Stability and Hopf bifurcation of a modified Leslie–Gower predator–prey model with Smith growth rate and B–D functional response

This paper is concerned with a modified Leslie–Gower predator–prey diffusive dynamics system with Smith growth subject to homogeneous Neumann boundary condition, in which the functional response is Beddington–DeAngelis (Denote it by B–D) functional response term. Firstly, by applying the theory of s...

Full description

Saved in:
Bibliographic Details
Published inChaos, solitons and fractals Vol. 174; p. 113794
Main Authors Feng, Xiaozhou, Liu, Xia, Sun, Cong, Jiang, Yaolin
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.09.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper is concerned with a modified Leslie–Gower predator–prey diffusive dynamics system with Smith growth subject to homogeneous Neumann boundary condition, in which the functional response is Beddington–DeAngelis (Denote it by B–D) functional response term. Firstly, by applying the theory of stability and the Hopf bifurcation, we discuss the local stability and the existence of the Hopf bifurcation at the positive constant equilibrium solution of the ODE model, which the model undergoes the Hopf bifurcation when bifurcation parameter δ crosses the bifurcation critical value b0. Moreover, stability of the bifurcation periodic solution is analyzed. Secondly, the Turing instability and the direction of Hopf bifurcation of the corresponding to PDE system are investigated by using Normal form theory and Centre manifold theory. Finally, we study the numerical simulations of this system to illustrate the theoretical analysis.
AbstractList This paper is concerned with a modified Leslie–Gower predator–prey diffusive dynamics system with Smith growth subject to homogeneous Neumann boundary condition, in which the functional response is Beddington–DeAngelis (Denote it by B–D) functional response term. Firstly, by applying the theory of stability and the Hopf bifurcation, we discuss the local stability and the existence of the Hopf bifurcation at the positive constant equilibrium solution of the ODE model, which the model undergoes the Hopf bifurcation when bifurcation parameter δ crosses the bifurcation critical value b0. Moreover, stability of the bifurcation periodic solution is analyzed. Secondly, the Turing instability and the direction of Hopf bifurcation of the corresponding to PDE system are investigated by using Normal form theory and Centre manifold theory. Finally, we study the numerical simulations of this system to illustrate the theoretical analysis.
ArticleNumber 113794
Author Jiang, Yaolin
Feng, Xiaozhou
Sun, Cong
Liu, Xia
Author_xml – sequence: 1
  givenname: Xiaozhou
  surname: Feng
  fullname: Feng, Xiaozhou
  email: flxzfxz8@163.com
  organization: College of Science, Xi’an Technological University, Xi’an 710032, China
– sequence: 2
  givenname: Xia
  surname: Liu
  fullname: Liu, Xia
  organization: College of Science, Xi’an Technological University, Xi’an 710032, China
– sequence: 3
  givenname: Cong
  surname: Sun
  fullname: Sun, Cong
  organization: College of Science, Xi’an Technological University, Xi’an 710032, China
– sequence: 4
  givenname: Yaolin
  surname: Jiang
  fullname: Jiang, Yaolin
  organization: School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an 710049, China
