Electron transfer between neptunium and sodium chlorite in acidic chloride media

Controlling aqueous 5f-element electron transfer chemistry is critical for processing efforts associated with actinide technologies. Often, redox agents are added during actinide processing steps to control actinide redox chemistry and manipulate the actinide oxidation states for the separation. Sod...

Full description

Saved in:
Bibliographic Details
Published inNew journal of chemistry Vol. 48; no. 5; pp. 197 - 1918
Main Authors Arko, Brian T, Dan, David, Adelman, Sara L, Kimball, David B, Kozimor, Stosh A, Shafer, Jenifer C
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 29.01.2024
Royal Society of Chemistry (RSC)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Controlling aqueous 5f-element electron transfer chemistry is critical for processing efforts associated with actinide technologies. Often, redox agents are added during actinide processing steps to control actinide redox chemistry and manipulate the actinide oxidation states for the separation. Sodium chlorite, NaClO 2(aq) , represents one of these useful redox agents. For example, NaClO 2(aq) finds widespread application in the processing of plutonium and americium. Surprisingly, however, redox reactivity between NaClO 2(aq) and other actinides, like neptunium, has been largely ignored. That knowledge gap is addressed herein. We characterized some redox reactivity between NaClO 2(aq) and Np 4+ (aq) and identified experimental conditions that held neptunium in the +4 oxidation state or converted Np 4+ (aq) to NpO 2 2+ (aq) or NpO 2 1+ (aq) . This was achieved by carefully adjusting four variables: ingoing concentrations of (1) Np 4+ (aq) , (2) NaClO 2(aq) , (3) Cl 1− (aq) , and (4) H 1+ (aq) . We discovered that three neptunium oxidation states (+4, +5, and +6) could be accessed using one ubiquitous redox agent, NaClO 2(aq) . These results highlight the diverse electron transfer chemistry available to neptunium in aqueous solutions, provide new insight on how neptunium reacts with NaClO 2(aq) , and are discussed within the context of their importance to plutonium and americium processing. Redox chemistry between Np 4+ (aq) and NaClO 2(aq) can be controlled as a function of neptunium vs. NaClO 2(aq) , Cl 1− (aq) , and H 1+ (aq) concentrations. Certain chemical environments held Np 4+ (aq) in the +4 oxidation state. Other chemical environments generated NpO 2 1+ (aq) and/or NpO 2 2+ (aq) .
AbstractList Controlling aqueous 5f-element electron transfer chemistry is critical for processing efforts associated with actinide technologies. Often, redox agents are added during actinide processing steps to control actinide redox chemistry and manipulate the actinide oxidation states for the separation. Sodium chlorite, NaClO2(aq), represents one of these useful redox agents. For example, NaClO2(aq) finds widespread application in the processing of plutonium and americium. Surprisingly, however, redox reactivity between NaClO2(aq) and other actinides, like neptunium, has been largely ignored. That knowledge gap is addressed herein. We characterized some redox reactivity between NaClO2(aq) and Np4+(aq) and identified experimental conditions that held neptunium in the +4 oxidation state or converted Np4+(aq) to NpO22+(aq) or NpO21+(aq). This was achieved by carefully adjusting four variables: ingoing concentrations of (1) Np4+(aq), (2) NaClO2(aq), (3) Cl1−(aq), and (4) H1+(aq). We discovered that three neptunium oxidation states (+4, +5, and +6) could be accessed using one ubiquitous redox agent, NaClO2(aq). These results highlight the diverse electron transfer chemistry available to neptunium in aqueous solutions, provide new insight on how neptunium reacts with NaClO2(aq), and are discussed within the context of their importance to plutonium and americium processing.
Redox chemistry between Np 4+ (aq) and NaClO 2(aq) can be controlled as a function of neptunium vs. NaClO 2(aq) , Cl 1− (aq) , and H 1+ (aq) concentrations. Certain chemical environments held Np 4+ (aq) in the +4 oxidation state. Other chemical environments generated NpO 2 1+ (aq) and/or NpO 2 2+ (aq) .
Controlling aqueous 5f-element electron transfer chemistry is critical for processing efforts associated with actinide technologies. Often, redox agents are added during actinide processing steps to control actinide redox chemistry and manipulate the actinide oxidation states for the separation. Sodium chlorite, NaClO 2(aq) , represents one of these useful redox agents. For example, NaClO 2(aq) finds widespread application in the processing of plutonium and americium. Surprisingly, however, redox reactivity between NaClO 2(aq) and other actinides, like neptunium, has been largely ignored. That knowledge gap is addressed herein. We characterized some redox reactivity between NaClO 2(aq) and Np 4+ (aq) and identified experimental conditions that held neptunium in the +4 oxidation state or converted Np 4+ (aq) to NpO 2 2+ (aq) or NpO 2 1+ (aq) . This was achieved by carefully adjusting four variables: ingoing concentrations of (1) Np 4+ (aq) , (2) NaClO 2(aq) , (3) Cl 1− (aq) , and (4) H 1+ (aq) . We discovered that three neptunium oxidation states (+4, +5, and +6) could be accessed using one ubiquitous redox agent, NaClO 2(aq) . These results highlight the diverse electron transfer chemistry available to neptunium in aqueous solutions, provide new insight on how neptunium reacts with NaClO 2(aq) , and are discussed within the context of their importance to plutonium and americium processing. Redox chemistry between Np 4+ (aq) and NaClO 2(aq) can be controlled as a function of neptunium vs. NaClO 2(aq) , Cl 1− (aq) , and H 1+ (aq) concentrations. Certain chemical environments held Np 4+ (aq) in the +4 oxidation state. Other chemical environments generated NpO 2 1+ (aq) and/or NpO 2 2+ (aq) .
