Deep Learning Methods to Reveal Important X-ray Features in COVID-19 Detection: Investigation of Explainability and Feature Reproducibility

X-ray technology has been recently employed for the detection of the lethal human coronavirus disease 2019 (COVID-19) as a timely, cheap, and helpful ancillary method for diagnosis. The scientific community evaluated deep learning methods to aid in the automatic detection of the disease, utilizing p...

Full description

Saved in:
Bibliographic Details
Published inReports (MDPI) Vol. 5; no. 2; p. 20
Main Authors Apostolopoulos, Ioannis D., Apostolopoulos, Dimitris J., Papathanasiou, Nikolaos D.
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.06.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract X-ray technology has been recently employed for the detection of the lethal human coronavirus disease 2019 (COVID-19) as a timely, cheap, and helpful ancillary method for diagnosis. The scientific community evaluated deep learning methods to aid in the automatic detection of the disease, utilizing publicly available small samples of X-ray images. In the majority of cases, the results demonstrate the effectiveness of deep learning and suggest valid detection of the disease from X-ray scans. However, little has been investigated regarding the actual findings of deep learning through the image process. In the present study, a large-scale dataset of pulmonary diseases, including COVID-19, was utilized for experiments, aiming to shed light on this issue. For the detection task, MobileNet (v2) was employed, which has been proven very effective in our previous works. Through analytical experiments utilizing feature visualization techniques and altering the input dataset classes, it was suggested that MobileNet (v2) discovers important image findings and not only features. It was demonstrated that MobileNet (v2) is an effective, accurate, and low-computational-cost solution for distinguishing COVID-19 from 12 various other pulmonary abnormalities and normal subjects. This study offers an analysis of image features extracted from MobileNet (v2), aiming to investigate the validity of those features and their medical importance. The pipeline can detect abnormal X-rays with an accuracy of 95.45 ± 1.54% and can distinguish COVID-19 with an accuracy of 89.88 ± 3.66%. The visualized results of the Grad-CAM algorithm provide evidence that the methodology identifies meaningful areas on the images. Finally, the detected image features were reproducible in 98% of the times after repeating the experiment for three times.
AbstractList X-ray technology has been recently employed for the detection of the lethal human coronavirus disease 2019 (COVID-19) as a timely, cheap, and helpful ancillary method for diagnosis. The scientific community evaluated deep learning methods to aid in the automatic detection of the disease, utilizing publicly available small samples of X-ray images. In the majority of cases, the results demonstrate the effectiveness of deep learning and suggest valid detection of the disease from X-ray scans. However, little has been investigated regarding the actual findings of deep learning through the image process. In the present study, a large-scale dataset of pulmonary diseases, including COVID-19, was utilized for experiments, aiming to shed light on this issue. For the detection task, MobileNet (v2) was employed, which has been proven very effective in our previous works. Through analytical experiments utilizing feature visualization techniques and altering the input dataset classes, it was suggested that MobileNet (v2) discovers important image findings and not only features. It was demonstrated that MobileNet (v2) is an effective, accurate, and low-computational-cost solution for distinguishing COVID-19 from 12 various other pulmonary abnormalities and normal subjects. This study offers an analysis of image features extracted from MobileNet (v2), aiming to investigate the validity of those features and their medical importance. The pipeline can detect abnormal X-rays with an accuracy of 95.45 ± 1.54% and can distinguish COVID-19 with an accuracy of 89.88 ± 3.66%. The visualized results of the Grad-CAM algorithm provide evidence that the methodology identifies meaningful areas on the images. Finally, the detected image features were reproducible in 98% of the times after repeating the experiment for three times.
Author Apostolopoulos, Dimitris J.
Apostolopoulos, Ioannis D.
Papathanasiou, Nikolaos D.
Author_xml – sequence: 1
  givenname: Ioannis D.
  orcidid: 0000-0001-6439-9282
  surname: Apostolopoulos
  fullname: Apostolopoulos, Ioannis D.
– sequence: 2
  givenname: Dimitris J.
  surname: Apostolopoulos
  fullname: Apostolopoulos, Dimitris J.
– sequence: 3
  givenname: Nikolaos D.
  surname: Papathanasiou
  fullname: Papathanasiou, Nikolaos D.
