High-order soliton solutions and their dynamics in the inhomogeneous variable coefficients Hirota equation
A series of new soliton solutions is presented for the inhomogeneous variable coefficient Hirota equation by using the Riemann–Hilbert method and transformation relationship. Firstly, through a standard dressing procedure, the N-soliton matrix associated with the simple zeros in the Riemann–Hilbert...
Saved in:
Published in | Communications in nonlinear science & numerical simulation Vol. 120; p. 107149 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.06.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A series of new soliton solutions is presented for the inhomogeneous variable coefficient Hirota equation by using the Riemann–Hilbert method and transformation relationship. Firstly, through a standard dressing procedure, the N-soliton matrix associated with the simple zeros in the Riemann–Hilbert problem for the Hirota equation is constructed. Then the N-soliton matrix of the inhomogeneous variable coefficient Hirota equation can be obtained by a special relationship transformation from the N-soliton matrix of the Hirota equation. Next, using the generalized Darboux transformation, the high-order soliton solutions corresponding to the elementary high-order zeros in the Riemann–Hilbert problem for the Hirota equation can be derived. Similarly, employing the relationship transformation mentioned above can lead to the high-order soliton solutions of the inhomogeneous variable coefficient Hirota equation. In addition, the collision dynamics of Hirota and inhomogeneous variable coefficient Hirota equations are analyzed; the asymptotic behaviors for multi-solitons and long-term asymptotic estimates for the high-order one-soliton of the Hirota equation are concretely calculated. Most notably, by analyzing the dynamics of the multi-solitons and high-order solitons of the inhomogeneous variable coefficient Hirota equation, we discover numerous new waveforms such as heart-shaped periodic wave solutions, O-shaped periodic wave solutions etc. that have never been reported before, which are crucial in theory and practice.
•Construct high-order soliton solutions for the variable coefficient Hirota equation.•Construct solutions of the Hirota equation by the Riemann-Hilbert method.•Obtain solutions of variable coefficient equation by relationship transformation.•Collision dynamics, asymptotic behaviors and long-term asymptotic are analyzed.•Discover numerous new waveforms that have never been reported before. |
---|---|
AbstractList | A series of new soliton solutions is presented for the inhomogeneous variable coefficient Hirota equation by using the Riemann–Hilbert method and transformation relationship. Firstly, through a standard dressing procedure, the N-soliton matrix associated with the simple zeros in the Riemann–Hilbert problem for the Hirota equation is constructed. Then the N-soliton matrix of the inhomogeneous variable coefficient Hirota equation can be obtained by a special relationship transformation from the N-soliton matrix of the Hirota equation. Next, using the generalized Darboux transformation, the high-order soliton solutions corresponding to the elementary high-order zeros in the Riemann–Hilbert problem for the Hirota equation can be derived. Similarly, employing the relationship transformation mentioned above can lead to the high-order soliton solutions of the inhomogeneous variable coefficient Hirota equation. In addition, the collision dynamics of Hirota and inhomogeneous variable coefficient Hirota equations are analyzed; the asymptotic behaviors for multi-solitons and long-term asymptotic estimates for the high-order one-soliton of the Hirota equation are concretely calculated. Most notably, by analyzing the dynamics of the multi-solitons and high-order solitons of the inhomogeneous variable coefficient Hirota equation, we discover numerous new waveforms such as heart-shaped periodic wave solutions, O-shaped periodic wave solutions etc. that have never been reported before, which are crucial in theory and practice.