Controlling aqueous 5f-element electron transfer chemistry is critical for processing efforts associated with actinide technologies. Often, redox agents are added during actinide processing steps to control actinide redox chemistry and manipulate the actinide oxidation states for the separation. Sodium chlorite, NaClO 2(aq) , represents one of these useful redox agents. For example, NaClO 2(aq) finds widespread application in the processing of plutonium and americium. Surprisingly, however, redox reactivity between NaClO 2(aq) and other actinides, like neptunium, has been largely ignored. That knowledge gap is addressed herein. We characterized some redox reactivity between NaClO 2(aq) and Np 4+ (aq) and identified experimental conditions that held neptunium in the +4 oxidation state or converted Np 4+ (aq) to NpO 2 2+ (aq) or NpO 2 1+ (aq) . This was achieved by carefully adjusting four variables: ingoing concentrations of (1) Np 4+ (aq) , (2) NaClO 2(aq) , (3) Cl 1− (aq) , and (4) H 1+ (aq) . We discovered that three neptunium oxidation states (+4, +5, and +6) could be accessed using one ubiquitous redox agent, NaClO 2(aq) . These results highlight the diverse electron transfer chemistry available to neptunium in aqueous solutions, provide new insight on how neptunium reacts with NaClO 2(aq) , and are discussed within the context of their importance to plutonium and americium processing.
Author Arko, Brian T
Kozimor, Stosh A
Shafer, Jenifer C
Kimball, David B
Adelman, Sara L
Dan, David
AuthorAffiliation Department of Chemistry
Colorado School of Mines
Los Alamos National Laboratory
AuthorAffiliation_xml – name: Colorado School of Mines
– name: Department of Chemistry
– name: Los Alamos National Laboratory
Author_xml – sequence: 1
  givenname: Brian T
  surname: Arko
  fullname: Arko, Brian T
– sequence: 2
  givenname: David
  surname: Dan
  fullname: Dan, David
– sequence: 3
  givenname: Sara L
  surname: Adelman
  fullname: Adelman, Sara L
– sequence: 4
  givenname: David B
  surname: Kimball
  fullname: Kimball, David B
– sequence: 5
  givenname: Stosh A
  surname: Kozimor
  fullname: Kozimor, Stosh A
– sequence: 6
  givenname: Jenifer C
  surname: Shafer
  fullname: Shafer, Jenifer C
BackLink https://www.osti.gov/biblio/2251529$$D View this record in Osti.gov
BookMark eNpFkEtLQzEQhYNUsK1u3AtBd8LV5Oa-spS2vijqQtchTSY0pU1qkov4701t0c3MYfgYzjkjNHDeAULnlNxQwvitZm5FWMuIPkJDyhpe8LKhg6xpVRWkrpoTNIpxRQilbUOH6G22BpWCdzgF6aKBgBeQvgAcdrBNvbP9BkuncfR6J9Vy7YNNgK3DUllt1eGkAW9AW3mKjo1cRzg77DH6uJ-9Tx6L-evD0-RuXihGWMqzqSsDsiMKZKnqpqlaakjLJWVMcVqRTlPFO1Bca2oWsl10hIExUvOamJqN0eX-r4_JiqiyJ7VU3rkcR5RlTeuSZ-hqD22D_-whJrHyfXDZlyg55aziZddm6npPqeBjDGDENtiNDN-CErGrVUzZy_NvrdMMX-zhENUf9187-wFeb3Ya
Cites_doi 10.1016/j.pnucene.2017.07.016
10.1021/acs.inorgchem.7b03089
10.1006/fstl.1997.0240
10.1080/01496399508010379
10.1021/ie070820l
10.1021/ja01170a087
10.1021/ic800667h
10.1002/9780470166161.ch3
10.1021/ic50060a013
10.1016/j.apgeochem.2020.104561
10.1021/ic8006684
10.1063/1.555805
10.1016/B978-0-12-647850-1.50008-7
10.2172/1329538
10.1021/ic50075a021
10.1016/0022-1902(71)80672-3
10.1007/1-4020-3598-5
10.1021/ie50367a007
10.1007/978-1-4419-9276-5
10.1021/acs.iecr.1c02360
10.1021/es00143a005
10.1107/S056774087500444X
10.1021/ed039p333
10.2172/4080927
10.1021/acs.chas.1c00035
10.1080/07366290802544767
10.1007/978-3-642-40297-5
10.2172/4165919
10.2172/753372
10.1016/S1369-7021(10)70220-0
10.2172/1023125
10.1023/A:1010613100054
10.1039/D2MA00859A
10.1021/ic50060a014
10.2307/3575792
10.1016/j.isci.2021.103500
10.1080/0163660X.2021.1933740
10.1080/18811248.2007.9711291
10.1021/ja01304a016
10.1016/j.poly.2017.01.013
10.1016/B978-0-12-415846-7.00032-9
10.1016/S0010-8545(00)80344-6
10.1021/ja01350a021
10.1016/0022-1902(61)80238-8
