High-order soliton solutions and their dynamics in the inhomogeneous variable coefficients Hirota equation

A series of new soliton solutions is presented for the inhomogeneous variable coefficient Hirota equation by using the Riemann–Hilbert method and transformation relationship. Firstly, through a standard dressing procedure, the N-soliton matrix associated with the simple zeros in the Riemann–Hilbert...

Full description

Saved in:
Bibliographic Details
Published inCommunications in nonlinear science & numerical simulation Vol. 120; p. 107149
Main Authors Zhou, Hui-Juan, Chen, Yong
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A series of new soliton solutions is presented for the inhomogeneous variable coefficient Hirota equation by using the Riemann–Hilbert method and transformation relationship. Firstly, through a standard dressing procedure, the N-soliton matrix associated with the simple zeros in the Riemann–Hilbert problem for the Hirota equation is constructed. Then the N-soliton matrix of the inhomogeneous variable coefficient Hirota equation can be obtained by a special relationship transformation from the N-soliton matrix of the Hirota equation. Next, using the generalized Darboux transformation, the high-order soliton solutions corresponding to the elementary high-order zeros in the Riemann–Hilbert problem for the Hirota equation can be derived. Similarly, employing the relationship transformation mentioned above can lead to the high-order soliton solutions of the inhomogeneous variable coefficient Hirota equation. In addition, the collision dynamics of Hirota and inhomogeneous variable coefficient Hirota equations are analyzed; the asymptotic behaviors for multi-solitons and long-term asymptotic estimates for the high-order one-soliton of the Hirota equation are concretely calculated. Most notably, by analyzing the dynamics of the multi-solitons and high-order solitons of the inhomogeneous variable coefficient Hirota equation, we discover numerous new waveforms such as heart-shaped periodic wave solutions, O-shaped periodic wave solutions etc. that have never been reported before, which are crucial in theory and practice. •Construct high-order soliton solutions for the variable coefficient Hirota equation.•Construct solutions of the Hirota equation by the Riemann-Hilbert method.•Obtain solutions of variable coefficient equation by relationship transformation.•Collision dynamics, asymptotic behaviors and long-term asymptotic are analyzed.•Discover numerous new waveforms that have never been reported before.
AbstractList A series of new soliton solutions is presented for the inhomogeneous variable coefficient Hirota equation by using the Riemann–Hilbert method and transformation relationship. Firstly, through a standard dressing procedure, the N-soliton matrix associated with the simple zeros in the Riemann–Hilbert problem for the Hirota equation is constructed. Then the N-soliton matrix of the inhomogeneous variable coefficient Hirota equation can be obtained by a special relationship transformation from the N-soliton matrix of the Hirota equation. Next, using the generalized Darboux transformation, the high-order soliton solutions corresponding to the elementary high-order zeros in the Riemann–Hilbert problem for the Hirota equation can be derived. Similarly, employing the relationship transformation mentioned above can lead to the high-order soliton solutions of the inhomogeneous variable coefficient Hirota equation. In addition, the collision dynamics of Hirota and inhomogeneous variable coefficient Hirota equations are analyzed; the asymptotic behaviors for multi-solitons and long-term asymptotic estimates for the high-order one-soliton of the Hirota equation are concretely calculated. Most notably, by analyzing the dynamics of the multi-solitons and high-order solitons of the inhomogeneous variable coefficient Hirota equation, we discover numerous new waveforms such as heart-shaped periodic wave solutions, O-shaped periodic wave solutions etc. that have never been reported before, which are crucial in theory and practice. •Construct high-order soliton solutions for the variable coefficient Hirota equation.•Construct solutions of the Hirota equation by the Riemann-Hilbert method.•Obtain solutions of variable coefficient equation by relationship transformation.•Collision dynamics, asymptotic behaviors and long-term asymptotic are analyzed.•Discover numerous new waveforms that have never been reported before.