BookMark eNqFkLFOwzAQhj0UiRZ4Aha_QMs5Tp14YIACLVIlhsJsOc6FukrjynapujHxArwhT0LSMjHAcv_p9H-_dP-A9BrXICGXDEYMmLhajcxSuzBKIOEjxngm0x7pgxQwhCyTp2QQwgoAGIikTz4WURe2tnFPdVPSmdtUtLDV1hsdrWuoq6ima1faymJJ5xhqi1_vn1O3Q083HksdnW8P7brvfFjTnY1Lulh389W7XSteRzzE37bOO1ptG9OF65p6DBvXBDwnJ5WuA1786Bl5ebh_nsyG86fp4-RmPjQceBwaADPmkORCm7yEsTBCp6kUMsc84zkTCRayhFRLkWSpZGIs8hRBZLwq8iLR_IzIY67xLgSPlTI2Hj6NXttaMVBdiWqlDiWqrkR1LLFl-S924-1a-_0_1PWRwvatN4teBWOxMVhajyaq0tk_-W_4NJTg
CitedBy_id crossref_primary_10_1002_mma_10470
crossref_primary_10_1016_j_cjph_2024_09_015
crossref_primary_10_3390_math11234808
crossref_primary_10_3390_axioms13100704
crossref_primary_10_3934_math_20241445
crossref_primary_10_3934_math_20241520
crossref_primary_10_4236_jamp_2024_126133
crossref_primary_10_1016_j_cnsns_2024_108477
crossref_primary_10_3390_math12121796
crossref_primary_10_3934_era_2024299
crossref_primary_10_1002_mma_10416
crossref_primary_10_1016_j_matcom_2024_07_034
crossref_primary_10_3934_math_2024080
crossref_primary_10_3934_mbe_2023931
Cites_doi 10.1016/j.jde.2011.03.004
10.1186/s13662-018-1735-3
10.1007/s12190-013-0663-3
10.1016/j.cnsns.2009.03.006
10.1142/S1793524515500138
10.1016/j.nonrwa.2022.103638
10.1109/ACCESS.2019.2938772
10.1155/2013/267173
10.1016/j.nonrwa.2022.103766
10.1016/j.matcom.2015.05.006
10.1016/j.cnsns.2023.107109
10.1016/j.heliyon.2021.e06193
10.2307/1936298
10.2307/1933011
10.1186/s13662-020-02879-4
10.1016/j.aml.2022.108561
10.1016/j.jmaa.2011.09.049
10.2307/2333294
10.1016/j.matcom.2022.05.017
10.2307/3866
ContentType Journal Article
Copyright 2023
Copyright_xml – notice: 2023
DBID AAYXX
CITATION
DOI 10.1016/j.chaos.2023.113794
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
ExternalDocumentID 10_1016_j_chaos_2023_113794
S0960077923006951
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
ABMAC
ABNEU
ABTAH
ABXDB
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLZ
HMV
HVGLF
HZ~
IHE
J1W
KOM
LG9
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SPG
SSQ
SSZ
T5K
WUQ
XPP
ZY4
~G-
AATTM
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c303t-c00c530286ac8d056c6a449698e8738162eb9d04a962749165684e0673fb8b2a3
IEDL.DBID .~1
ISSN 0960-0779
IngestDate Thu Apr 24 23:09:23 EDT 2025
Tue Jul 01 02:01:16 EDT 2025
Tue Dec 03 03:45:16 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Leslie–Gower model
Stability
92D25
Turing instability
Neumann boundary condition
Hopf bifurcation
35J55
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c303t-c00c530286ac8d056c6a449698e8738162eb9d04a962749165684e0673fb8b2a3
ParticipantIDs crossref_citationtrail_10_1016_j_chaos_2023_113794
crossref_primary_10_1016_j_chaos_2023_113794
elsevier_sciencedirect_doi_10_1016_j_chaos_2023_113794
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2023
2023-09-00
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: September 2023
PublicationDecade 2020
PublicationTitle Chaos, solitons and fractals
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Jiang, Wang, Yao (b16) 2015; 117
Leslie, Gower (b2) 1960; 47
Feng, Sun, Yang, Li (b14) 2023
Ali, Jazar (b6) 2013; 43
Chen, Takeuchi, Zhang (b7) 2023
Li, He, Li (b4) 2022; 201
Feng, Sun, Xiao (b10) 2020; 2020
Jiang, Fang, Wu (b22) 2020; 2020
Sivakumar, Sambath, Balachandran (b25) 2015; 8
Yue, Wang (b19) 2013
Misra, Raveendra (b20) 2014; 2
