Deep Learning Methods to Reveal Important X-ray Features in COVID-19 Detection: Investigation of Explainability and Feature Reproducibility
X-ray technology has been recently employed for the detection of the lethal human coronavirus disease 2019 (COVID-19) as a timely, cheap, and helpful ancillary method for diagnosis. The scientific community evaluated deep learning methods to aid in the automatic detection of the disease, utilizing p...
Saved in:
Published in | Reports (MDPI) Vol. 5; no. 2; p. 20 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.06.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | X-ray technology has been recently employed for the detection of the lethal human coronavirus disease 2019 (COVID-19) as a timely, cheap, and helpful ancillary method for diagnosis. The scientific community evaluated deep learning methods to aid in the automatic detection of the disease, utilizing publicly available small samples of X-ray images. In the majority of cases, the results demonstrate the effectiveness of deep learning and suggest valid detection of the disease from X-ray scans. However, little has been investigated regarding the actual findings of deep learning through the image process. In the present study, a large-scale dataset of pulmonary diseases, including COVID-19, was utilized for experiments, aiming to shed light on this issue. For the detection task, MobileNet (v2) was employed, which has been proven very effective in our previous works. Through analytical experiments utilizing feature visualization techniques and altering the input dataset classes, it was suggested that MobileNet (v2) discovers important image findings and not only features. It was demonstrated that MobileNet (v2) is an effective, accurate, and low-computational-cost solution for distinguishing COVID-19 from 12 various other pulmonary abnormalities and normal subjects. This study offers an analysis of image features extracted from MobileNet (v2), aiming to investigate the validity of those features and their medical importance. The pipeline can detect abnormal X-rays with an accuracy of 95.45 ± 1.54% and can distinguish COVID-19 with an accuracy of 89.88 ± 3.66%. The visualized results of the Grad-CAM algorithm provide evidence that the methodology identifies meaningful areas on the images. Finally, the detected image features were reproducible in 98% of the times after repeating the experiment for three times. |
---|---|
AbstractList | X-ray technology has been recently employed for the detection of the lethal human coronavirus disease 2019 (COVID-19) as a timely, cheap, and helpful ancillary method for diagnosis. The scientific community evaluated deep learning methods to aid in the automatic detection of the disease, utilizing publicly available small samples of X-ray images. In the majority of cases, the results demonstrate the effectiveness of deep learning and suggest valid detection of the disease from X-ray scans. However, little has been investigated regarding the actual findings of deep learning through the image process. In the present study, a large-scale dataset of pulmonary diseases, including COVID-19, was utilized for experiments, aiming to shed light on this issue. For the detection task, MobileNet (v2) was employed, which has been proven very effective