ArticleNumber 107149
Author Zhou, Hui-Juan
Chen, Yong
Author_xml – sequence: 1
  givenname: Hui-Juan
  surname: Zhou
  fullname: Zhou, Hui-Juan
  organization: School of Mathematical Sciences, Shanghai Key Laboratory of Pure Mathematics and Mathematical Practice, East China Normal University, Shanghai, 200241, China
– sequence: 2
  givenname: Yong
  surname: Chen
  fullname: Chen, Yong
  email: ychen@sei.ecnu.edu.cn
  organization: School of Mathematical Sciences, Shanghai Key Laboratory of Pure Mathematics and Mathematical Practice, East China Normal University, Shanghai, 200241, China
BookMark eNqFkMFOAjEQhhuDiYA-gZe-wGK73WXpwYMhKiYmXrg3QzuFbpZW20LC27sLnjzo6Z9M8v2Z-SZk5INHQu45m3HG5w_tTPvk06xkpeg3Da_kFRnzRbMomrKpRv3MWFPUDatuyCSllvWUrKsxaVduuytCNBhpCp3LwQ95yC74RMEbmnfoIjUnD3unE3V-2PSxC_uwRY_hkOgRooNNh1QHtNZphz4nunIxZKD4dYCh7pZcW-gS3v3klKxfntfLVfH-8fq2fHovtGAiF7qp0VS10DC3m1JbaSvG7YJZw4DLja6NAAFlyTcwl9JCzecCKmxAMsPlQkyJuNTqGFKKaNVndHuIJ8WZGmypVp1tqcGWutjqKfmL0i6fz84RXPcP-3hhsf_q6DCqNBjQaFxEnZUJ7k_-G4bijJI
CitedBy_id crossref_primary_10_1007_s11071_023_08641_1
crossref_primary_10_1088_1402_4896_ad18fe
crossref_primary_10_1088_1572_9494_acfd9c
crossref_primary_10_1016_j_yofte_2024_104026
crossref_primary_10_1007_s11424_024_3467_7
crossref_primary_10_1051_wujns_2024295430
crossref_primary_10_1007_s11082_024_07404_5
crossref_primary_10_1007_s12596_024_02100_9
crossref_primary_10_3390_fractalfract8060355
crossref_primary_10_1007_s11082_023_04930_6
crossref_primary_10_1007_s11071_023_08843_7
crossref_primary_10_1002_mma_10628
crossref_primary_10_1016_j_physd_2023_134023
crossref_primary_10_1142_S0217984925500101
Cites_doi 10.1109/3.481931
10.1063/1.1666399
10.1103/PhysRevLett.76.3955
10.1007/s11071-014-1826-y
10.1088/0305-4470/39/4/002
10.1016/0375-9601(91)90971-A
10.1080/17455030.2021.2012304
10.1364/AO.28.003494
10.1142/S0129183105007832
10.1016/j.aml.2017.03.020
10.1016/j.geomphys.2019.103508
10.1080/14029251.2013.855045
10.1143/JPSJ.60.409
10.1103/PhysRevE.58.6746
10.1016/S0030-4018(01)01267-6
10.1111/j.1467-9590.2012.00568.x
10.1103/PhysRevLett.78.448
10.1063/1.1654847
10.1063/1.1654836
10.1007/BF01008354
10.1016/j.nonrwa.2018.08.004
10.1103/PhysRevE.66.046616
10.1002/sapm1967461133
10.1016/S0375-9601(99)00240-6
10.1103/PhysRevE.60.R45
10.1109/CECNET.2011.5768446
10.1111/1467-9590.00240
10.1111/sapm.12051
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cnsns.2023.107149
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1878-7274
ExternalDocumentID 10_1016_j_cnsns_2023_107149
S1007570423000679
GroupedDBID --K
--M
-01
-0A
-0I
-0Y
-SA
-S~
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VR
5VS
7-5
71M
8P~
92M
9D9
9DA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABFNM
ABJNI
ABMAC
ABNEU
ABXDB
ABYKQ
ACAZW
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AFUIB
AGHFR
AGUBO
AGYEJ
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAJEA
CAJUS
CCEZO
CCVFK
CHBEP
CS3
CUBFJ
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA0
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
JUIAU
KOM
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q--
Q-0
Q38
R-A
R-I
R2-
RIG
ROL
RPZ
RT1
RT9
S..