Fang, Jiang (b1) 2009; 14
Zhang, Wang, Wang (b17) 2011; 387
Feng, Song, Liu, Wang (b9) 2018; 2018
Beddington (b12) 1975; 44
Luo, Wang (b15) 2022
Hassard, Kazarinoff, Wan (b26) 1981
Smith (b18) 1963; 44
Han, Lei (b23) 2022
Ved, Rajnesh, Devendra (b11) 2020; 13
Shi, Cheng, Liu, Li (b21) 2019; 7
Melese, Feyissa (b8) 2021
Wang, Shi, Wei (b24) 2011; 251
Min, Wang (b5) 2018; 23
DeAngelis, Goldstein, O’Neill (b13) 1975; 56
He, Li (b3) 2023
Hassard (10.1016/j.chaos.2023.113794_b26) 1981
Melese (10.1016/j.chaos.2023.113794_b8) 2021
Beddington (10.1016/j.chaos.2023.113794_b12) 1975; 44
Misra (10.1016/j.chaos.2023.113794_b20) 2014; 2
Jiang (10.1016/j.chaos.2023.113794_b22) 2020; 2020
Yue (10.1016/j.chaos.2023.113794_b19) 2013
Ali (10.1016/j.chaos.2023.113794_b6) 2013; 43
Zhang (10.1016/j.chaos.2023.113794_b17) 2011; 387
Ved (10.1016/j.chaos.2023.113794_b11) 2020; 13
Chen (10.1016/j.chaos.2023.113794_b7) 2023
Feng (10.1016/j.chaos.2023.113794_b14) 2023
Smith (10.1016/j.chaos.2023.113794_b18) 1963; 44
Shi (10.1016/j.chaos.2023.113794_b21) 2019; 7
Fang (10.1016/j.chaos.2023.113794_b1) 2009; 14
He (10.1016/j.chaos.2023.113794_b3) 2023
Feng (10.1016/j.chaos.2023.113794_b9) 2018; 2018
Feng (10.1016/j.chaos.2023.113794_b10) 2020; 2020
Wang (10.1016/j.chaos.2023.113794_b24) 2011; 251
Han (10.1016/j.chaos.2023.113794_b23) 2022
Leslie (10.1016/j.chaos.2023.113794_b2) 1960; 47
DeAngelis (10.1016/j.chaos.2023.113794_b13) 1975; 56
Min (10.1016/j.chaos.2023.113794_b5) 2018; 23
Jiang (10.1016/j.chaos.2023.113794_b16) 2015; 117
Li (10.1016/j.chaos.2023.113794_b4) 2022; 201
Sivakumar (10.1016/j.chaos.2023.113794_b25) 2015; 8
Luo (10.1016/j.chaos.2023.113794_b15) 2022
References_xml – volume: 117
  start-page: 39
  year: 2015
  end-page: 53
  ident: b16
  article-title: Numerical simulation and qualitative analysis for a predator–prey model with B–D functional response
  publication-title: Math Comput Simulation
– volume: 2020
  start-page: 1
  year: 2020
  end-page: 17
  ident: b22
  article-title: Hopf bifurcation in a diffusive predator–prey model with Smithgrowth rate and herd behavior
  publication-title: Adv Difference Equ
– volume: 2020
  start-page: 1
  year: 2020
  end-page: 10
  ident: b10
  article-title: Stability and coexistence of a diffusive predator-prey system with nonmonotonic functional response and fear effect
  publication-title: Complexity
– volume: 43
  start-page: 271
  year: 2013
  end-page: 293
  ident: b6
  article-title: Global dynamics of a modified Leslie–Gower predator–prey model with Crowley–Martin functional responses
  publication-title: J Appl Math Comput
– volume: 14
  start-page: 4292
  year: 2009
  end-page: 4303
  ident: b1
  article-title: Stability and Hopf bifurcation for a regulated logistic growth model with discrete and distributed delays
  publication-title: Commun Nonlinear Sci Numer Simul
– volume: 13
  start-page: 22
  year: 2020
  end-page: 24
  ident: b11
  article-title: Numerical solution of time-fractional three-species food chain model arising in the realm of mathematical ecology
  publication-title: Int J Biomath
– year: 2023
  ident: b3
  article-title: Global dynamics of a Leslie–Gower predator–prey model with square root response function
  publication-title: Appl Math Lett
– volume: 201
  start-page: 417
  year: 2022
  end-page: 439