BookMark eNp1kU1r3DAQhk1JoGmSa8-Cnp3qw7bk3spu0hi2BEJbchNjabzV4kiurA3Z39A_XW22KW2gIJBGet9nNDNviiMfPBbFW0YvhGjp-4hTiGmuKad5vSpOeC1ZqSp2d_TX-XVxPs8bmiWyFZWqT4qfS8SJrBCid35NPmP6HuxMUiC3-IAwku5-DwafyF0ZYUeuENI24kycJ4ubb92yZC1ZYkKTXPAfSOcfcE5uDfuQhIFcPk4jOA-9G13aEfD2mZFTTDHYrXGHt7PieIBxxvPf-2nx9eryy-K6XN186hYfV6URVKTSMMkZtaJRBqDtuUTetmqoawGqB97zRgysqcwgqVUUJKIVfVP1yEVbyRrEadEduDbARk_R3UPc6QBOP12EuNYQkzMj6kb2jFnbm0HlfiFVokZhBmGHvgHaiMx6d2DlSn5sc-V6E7bR5-9r3shWylZxmVUXB5WJYZ4jDn-yMqr389P_zi8bqhcG49JTS1MEN_7P9gtP-aRL
CitedBy_id crossref_primary_10_3390_app14198884
crossref_primary_10_1002_ima_22979
crossref_primary_10_3390_diagnostics12102333
crossref_primary_10_1007_s00521_024_10437_2
crossref_primary_10_1016_j_heliyon_2024_e39205
crossref_primary_10_3390_diseases10030056
crossref_primary_10_1080_21681163_2024_2350508
crossref_primary_10_1016_j_imavis_2024_104918
Cites_doi 10.1016/j.compbiomed.2020.103792
10.1109/CVPR.2017.195
10.3390/s19132969
10.1007/s13246-020-00865-4
10.1111/1754-9485.13261
10.1038/s41598-020-76550-z
10.3390/ijerph17186933
10.1007/978-3-319-44781-0_8
10.1038/s41598-021-95680-6
10.1038/nature14539
10.1007/s11263-019-01228-7
10.3390/v12070769
10.1002/mp.13264
10.3389/frai.2021.598932
10.1016/j.cmpb.2020.105608
10.1007/s12194-017-0394-5
10.1007/s40846-020-00529-4
10.1007/s00330-020-07347-x
10.1609/aaai.v31i1.11231
10.3390/healthcare9091099
10.1109/CVPR.2017.369
10.1109/CVPR.2009.5206848
10.1186/s40537-019-0197-0
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7RV
7X7
7XB
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
FYUFA
GHDGH
K9.
KB0
M0S
NAPCQ
PHGZM
PHGZT
PIMPY
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/reports5020020
DatabaseName CrossRef
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Health & Medical Collection
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2571-841X
ExternalDocumentID oai_doaj_org_article_67b11ddbcf8348e0835e3cf3dfb6a063
10_3390_reports5020020
GroupedDBID 7RV
7X7
8FI
8FJ
AADQD
AAYXX
ABUWG
ADBBV
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
FYUFA
GROUPED_DOAJ
HMCUK
IAO
IGS
ITC
MODMG
M~E
NAPCQ
PHGZM
PHGZT
PIMPY
UKHRP
3V.
7XB
8FK
AZQEC
COVID
DWQXO
K9.