SDF
SDG
SES
SEW
SPC
SPCBC
SPD
SSQ
SST
SSW
SSZ
T5K
T8Q
T8Y
U1F
U1G
U5A
U5I
U5K
UHS
~G-
~LA
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c303t-c75ed453ca6fb2cf9f401f80fd0a19bc5d3a3a221ba699fa5163a4e7a90d1983
IEDL.DBID .~1
ISSN 1007-5704
IngestDate Thu Apr 24 23:01:40 EDT 2025
Tue Jul 01 01:09:15 EDT 2025
Fri Feb 23 02:37:01 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Relationship transformation
High-order soliton
Inhomogeneous variable coefficient Hirota equation
Riemann–Hilbert problem
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c303t-c75ed453ca6fb2cf9f401f80fd0a19bc5d3a3a221ba699fa5163a4e7a90d1983
ParticipantIDs crossref_primary_10_1016_j_cnsns_2023_107149
crossref_citationtrail_10_1016_j_cnsns_2023_107149
elsevier_sciencedirect_doi_10_1016_j_cnsns_2023_107149
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2023
2023-06-00
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: June 2023
PublicationDecade 2020
PublicationTitle Communications in nonlinear science & numerical simulation
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Benneyand, Newell (b1) 1967; 46
Hirota (b8) 1973; 14
Kodama (b18) 1985; 39
Yang, Chen (b35) 2019; 45
Gromov, Piskunova, Tutin (b15) 1999; 256
Papaioannou, Frantzeskakis, Hizanidis (b19) 1996; 32
Shchesnovich, Yang (b32) 2003; 110
Its (b26) 1981; 24
Dai, Zhang (b20) 2006; 39
Wang, Tian, Liu, Li, Sun (b21) 2010; 125
Peng, Tian, Wang, Zhang, Fang (b27) 2019; 146
Zakharov (b5) 1972; 35
Post, McKelvie, Tu, Dai (b6) 1989; 28
Hasegawa, Tappert (b4) 1973; 23
Sasa, Satsuma (b9) 1991; 60
Gao (b24) 2017; 73
Yang, Tian, Hu, Liu, Shan, Jiang (b25) 2021
Zakharov (b2) 1968; 4
Potasek, Tabor (b10) 1991; 154
Yang (b30) 2010
Bian, Guo, Ling (b34) 2015; 134
Rajan, Mahalingam (b23) 2015; 79
Sasa, Satsuma (b29) 1991; 60
Palacios, Guinea, Fernandez-Diaz, Crespo (b14) 1999; 60
Tao YS, He JS. The integrability and solvability for the variable coefficient higher-order nonlinear Schrödinger equation. In: Consumer electronics, communications and networks (CECNet), international conference. 2011, p. 5402–5.
Hasegawa, Tappert (b3) 1973; 23
Porsezian, Nakkeeran (b11) 1996; 76
Kim, Park, Shin (b12) 1998; 58
Zhao, Fan (b28) 2019
Gedalin, Scott, Band (b13) 1997; 78
Hong (b16) 2001; 194
Li, Li, Xu, Zhou, Spatschek (b17) 2002; 66
Li (b7) 2005; 16
He, Tao, Porsezian, Fokas (b22) 2013; 20
Guo, Ling, Liu (b33) 2012; 130
Li (10.1016/j.cnsns.2023.107149_b7) 2005; 16
Zakharov (10.1016/j.cnsns.2023.107149_b2) 1968; 4
Porsezian (10.1016/j.cnsns.2023.107149_b11) 1996; 76
Peng (10.1016/j.cnsns.2023.107149_b27) 2019; 146
Gromov (10.1016/j.cnsns.2023.107149_b15) 1999; 256
Zakharov (10.1016/j.cnsns.2023.107149_b5) 1972; 35
Yang (10.1016/j.cnsns.2023.107149_b25) 2021
Hirota (10.1016/j.cnsns.2023.107149_b8) 1973; 14
Rajan (10.1016/j.cnsns.2023.107149_b23) 2015; 79
Gedalin (10.1016/j.cnsns.2023.107149_b13) 1997; 78
Palacios (10.1016/j.cnsns.2023.107149_b14) 1999; 60
Hasegawa (10.1016/j.cnsns.2023.107149_b3) 1973; 23
Zhao (10.1016/j.cnsns.2023.107149_b28) 2019
Li (10.1016/j.cnsns.2023.107149_b17) 2002; 66
Papaioannou (10.1016/j.cnsns.2023.107149_b19) 1996; 32
He (10.1016/j.cnsns.2023.107149_b22) 2013; 20
10.1016/j.cnsns.2023.107149_b31
Post (10.1016/j.cnsns.2023.107149_b6) 1989; 28
Sasa (10.1016/j.cnsns.2023.107149_b9) 1991; 60
Its (10.1016/j.cnsns.2023.107149_b26) 1981; 24
Guo (10.1016/j.cnsns.2023.107149_b33) 2012; 130
Yang (10.1016/j.cnsns.2023.107149_b35) 2019; 45
Yang (10.1016/j.cnsns.2023.107149_b30) 2010
Kodama (10.1016/j.cnsns.2023.107149_b18) 1985; 39
Gao (10.1016/j.cnsns.2023.107149_b24) 2017; 73
Kim (10.1016/j.cnsns.2023.107149_b12) 1998; 58
Benneyand (10.1016/j.cnsns.2023.107149_b1) 1967; 46
Hong (10.1016/j.cnsns.2023.107149_b16) 2001; 194
Wang (10.1016/j.cnsns.2023.107149_b21) 2010; 125
Dai (10.1016/j.cnsns.2023.107149_b20) 2006; 39