10.1080/18811248.1996.9731941
10.1002/047009060X
10.1107/S0567740876003531
10.1016/B978-0-12-819725-7.00169-0
10.1002/cjce.5450820323
10.1021/ie50491a048
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2024
Copyright_xml – notice: Copyright Royal Society of Chemistry 2024
DBID AAYXX
CITATION
7SR
8BQ
8FD
H9R
JG9
KA0
OTOTI
DOI 10.1039/d3nj03730d
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Illustrata: Natural Sciences
Materials Research Database
ProQuest Illustrata: Technology Collection
OSTI.GOV
DatabaseTitle CrossRef
Materials Research Database
ProQuest Illustrata: Natural Sciences
Engineered Materials Abstracts
ProQuest Illustrata: Technology Collection
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database


CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1369-9261
EndPage 1918
ExternalDocumentID 2251529
10_1039_D3NJ03730D
d3nj03730d
GroupedDBID ---
-DZ
-JG
-~X
0-7
0R~
123
29N
4.4
705
70J
70~
7~J
AAEMU
AAGNR
AAIWI
AANOJ
AAXHV
AAXPP
ABASK
ABCQX
ABDVN
ABGFH
ABJNI
ABRYZ
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
AENEX
AETIL
AFOGI
AFVBQ
AGKEF
AGRSR
AGSTE
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CS3
D0L
DU5
EBS
ECGLT
EE0
EF-
F5P
GNO
HZ~
H~N
IDZ
J3I
L7B
M4U
N9A
O9-
OK1
P2P
R7B
R7C
R7D
RAOCF
RCNCU
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SKH
SLH
TN5
TWZ
VH6
YNT
YQT
AAJAE
AAMEH
AAWGC
AAYXX
ABEMK
ABPDG
ABXOH
ADSRN
AEFDR
AENGV
AESAV
AFLYV
AFRDS
AGEGJ
AHGCF
APEMP
CITATION
GGIMP
H13
7SR
8BQ
8FD
H9R
JG9
KA0
OTOTI
ID FETCH-LOGICAL-c303t-c3654fea80cea2c566471f079a133c91408d1c98ec9dd1fba7b803effad950f53
ISSN 1144-0546
IngestDate Mon Feb 05 04:53:27 EST 2024
Thu Oct 10 20:17:44 EDT 2024
Fri Aug 23 00:28:56 EDT 2024
Tue Jan 30 04:18:43 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c303t-c3654fea80cea2c566471f079a133c91408d1c98ec9dd1fba7b803effad950f53
Notes https://doi.org/10.1039/d3nj03730d
Electronic supplementary information (ESI) available. See DOI
USDOE
2022LANLE3M1; SC0020189
ORCID 0000-0002-8175-0000
0000-0002-9268-8839
0000-0001-7387-0507
0000-0001-9702-1534
0000-0001-7989-3451
0000000197021534
0000000281750000
0000000179893451
0000000173870507
0000000292688839
OpenAccessLink https://pubs.rsc.org/en/content/articlepdf/2024/nj/d3nj03730d
PQID 2919349287
PQPubID 2048886
PageCount 12
ParticipantIDs crossref_primary_10_1039_D3NJ03730D
rsc_primary_d3nj03730d
osti_scitechconnect_2251529
proquest_journals_2919349287
PublicationCentury 2000
PublicationDate 2024-01-29
PublicationDateYYYYMMDD 2024-01-29
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-29
  day: 29
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
– name: United Kingdom
PublicationTitle New journal of chemistry
PublicationYear 2024
Publisher Royal Society of Chemistry
Royal Society of Chemistry (RSC)
Publisher_xml – name: Royal Society of Chemistry
– name: Royal Society of Chemistry (RSC)
References Tazzoli (D3NJ03730D/cit50/1) 1975; 31
Horva (D3NJ03730D/cit47/1) 2008; 47
Fukasawa (D3NJ03730D/cit40/1) 1996; 33
Cohen (D3NJ03730D/cit69/1) 1961; 22
Thompson (D3NJ03730D/cit9/1) 1982; 90
Cary (D3NJ03730D/cit13/1) 2017; 126
Bray (D3NJ03730D/cit67/1) 1935; 57
Mincher (D3NJ03730D/cit6/1) 2009; 27
D3NJ03730D/cit30/1
Allen (D3NJ03730D/cit4/1) 2010; 13
McConn Jr (D3NJ03730D/cit39/1) 2011
(D3NJ03730D/cit52/1) 2004
Arko (D3NJ03730D/cit25/1) 2023
Schwarz (D3NJ03730D/cit5/1) 2020; 1
Langerman (D3NJ03730D/cit51/1) 2021; 28
Aieta (D3NJ03730D/cit46/1) 1986; 20
Arko (D3NJ03730D/cit24/1) 2021; 60
Kolski (D3NJ03730D/cit66/1) 1969; 8
Young (D3NJ03730D/cit65/1) 1932; 54
Reed (D3NJ03730D/cit11/1) 2014
Christensen (D3NJ03730D/cit27/1) 1992
Hong (D3NJ03730D/cit58/1) 1967; 1
Earnshaw (D3NJ03730D/cit48/1) 1997
Cary (D3NJ03730D/cit59/1) 2018; 57
Skinner (D3NJ03730D/cit72/1) 1974
Kieffer (D3NJ03730D/cit57/1) 1968; 7