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c303t-c17210d368caa9b27e2998f553a8ba2b263f164cf70d80a7eed3b64be239475a3
IEDL.DBID 7X7
ISSN 2571-841X
IngestDate Wed Aug 27 01:31:34 EDT 2025
Fri Jul 25 07:09:51 EDT 2025
Thu Apr 24 23:11:42 EDT 2025
Tue Jul 01 02:57:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c303t-c17210d368caa9b27e2998f553a8ba2b263f164cf70d80a7eed3b64be239475a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6439-9282
OpenAccessLink https://www.proquest.com/docview/2679779827?pq-origsite=%requestingapplication%
PQID 2679779827
PQPubID 5046861
ParticipantIDs doaj_primary_oai_doaj_org_article_67b11ddbcf8348e0835e3cf3dfb6a063
proquest_journals_2679779827
crossref_primary_10_3390_reports5020020
crossref_citationtrail_10_3390_reports5020020
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Reports (MDPI)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Apostolopoulos (ref_9) 2020; 40
ref_14
Selvaraju (ref_11) 2020; 128
ref_13
ref_32
ref_30
Bozsik (ref_3) 2021; 31
ref_19
ref_16
Wang (ref_15) 2020; 10
Das (ref_6) 2020; 43
LeCun (ref_18) 2015; 521
Shorten (ref_29) 2019; 6
Hou (ref_12) 2021; 11
Adebayo (ref_31) 2018; 31
Chlap (ref_20) 2021; 65
ref_25
ref_24
ref_23
ref_22
ref_21
ref_2
ref_28
ref_27
Apostolopoulos (ref_5) 2020; 43
ref_26
Sahiner (ref_1) 2019; 46
ref_8
Ozturk (ref_10) 2020; 121
Brunese (ref_4) 2020; 196
ref_7
(ref_17) 2017; 10
References_xml – ident: ref_7
– ident: ref_28
– volume: 121
  start-page: 103792
  year: 2020
  ident: ref_10
  article-title: Automated detection of COVID-19 cases using deep neural networks with X-ray images
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.103792
– ident: ref_23
  doi: 10.1109/CVPR.2017.195
– ident: ref_14
  doi: 10.3390/s19132969
– volume: 43
  start-page: 635
  year: 2020
  ident: ref_5
  article-title: COVID-19: Automatic Detection from X-Ray Images Utilizing Transfer Learning with Convolutional Neural Networks
  publication-title: Phys. Eng. Sci. Med.
  doi: 10.1007/s13246-020-00865-4
– ident: ref_26
– volume: 31
  start-page: 9505
  year: 2018
  ident: ref_31
  article-title: Sanity Checks for Saliency Maps
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 65
  start-page: 545
  year: 2021
  ident: ref_20
  article-title: A Review of Medical Image Data Augmentation Techniques for Deep Learning Applications
  publication-title: J. Med. Imaging Radiat. Oncol.
  doi: 10.1111/1754-9485.13261
– ident: ref_16
– volume: 10
  start-page: 19549
  year: 2020
  ident: ref_15
  article-title: COVID-Net: A Tailored Deep Convolutional Neural Network Design for Detection of COVID-19 Cases from Chest X-ray Images
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-76550-z
– ident: ref_30
  doi: 10.3390/ijerph17186933
– ident: ref_32
  doi: 10.1007/978-3-319-44781-0_8
– volume: 11
  start-page: 16071
  year: 2021
  ident: ref_12
  article-title: Explainable DCNN Based Chest X-ray Image Analysis and Classification for COVID-19 Pneumonia Detection
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-95680-6
– volume: 521
  start-page: 436
  year: 2015
  ident: ref_18
  article-title: Deep Learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 128
  start-page: 336
  year: 2020
  ident: ref_11
  article-title: Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-019-01228-7
– ident: ref_21
– ident: ref_2
  doi: 10.3390/v12070769
– volume: 46
  start-page: e1
  year: 2019
  ident: ref_1
  article-title: Deep learning in medical imaging and radiation therapy
  publication-title: Med. Phys.
  doi: 10.1002/mp.13264
– ident: ref_8
  doi: 10.3389/frai.2021.598932
– volume: 196
  start-page: 105608
  year: 2020
  ident: ref_4
  article-title: Explainable deep learning for pulmonary disease and coronavirus COVID-19 detection from X-rays
  publication-title: Comput. Methods Progr. Biomed.
  doi: 10.1016/j.cmpb.2020.105608
– volume: 10
  start-page: 23
  year: 2017
  ident: ref_17
  article-title: Fifty years of computer analysis in chest imaging: Rule-based, machine learning, deep learning
  publication-title: Radiol. Phys. Technol.
  doi: 10.1007/s12194-017-0394-5
– ident: ref_25
– volume: 40
  start-page: 462
  year: 2020
  ident: ref_9
  article-title: Extracting Possibly Representative COVID-19 Biomarkers from X-ray Images with Deep Learning Approach and Image Data Related to Pulmonary Diseases
  publication-title: J. Med. Biol. Eng.