Hasegawa (10.1016/j.cnsns.2023.107149_b4) 1973; 23
Shchesnovich (10.1016/j.cnsns.2023.107149_b32) 2003; 110
Potasek (10.1016/j.cnsns.2023.107149_b10) 1991; 154
Sasa (10.1016/j.cnsns.2023.107149_b29) 1991; 60
Bian (10.1016/j.cnsns.2023.107149_b34) 2015; 134
References_xml – volume: 76
  start-page: 3955
  year: 1996
  ident: b11
  article-title: Optical solitons in presence of Kerr dispersion and self-frequency shift
  publication-title: Phys Rev Lett
– year: 2019
  ident: b28
  article-title: Inverse scattering transformation for the Fokas-Lenells equation with nonzero boundary conditions
– volume: 194
  start-page: 217
  year: 2001
  end-page: 223
  ident: b16
  article-title: Optical solitary wave solutions for the higher order nonlinear Schrödinger equation with cubic-quintic non-Kerr terms
  publication-title: Opt Commun
– volume: 23
  start-page: 171
  year: 1973
  end-page: 172
  ident: b4
  article-title: Transmission of stationary nonlinear optical pulses in dispersive dielectric fibres II. Normal dispersion
  publication-title: Appl Phys Lett
– volume: 28
  start-page: 3494
  year: 1989
  end-page: 3497
  ident: b6
  article-title: Fabrication of holographic gratings using a moving point source
  publication-title: Appl Opt
– start-page: 24
  year: 2010
  ident: b30
  article-title: Nonlinear waves in integrable and non integrable systems
– volume: 58
  start-page: 6746
  year: 1998
  ident: b12
  article-title: Conservation laws in higher-order nonlinear Schrödinger equations
  publication-title: Phys Rev E
– start-page: 1
  year: 2021
  end-page: 17
  ident: b25
  article-title: Conservation laws and breather-to-soliton transition for a variable-coefficient modified Hirota equation in an inhomogeneous optical fiber
  publication-title: Wave Random Complex
– volume: 23
  start-page: 142
  year: 1973
  end-page: 144
  ident: b3
  article-title: Transmission of stationary nonlinear optical pulses in dispersive dielectric fibres I. Anomalous dispersion
  publication-title: Appl Phys Lett
– volume: 146
  year: 2019
  ident: b27
  article-title: Riemann–Hilbert method and multi-soliton solutions for three-component coupled nonlinear Schrödinger equations
  publication-title: J Geom Phys
– volume: 32
  start-page: 145
  year: 1996
  end-page: 154
  ident: b19
  article-title: An analytical treatment of the effect of axial inhomogeneity on femtosecond solitary waves near the zero dispersion point
  publication-title: IEEE J Quantum Electron
– volume: 39
  start-page: 723
  year: 2006
  end-page: 737
  ident: b20
  article-title: New solitons for the Hirota equation and generalized higher-order nonlinear Schrödinger equation with variable coefficients
  publication-title: J Phys A: Math Gen
– volume: 14
  start-page: 805
  year: 1973
  end-page: 809
  ident: b8
  article-title: Exact envelope-soliton solutions of a nonlinear wave equation
  publication-title: J Math Phys
– volume: 79
  start-page: 2469
  year: 2015
  end-page: 2484
  ident: b23
  article-title: Nonautonomous solitons in modified inhomogeneous Hirota equation: Soliton control and soliton interaction
  publication-title: Nonlinear Dynam
– volume: 256
  start-page: 153
  year: 1999
  end-page: 158
  ident: b15
  article-title: Dynamics of wave packets in the frame of third-order nonlinear Schrödinger equation
  publication-title: Phys Lett A
– volume: 20
  start-page: 407
  year: 2013
  end-page: 419
  ident: b22
  article-title: Rogue wave management in an in homogeneous nonlinear fibre with higher order effects
  publication-title: J Nonlinear Math Phys
– reference: Tao YS, He JS. The integrability and solvability for the variable coefficient higher-order nonlinear Schrödinger equation. In: Consumer electronics, communications and networks (CECNet), international conference. 2011, p. 5402–5.