•Construct high-order soliton solutions for the variable coefficient Hirota equation.•Construct solutions of the Hirota equation by the Riemann-Hilbert method.•Obtain solutions of variable coefficient equation by relationship transformation.•Collision dynamics, asymptotic behaviors and long-term asymptotic are analyzed.•Discover numerous new waveforms that have never been reported before. |
ArticleNumber | 107149 |
Author | Zhou, Hui-Juan Chen, Yong |
Author_xml | – sequence: 1 givenname: Hui-Juan surname: Zhou fullname: Zhou, Hui-Juan organization: School of Mathematical Sciences, Shanghai Key Laboratory of Pure Mathematics and Mathematical Practice, East China Normal University, Shanghai, 200241, China – sequence: 2 givenname: Yong surname: Chen fullname: Chen, Yong email: ychen@sei.ecnu.edu.cn organization: School of Mathematical Sciences, Shanghai Key Laboratory of Pure Mathematics and Mathematical Practice, East China Normal University, Shanghai, 200241, China |
BookMark | eNqFkMFOAjEQhhuDiYA-gZe-wGK73WXpwYMhKiYmXrg3QzuFbpZW20LC27sLnjzo6Z9M8v2Z-SZk5INHQu45m3HG5w_tTPvk06xkpeg3Da_kFRnzRbMomrKpRv3MWFPUDatuyCSllvWUrKsxaVduuytCNBhpCp3LwQ95yC74RMEbmnfoIjUnD3unE3V-2PSxC_uwRY_hkOgRooNNh1QHtNZphz4nunIxZKD4dYCh7pZcW-gS3v3klKxfntfLVfH-8fq2fHovtGAiF7qp0VS10DC3m1JbaSvG7YJZw4DLja6NAAFlyTcwl9JCzecCKmxAMsPlQkyJuNTqGFKKaNVndHuIJ8WZGmypVp1tqcGWutjqKfmL0i6fz84RXPcP-3hhsf_q6DCqNBjQaFxEnZUJ7k_-G4bijJI |
CitedBy_id | crossref_primary_10_1007_s11071_023_08641_1 crossref_primary_10_1088_1402_4896_ad18fe crossref_primary_10_1088_1572_9494_acfd9c crossref_primary_10_1016_j_yofte_2024_104026 crossref_primary_10_1007_s11424_024_3467_7 crossref_primary_10_1051_wujns_2024295430 crossref_primary_10_1007_s11082_024_07404_5 crossref_primary_10_1007_s12596_024_02100_9 crossref_primary_10_3390_fractalfract8060355 crossref_primary_10_1007_s11082_023_04930_6 crossref_primary_10_1007_s11071_023_08843_7 crossref_primary_10_1002_mma_10628 crossref_primary_10_1016_j_physd_2023_134023 crossref_primary_10_1142_S0217984925500101 |
Cites_doi | 10.1109/3.481931 10.1063/1.1666399 10.1103/PhysRevLett.76.3955 10.1007/s11071-014-1826-y 10.1088/0305-4470/39/4/002 10.1016/0375-9601(91)90971-A 10.1080/17455030.2021.2012304 10.1364/AO.28.003494 10.1142/S0129183105007832 10.1016/j.aml.2017.03.020 10.1016/j.geomphys.2019.103508 10.1080/14029251.2013.855045 10.1143/JPSJ.60.409 10.1103/PhysRevE.58.6746 10.1016/S0030-4018(01)01267-6 10.1111/j.1467-9590.2012.00568.x 10.1103/PhysRevLett.78.448 10.1063/1.1654847 10.1063/1.1654836 10.1007/BF01008354 10.1016/j.nonrwa.2018.08.004 10.1103/PhysRevE.66.046616 10.1002/sapm1967461133 10.1016/S0375-9601(99)00240-6 10.1103/PhysRevE.60.R45 10.1109/CECNET.2011.5768446 10.1111/1467-9590.00240 10.1111/sapm.12051 |
ContentType | Journal Article |
Copyright | 2023 Elsevier B.V. |
Copyright_xml | – notice: 2023 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cnsns.2023.107149 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 1878-7274 |
ExternalDocumentID | 10_1016_j_cnsns_2023_107149 S1007570423000679 |
GroupedDBID | --K --M -01 -0A -0I -0Y -SA -S~ .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VR 5VS 7-5 71M 8P~ 92M 9D9 9DA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABFNM ABJNI ABMAC ABNEU ABXDB ABYKQ ACAZW ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADGUI ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AFUIB AGHFR AGUBO AGYEJ AHJVU AIEXJ AIGVJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CAJEA CAJUS CCEZO CCVFK CHBEP CS3 CUBFJ DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FA0 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA JUIAU KOM M41 MHUIS MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q-- Q-0 Q38 R-A R-I R2- RIG ROL RPZ RT1 RT9 S.. SDF SDG SES SEW SPC SPCBC SPD SSQ SST SSW SSZ T5K T8Q T8Y U1F U1G U5A U5I U5K UHS ~G- ~LA AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c303t-c75ed453ca6fb2cf9f401f80fd0a19bc5d3a3a221ba699fa5163a4e7a90d1983 |