  ident: b4
  article-title: Dynamics of a ratio-dependent Leslie–Gower predator–prey model with Allee effect and fear effect
  publication-title: Math Comput Simulation
– year: 2023
  ident: b7
  article-title: Dynamic complexity of a modified Leslie–Gower predator–prey system with fear effect
  publication-title: Commun Nonlinear Sci Numer Simul
– year: 2022
  ident: b15
  article-title: Global bifurcation and pattern formation for a reaction–diffusion predator–prey model with prey-taxis and double Beddington–DeAngelis functional responses
  publication-title: Nonlinear Anal RWA
– volume: 8
  start-page: 1550013
  year: 2015
  ident: b25
  article-title: Stability and Hopf bifurcation analysis of a diffusive predator–prey model with Smith growth
  publication-title: Int J Biomath
– year: 2022
  ident: b23
  article-title: Bifurcation and turing instability analysis for a space- and time-discrete predator–prey system with smith growth function
  publication-title: Chaos Solitons Fractals
– volume: 7
  start-page: 126066
  year: 2019
  end-page: 126076
  ident: b21
  article-title: A cydia pomonella integrated management predator–prey model with Smith growth and linear feedback control
  publication-title: IEEE Access
– volume: 2018
  start-page: 1
  year: 2018
  end-page: 17
  ident: b9
  article-title: Permanence, stability, and coexistence of a diffusive predator–prey model with modified Leslie–Gower and B–D functional response
  publication-title: Adv Difference Equ
– year: 2023
  ident: b14
  article-title: Dynamics of a predator–prey model with nonlinear growth rate and B–D functional response
  publication-title: Nonlinear Anal RWA
– year: 2013
  ident: b19
  article-title: Qualitative analysis of a diffusive ratio-dependent Holling–Tanner predator–prey model with Smith growth
  publication-title: Discrete Dyn Nat Soc
– year: 2021
  ident: b8
  article-title: Stability and bifurcation analysis of a diffusive modified Leslie–Gower prey-predator model with prey infection and Beddington DeAngelis functional response
  publication-title: Heliyon
– volume: 2
  start-page: 120
  year: 2014
  end-page: 145
  ident: b20
  article-title: A model for the effect of toxicant on a three species food-chain system with food-limited growth of prey population
  publication-title: Glob J Math Anal
– volume: 44
  start-page: 651
  year: 1963
  end-page: 663
  ident: b18
  article-title: Population dynamics in Daphnia magna and a new model for population growth
  publication-title: Ecology
– volume: 56
  start-page: 881
  year: 1975
  end-page: 892
  ident: b13
  article-title: A model for tropic interaction
  publication-title: Ecology
– year: 1981
  ident: b26
  article-title: Theory and applications of Hopf bifurcation
– volume: 251
  start-page: 1276
  year: 2011
  end-page: 1304
  ident: b24
  article-title: Dynamics and pattern formation in a diffusive predator–prey system with strong Allee effect in prey
  publication-title: J Differential Equations
– volume: 47
  start-page: 219
  year: 1960
  end-page: 234
  ident: b2
  article-title: The properties of a stochastic model for the predator–prey type of interaction between two species
  publication-title: Biometrika
– volume: 23
  start-page: 1721
  year: 2018
  end-page: 1737
  ident: b5