– volume: 134
  start-page: 181
  year: 2015
  end-page: 214
  ident: b34
  article-title: High-order soliton solution of Landau-Lifshitz equation
  publication-title: Stud Appl Math
– volume: 45
  start-page: 918
  year: 2019
  end-page: 941
  ident: b35
  article-title: High-order soliton matrices for Sasa-Satsuma equation via local Riemann-Hilbert problem
  publication-title: Nonlinear Anal -Real
– volume: 66
  year: 2002
  ident: b17
  article-title: Gray optical dips in the subpicosecond regime
  publication-title: Phys Rev E
– volume: 110
  start-page: 297
  year: 2003
  end-page: 332
  ident: b32
  article-title: Higher-order solitons in the N-wave system
  publication-title: Stud Appl Math
– volume: 130
  start-page: 317
  year: 2012
  end-page: 344
  ident: b33
  article-title: High-order solutions and generalized Darboux transformations of derivative nonlinear Schröinger equations
  publication-title: Stud Appl Math
– volume: 78
  start-page: 448
  year: 1997
  ident: b13
  article-title: Optical solitary waves in the higher order nonlinear Schrödinger equation
  publication-title: Phys Rev Lett
– volume: 35
  start-page: 908
  year: 1972
  end-page: 914
  ident: b5
  article-title: Collapse of Langmuir waves
  publication-title: Sov Phys J Appl Mech Tech
– volume: 16
  start-page: 1225
  year: 2005
  end-page: 1237
  ident: b7
  article-title: Exact soliton solutions for the higher-order nonlinear Schrödinger equation
  publication-title: Internat J Modern Phys C
– volume: 4
  start-page: 190
  year: 1968
  end-page: 194
  ident: b2
  article-title: Stability of periodic waves of finite amplitude on the surface of a deep fluid
  publication-title: Sov Phys J Appl Mech Tech
– volume: 73
  start-page: 143
  year: 2017
  end-page: 149
  ident: b24
  article-title: Looking at a nonlinear inhomogeneous optical fiber through the generalized higher-order variable-coefficient Hirota equation
  publication-title: Appl Math Lett
– volume: 60
  start-page: 409
  year: 1991
  end-page: 417
  ident: b29
  article-title: New type of soliton solutions for a higher-order nonlinear Schröinger equation
  publication-title: J Phys Soc Japan
– volume: 39
  start-page: 597
  year: 1985
  end-page: 613
  ident: b18
  article-title: Optical solitons in a monomode fiber
  publication-title: J Stat Phys
– volume: 24
  start-page: 452
  year: 1981
  end-page: 456
  ident: b26
  article-title: Asymptotics of solutions of the nonlinear Schrödinger equation and isompnpdromic deformations of systems of linear equation
  publication-title: Sov Math Dokl
– volume: 125
  start-page: 213
  year: 2010
  end-page: 222
  ident: b21
  article-title: Soliton solutions for a generalized inhomogeneous variable-coefficient Hirota equation with symbolic computation
  publication-title: Stud Appl Math
– volume: 154
  start-page: 449
  year: 1991
  end-page: 452
  ident: b10
  article-title: Exact solutions for an extended nonlinear Schrödinger equation
  publication-title: Phys Lett A
– volume: 46
  start-page: 133
  year: 1967
  end-page: 139
  ident: b1
  article-title: The propagation of nonlinear wave envelopes
  publication-title: J Math Phys
– volume: 60
  start-page: 409
  year: 1991
  end-page: 417
  ident: b9
  article-title: New-type of soliton solutions for a higher-order nonlinear Schrödinger equation
  publication-title: J Phys Soc Japan
– volume: 60
  start-page: 45
  year: 1999
  ident: b14
  article-title: Dark solitary waves in the nonlinear Schrödinger equation with third order dispersion, self-steepening, and self-frequency shift