IEDL.DBID | .~1 |
ISSN | 1007-5704 |
IngestDate | Thu Apr 24 23:01:40 EDT 2025 Tue Jul 01 01:09:15 EDT 2025 Fri Feb 23 02:37:01 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Relationship transformation High-order soliton Inhomogeneous variable coefficient Hirota equation Riemann–Hilbert problem |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c303t-c75ed453ca6fb2cf9f401f80fd0a19bc5d3a3a221ba699fa5163a4e7a90d1983 |
ParticipantIDs | crossref_primary_10_1016_j_cnsns_2023_107149 crossref_citationtrail_10_1016_j_cnsns_2023_107149 elsevier_sciencedirect_doi_10_1016_j_cnsns_2023_107149 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2023 2023-06-00 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: June 2023 |
PublicationDecade | 2020 |
PublicationTitle | Communications in nonlinear science & numerical simulation |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Benneyand, Newell (b1) 1967; 46 Hirota (b8) 1973; 14 Kodama (b18) 1985; 39 Yang, Chen (b35) 2019; 45 Gromov, Piskunova, Tutin (b15) 1999; 256 Papaioannou, Frantzeskakis, Hizanidis (b19) 1996; 32 Shchesnovich, Yang (b32) 2003; 110 Its (b26) 1981; 24 Dai, Zhang (b20) 2006; 39 Wang, Tian, Liu, Li, Sun (b21) 2010; 125 Peng, Tian, Wang, Zhang, Fang (b27) 2019; 146 Zakharov (b5) 1972; 35 Post, McKelvie, Tu, Dai (b6) 1989; 28 Hasegawa, Tappert (b4) 1973; 23 Sasa, Satsuma (b9) 1991; 60 Gao (b24) 2017; 73 Yang, Tian, Hu, Liu, Shan, Jiang (b25) 2021 Zakharov (b2) 1968; 4 Potasek, Tabor (b10) 1991; 154 Yang (b30) 2010 Bian, Guo, Ling (b34) 2015; 134 Rajan, Mahalingam (b23) 2015; 79 Sasa, Satsuma (b29) 1991; 60 Palacios, Guinea, Fernandez-Diaz, Crespo (b14) 1999; 60 Tao YS, He JS. The integrability and solvability for the variable coefficient higher-order nonlinear Schrödinger equation. In: Consumer electronics, communications and networks (CECNet), international conference. 2011, p. 5402–5. Hasegawa, Tappert (b3) 1973; 23 Porsezian, Nakkeeran (b11) 1996; 76 Kim, Park, Shin (b12) 1998; 58 Zhao, Fan (b28) 2019 Gedalin, Scott, Band (b13) 1997; 78 Hong (b16) 2001; 194 Li, Li, Xu, Zhou, Spatschek (b17) 2002; 66 Li (b7) 2005; 16 He, Tao, Porsezian, Fokas (b22) 2013; 20 Guo, Ling, Liu (b33) 2012; 130 Li (10.1016/j.cnsns.2023.107149_b7) 2005; 16 Zakharov (10.1016/j.cnsns.2023.107149_b2) 1968; 4 Porsezian (10.1016/j.cnsns.2023.107149_b11) 1996; 76 Peng (10.1016/j.cnsns.2023.107149_b27) 2019; 146 Gromov (10.1016/j.cnsns.2023.107149_b15) 1999; 256 Zakharov (10.1016/j.cnsns.2023.107149_b5) 1972; 35 Yang (10.1016/j.cnsns.2023.107149_b25) 2021 Hirota (10.1016/j.cnsns.2023.107149_b8) 1973; 14 Rajan (10.1016/j.cnsns.2023.107149_b23) 2015; 79 Gedalin (10.1016/j.cnsns.2023.107149_b13) 1997; 78 Palacios (10.1016/j.cnsns.2023.107149_b14) 1999; 60 Hasegawa (10.1016/j.cnsns.2023.107149_b3) 1973; 23 Zhao (10.1016/j.cnsns.2023.107149_b28) 2019 Li (10.1016/j.cnsns.2023.107149_b17) 2002; 66 Papaioannou (10.1016/j.cnsns.2023.107149_b19) 1996; 32 He (10.1016/j.cnsns.2023.107149_b22) 2013; 20 10.1016/j.cnsns.2023.107149_b31 Post (10.1016/j.cnsns.2023.107149_b6) 1989; 28 Sasa (10.1016/j.cnsns.2023.107149_b9) 1991; 60 Its (10.1016/j.cnsns.2023.107149_b26) 1981; 24 Guo (10.1016/j.cnsns.2023.107149_b33) 