAukeFxSVm3xcQfT9nTjM8aMKzPwlhbZZX7y5xeZOvqS7dCs7tOku4Lrg-cjsKKaFsELtiDFtKRi1O7NXh8Hk--a--y4opN257agLr4UGHz-lhmma1b6Xo2e_Q893eC2iGd0REcVmqRDMoOHUNDr07gYKeG4CnMB2SVvusFQdJR6ZIURyc3GJQlywS3rcSaxtMVcgtRunguXVqkvDuaYBRJ8ozs_MkmeUrecAUQE20XGFa68ZLsDKajh9fhmFYXKNAYmSmnceQrwXCQAi6U7HHjeNJ4ytEGdYhUQS8SgUREPE8LhVILuZrHSvcNNyzCJt45NFfYwwsgLMadhY9aifuaKeNEKgj6Vn0JZWKXu224q1EL12WdjLA2kM3DAuTQghyWILfBr5ENfwx3iJn8r8DL_wZewT6-MWu4dvg1NPPNVt-gnshlB_buP51ONWu-AKZky-o |
link.rule.ids | 315,783,787,4510,24129,27937,27938,45598,45692 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED2VMgAD4lOUTw-MmDaJnaRjVVEVKF1opW5RHMcoVZtWTYrEwm_nHCeiSIiBLbJ9knU-33tWns8At1z4ilnCpRGeryiT3KPCViHlzONcIMLjltJqi6HbH7OnCZ_UoFvdhdGyyjL3m5xeZOuypVl6s7lMkuYr7g8MR0-TaF0Ezt-CbabLjWNQ339-6zywyzVU0qd6eFV6qBB5fcyzTFettB2dO1qO_Ts8bUBO7wD2S65IOmY6h1CL0yPY26ggeAzTDkkX7_GMIOTIxZwUFydXaJQl8wQPrURLxhcpIguRcfFtNFrEvBxN0IokeUY2_mOTfEHeMP6JCtczNDNavCQ7gXHvYdTt0_L5BBohLuU0Cl3pMVwin3tStLiyHKEcacUKWYiQfiv0fIEecZzYk0i0EKl5JOO24oqFOMQ5hXqKMzwDwiI8V7jIlLgbM6msUPp-W3MvT6rI5nYD7iqvBUtTJSOo5GPToHByoJ0cGCc3wK08G_xY7ADz-F-G5_81vIGd_uhlEAweh88XsIs9TEuvLX4J9Xy1jq-QWeTiuoicL31GzMM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+random+spectral+similar+component+decomposition+method+and+its+application+to+gear+fault+diagnosis&rft.jtitle=Mechanical+systems+and+signal+processing&rft.au=Liu%2C+Feng&rft.au=Cheng%2C+Junsheng&rft.au=Hu%2C+Niaoqing&rft.au=Cheng%2C+Zhe&rft.date=2024-02-15&rft.issn=0888-3270&rft.volume=208&rft.spage=111032&rft_id=info:doi/10.1016%2Fj.ymssp.2023.111032&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ymssp_2023_111032 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-3270&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-3270&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-3270&client=summon |