Patil (D3NJ03730D/cit68/1) 1978; 25
Wright (D3NJ03730D/cit71/1) 2004
D3NJ03730D/cit22/1
Swinehart (D3NJ03730D/cit73/1) 1962; 39
Barr (D3NJ03730D/cit21/1) 2000
Danesi (D3NJ03730D/cit70/1) 1971; 33
Gordon (D3NJ03730D/cit42/1) 1972
Cotton (D3NJ03730D/cit54/1) 1988
Waltar (D3NJ03730D/cit14/1) 2021
Tarimci (D3NJ03730D/cit49/1) 1976; 32
Kieffer (D3NJ03730D/cit56/1) 1968; 7
Vandegrift (D3NJ03730D/cit16/1) 2006; 23
Karoutas (D3NJ03730D/cit3/1) 2018; 102
Adam (D3NJ03730D/cit15/1) 2014
Buxton (D3NJ03730D/cit61/1) 1988; 17
Baron (D3NJ03730D/cit7/1) 2019
Busch (D3NJ03730D/cit53/1) 2018
Deshwal (D3NJ03730D/cit41/1) 2004; 82
Roberts (D3NJ03730D/cit31/1) 2021; 44
D3NJ03730D/cit33/1
Yoshida (D3NJ03730D/cit36/1) 2008
Holst (D3NJ03730D/cit43/1) 1950; 42
Schramke (D3NJ03730D/cit23/1) 2020; 116
Feder (D3NJ03730D/cit12/1) 2015; 68
Ašperger (D3NJ03730D/cit63/1) 2003
Birkett (D3NJ03730D/cit8/1) 2007; 44
Schulte (D3NJ03730D/cit26/1) 1995; 30
Barr (D3NJ03730D/cit20/1) 2001; 248
Smith (D3NJ03730D/cit29/1) 1992
Thompson (D3NJ03730D/cit38/1) 1982; 90
Clark (D3NJ03730D/cit10/1) 2008
Mincher (D3NJ03730D/cit2/1) 2008; 47
Isaacson (D3NJ03730D/cit18/1) 1963
Gardner (D3NJ03730D/cit28/1) 2016
Henry (D3NJ03730D/cit19/1) 1961
Aieta (D3NJ03730D/cit55/1) 1986; 20
Yang (D3NJ03730D/cit64/1) 2021; 24
Morss (D3NJ03730D/cit34/1) 2006
Paviet-Hartmann (D3NJ03730D/cit1/1) 2013
Liang (D3NJ03730D/cit62/1) 2008; 47
Horwitz (D3NJ03730D/cit17/1) 2007; 6299
Taylor (D3NJ03730D/cit44/1) 1940; 32
Reif (D3NJ03730D/cit32/1) 2018; 48
Bondet (D3NJ03730D/cit60/1) 1997; 30
Gray (D3NJ03730D/cit45/1) 2014
Burney (D3NJ03730D/cit37/1) 1974
Hindman (D3NJ03730D/cit35/1) 1949; 71
References_xml – issn: 2008
  end-page: p 699-812
  publication-title: The Chemistry of the Actinide and Transactinide Elements
  doi: Yoshida Johnson Kimura Krsul
– issn: 2021
  end-page: p 451-464
  publication-title: Encyclopedia of Nuclear Energy
  doi: Waltar
– issn: 2011
  publication-title: Compendium of Material Composition Data for Radiation Transport Modeling, PIET-43741-TM-963 PNNL-15870 Rev. 1
  doi: McConn Jr Gesh Pagh Rucker Williams III
– issn: 1992
  publication-title: Los Alamos National Laboratory Qualifications For Lead Laboratory in Plutonium Pit Technology, LA-UR-92-1729
  doi: Christensen Cunningham
– issn: 1972
  end-page: p 201-286
  publication-title: Progress in Inorganic Chemistry
  doi: Gordon
– issn: 2016
  publication-title: Aqueous Chloride Operations Overview: Plutonium and Americium Purification/Recovery, LA-UR-16-27346
  doi: Gardner Kimball Skidmore
– issn: 2018
  publication-title: Reference Module in Chemistry, Molecular Sciences and Chemical Engineering
  doi: Busch
– issn: 2003
  publication-title: Chemical Kinetics and Inorganic Reaction Mechanisms
  doi: Ašperger
– issn: 2006
  publication-title: The Chemistry of the Actinide and Transactinide Elements
  doi: Morss Edelstein Fuger
– issn: 2004
  publication-title: CRC handbook of chemistry and physics
– issn: 1974
  end-page: p 108-140
  publication-title: Introduction to Chemical Kinetics
  doi: Skinner
– issn: 1961
  publication-title: Neptunium Behavior in Solvent Extraction of Uranium at Savannah River Plant, DP-638
  doi: Henry Karraker Schlea
– issn: 1974
  publication-title: Radiochemistry of Neptunium, NAS-NS-3060
  doi: Burney Harbour
– issn: 2014
  publication-title: The history and science of the Manhattan Project
  doi: Reed
– issn: 2000
  publication-title: Americium Separations from High Salt Solutions, LA-13676-MS
  doi: Barr Jarvinen Schulte Stark Chamberlin Abney Ricketts Valdez Bartsch
– issn: 2014
  publication-title: Final Radiological Assessment of External Exposure for CLEAR-Line Americium Recovery Operations, LA-UR-13-28160
  doi: Adam Olga Duane
– issn: 1992