  doi: 10.1007/s40846-020-00529-4
– volume: 31
  start-page: 2819
  year: 2021
  ident: ref_3
  article-title: The Sensitivity and Specificity of Chest CT in the Diagnosis of COVID-19
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-020-07347-x
– ident: ref_22
  doi: 10.1609/aaai.v31i1.11231
– ident: ref_13
  doi: 10.3390/healthcare9091099
– ident: ref_27
  doi: 10.1109/CVPR.2017.369
– volume: 43
  start-page: 114
  year: 2020
  ident: ref_6
  article-title: Automated deep transfer learning-based approach for detection of COVID-19 infection in chest X-rays
  publication-title: IRBM
– ident: ref_19
– ident: ref_24
  doi: 10.1109/CVPR.2009.5206848
– volume: 6
  start-page: 60
  year: 2019
  ident: ref_29
  article-title: A survey on image data augmentation for deep learning
  publication-title: J. Big Data
  doi: 10.1186/s40537-019-0197-0
SSID ssj0002793485
Score 2.2263398
Snippet X-ray technology has been recently employed for the detection of the lethal human coronavirus disease 2019 (COVID-19) as a timely, cheap, and helpful ancillary...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 20
SubjectTerms Accuracy
Algorithms
Artificial intelligence
Classification
Coronaviruses
COVID-19
Datasets
Deep learning
Disease
explainable artificial intelligence
Infections
Medical research
Pneumonia
Reproducibility
Tomography
X-rays
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iQbyIT1xf5CB4CrZN86g3dRUVVkFU9lbyFEW7i1uF_Q3-aSdpV3YR8eK1hKZkpjPfl0y-QWgfkgb1ibREa-1JnjpKpPKcqFRxKyREZRXVPq_5xX1-1Wf9qVZfoSaskQduFu6QC52m1mrjJc2lC4jBUeOp9ZoryK8h-kLOmyJTz_E4rYDRrFFppMDrD9steJaEqoRkJgtFsf4fsTgmmPNltNQiQ3zcfNEKmnPVKlrotWffa-iz69wQt3qoj7gXWz-PcD3At-4D4B6-fI1Yuqpxn7ypMQ7o7h3YNH6q8OnNw2WXpAXuujoWX1VHeEpiY1DhgcehHi9epgr1smOsKjt5B0wxjNKwTS3teB3dn5_dnV6QtpUCMZCjamIC00ss5dIoVehMOEhD0jNGldQq0xmnHoiT8SKxMlECbEQ1z7ULndMFU3QDzVeDym0izJQBEANMyFsNdAlCAjWFT5iUTBY5Ex1EJktbmlZnPLS7eCmBbwRTlLOm6KCD7_HDRmHj15EnwVLfo4IydnwA_lK2_lL-5S8dtDOxc9n-rqMy4wJwcCEzsfUfc2yjxSzckoibNTtovn57d7uAXWq9F930C1bt7_E
  priority: 102
  providerName: Directory of Open Access Journals
Title Deep Learning Methods to Reveal Important X-ray Features in COVID-19 Detection: Investigation of Explainability and Feature Reproducibility
URI https://www.proquest.com/docview/2679779827
https://doaj.org/article/67b11ddbcf8348e0835e3cf3dfb6a063