2012; 130 Yang (10.1016/j.cnsns.2023.107149_b35) 2019; 45 Yang (10.1016/j.cnsns.2023.107149_b30) 2010 Kodama (10.1016/j.cnsns.2023.107149_b18) 1985; 39 Gao (10.1016/j.cnsns.2023.107149_b24) 2017; 73 Kim (10.1016/j.cnsns.2023.107149_b12) 1998; 58 Benneyand (10.1016/j.cnsns.2023.107149_b1) 1967; 46 Hong (10.1016/j.cnsns.2023.107149_b16) 2001; 194 Wang (10.1016/j.cnsns.2023.107149_b21) 2010; 125 Dai (10.1016/j.cnsns.2023.107149_b20) 2006; 39 Hasegawa (10.1016/j.cnsns.2023.107149_b4) 1973; 23 Shchesnovich (10.1016/j.cnsns.2023.107149_b32) 2003; 110 Potasek (10.1016/j.cnsns.2023.107149_b10) 1991; 154 Sasa (10.1016/j.cnsns.2023.107149_b29) 1991; 60 Bian (10.1016/j.cnsns.2023.107149_b34) 2015; 134 |
References_xml | – volume: 76 start-page: 3955 year: 1996 ident: b11 article-title: Optical solitons in presence of Kerr dispersion and self-frequency shift publication-title: Phys Rev Lett – year: 2019 ident: b28 article-title: Inverse scattering transformation for the Fokas-Lenells equation with nonzero boundary conditions – volume: 194 start-page: 217 year: 2001 end-page: 223 ident: b16 article-title: Optical solitary wave solutions for the higher order nonlinear Schrödinger equation with cubic-quintic non-Kerr terms publication-title: Opt Commun – volume: 23 start-page: 171 year: 1973 end-page: 172 ident: b4 article-title: Transmission of stationary nonlinear optical pulses in dispersive dielectric fibres II. Normal dispersion publication-title: Appl Phys Lett – volume: 28 start-page: 3494 year: 1989 end-page: 3497 ident: b6 article-title: Fabrication of holographic gratings using a moving point source publication-title: Appl Opt – start-page: 24 year: 2010 ident: b30 article-title: Nonlinear waves in integrable and non integrable systems – volume: 58 start-page: 6746 year: 1998 ident: b12 article-title: Conservation laws in higher-order nonlinear Schrödinger equations publication-title: Phys Rev E – start-page: 1 year: 2021 end-page: 17 ident: b25 article-title: Conservation laws and breather-to-soliton transition for a variable-coefficient modified Hirota equation in an inhomogeneous optical fiber publication-title: Wave Random Complex – volume: 23 start-page: 142 year: 1973 end-page: 144 ident: b3 article-title: Transmission of stationary nonlinear optical pulses in dispersive dielectric fibres I. Anomalous dispersion publication-title: Appl Phys Lett – volume: 146 year: 2019 ident: b27 article-title: Riemann–Hilbert method and multi-soliton solutions for three-component coupled nonlinear Schrödinger equations publication-title: J Geom Phys – volume: 32 start-page: 145 year: 1996 end-page: 154 ident: b19 article-title: An analytical treatment of the effect of axial inhomogeneity on femtosecond solitary waves near the zero dispersion point publication-title: IEEE J Quantum Electron – volume: 39 start-page: 723 year: 2006 end-page: 737 ident: b20 article-title: New solitons for the Hirota equation and generalized higher-order nonlinear Schrödinger equation with variable coefficients publication-title: J Phys A: Math Gen – volume: 14 start-page: 805 year: 1973 end-page: 809 ident: b8 article-title: Exact envelope-soliton solutions of a nonlinear wave equation publication-title: J Math Phys – volume: 79 start-page: 2469 year: 2015 end-page: 2484 ident: b23 article-title: Nonautonomous solitons in modified inhomogeneous Hirota equation: Soliton control and soliton interaction publication-title: Nonlinear Dynam – volume: 256 start-page: 153 year: 1999 end-page: 158 ident: b15 article-title: Dynamics of wave packets in the frame of third-order nonlinear Schrödinger equation publication-title: Phys Lett A – volume: 20 start-page: 407 year: 2013 end-page: 419 ident: b22 article-title: Rogue wave management in an in homogeneous nonlinear fibre with higher order effects publication-title: J Nonlinear Math Phys – reference: Tao YS, He JS. The integrability and solvability for the variable coefficient higher-order nonlinear Schrödinger equation. In: Consumer electronics, communications and networks (CECNet), international conference. 