  publication-title: Evaluation of Chloride-Ion-Specific Electrodes as in situ Chemical Sensors for Monitoring Total Chloride Concentration in Aqueous Solutions Generated During the Recovery of Plutonium from Molten Salts Used in Plutonium Electrorefining Operations, LA-122461992
  doi: Smith
– issn: 2008
  publication-title: Actinide Research Quarterly: Plutonium Processing at Los Alamos, LALP-08-004
  doi: Clark Jarvinen Kowalczyk Rubin Stroud
– issn: 2013
  publication-title: Overview of Reductants Utilized in Nuclear Fuel Reprocessing/Recycling, Report INL/CON-12-28006
  doi: Paviet-Hartmann Riddle Campbell Mausolf
– issn: 1988
  publication-title: Advanced inorganic chemistry
  doi: Cotton Wilkinson Murillo Bochmann
– issn: 2014
  end-page: p 591-598
  publication-title: Microbiology of Waterborne Diseases
  doi: Gray
– issn: 2004
  publication-title: An Introduction to Chemical Kinetics
  doi: Wright
– issn: 1997
  publication-title: Chemistry of the Elements
  doi: Earnshaw Greenwood
– issn: 1963
  publication-title: Neptunium Recovery and Purification at Hanford, HW-SA-3283
  doi: Isaacson Judson
– volume: 1
  start-page: 630
  year: 2020
  ident: D3NJ03730D/cit5/1
  publication-title: Front. Chem.
  contributor:
    fullname: Schwarz
– volume: 48
  start-page: 29
  year: 2018
  ident: D3NJ03730D/cit32/1
  publication-title: Arms Control Today
  contributor:
    fullname: Reif
– start-page: 117
  year: 2019
  ident: D3NJ03730D/cit7/1
  publication-title: Prog. Nucl. Energy
  contributor:
    fullname: Baron
– volume: 6299
  start-page: 447
  year: 2007
  ident: D3NJ03730D/cit17/1
  publication-title: Solvent Extr. Ion Exch.
  contributor:
    fullname: Horwitz
– volume-title: Overview of Reductants Utilized in Nuclear Fuel Reprocessing/Recycling, Report INL/CON-12-28006
  year: 2013
  ident: D3NJ03730D/cit1/1
  contributor:
    fullname: Paviet-Hartmann
– volume: 102
  start-page: 68
  year: 2018
  ident: D3NJ03730D/cit3/1
  publication-title: Prog. Nucl. Energy
  doi: 10.1016/j.pnucene.2017.07.016
  contributor:
    fullname: Karoutas
– volume-title: Final Radiological Assessment of External Exposure for CLEAR-Line Americium Recovery Operations, LA-UR-13-28160
  year: 2014
  ident: D3NJ03730D/cit15/1
  contributor:
    fullname: Adam
– volume: 57
  start-page: 3782
  year: 2018
  ident: D3NJ03730D/cit59/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.7b03089
  contributor:
    fullname: Cary
– volume: 30
  start-page: 609
  year: 1997
  ident: D3NJ03730D/cit60/1
  publication-title: LWT – Food Sci. Technol.
  doi: 10.1006/fstl.1997.0240
  contributor:
    fullname: Bondet
– volume: 30
  start-page: 1833
  year: 1995
  ident: D3NJ03730D/cit26/1
  publication-title: Sep. Sci. Technol.
  doi: 10.1080/01496399508010379
  contributor:
    fullname: Schulte
– volume: 47
  start-page: 2912
  year: 2008
  ident: D3NJ03730D/cit62/1
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie070820l
  contributor:
    fullname: Liang
– ident: D3NJ03730D/cit33/1
– volume: 71
  start-page: 687
  year: 1949
  ident: D3NJ03730D/cit35/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01170a087
  contributor:
    fullname: Hindman
– volume: 47
  start-page: 6984
  year: 2008
  ident: D3NJ03730D/cit2/1
  publication-title: Inorg. Chem.
  doi: 10.1021/ic800667h
  contributor:
    fullname: Mincher
– start-page: 201
  volume-title: Progress in Inorganic Chemistry
  year: 1972
  ident: D3NJ03730D/cit42/1
  doi: 10.1002/9780470166161.ch3
  contributor:
    fullname: Gordon
– volume-title: Reference Module in Chemistry, Molecular Sciences and Chemical Engineering
  year: 2018
  ident: D3NJ03730D/cit53/1
  contributor:
    fullname: Busch
– volume: 7
  start-page: 235
  year: 1968
  ident: D3NJ03730D/cit56/1
  publication-title: Inorg. Chem.