in our previous works. Through analytical experiments utilizing feature visualization techniques and altering the input dataset classes, it was suggested that MobileNet (v2) discovers important image findings and not only features. It was demonstrated that MobileNet (v2) is an effective, accurate, and low-computational-cost solution for distinguishing COVID-19 from 12 various other pulmonary abnormalities and normal subjects. This study offers an analysis of image features extracted from MobileNet (v2), aiming to investigate the validity of those features and their medical importance. The pipeline can detect abnormal X-rays with an accuracy of 95.45 ± 1.54% and can distinguish COVID-19 with an accuracy of 89.88 ± 3.66%. The visualized results of the Grad-CAM algorithm provide evidence that the methodology identifies meaningful areas on the images. Finally, the detected image features were reproducible in 98% of the times after repeating the experiment for three times. |
Author | Apostolopoulos, Dimitris J. Apostolopoulos, Ioannis D. Papathanasiou, Nikolaos D. |
Author_xml | – sequence: 1 givenname: Ioannis D. orcidid: 0000-0001-6439-9282 surname: Apostolopoulos fullname: Apostolopoulos, Ioannis D. – sequence: 2 givenname: Dimitris J. surname: Apostolopoulos fullname: Apostolopoulos, Dimitris J. – sequence: 3 givenname: Nikolaos D. surname: Papathanasiou fullname: Papathanasiou, Nikolaos D. |
BookMark | eNp1kU1r3DAQhk1JoGmSa8-Cnp3qw7bk3spu0hi2BEJbchNjabzV4kiurA3Z39A_XW22KW2gIJBGet9nNDNviiMfPBbFW0YvhGjp-4hTiGmuKad5vSpOeC1ZqSp2d_TX-XVxPs8bmiWyFZWqT4qfS8SJrBCid35NPmP6HuxMUiC3-IAwku5-DwafyF0ZYUeuENI24kycJ4ubb92yZC1ZYkKTXPAfSOcfcE5uDfuQhIFcPk4jOA-9G13aEfD2mZFTTDHYrXGHt7PieIBxxvPf-2nx9eryy-K6XN186hYfV6URVKTSMMkZtaJRBqDtuUTetmqoawGqB97zRgysqcwgqVUUJKIVfVP1yEVbyRrEadEduDbARk_R3UPc6QBOP12EuNYQkzMj6kb2jFnbm0HlfiFVokZhBmGHvgHaiMx6d2DlSn5sc-V6E7bR5-9r3shWylZxmVUXB5WJYZ4jDn-yMqr389P_zi8bqhcG49JTS1MEN_7P9gtP-aRL |
CitedBy_id | crossref_primary_10_3390_app14198884 crossref_primary_10_1002_ima_22979 crossref_primary_10_3390_diagnostics12102333 crossref_primary_10_1007_s00521_024_10437_2 crossref_primary_10_1016_j_heliyon_2024_e39205 crossref_primary_10_3390_diseases10030056 crossref_primary_10_1080_21681163_2024_2350508 crossref_primary_10_1016_j_imavis_2024_104918 |
Cites_doi | 10.1016/j.compbiomed.2020.103792 10.1109/CVPR.2017.195 10.3390/s19132969 10.1007/s13246-020-00865-4 10.1111/1754-9485.13261 10.1038/s41598-020-76550-z 10.3390/ijerph17186933 10.1007/978-3-319-44781-0_8 10.1038/s41598-021-95680-6 10.1038/nature14539 10.1007/s11263-019-01228-7 10.3390/v12070769 10.1002/mp.13264 10.3389/frai.2021.598932 10.1016/j.cmpb.2020.105608 10.1007/s12194-017-0394-5 10.1007/s40846-020-00529-4 10.1007/s00330-020-07347-x 10.1609/aaai.v31i1.11231 10.3390/healthcare9091099 10.1109/CVPR.2017.369 10.1109/CVPR.2009.5206848 10.1186/s40537-019-0197-0 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7RV 7X7 7XB 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO FYUFA GHDGH K9. KB0 M0S NAPCQ PHGZM PHGZT PIMPY PKEHL PPXIY PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/reports5020020 |
DatabaseName | CrossRef ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College Coronavirus Research Database ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Health & Medical Collection Nursing & Allied Health Premium ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2571-841X |