  publication-title: Phys Rev E
– start-page: 24
  year: 2010
  ident: 10.1016/j.cnsns.2023.107149_b30
– volume: 32
  start-page: 145
  year: 1996
  ident: 10.1016/j.cnsns.2023.107149_b19
  article-title: An analytical treatment of the effect of axial inhomogeneity on femtosecond solitary waves near the zero dispersion point
  publication-title: IEEE J Quantum Electron
  doi: 10.1109/3.481931
– volume: 14
  start-page: 805
  year: 1973
  ident: 10.1016/j.cnsns.2023.107149_b8
  article-title: Exact envelope-soliton solutions of a nonlinear wave equation
  publication-title: J Math Phys
  doi: 10.1063/1.1666399
– volume: 76
  start-page: 3955
  year: 1996
  ident: 10.1016/j.cnsns.2023.107149_b11
  article-title: Optical solitons in presence of Kerr dispersion and self-frequency shift
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.76.3955
– volume: 79
  start-page: 2469
  year: 2015
  ident: 10.1016/j.cnsns.2023.107149_b23
  article-title: Nonautonomous solitons in modified inhomogeneous Hirota equation: Soliton control and soliton interaction
  publication-title: Nonlinear Dynam
  doi: 10.1007/s11071-014-1826-y
– volume: 39
  start-page: 723
  year: 2006
  ident: 10.1016/j.cnsns.2023.107149_b20
  article-title: New solitons for the Hirota equation and generalized higher-order nonlinear Schrödinger equation with variable coefficients
  publication-title: J Phys A: Math Gen
  doi: 10.1088/0305-4470/39/4/002
– volume: 154
  start-page: 449
  year: 1991
  ident: 10.1016/j.cnsns.2023.107149_b10
  article-title: Exact solutions for an extended nonlinear Schrödinger equation
  publication-title: Phys Lett A
  doi: 10.1016/0375-9601(91)90971-A
– start-page: 1
  year: 2021
  ident: 10.1016/j.cnsns.2023.107149_b25
  article-title: Conservation laws and breather-to-soliton transition for a variable-coefficient modified Hirota equation in an inhomogeneous optical fiber
  publication-title: Wave Random Complex
  doi: 10.1080/17455030.2021.2012304
– volume: 28
  start-page: 3494
  year: 1989
  ident: 10.1016/j.cnsns.2023.107149_b6
  article-title: Fabrication of holographic gratings using a moving point source
  publication-title: Appl Opt
  doi: 10.1364/AO.28.003494
– volume: 16
  start-page: 1225
  year: 2005
  ident: 10.1016/j.cnsns.2023.107149_b7
  article-title: Exact soliton solutions for the higher-order nonlinear Schrödinger equation
  publication-title: Internat J Modern Phys C
  doi: 10.1142/S0129183105007832
– volume: 125
  start-page: 213
  year: 2010
  ident: 10.1016/j.cnsns.2023.107149_b21
  article-title: Soliton solutions for a generalized inhomogeneous variable-coefficient Hirota equation with symbolic computation
  publication-title: Stud Appl Math
– volume: 73
  start-page: 143
  year: 2017
  ident: 10.1016/j.cnsns.2023.107149_b24
  article-title: Looking at a nonlinear inhomogeneous optical fiber through the generalized higher-order variable-coefficient Hirota equation
  publication-title: Appl Math Lett
  doi: 10.1016/j.aml.2017.03.020
– volume: 146
  year: 2019
  ident: 10.1016/j.cnsns.2023.107149_b27
  article-title: Riemann–Hilbert method and multi-soliton solutions for three-component coupled nonlinear Schrödinger equations
  publication-title: J Geom Phys
  doi: 10.1016/j.geomphys.2019.103508
– volume: 20
  start-page: 407
  year: 2013
  ident: 10.1016/j.cnsns.2023.107149_b22
  article-title: Rogue wave management in an in homogeneous nonlinear fibre with higher order effects
  publication-title: J Nonlinear Math Phys
  doi: 10.1080/14029251.2013.855045
– volume: 60
  start-page: 409