  doi: 10.1021/ic50060a013
  contributor:
    fullname: Kieffer
– volume: 116
  start-page: 104561
  year: 2020
  ident: D3NJ03730D/cit23/1
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2020.104561
  contributor:
    fullname: Schramke
– volume: 47
  start-page: 7914
  year: 2008
  ident: D3NJ03730D/cit47/1
  publication-title: Inorg. Chem.
  doi: 10.1021/ic8006684
  contributor:
    fullname: Horva
– volume-title: Radiochemistry of Neptunium, NAS-NS-3060
  year: 1974
  ident: D3NJ03730D/cit37/1
  contributor:
    fullname: Burney
– volume: 17
  start-page: 513
  year: 1988
  ident: D3NJ03730D/cit61/1
  publication-title: J. Phys. Chem. Ref. Data
  doi: 10.1063/1.555805
  contributor:
    fullname: Buxton
– start-page: 108
  volume-title: Introduction to Chemical Kinetics
  year: 1974
  ident: D3NJ03730D/cit72/1
  doi: 10.1016/B978-0-12-647850-1.50008-7
  contributor:
    fullname: Skinner
– volume-title: Aqueous Chloride Operations Overview: Plutonium and Americium Purification/Recovery, LA-UR-16-27346
  year: 2016
  ident: D3NJ03730D/cit28/1
  doi: 10.2172/1329538
  contributor:
    fullname: Gardner
– volume: 8
  start-page: 1125
  year: 1969
  ident: D3NJ03730D/cit66/1
  publication-title: Inorg. Chem.
  doi: 10.1021/ic50075a021
  contributor:
    fullname: Kolski
– volume: 33
  start-page: 3503
  year: 1971
  ident: D3NJ03730D/cit70/1
  publication-title: J. Inorg. Nucl. Chem.
  doi: 10.1016/0022-1902(71)80672-3
  contributor:
    fullname: Danesi
– volume-title: Chemistry of the Elements
  year: 1997
  ident: D3NJ03730D/cit48/1
  contributor:
    fullname: Earnshaw
– volume-title: The Chemistry of the Actinide and Transactinide Elements
  year: 2006
  ident: D3NJ03730D/cit34/1
  doi: 10.1007/1-4020-3598-5
  contributor:
    fullname: Morss
– volume: 32
  start-page: 899
  year: 1940
  ident: D3NJ03730D/cit44/1
  publication-title: Ind. Eng. Chem.
  doi: 10.1021/ie50367a007
  contributor:
    fullname: Taylor
– volume-title: Chemical Kinetics and Inorganic Reaction Mechanisms
  year: 2003
  ident: D3NJ03730D/cit63/1
  doi: 10.1007/978-1-4419-9276-5
  contributor:
    fullname: Ašperger
– volume: 60
  start-page: 14282
  year: 2021
  ident: D3NJ03730D/cit24/1
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.1c02360
  contributor:
    fullname: Arko
– start-page: 699
  volume-title: The Chemistry of the Actinide and Transactinide Elements
  year: 2008
  ident: D3NJ03730D/cit36/1
  contributor:
    fullname: Yoshida
– volume: 20
  start-page: 50
  year: 1986
  ident: D3NJ03730D/cit46/1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es00143a005
  contributor:
    fullname: Aieta
– volume: 31
  start-page: 1032
  year: 1975
  ident: D3NJ03730D/cit50/1
  publication-title: Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.
  doi: 10.1107/S056774087500444X
  contributor:
    fullname: Tazzoli
– volume: 39
  start-page: 333
  year: 1962
  ident: D3NJ03730D/cit73/1
  publication-title: J. Chem. Educ.
  doi: 10.1021/ed039p333
  contributor:
    fullname: Swinehart
– volume-title: Neptunium Recovery and Purification at Hanford, HW-SA-3283
  year: 1963
  ident: D3NJ03730D/cit18/1
  doi: 10.2172/4080927
  contributor:
    fullname: Isaacson
– volume: 20
  start-page: 50
  year: 1986
  ident: D3NJ03730D/cit55/1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es00143a005
  contributor:
    fullname: Aieta
– volume: 28
  start-page: 402
  year: 2021
  ident: D3NJ03730D/cit51/1
  publication-title: ACS Chem. Health Saf.
  doi: 10.1021/acs.chas.1c00035
  contributor:
    fullname: Langerman
– volume: 27
  start-page: 1
  year: 2009
  ident: D3NJ03730D/cit6/1
  publication-title: Solvent Extr. Ion Exch.