2011, p. 5402–5. – volume: 134 start-page: 181 year: 2015 end-page: 214 ident: b34 article-title: High-order soliton solution of Landau-Lifshitz equation publication-title: Stud Appl Math – volume: 45 start-page: 918 year: 2019 end-page: 941 ident: b35 article-title: High-order soliton matrices for Sasa-Satsuma equation via local Riemann-Hilbert problem publication-title: Nonlinear Anal -Real – volume: 66 year: 2002 ident: b17 article-title: Gray optical dips in the subpicosecond regime publication-title: Phys Rev E – volume: 110 start-page: 297 year: 2003 end-page: 332 ident: b32 article-title: Higher-order solitons in the N-wave system publication-title: Stud Appl Math – volume: 130 start-page: 317 year: 2012 end-page: 344 ident: b33 article-title: High-order solutions and generalized Darboux transformations of derivative nonlinear Schröinger equations publication-title: Stud Appl Math – volume: 78 start-page: 448 year: 1997 ident: b13 article-title: Optical solitary waves in the higher order nonlinear Schrödinger equation publication-title: Phys Rev Lett – volume: 35 start-page: 908 year: 1972 end-page: 914 ident: b5 article-title: Collapse of Langmuir waves publication-title: Sov Phys J Appl Mech Tech – volume: 16 start-page: 1225 year: 2005 end-page: 1237 ident: b7 article-title: Exact soliton solutions for the higher-order nonlinear Schrödinger equation publication-title: Internat J Modern Phys C – volume: 4 start-page: 190 year: 1968 end-page: 194 ident: b2 article-title: Stability of periodic waves of finite amplitude on the surface of a deep fluid publication-title: Sov Phys J Appl Mech Tech – volume: 73 start-page: 143 year: 2017 end-page: 149 ident: b24 article-title: Looking at a nonlinear inhomogeneous optical fiber through the generalized higher-order variable-coefficient Hirota equation publication-title: Appl Math Lett – volume: 60 start-page: 409 year: 1991 end-page: 417 ident: b29 article-title: New type of soliton solutions for a higher-order nonlinear Schröinger equation publication-title: J Phys Soc Japan – volume: 39 start-page: 597 year: 1985 end-page: 613 ident: b18 article-title: Optical solitons in a monomode fiber publication-title: J Stat Phys – volume: 24 start-page: 452 year: 1981 end-page: 456 ident: b26 article-title: Asymptotics of solutions of the nonlinear Schrödinger equation and isompnpdromic deformations of systems of linear equation publication-title: Sov Math Dokl – volume: 125 start-page: 213 year: 2010 end-page: 222 ident: b21 article-title: Soliton solutions for a generalized inhomogeneous variable-coefficient Hirota equation with symbolic computation publication-title: Stud Appl Math – volume: 154 start-page: 449 year: 1991 end-page: 452 ident: b10 article-title: Exact solutions for an extended nonlinear Schrödinger equation publication-title: Phys Lett A – volume: 46 start-page: 133 year: 1967 end-page: 139 ident: b1 article-title: The propagation of nonlinear wave envelopes publication-title: J Math Phys – volume: 60 start-page: 409 year: 1991 