  year: 1991
  ident: 10.1016/j.cnsns.2023.107149_b9
  article-title: New-type of soliton solutions for a higher-order nonlinear Schrödinger equation
  publication-title: J Phys Soc Japan
  doi: 10.1143/JPSJ.60.409
– volume: 58
  start-page: 6746
  year: 1998
  ident: 10.1016/j.cnsns.2023.107149_b12
  article-title: Conservation laws in higher-order nonlinear Schrödinger equations
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.58.6746
– volume: 194
  start-page: 217
  year: 2001
  ident: 10.1016/j.cnsns.2023.107149_b16
  article-title: Optical solitary wave solutions for the higher order nonlinear Schrödinger equation with cubic-quintic non-Kerr terms
  publication-title: Opt Commun
  doi: 10.1016/S0030-4018(01)01267-6
– volume: 60
  start-page: 409
  year: 1991
  ident: 10.1016/j.cnsns.2023.107149_b29
  article-title: New type of soliton solutions for a higher-order nonlinear Schröinger equation
  publication-title: J Phys Soc Japan
  doi: 10.1143/JPSJ.60.409
– volume: 130
  start-page: 317
  year: 2012
  ident: 10.1016/j.cnsns.2023.107149_b33
  article-title: High-order solutions and generalized Darboux transformations of derivative nonlinear Schröinger equations
  publication-title: Stud Appl Math
  doi: 10.1111/j.1467-9590.2012.00568.x
– volume: 4
  start-page: 190
  year: 1968
  ident: 10.1016/j.cnsns.2023.107149_b2
  article-title: Stability of periodic waves of finite amplitude on the surface of a deep fluid
  publication-title: Sov Phys J Appl Mech Tech
– volume: 78
  start-page: 448
  year: 1997
  ident: 10.1016/j.cnsns.2023.107149_b13
  article-title: Optical solitary waves in the higher order nonlinear Schrödinger equation
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.78.448
– volume: 23
  start-page: 171
  year: 1973
  ident: 10.1016/j.cnsns.2023.107149_b4
  article-title: Transmission of stationary nonlinear optical pulses in dispersive dielectric fibres II. Normal dispersion
  publication-title: Appl Phys Lett
  doi: 10.1063/1.1654847
– volume: 35
  start-page: 908
  year: 1972
  ident: 10.1016/j.cnsns.2023.107149_b5
  article-title: Collapse of Langmuir waves
  publication-title: Sov Phys J Appl Mech Tech
– volume: 24
  start-page: 452
  year: 1981
  ident: 10.1016/j.cnsns.2023.107149_b26
  article-title: Asymptotics of solutions of the nonlinear Schrödinger equation and isompnpdromic deformations of systems of linear equation
  publication-title: Sov Math Dokl
– volume: 23
  start-page: 142
  year: 1973
  ident: 10.1016/j.cnsns.2023.107149_b3
  article-title: Transmission of stationary nonlinear optical pulses in dispersive dielectric fibres I. Anomalous dispersion
  publication-title: Appl Phys Lett
  doi: 10.1063/1.1654836
– volume: 39
  start-page: 597
  year: 1985
  ident: 10.1016/j.cnsns.2023.107149_b18
  article-title: Optical solitons in a monomode fiber
  publication-title: J Stat Phys
  doi: 10.1007/BF01008354
– volume: 45
  start-page: 918
  year: 2019
  ident: 10.1016/j.cnsns.2023.107149_b35
  article-title: High-order soliton matrices for Sasa-Satsuma equation via local Riemann-Hilbert problem
  publication-title: Nonlinear Anal -Real
  doi: 10.1016/j.nonrwa.2018.08.004
– volume: 66
  year: 2002
  ident: 10.1016/j.cnsns.2023.107149_b17
  article-title: Gray optical dips in the subpicosecond regime
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.66.046616
– volume: 46
  start-page: 133
  year: 1967
  ident: 10.1016/j.cnsns.2023.107149_b1
  article-title: The propagation of nonlinear wave envelopes
  publication-title: J Math Phys
  doi: 10.1002/sapm1967461133