  doi: 10.1080/07366290802544767
  contributor:
    fullname: Mincher
– volume-title: Actinide Research Quarterly: Plutonium Processing at Los Alamos, LALP-08-004
  year: 2008
  ident: D3NJ03730D/cit10/1
  contributor:
    fullname: Clark
– volume-title: The history and science of the Manhattan Project
  year: 2014
  ident: D3NJ03730D/cit11/1
  doi: 10.1007/978-3-642-40297-5
  contributor:
    fullname: Reed
– volume-title: Neptunium Behavior in Solvent Extraction of Uranium at Savannah River Plant, DP-638
  year: 1961
  ident: D3NJ03730D/cit19/1
  doi: 10.2172/4165919
  contributor:
    fullname: Henry
– volume-title: Americium Separations from High Salt Solutions, LA-13676-MS
  year: 2000
  ident: D3NJ03730D/cit21/1
  doi: 10.2172/753372
  contributor:
    fullname: Barr
– volume: 13
  start-page: 14
  year: 2010
  ident: D3NJ03730D/cit4/1
  publication-title: Mater. Today
  doi: 10.1016/S1369-7021(10)70220-0
  contributor:
    fullname: Allen
– volume-title: Compendium of Material Composition Data for Radiation Transport Modeling, PIET-43741-TM-963 PNNL-15870 Rev. 1
  year: 2011
  ident: D3NJ03730D/cit39/1
  doi: 10.2172/1023125
  contributor:
    fullname: McConn Jr
– volume: 248
  start-page: 457
  year: 2001
  ident: D3NJ03730D/cit20/1
  publication-title: J. Radioanal. Nucl. Chem.
  doi: 10.1023/A:1010613100054
  contributor:
    fullname: Barr
– volume: 68
  start-page: 22
  year: 2015
  ident: D3NJ03730D/cit12/1
  publication-title: Phys. Today
  contributor:
    fullname: Feder
– start-page: 265
  year: 2023
  ident: D3NJ03730D/cit25/1
  publication-title: Mater. Adv.
  doi: 10.1039/D2MA00859A
  contributor:
    fullname: Arko
– volume: 7
  start-page: 239
  year: 1968
  ident: D3NJ03730D/cit57/1
  publication-title: Inorg. Chem.
  doi: 10.1021/ic50060a014
  contributor:
    fullname: Kieffer
– volume-title: Advanced inorganic chemistry
  year: 1988
  ident: D3NJ03730D/cit54/1
  contributor:
    fullname: Cotton
– ident: D3NJ03730D/cit30/1
– volume: 90
  start-page: 1
  year: 1982
  ident: D3NJ03730D/cit38/1
  publication-title: Radiat. Res.
  doi: 10.2307/3575792
  contributor:
    fullname: Thompson
– volume: 24
  start-page: 103500
  year: 2021
  ident: D3NJ03730D/cit64/1
  publication-title: iScience
  doi: 10.1016/j.isci.2021.103500
  contributor:
    fullname: Yang
– volume: 44
  start-page: 123
  year: 2021
  ident: D3NJ03730D/cit31/1
  publication-title: Wash Q
  doi: 10.1080/0163660X.2021.1933740
  contributor:
    fullname: Roberts
– volume: 44
  start-page: 337
  year: 2007
  ident: D3NJ03730D/cit8/1
  publication-title: J. Nucl. Sci. Technol.
  doi: 10.1080/18811248.2007.9711291
  contributor:
    fullname: Birkett
– volume: 23
  start-page: 1409
  year: 2006
  ident: D3NJ03730D/cit16/1
  publication-title: Sep. Sci. Technol.
  contributor:
    fullname: Vandegrift
– volume: 57
  start-page: 51
  year: 1935
  ident: D3NJ03730D/cit67/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01304a016
  contributor:
    fullname: Bray
– volume: 90
  start-page: 1
  year: 1982
  ident: D3NJ03730D/cit9/1
  publication-title: Radiat. Res.
  doi: 10.2307/3575792
  contributor:
    fullname: Thompson
– volume-title: CRC handbook of chemistry and physics
  year: 2004
  ident: D3NJ03730D/cit52/1
– volume: 126
  start-page: 220
  year: 2017
  ident: D3NJ03730D/cit13/1
  publication-title: Polyhedron
  doi: 10.1016/j.poly.2017.01.013
  contributor:
    fullname: Cary
– volume-title: Evaluation of Chloride-Ion-Specific Electrodes as in situ Chemical Sensors for Monitoring Total Chloride Concentration in Aqueous Solutions Generated During the Recovery of Plutonium from Molten Salts Used in Plutonium Electrorefining Operations, LA—122461992
  year: 1992
  ident: D3NJ03730D/cit29/1
  contributor:
    fullname: Smith
– start-page: 591
  volume-title: Microbiology of Waterborne Diseases
  year: 2014
  ident: D3NJ03730D/cit45/1
  doi: 10.1016/B978-0-12-415846-7.00032-9
  contributor:
    fullname: Gray
– volume: 25
  start-page: 133
  year: 1978
  ident: D3NJ03730D/cit68/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/S0010-8545(00)80344-6
  contributor:
    fullname: Patil
– ident: D3NJ03730D/cit22/1
– volume: 54
  start-page: 4284
  year: 1932
  ident: D3NJ03730D/cit65/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01350a021
  contributor:
    fullname: Young
– volume-title: Los Alamos National Laboratory Qualifications For Lead Laboratory in Plutonium Pit Technology, LA-UR-92-1729
  year: 1992
  ident: D3NJ03730D/cit27/1
  contributor:
    fullname: Christensen
– volume: 22
  start-page: 151
  year: 1961
  ident: D3NJ03730D/cit69/1
  publication-title: J. Inorg. Nucl. Chem.