ExternalDocumentID | oai_doaj_org_article_67b11ddbcf8348e0835e3cf3dfb6a063 10_3390_reports5020020 |
GroupedDBID | 7RV 7X7 8FI 8FJ AADQD AAYXX ABUWG ADBBV AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION FYUFA GROUPED_DOAJ HMCUK IAO IGS ITC MODMG M~E NAPCQ PHGZM PHGZT PIMPY UKHRP 3V. 7XB 8FK AZQEC COVID DWQXO K9. PKEHL PPXIY PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c303t-c17210d368caa9b27e2998f553a8ba2b263f164cf70d80a7eed3b64be239475a3 |
IEDL.DBID | 7X7 |
ISSN | 2571-841X |
IngestDate | Wed Aug 27 01:31:34 EDT 2025 Fri Jul 25 07:09:51 EDT 2025 Thu Apr 24 23:11:42 EDT 2025 Tue Jul 01 02:57:18 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c303t-c17210d368caa9b27e2998f553a8ba2b263f164cf70d80a7eed3b64be239475a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6439-9282 |
OpenAccessLink | https://www.proquest.com/docview/2679779827?pq-origsite=%requestingapplication% |
PQID | 2679779827 |
PQPubID | 5046861 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_67b11ddbcf8348e0835e3cf3dfb6a063 proquest_journals_2679779827 crossref_primary_10_3390_reports5020020 crossref_citationtrail_10_3390_reports5020020 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-01 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Reports (MDPI) |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Apostolopoulos (ref_9) 2020; 40 ref_14 Selvaraju (ref_11) 2020; 128 ref_13 ref_32 ref_30 Bozsik (ref_3) 2021; 31 ref_19 ref_16 Wang (ref_15) 2020; 10 Das (ref_6) 2020; 43 LeCun (ref_18) 2015; 521 Shorten (ref_29) 2019; 6 Hou (ref_12) 2021; 11 Adebayo (ref_31) 2018; 31 Chlap (ref_20) 2021; 65 ref_25 ref_24 ref_23 ref_22 ref_21 ref_2 ref_28 ref_27 Apostolopoulos (ref_5) 2020; 43 ref_26 Sahiner (ref_1) 2019; 46 ref_8 Ozturk (ref_10) 2020; 121 Brunese (ref_4) 2020; 196 ref_7 (ref_17) 2017; 10 |
References_xml | – ident: ref_7 – ident: ref_28 – volume: 121 start-page: 103792 year: 2020 ident: ref_10 article-title: Automated detection of COVID-19 cases using deep neural networks with X-ray images publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2020.103792 – ident: ref_23 doi: 10.1109/CVPR.2017.195 – ident: ref_14 doi: 10.3390/s19132969 – volume: 43 start-page: 635 year: 2020 ident: ref_5 article-title: COVID-19: Automatic Detection from X-Ray Images Utilizing Transfer Learning with Convolutional Neural Networks publication-title: Phys. Eng. Sci. Med. doi: 10.1007/s13246-020-00865-4 – ident: ref_26 – volume: 31 start-page: 9505 year: 2018 ident: ref_31 article-title: Sanity Checks for Saliency Maps publication-title: Adv. Neural Inf. Process. Syst. – volume: 65 start-page: 545 year: 2021 ident: ref_20 article-title: A Review of Medical Image Data Augmentation Techniques for Deep Learning Applications publication-title: J. Med. Imaging Radiat. Oncol. doi: 10.1111/1754-9485.13261 – ident: ref_16 – volume: 10 start-page: 19549 year: 2020 ident: ref_15 article-title: COVID-Net: A Tailored Deep Convolutional Neural Network Design for Detection of COVID-19 Cases from Chest X-ray Images publication-title: Sci. Rep. doi: 10.1038/s41598-020-76550-z – ident: ref_30 doi: 10.3390/ijerph17186933 – ident: ref_32 doi: 10.1007/978-3-319-44781-0_8 – volume: 11 start-page: 16071 year: 2021 ident: ref_12 article-title: Explainable DCNN Based Chest X-ray Image Analysis and Classification for COVID-19 Pneumonia Detection publication-title: Sci. Rep. doi: 10.1038/s41598-021-95680-6 – volume: 521 start-page: 436 year: 2015 ident: ref_18 article-title: Deep Learning publication-title: Nature doi: 10.1038/nature14539 – volume: 128 start-page: 336 year: 2020 ident: ref_11 article-title: Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-019-01228-7 – ident: ref_21 – ident: ref_2 doi: 10.3390/v12070769 – volume: 46 start-page: e1 year: 2019 ident: ref_1 article-title: Deep learning in medical imaging and radiation therapy publication-title: Med. Phys. doi: 10.1002/mp.13264 – ident: ref_8 doi: 10.3389/frai.2021.598932 – volume: 196 start-page: 105608 year: 2020 ident: ref_4 article-title: Explainable deep learning for pulmonary disease and coronavirus COVID-19 detection from X-rays publication-title: Comput. Methods Progr. Biomed. doi: 10.1016/j.cmpb.2020.105608 – volume: 10 start-page: 23 year: 2017 ident: ref_17 article-title: Fifty years of computer analysis in chest imaging: Rule-based, machine learning, deep learning publication-title: Radiol. Phys. Technol. doi: 10.1007/s12194-017-0394-5 – ident: ref_25 – volume: 40 start-page: 462 year: 2020 ident: ref_9 article-title: Extracting Possibly Representative COVID-19 Biomarkers from X-ray Images with Deep Learning Approach and Image Data Related to Pulmonary Diseases publication-title: J. Med. Biol. Eng. doi: 10.1007/s40846-020-00529-4 – volume: 31 start-page: 2819 year: 2021 ident: ref_3 article-title: The Sensitivity and Specificity of Chest CT in the Diagnosis of COVID-19 publication-title: Eur. Radiol. doi: 10.1007/s00330-020-07347-x – ident: ref_22 doi: 10.1609/aaai.v31i1.11231 – ident: ref_13 doi: 10.3390/healthcare9091099 – ident: ref_27 doi: 10.1109/CVPR.2017.369 – volume: 43 start-page: 114 year: 2020 ident: ref_6 article-title: Automated deep transfer learning-based approach for detection of COVID-19 infection in chest X-rays publication-title: IRBM – ident: ref_19 – ident: ref_24 doi: 10.1109/CVPR.2009.5206848 – volume: 6 start-page: 60 year: 2019 ident: ref_29 article-title: A survey on image data augmentation for deep learning publication-title: J. Big Data doi: 10.1186/s40537-019-0197-0 |
SSID | ssj0002793485 |
Score | 2.2263398 |
Snippet | X-ray technology has been recently employed for the detection of the lethal human coronavirus disease 2019 (COVID-19) as a timely, cheap, and helpful ancillary... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 20 |
SubjectTerms | Accuracy Algorithms Artificial intelligence Classification Coronaviruses COVID-19 Datasets Deep learning Disease explainable artificial intelligence Infections Medical research Pneumonia Reproducibility Tomography X-rays |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iQbyIT1xf5CB4CrZN86g3dRUVVkFU9lbyFEW7i1uF_Q3-aSdpV3YR8eK1hKZkpjPfl0y-QWgfkgb1ibREa-1JnjpKpPKcqFRxKyREZRXVPq_5xX1-1Wf9qVZfoSaskQduFu6QC52m1mrjJc2lC4jBUeOp9ZoryK8h-kLOmyJTz_E4rYDRrFFppMDrD9steJaEqoRkJgtFsf4fsTgmmPNltNQiQ3zcfNEKmnPVKlrotWffa-iz69wQt3qoj7gXWz-PcD3At-4D4B6-fI1Yuqpxn7ypMQ7o7h3YNH6q8OnNw2WXpAXuujoWX1VHeEpiY1DhgcehHi9epgr1smOsKjt5B0wxjNKwTS3teB3dn5_dnV6QtpUCMZCjamIC00ss5dIoVehMOEhD0jNGldQq0xmnHoiT8SKxMlECbEQ1z7ULndMFU3QDzVeDym0izJQBEANMyFsNdAlCAjWFT5iUTBY5Ex1EJktbmlZnPLS7eCmBbwRTlLOm6KCD7_HDRmHj15EnwVLfo4IydnwA_lK2_lL-5S8dtDOxc9n-rqMy4wJwcCEzsfUfc2yjxSzckoibNTtovn57d7uAXWq9F930C1bt7_E priority: 102 providerName: Directory of Open Access Journals |