– volume: 256
  start-page: 153
  year: 1999
  ident: 10.1016/j.cnsns.2023.107149_b15
  article-title: Dynamics of wave packets in the frame of third-order nonlinear Schrödinger equation
  publication-title: Phys Lett A
  doi: 10.1016/S0375-9601(99)00240-6
– volume: 60
  start-page: 45
  year: 1999
  ident: 10.1016/j.cnsns.2023.107149_b14
  article-title: Dark solitary waves in the nonlinear Schrödinger equation with third order dispersion, self-steepening, and self-frequency shift
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.60.R45
– year: 2019
  ident: 10.1016/j.cnsns.2023.107149_b28
– ident: 10.1016/j.cnsns.2023.107149_b31
  doi: 10.1109/CECNET.2011.5768446
– volume: 110
  start-page: 297
  year: 2003
  ident: 10.1016/j.cnsns.2023.107149_b32
  article-title: Higher-order solitons in the N-wave system
  publication-title: Stud Appl Math
  doi: 10.1111/1467-9590.00240
– volume: 134
  start-page: 181
  year: 2015
  ident: 10.1016/j.cnsns.2023.107149_b34
  article-title: High-order soliton solution of Landau-Lifshitz equation
  publication-title: Stud Appl Math
  doi: 10.1111/sapm.12051
SSID ssj0016954
Score 2.463729
Snippet A series of new soliton solutions is presented for the inhomogeneous variable coefficient Hirota equation by using the Riemann–Hilbert method and...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107149
SubjectTerms High-order soliton
Inhomogeneous variable coefficient Hirota equation
Relationship transformation
Riemann–Hilbert problem
Title High-order soliton solutions and their dynamics in the inhomogeneous variable coefficients Hirota equation
URI https://dx.doi.org/10.1016/j.cnsns.2023.107149
Volume 120
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrDwRjwrD4yENg_H8VhVVAFEF4rULXIcW7SCpDSBkd_OnZNUIKEOTFEsO4oul7vP8nffEXIFOQISqRc5DOUfA66EEzHtOkYJBfAZvQQLhR8nYfwc3M_YrENGbS0M0iqb2F_HdButm5F-Y83-cj7vP-H5PuPI67AxF4v4goCjl998rWkebihsJzSc7ODsVnnIcrxUXuao2e35MMJdFNT8Kzv9yDjjPbLTQEU6rN9mn3R0fkB2G9hIm5-yPCQL5Go4VkOTlkhnK3K69igq84za0wCa1c3nSzrPcQQuL8VbAQ6kYfdPP2HTjGVUVBXaykogw4LG81VRSarfa0XwIzId305HsdO0UHAU5KbKUZzpLGC-kqFJPWWEgf2UiQYmG0hXpIplvvSl57mpDIUwkgE8k4HmUgwyV0T-MenmRa5PCHWZ8qTxNDMAwVJEainPAK9AUICn8PSUeK3lEtXIi2OXi9ek5ZEtEmvuBM2d1OY-JdfrRctaXWPz9LD9JMkvJ0kg_m9aePbfhedkG-9qbtgF6VarD30JKKRKe9bNemRrePcQT74B1tbdYA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VdoCFN6I8PTAStXk4qceqokrpY6FI3SLHsUUrSErT8vvxJU4FEurAFMnxRdHlcvdZ_vwdwIOuEbqQOh2LovyjFwhmdai0LSWY0PAZowQPCo8nfvjqPc_orAa96iwM0ipN7i9zepGtzUjLeLO1nM9bL7i_TwPkdRQ5l-1BA9WpaB0a3cEwnGw3E3xWNEPD-RYaVOJDBc1LpHmKst2Oq0cCGzU1_ypQP4pO_xgODVok3fKFTqAm01M4MsiRmP8yP4MF0jWsQkaT5Mhoy1KyDSrC04QUGwIkKfvP52Se4oi-vGUfmY4hmW1y8qXXzXiSiohMFsoSSLIg4XyVrTmRn6Uo-DlM-0_TXmiZLgqW0OVpbYmAysSjruC-ih2hmNJLKtVpq6TNbRYLmrjc5Y5jx9xnTHGqERr3ZMBZO7FZx72Aepql8hKITYXDlSOp0igsRrAWB4mGLDov6KcEcROcynORMArj2OjiPaqoZIuocHeE7o5KdzfhcWu0LAU2dk_3q08S_YqTSJeAXYZX_zW8h_1wOh5Fo8FkeA0HeKekit1Afb3ayFsNStbxnQm6b3G34BE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-order+soliton+solutions+and+their+dynamics+in+the+inhomogeneous+variable+coefficients+Hirota+equation&rft.jtitle=Communications+in+nonlinear+science+%26+numerical+simulation&rft.au=Zhou%2C+Hui-Juan&rft.au=Chen%2C+Yong&rft.date=2023-06-01&rft.pub=Elsevier+B.V&rft.issn=1007-5704&rft.eissn=1878-7274&rft.volume=120&rft_id=info:doi/10.1016%2Fj.cnsns.2023.107149&rft.externalDocID=S1007570423000679
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1007-5704&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1007-5704&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1007-5704&client=summon