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEF-0BfFF6heetsc-CD4tTbLZj_hSbK-lFVqlWLm3sJ-loMl5lwr3N_SfdmZv77SIviZLApnZmd9vMvsbQt5C0uCx0J5ZayOry8CZNlEyUxrplYaobJLa54U8vao_TsU0F9wWua1yHRNToPa9wxr5fiUVQJVGV-pg9oPh1Cj8u5pHaDwk2yhdhi1daqo2NZYKnK_WYqXVyIHd7-dCvCiwN6G4l4uSZP9fETmlmZMd8iTjQ_phZdCn5EHonpFH5_kP-HNyNwlhRrMq6jU9TwOgF3To6WX4CaCPnn1PiLob6JTNzZIixrsFTk1vOnr06evZhJUNnYQhtWB17-kfQht9R_tIsSsvHanCrtklNZ1fPwNeMUsCsauO2uULcnVy_OXolOWBCsxBphqYQ75XeC61M6axlQqQjHQUghttTWUrySPQJxdV4XVhFFiKW1nbgPPTlTD8Jdnq-i68IlQYB1AG-FD0FkgTBAbumlgIrYVuaqFGhK0_beuy2jgOvfjWAutAU7T3TTEi7zbrZyudjX-uPERLbVahPna60M-v27zdWqlsWXpvXdTgAQFxZuAuch-tNIDKRmR3bec2b9pF-9vFXv__9hvyuMJTEKkYs0u2hvlt2ANsMthxcsAx2T48vvh8OU4M_xc_bulb
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VrQRcEL9ioYAPIE4WSRwnDhJCtNtql3YXVLVob8G_FRIky24K2mfgXXhGxk6yUCG49ZpYTuQZz3wzHn8D8BSdBnORMFQp5WgaW0aFdBmVscxMLtAqy8D2OcvGp-nbOZ9vwc_-Lowvq-xtYjDUptY-R_4iyXKEKoVI8teLr9R3jfKnq30LjVYtDu36O4Zsq1eTEcr3WZIc7J_sjWnXVYBqNNcN1T7oiQzLhJayUElu0SILxzmTQslEJRlzGENol0dGRDLH32UqS5X1TcRzLhnOewW2U4ahzAC2d_dn7483WZ0E1T0VvGWHZKzwFOAh9c8jXw0RXfB-oUnAXz4gOLaDm3CjQ6TkTatCt2DLVrfh6rQ7c78DP0bWLkjHw3pGpqHl9Io0NTm23xBmksmXgOGrhszpUq6JR5XnGMWTTxXZe_dhMqJxQUa2CUVf1UvyB7VHXZHaEV8HGC5x-TrdNZGV6efATywCJW1bw7u-C6eXstj3YFDVlb0PhEuN4AkjMGcUhmloipguXMSF4KJIeT4E2i9tqTt-c99m43OJcY4XRXlRFEN4vhm_aJk9_jly10tqM8ozcocH9fKs7DZ4meUqjo1R2gnUAOuRrWXaMeNUJhEHDmGnl3PZmYlV-VupH_z_9RO4Nj6ZHpVHk9nhQ7ie-DsYIRW0A4NmeW4fITJq1ONOHQl8vOwd8AtfWSTQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELVKkSouiE-xUMAHECeLJI5jBwkhaFh1KS0IUbS34M8KCZJlNwXtb-Af8euYcZKFCsGt18RyIs_z-I09fkPIA1g0eEiUY8aYwPLUc6Z0KJhOdeGkAq-so9rnUbF_nL-ai_kW-TnehcG0ytEnRkftWot75I-zQgJVKRWE6mFIi3hbTZ8tvjKsIIUnrWM5jR4iB379HcK31dNZBbZ-mGXTl-_39tlQYYBZcN0dsxgAJY4Xympdmkx68M4qCMG1MjozWcEDxBM2yMSpREv4dW6K3HgsKC6F5tDvBXJRcpHiHJNzudnfyQD4uRK9TiTnJYqBx0MAkWBeRHJmHYzlAv5aDeISN71CLg_clD7vwXSVbPnmGtk5HE7fr5MflfcLOiiyntDDWHx6RbuWvvPfgHDS2ZfI5puOztlSrynyy1OI5-mnhu69-TCrWFrSyncx_at5Qv8Q-Wgb2gaKGYHxOhdm7K6pbtzYB3xiEcVp-2ze9Q1yfC5DfZNsN23jbxEqtAUaBbFYcAYCNnBK3JYhEUoJVeZCTggbh7a2g9I5Ftz4XEPEg6aoz5piQh5t2i96jY9_tnyBltq0Qm3u-KBdntTDVK8LadLUOWODAgR45Lie28BdMIUGRjghu6Od68FhrOrf8L79_9f3yQ7gvn49Ozq4Qy5leBkj7gntku1ueervAkXqzL2IRUo-njf4fwGsmCeg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+Methods+to+Reveal+Important+X-ray+Features+in+COVID-19+Detection%3A+Investigation+of+Explainability+and+Feature+Reproducibility&rft.jtitle=Reports+%28MDPI%29&rft.au=Apostolopoulos%2C+Ioannis+D&rft.au=Apostolopoulos%2C+Dimitris+J&rft.au=Papathanasiou%2C+Nikolaos+D&rft.date=2022-06-01&rft.pub=MDPI+AG&rft.eissn=2571-841X&rft.volume=5&rft.issue=2&rft.spage=20&rft_id=info:doi/10.3390%2Freports5020020&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2571-841X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2571-841X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2571-841X&client=summon