  article-title: Dynamics of a diffusive prey-predator system with strong allee effect growth rate and a protection zone for the prey
  publication-title: Discrete Contin Dyn Syst - B
– volume: 387
  start-page: 931
  year: 2011
  end-page: 948
  ident: b17
  article-title: Coexistence states for a diffusive one-prey and two-predators model with B–D functional response
  publication-title: J Math Anal Appl
– volume: 44
  start-page: 331
  year: 1975
  end-page: 340
  ident: b12
  article-title: Mutual interference between parasites or predators and its effect on searching efficiency
  publication-title: J Anim Ecol
– volume: 251
  start-page: 1276
  issue: 4
  year: 2011
  ident: 10.1016/j.chaos.2023.113794_b24
  article-title: Dynamics and pattern formation in a diffusive predator–prey system with strong Allee effect in prey
  publication-title: J Differential Equations
  doi: 10.1016/j.jde.2011.03.004
– volume: 2018
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.chaos.2023.113794_b9
  article-title: Permanence, stability, and coexistence of a diffusive predator–prey model with modified Leslie–Gower and B–D functional response
  publication-title: Adv Difference Equ
  doi: 10.1186/s13662-018-1735-3
– volume: 23
  start-page: 1721
  issue: 4
  year: 2018
  ident: 10.1016/j.chaos.2023.113794_b5
  article-title: Dynamics of a diffusive prey-predator system with strong allee effect growth rate and a protection zone for the prey
  publication-title: Discrete Contin Dyn Syst - B
– volume: 43
  start-page: 271
  issue: 1–2
  year: 2013
  ident: 10.1016/j.chaos.2023.113794_b6
  article-title: Global dynamics of a modified Leslie–Gower predator–prey model with Crowley–Martin functional responses
  publication-title: J Appl Math Comput
  doi: 10.1007/s12190-013-0663-3
– volume: 14
  start-page: 4292
  issue: 12
  year: 2009
  ident: 10.1016/j.chaos.2023.113794_b1
  article-title: Stability and Hopf bifurcation for a regulated logistic growth model with discrete and distributed delays
  publication-title: Commun Nonlinear Sci Numer Simul
  doi: 10.1016/j.cnsns.2009.03.006
– volume: 8
  start-page: 1550013
  issue: 1
  year: 2015
  ident: 10.1016/j.chaos.2023.113794_b25
  article-title: Stability and Hopf bifurcation analysis of a diffusive predator–prey model with Smith growth
  publication-title: Int J Biomath
  doi: 10.1142/S1793524515500138
– year: 2022
  ident: 10.1016/j.chaos.2023.113794_b15
  article-title: Global bifurcation and pattern formation for a reaction–diffusion predator–prey model with prey-taxis and double Beddington–DeAngelis functional responses
  publication-title: Nonlinear Anal RWA
  doi: 10.1016/j.nonrwa.2022.103638
– volume: 7
  start-page: 126066
  issue: 6
  year: 2019
  ident: 10.1016/j.chaos.2023.113794_b21
  article-title: A cydia pomonella integrated management predator–prey model with Smith growth and linear feedback control
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2938772
– volume: 13
  start-page: 22
  issue: 02
  year: 2020
  ident: 10.1016/j.chaos.2023.113794_b11
  article-title: Numerical solution of time-fractional three-species food chain model arising in the realm of mathematical ecology
  publication-title: Int J Biomath
– year: 2013
  ident: 10.1016/j.chaos.2023.113794_b19
  article-title: Qualitative analysis of a diffusive ratio-dependent Holling–Tanner predator–prey model with Smith growth