  doi: 10.1016/0022-1902(61)80238-8
  contributor:
    fullname: Cohen
– volume: 33
  start-page: 486
  year: 1996
  ident: D3NJ03730D/cit40/1
  publication-title: J. Nucl. Sci. Technol.
  doi: 10.1080/18811248.1996.9731941
  contributor:
    fullname: Fukasawa
– volume-title: An Introduction to Chemical Kinetics
  year: 2004
  ident: D3NJ03730D/cit71/1
  doi: 10.1002/047009060X
  contributor:
    fullname: Wright
– volume: 1
  start-page: 2053
  year: 1967
  ident: D3NJ03730D/cit58/1
  publication-title: Can. J. Chem.
  contributor:
    fullname: Hong
– volume: 32
  start-page: 610
  year: 1976
  ident: D3NJ03730D/cit49/1
  publication-title: Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.
  doi: 10.1107/S0567740876003531
  contributor:
    fullname: Tarimci
– start-page: 451
  volume-title: Encyclopedia of Nuclear Energy
  year: 2021
  ident: D3NJ03730D/cit14/1
  doi: 10.1016/B978-0-12-819725-7.00169-0
  contributor:
    fullname: Waltar
– volume: 82
  start-page: 619
  year: 2004
  ident: D3NJ03730D/cit41/1
  publication-title: Can. J. Chem. Eng.
  doi: 10.1002/cjce.5450820323
  contributor:
    fullname: Deshwal
– volume: 42
  start-page: 2359
  year: 1950
  ident: D3NJ03730D/cit43/1
  publication-title: Ind. Eng. Chem.
  doi: 10.1021/ie50491a048
  contributor:
    fullname: Holst
SSID ssj0011761
Score 2.4579506
Snippet Controlling aqueous 5f-element electron transfer chemistry is critical for processing efforts associated with actinide technologies. Often, redox agents are...
Redox chemistry between Np 4+ (aq) and NaClO 2(aq) can be controlled as a function of neptunium vs. NaClO 2(aq) , Cl 1− (aq) , and H 1+ (aq) concentrations....
SourceID osti
proquest
crossref
rsc
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 197
SubjectTerms Actinides
Americium
Aqueous solutions
Electron transfer
Electrons
Neptunium
Oxidation
Plutonium
Sodium
Valence
Title Electron transfer between neptunium and sodium chlorite in acidic chloride media
URI https://www.proquest.com/docview/2919349287
https://www.osti.gov/biblio/2251529
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe67gFeJr4mygayBG8okNhxEz9OtNMYpfDQSn2LHH-IDEinLn3ZX79zbCeZNCHgxYosxYrufjn_7ny-Q-gdZWWWCaIjpeM0SmGPi7gCx7XkjGYy1kQbG4f8upxerNPLDduMRrfD2yVN-UHePniv5H-0CnOgV3tL9h802y0KE_AM-oURNAzjX-l47nvY2EYPQD_1rku7qvV1s6-rvWuAcbNV9lH-sOl2TVsmRMhKVdJP2SxWe4NkyFRt4uOgrIQMjeF6hPzcOnBYE9GlWs9cQHWQKm9zAfSvEGgVO_G-izd_qX6Xwp17tC_4FtA-CEFs4kpEelPnQh0hz7TNIxl-lDOt4LpFQBB94Ws3R6c84sSVYw_2OM0HuGMD4wrcJRts1OBp5g9uAjG1NVQVra9iCgZM9VtdON5ffivO14tFsZpvVgfokGScsTE6PJuvPi-6M6gkc9V2w3eH4raUf-zXvkdnxlswy_dclYNd6CPT8pXVE3TkHQ185lDzFI10_Qw96iT2HH0P6MEBPdijB3fowYAe7NCDA3pwVWOHHhzQg1v0vEDr8_nq00Xk-2tEEohLA-OUpUaLPJZaEAnEHpiKiTMuEkolB9c7V4nkuZZcqcSUIivzmGpjhOIsNoweo3G9rfVLhBkHomxywqcmTaVJhCa0hP89TkUis0RO0NsgpuLalVEp2vQHyosZXV62wpxN0ImVYAHkz1YwljbVSzYFbDnAMvkEnQbBFh7_NwXh4IGkHPz-CToGYXer9yp69ef3TtDjHtGnaNzs9vo1EM2mfOMRcQfbpIDL
link.rule.ids 230,315,786,790,891,27955,27956
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electron+transfer+between+neptunium+and+sodium+chlorite+in+acidic+chloride+media&rft.jtitle=New+journal+of+chemistry&rft.au=Arko%2C+Brian+T&rft.au=Dan%2C+David&rft.au=Adelman%2C+Sara+L&rft.au=Kimball%2C+David+B&rft.date=2024-01-29&rft.pub=Royal+Society+of+Chemistry&rft.issn=1144-0546&rft.eissn=1369-9261&rft.volume=48&rft.issue=5&rft.spage=1907&rft.epage=1918&rft_id=info:doi/10.1039%2Fd3nj03730d&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1144-0546&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1144-0546&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1144-0546&client=summon