end-page: 417 ident: b9 article-title: New-type of soliton solutions for a higher-order nonlinear Schrödinger equation publication-title: J Phys Soc Japan – volume: 60 start-page: 45 year: 1999 ident: b14 article-title: Dark solitary waves in the nonlinear Schrödinger equation with third order dispersion, self-steepening, and self-frequency shift publication-title: Phys Rev E – start-page: 24 year: 2010 ident: 10.1016/j.cnsns.2023.107149_b30 – volume: 32 start-page: 145 year: 1996 ident: 10.1016/j.cnsns.2023.107149_b19 article-title: An analytical treatment of the effect of axial inhomogeneity on femtosecond solitary waves near the zero dispersion point publication-title: IEEE J Quantum Electron doi: 10.1109/3.481931 – volume: 14 start-page: 805 year: 1973 ident: 10.1016/j.cnsns.2023.107149_b8 article-title: Exact envelope-soliton solutions of a nonlinear wave equation publication-title: J Math Phys doi: 10.1063/1.1666399 – volume: 76 start-page: 3955 year: 1996 ident: 10.1016/j.cnsns.2023.107149_b11 article-title: Optical solitons in presence of Kerr dispersion and self-frequency shift publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.76.3955 – volume: 79 start-page: 2469 year: 2015 ident: 10.1016/j.cnsns.2023.107149_b23 article-title: Nonautonomous solitons in modified inhomogeneous Hirota equation: Soliton control and soliton interaction publication-title: Nonlinear Dynam doi: 10.1007/s11071-014-1826-y – volume: 39 start-page: 723 year: 2006 ident: 10.1016/j.cnsns.2023.107149_b20 article-title: New solitons for the Hirota equation and generalized higher-order nonlinear Schrödinger equation with variable coefficients publication-title: J Phys A: Math Gen doi: 10.1088/0305-4470/39/4/002 – volume: 154 start-page: 449 year: 1991 ident: 10.1016/j.cnsns.2023.107149_b10 article-title: Exact solutions for an extended nonlinear Schrödinger equation publication-title: Phys Lett A doi: 10.1016/0375-9601(91)90971-A – start-page: 1 year: 2021 ident: 10.1016/j.cnsns.2023.107149_b25 article-title: Conservation laws and breather-to-soliton transition for a variable-coefficient modified Hirota equation in an inhomogeneous optical fiber publication-title: Wave Random Complex doi: 10.1080/17455030.2021.2012304 – volume: 28 start-page: 3494 year: 1989 ident: 10.1016/j.cnsns.2023.107149_b6 article-title: Fabrication of holographic gratings using a moving point source publication-title: Appl Opt doi: 10.1364/AO.28.003494 – volume: 16 start-page: 1225 year: 2005 ident: 10.1016/j.cnsns.2023.107149_b7 article-title: Exact soliton solutions for the higher-order nonlinear Schrödinger equation publication-title: Internat J Modern Phys C doi: 10.1142/S0129183105007832 – volume: 125 start-page: 213 year: 2010 ident: 10.1016/j.cnsns.2023.107149_b21 article-title: Soliton solutions for a generalized inhomogeneous variable-coefficient Hirota equation with symbolic computation publication-title: Stud Appl Math – volume: 73 start-page: 143 year: 2017 ident: 10.1016/j.cnsns.2023.107149_b24 article-title: Looking at a nonlinear inhomogeneous optical fiber through the generalized higher-order variable-coefficient Hirota equation publication-title: Appl Math Lett doi: 10.1016/j.aml.2017.03.020 – volume: 146 year: 2019 ident: 10.1016/j.cnsns.2023.107149_b27 article-title: Riemann–Hilbert method and multi-soliton solutions for three-component coupled nonlinear Schrödinger equations publication-title: J Geom Phys doi: 10.1016/j.geomphys.2019.103508 – volume: 20 start-page: 407 year: 2013 ident: 10.1016/j.cnsns.2023.107149_b22 article-title: Rogue wave management in an in homogeneous nonlinear fibre with higher order effects publication-title: J Nonlinear Math Phys doi: 10.1080/14029251.2013.855045 – volume: 60 start-page: 409 year: 1991 ident: 10.1016/j.cnsns.2023.107149_b9 article-title: New-type of soliton solutions for a higher-order nonlinear Schrödinger equation publication-title: J Phys Soc Japan doi: 10.1143/JPSJ.60.409 – volume: 58 start-page: 6746 year: 1998 ident: 10.1016/j.cnsns.2023.107149_b12 article-title: Conservation laws in higher-order nonlinear Schrödinger equations publication-title: Phys Rev E doi: 10.1103/PhysRevE.58.6746 – volume: 194 start-page: 217 year: 2001 ident: 10.1016/j.cnsns.2023.107149_b16 article-title: Optical solitary wave solutions for the higher order nonlinear Schrödinger equation with cubic-quintic non-Kerr terms publication-title: Opt Commun doi: 10.1016/S0030-4018(01)01267-6 – volume: 60 start-page: 409 year: 1991 ident: 10.1016/j.cnsns.2023.107149_b29 article-title: New type of soliton solutions for a higher-order nonlinear Schröinger equation publication-title: J Phys Soc Japan doi: 10.1143/JPSJ.60.409 – volume: 130 start-page: 317 year: 2012 ident: 10.1016/j.cnsns.2023.107149_b33 article-title: High-order solutions and generalized Darboux transformations of derivative nonlinear Schröinger equations publication-title: Stud Appl Math doi: 10.1111/j.1467-9590.2012.00568.x – volume: 4 start-page: 190 year: 1968 ident: 10.1016/j.cnsns.2023.107149_b2 article-title: Stability of periodic waves of finite amplitude on the surface of a deep fluid publication-title: Sov Phys J Appl Mech Tech – volume: 78 start-page: 448 year: 1997 ident: 10.1016/j.cnsns.2023.107149_b13 article-title: Optical solitary waves in the higher order nonlinear Schrödinger equation publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.78.448 – volume: 23 start-page: 171 year: 1973 ident: 10.1016/j.cnsns.2023.107149_b4 article-title: Transmission of stationary nonlinear optical pulses in dispersive dielectric fibres II. Normal dispersion publication-title: Appl Phys Lett doi: 10.1063/1.1654847 – volume: 35 start-page: 908 year: 1972 ident: 10.1016/j.cnsns.2023.107149_b5 article-title: Collapse of Langmuir waves publication-title: Sov Phys J Appl Mech Tech – volume: 24 start-page: 452 year: 1981 ident: 10.1016/j.cnsns.2023.107149_b26 article-title: Asymptotics of solutions of the nonlinear Schrödinger equation and isompnpdromic deformations of systems of linear equation publication-title: Sov Math Dokl – volume: 23 start-page: 142 year: 1973 ident: 10.1016/j.cnsns.2023.107149_b3 article-title: Transmission of stationary nonlinear optical pulses in dispersive dielectric fibres I. Anomalous dispersion publication-title: Appl Phys Lett doi: 10.1063/1.1654836 – volume: 39 start-page: 597 year: 1985 ident: 10.1016/j.cnsns.2023.107149_b18 article-title: Optical solitons in a monomode fiber publication-title: J Stat Phys doi: 10.1007/BF01008354 – volume: 45 start-page: 918 year: 2019 ident: 10.1016/j.cnsns.2023.107149_b35 article-title: High-order soliton matrices for Sasa-Satsuma equation via local Riemann-Hilbert problem publication-title: Nonlinear Anal -Real doi: 10.1016/j.nonrwa.2018.08.004 – volume: 66 year: 2002 ident: 10.1016/j.cnsns.2023.107149_b17 article-title: Gray optical dips in the subpicosecond regime publication-title: Phys Rev E doi: 10.1103/PhysRevE.66.046616 – volume: 46 start-page: 133 year: 1967 ident: 10.1016/j.cnsns.2023.107149_b1 article-title: The propagation of nonlinear wave envelopes publication-title: J Math Phys