Title | Deep Learning Methods to Reveal Important X-ray Features in COVID-19 Detection: Investigation of Explainability and Feature Reproducibility |
URI | https://www.proquest.com/docview/2679779827 https://doaj.org/article/67b11ddbcf8348e0835e3cf3dfb6a063 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEF-0BfFF6heetsc-CD4tTbLZj_hSbK-lFVqlWLm3sJ-loMl5lwr3N_SfdmZv77SIviZLApnZmd9vMvsbQt5C0uCx0J5ZayOry8CZNlEyUxrplYaobJLa54U8vao_TsU0F9wWua1yHRNToPa9wxr5fiUVQJVGV-pg9oPh1Cj8u5pHaDwk2yhdhi1daqo2NZYKnK_WYqXVyIHd7-dCvCiwN6G4l4uSZP9fETmlmZMd8iTjQ_phZdCn5EHonpFH5_kP-HNyNwlhRrMq6jU9TwOgF3To6WX4CaCPnn1PiLob6JTNzZIixrsFTk1vOnr06evZhJUNnYQhtWB17-kfQht9R_tIsSsvHanCrtklNZ1fPwNeMUsCsauO2uULcnVy_OXolOWBCsxBphqYQ75XeC61M6axlQqQjHQUghttTWUrySPQJxdV4XVhFFiKW1nbgPPTlTD8Jdnq-i68IlQYB1AG-FD0FkgTBAbumlgIrYVuaqFGhK0_beuy2jgOvfjWAutAU7T3TTEi7zbrZyudjX-uPERLbVahPna60M-v27zdWqlsWXpvXdTgAQFxZuAuch-tNIDKRmR3bec2b9pF-9vFXv__9hvyuMJTEKkYs0u2hvlt2ANsMthxcsAx2T48vvh8OU4M_xc_bulb |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VrQRcEL9ioYAPIE4WSRwnDhJCtNtql3YXVLVob8G_FRIky24K2mfgXXhGxk6yUCG49ZpYTuQZz3wzHn8D8BSdBnORMFQp5WgaW0aFdBmVscxMLtAqy8D2OcvGp-nbOZ9vwc_-Lowvq-xtYjDUptY-R_4iyXKEKoVI8teLr9R3jfKnq30LjVYtDu36O4Zsq1eTEcr3WZIc7J_sjWnXVYBqNNcN1T7oiQzLhJayUElu0SILxzmTQslEJRlzGENol0dGRDLH32UqS5X1TcRzLhnOewW2U4ahzAC2d_dn7483WZ0E1T0VvGWHZKzwFOAh9c8jXw0RXfB-oUnAXz4gOLaDm3CjQ6TkTatCt2DLVrfh6rQ7c78DP0bWLkjHw3pGpqHl9Io0NTm23xBmksmXgOGrhszpUq6JR5XnGMWTTxXZe_dhMqJxQUa2CUVf1UvyB7VHXZHaEV8HGC5x-TrdNZGV6efATywCJW1bw7u-C6eXstj3YFDVlb0PhEuN4AkjMGcUhmloipguXMSF4KJIeT4E2i9tqTt-c99m43OJcY4XRXlRFEN4vhm_aJk9_jly10tqM8ozcocH9fKs7DZ4meUqjo1R2gnUAOuRrWXaMeNUJhEHDmGnl3PZmYlV-VupH_z_9RO4Nj6ZHpVHk9nhQ7ie-DsYIRW0A4NmeW4fITJq1ONOHQl8vOwd8AtfWSTQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELVKkSouiE-xUMAHECeLJI5jBwkhaFh1KS0IUbS34M8KCZJlNwXtb-Af8euYcZKFCsGt18RyIs_z-I09fkPIA1g0eEiUY8aYwPLUc6Z0KJhOdeGkAq-so9rnUbF_nL-ai_kW-TnehcG0ytEnRkftWot75I-zQgJVKRWE6mFIi3hbTZ8tvjKsIIUnrWM5jR4iB379HcK31dNZBbZ-mGXTl-_39tlQYYBZcN0dsxgAJY4Xympdmkx68M4qCMG1MjozWcEDxBM2yMSpREv4dW6K3HgsKC6F5tDvBXJRcpHiHJNzudnfyQD4uRK9TiTnJYqBx0MAkWBeRHJmHYzlAv5aDeISN71CLg_clD7vwXSVbPnmGtk5HE7fr5MflfcLOiiyntDDWHx6RbuWvvPfgHDS2ZfI5puOztlSrynyy1OI5-mnhu69-TCrWFrSyncx_at5Qv8Q-Wgb2gaKGYHxOhdm7K6pbtzYB3xiEcVp-2ze9Q1yfC5DfZNsN23jbxEqtAUaBbFYcAYCNnBK3JYhEUoJVeZCTggbh7a2g9I5Ftz4XEPEg6aoz5piQh5t2i96jY9_tnyBltq0Qm3u-KBdntTDVK8LadLUOWODAgR45Lie28BdMIUGRjghu6Od68FhrOrf8L79_9f3yQ7gvn49Ozq4Qy5leBkj7gntku1ueervAkXqzL2IRUo-njf4fwGsmCeg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+Methods+to+Reveal+Important+X-ray+Features+in+COVID-19+Detection%3A+Investigation+of+Explainability+and+Feature+Reproducibility&rft.jtitle=Reports+%28MDPI%29&rft.au=Apostolopoulos%2C+Ioannis+D&rft.au=Apostolopoulos%2C+Dimitris+J&rft.au=Papathanasiou%2C+Nikolaos+D&rft.date=2022-06-01&rft.pub=MDPI+AG&rft.eissn=2571-841X&rft.volume=5&rft.issue=2&rft.spage=20&rft_id=info:doi/10.3390%2Freports5020020&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2571-841X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2571-841X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2571-841X&client=summon |