  publication-title: Discrete Dyn Nat Soc
  doi: 10.1155/2013/267173
– year: 2023
  ident: 10.1016/j.chaos.2023.113794_b14
  article-title: Dynamics of a predator–prey model with nonlinear growth rate and B–D functional response
  publication-title: Nonlinear Anal RWA
  doi: 10.1016/j.nonrwa.2022.103766
– volume: 117
  start-page: 39
  issue: 05
  year: 2015
  ident: 10.1016/j.chaos.2023.113794_b16
  article-title: Numerical simulation and qualitative analysis for a predator–prey model with B–D functional response
  publication-title: Math Comput Simulation
  doi: 10.1016/j.matcom.2015.05.006
– year: 2023
  ident: 10.1016/j.chaos.2023.113794_b7
  article-title: Dynamic complexity of a modified Leslie–Gower predator–prey system with fear effect
  publication-title: Commun Nonlinear Sci Numer Simul
  doi: 10.1016/j.cnsns.2023.107109
– year: 2021
  ident: 10.1016/j.chaos.2023.113794_b8
  article-title: Stability and bifurcation analysis of a diffusive modified Leslie–Gower prey-predator model with prey infection and Beddington DeAngelis functional response
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2021.e06193
– volume: 56
  start-page: 881
  issue: 4
  year: 1975
  ident: 10.1016/j.chaos.2023.113794_b13
  article-title: A model for tropic interaction
  publication-title: Ecology
  doi: 10.2307/1936298
– volume: 44
  start-page: 651
  issue: 4
  year: 1963
  ident: 10.1016/j.chaos.2023.113794_b18
  article-title: Population dynamics in Daphnia magna and a new model for population growth
  publication-title: Ecology
  doi: 10.2307/1933011
– volume: 2020
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.chaos.2023.113794_b22
  article-title: Hopf bifurcation in a diffusive predator–prey model with Smithgrowth rate and herd behavior
  publication-title: Adv Difference Equ
  doi: 10.1186/s13662-020-02879-4
– year: 1981
  ident: 10.1016/j.chaos.2023.113794_b26
– year: 2023
  ident: 10.1016/j.chaos.2023.113794_b3
  article-title: Global dynamics of a Leslie–Gower predator–prey model with square root response function
  publication-title: Appl Math Lett
  doi: 10.1016/j.aml.2022.108561
– volume: 387
  start-page: 931
  issue: 2
  year: 2011
  ident: 10.1016/j.chaos.2023.113794_b17
  article-title: Coexistence states for a diffusive one-prey and two-predators model with B–D functional response
  publication-title: J Math Anal Appl
  doi: 10.1016/j.jmaa.2011.09.049
– volume: 47
  start-page: 219
  issue: 3/4
  year: 1960
  ident: 10.1016/j.chaos.2023.113794_b2
  article-title: The properties of a stochastic model for the predator–prey type of interaction between two species
  publication-title: Biometrika
  doi: 10.2307/2333294
– volume: 201
  start-page: 417
  issue: 05
  year: 2022
  ident: 10.1016/j.chaos.2023.113794_b4
  article-title: Dynamics of a ratio-dependent Leslie–Gower predator–prey model with Allee effect and fear effect
  publication-title: Math Comput Simulation
  doi: 10.1016/j.matcom.2022.05.017
– volume: 2
  start-page: 120
  issue: 3
  year: 2014
  ident: 10.1016/j.chaos.2023.113794_b20
  article-title: A model for the effect of toxicant on a three species food-chain system with food-limited growth of prey population
  publication-title: Glob J Math Anal
– year: 2022
  ident: 10.1016/j.chaos.2023.113794_b23