doi: 10.1002/sapm1967461133 – volume: 256 start-page: 153 year: 1999 ident: 10.1016/j.cnsns.2023.107149_b15 article-title: Dynamics of wave packets in the frame of third-order nonlinear Schrödinger equation publication-title: Phys Lett A doi: 10.1016/S0375-9601(99)00240-6 – volume: 60 start-page: 45 year: 1999 ident: 10.1016/j.cnsns.2023.107149_b14 article-title: Dark solitary waves in the nonlinear Schrödinger equation with third order dispersion, self-steepening, and self-frequency shift publication-title: Phys Rev E doi: 10.1103/PhysRevE.60.R45 – year: 2019 ident: 10.1016/j.cnsns.2023.107149_b28 – ident: 10.1016/j.cnsns.2023.107149_b31 doi: 10.1109/CECNET.2011.5768446 – volume: 110 start-page: 297 year: 2003 ident: 10.1016/j.cnsns.2023.107149_b32 article-title: Higher-order solitons in the N-wave system publication-title: Stud Appl Math doi: 10.1111/1467-9590.00240 – volume: 134 start-page: 181 year: 2015 ident: 10.1016/j.cnsns.2023.107149_b34 article-title: High-order soliton solution of Landau-Lifshitz equation publication-title: Stud Appl Math doi: 10.1111/sapm.12051 |
SSID | ssj0016954 |
Score | 2.463729 |
Snippet | A series of new soliton solutions is presented for the inhomogeneous variable coefficient Hirota equation by using the Riemann–Hilbert method and... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 107149 |
SubjectTerms | High-order soliton Inhomogeneous variable coefficient Hirota equation Relationship transformation Riemann–Hilbert problem |
Title | High-order soliton solutions and their dynamics in the inhomogeneous variable coefficients Hirota equation |
URI | https://dx.doi.org/10.1016/j.cnsns.2023.107149 |
Volume | 120 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrDwRjwrD4yENg_H8VhVVAFEF4rULXIcW7SCpDSBkd_OnZNUIKEOTFEsO4oul7vP8nffEXIFOQISqRc5DOUfA66EEzHtOkYJBfAZvQQLhR8nYfwc3M_YrENGbS0M0iqb2F_HdButm5F-Y83-cj7vP-H5PuPI67AxF4v4goCjl998rWkebihsJzSc7ODsVnnIcrxUXuao2e35MMJdFNT8Kzv9yDjjPbLTQEU6rN9mn3R0fkB2G9hIm5-yPCQL5Go4VkOTlkhnK3K69igq84za0wCa1c3nSzrPcQQuL8VbAQ6kYfdPP2HTjGVUVBXaykogw4LG81VRSarfa0XwIzId305HsdO0UHAU5KbKUZzpLGC-kqFJPWWEgf2UiQYmG0hXpIplvvSl57mpDIUwkgE8k4HmUgwyV0T-MenmRa5PCHWZ8qTxNDMAwVJEainPAK9AUICn8PSUeK3lEtXIi2OXi9ek5ZEtEmvuBM2d1OY-JdfrRctaXWPz9LD9JMkvJ0kg_m9aePbfhedkG-9qbtgF6VarD30JKKRKe9bNemRrePcQT74B1tbdYA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VdoCFN6I8PTAStXk4qceqokrpY6FI3SLHsUUrSErT8vvxJU4FEurAFMnxRdHlcvdZ_vwdwIOuEbqQOh2LovyjFwhmdai0LSWY0PAZowQPCo8nfvjqPc_orAa96iwM0ipN7i9zepGtzUjLeLO1nM9bL7i_TwPkdRQ5l-1BA9WpaB0a3cEwnGw3E3xWNEPD-RYaVOJDBc1LpHmKst2Oq0cCGzU1_ypQP4pO_xgODVok3fKFTqAm01M4MsiRmP8yP4MF0jWsQkaT5Mhoy1KyDSrC04QUGwIkKfvP52Se4oi-vGUfmY4hmW1y8qXXzXiSiohMFsoSSLIg4XyVrTmRn6Uo-DlM-0_TXmiZLgqW0OVpbYmAysSjruC-ih2hmNJLKtVpq6TNbRYLmrjc5Y5jx9xnTHGqERr3ZMBZO7FZx72Aepql8hKITYXDlSOp0igsRrAWB4mGLDov6KcEcROcynORMArj2OjiPaqoZIuocHeE7o5KdzfhcWu0LAU2dk_3q08S_YqTSJeAXYZX_zW8h_1wOh5Fo8FkeA0HeKekit1Afb3ayFsNStbxnQm6b3G34BE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-order+soliton+solutions+and+their+dynamics+in+the+inhomogeneous+variable+coefficients+Hirota+equation&rft.jtitle=Communications+in+nonlinear+science+%26+numerical+simulation&rft.au=Zhou%2C+Hui-Juan&rft.au=Chen%2C+Yong&rft.date=2023-06-01&rft.pub=Elsevier+B.V&rft.issn=1007-5704&rft.eissn=1878-7274&rft.volume=120&rft_id=info:doi/10.1016%2Fj.cnsns.2023.107149&rft.externalDocID=S1007570423000679 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1007-5704&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1007-5704&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1007-5704&client=summon |