  article-title: Bifurcation and turing instability analysis for a space- and time-discrete predator–prey system with smith growth function
  publication-title: Chaos Solitons Fractals
– volume: 44
  start-page: 331
  issue: 1
  year: 1975
  ident: 10.1016/j.chaos.2023.113794_b12
  article-title: Mutual interference between parasites or predators and its effect on searching efficiency
  publication-title: J Anim Ecol
  doi: 10.2307/3866
– volume: 2020
  start-page: 1
  issue: 6
  year: 2020
  ident: 10.1016/j.chaos.2023.113794_b10
  article-title: Stability and coexistence of a diffusive predator-prey system with nonmonotonic functional response and fear effect
  publication-title: Complexity
SSID ssj0001062
Score 2.4915805
Snippet This paper is concerned with a modified Leslie–Gower predator–prey diffusive dynamics system with Smith growth subject to homogeneous Neumann boundary...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 113794
SubjectTerms Hopf bifurcation
Leslie–Gower model
Neumann boundary condition
Stability
Turing instability
Title Stability and Hopf bifurcation of a modified Leslie–Gower predator–prey model with Smith growth rate and B–D functional response
URI https://dx.doi.org/10.1016/j.chaos.2023.113794
Volume 174
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQLDAgKCCe1Q0MIBHaum4cj6U8yqsLILFFfgWKIKlKGVgQE3-Af8gvweckBSTEwJTEOkeRz_E9fP4-QjYNFzZMDHexSRQGzCoWCItRiubaNISk3O-YnvfC7hU7uW5dT5BOeRYGyyqLtT9f0_1qXbTUitGsDfr92gU633WO-HcIt-uPUTPGcZbvvnyVebiQx-8kOOEApUvkIV_jpW9lhpjdtIncJlyw363TN4tzOEdmC1cR2vnXzJMJm1bIzPkYZ_WxQuaLX_MRtgr86O0F8uYcSF_y-gwyNdDNBgmofvI0zLNzkCUg4SEz_cS5n3BmnadpP17fj5AvDQZDazAOdw3u9hk8Uw5gthZ8EgZuXNzuLogw4V-_5yT3Ac1jnlWEYV51axfJ1eHBZacbFHQLgXZ2bBToel0jh1AUSh0Z5xjpUDImQhHZiOP-IrVKmDqTnq9HIGxPxCwS3SQqUlQ2l8hkmqV2mUBTNUJlW1wlzgVglMkGNS2aSG6taEhOVwgthznWBRY5UmLcx2XR2V3sdROjbuJcNytkZ9xpkENx_C0elvqLf8yo2BmLvzqu_rfjGpnGp7wCbZ1MjoZPdsO5LCNV9XOySqbax6fd3idpCu2X
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB6hcGg5IB6teLZz6AGkWkk2G6_3CLTUlCQXQOJm7cs0VRtHIRy4ceIP8A_5Jeys11ErVRx6srXesayd9c43s7PfAHyyQrq0tML7JlmacKd5Ih15KUYY25WKibBjOhyl-RX_ft2_XoKT5iwMpVXGtb9e08NqHVvacTTb0_G4fUHguyOI_47odukY9TKxU_VbsHx0dp6PFguy93rCZoLvn5BAQz4U0rzMD1URbTfrUXkTIfm_DdQfRud0DVYjWsSj-oPWYclNNmBluKBavd2A9fh33uJBpJA-3IRHjyFD1us9qonFvJqWqMfl3awO0GFVosLflR2XHoHiwHmw6Z4fnr5RyTSczpwlV9w3-Nt7DMVykAK2GOIweONdd38hkonw-mPf8wuShawDizirE2_dO7g6_Xp5kiex4kJivCmbJ6bTMVRGKEuVyazHRiZVnMtUZi4TtMXInJa2w1Uo2SOJuSfjjmrdlDrTTPXeQ2tSTdwWYE93U-36QpceBXDGVZfZPiuVcE52lWDbwJphLkykI6eqGL-KJu_sZxF0U5Builo32_B5ITSt2The7542-iv-mlSFtxevCe78r-BHeJNfDgfF4Gx0vgtv6UmdkLYHrfnszu17BDPXH-IMfQGKuPBI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stability+and+Hopf+bifurcation+of+a+modified+Leslie%E2%80%93Gower+predator%E2%80%93prey+model+with+Smith+growth+rate+and+B%E2%80%93D+functional+response&rft.jtitle=Chaos%2C+solitons+and+fractals&rft.au=Feng%2C+Xiaozhou&rft.au=Liu%2C+Xia&rft.au=Sun%2C+Cong&rft.au=Jiang%2C+Yaolin&rft.date=2023-09-01&rft.issn=0960-0779&rft.volume=174&rft.spage=113794&rft_id=info:doi/10.1016%2Fj.chaos.2023.113794&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_chaos_2023_113794
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-0779&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-0779&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-0779&client=summon