Stability and Hopf bifurcation of a modified Leslie–Gower predator–prey model with Smith growth rate and B–D functional response
This paper is concerned with a modified Leslie–Gower predator–prey diffusive dynamics system with Smith growth subject to homogeneous Neumann boundary condition, in which the functional response is Beddington–DeAngelis (Denote it by B–D) functional response term. Firstly, by applying the theory of s...
Saved in:
Published in | Chaos, solitons and fractals Vol. 174; p. 113794 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.09.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper is concerned with a modified Leslie–Gower predator–prey diffusive dynamics system with Smith growth subject to homogeneous Neumann boundary condition, in which the functional response is Beddington–DeAngelis (Denote it by B–D) functional response term. Firstly, by applying the theory of stability and the Hopf bifurcation, we discuss the local stability and the existence of the Hopf bifurcation at the positive constant equilibrium solution of the ODE model, which the model undergoes the Hopf bifurcation when bifurcation parameter δ crosses the bifurcation critical value b0. Moreover, stability of the bifurcation periodic solution is analyzed. Secondly, the Turing instability and the direction of Hopf bifurcation of the corresponding to PDE system are investigated by using Normal form theory and Centre manifold theory. Finally, we study the numerical simulations of this system to illustrate the theoretical analysis. |
---|---|
AbstractList | This paper is concerned with a modified Leslie–Gower predator–prey diffusive dynamics system with Smith growth subject to homogeneous Neumann boundary condition, in which the functional response is Beddington–DeAngelis (Denote it by B–D) functional response term. Firstly, by applying the theory of stability and the Hopf bifurcation, we discuss the local stability and the existence of the Hopf bifurcation at the positive constant equilibrium solution of the ODE model, which the model undergoes the Hopf bifurcation when bifurcation parameter δ crosses the bifurcation critical value b0. Moreover, stability of the bifurcation periodic solution is analyzed. Secondly, the Turing instability and the direction of Hopf bifurcation of the corresponding to PDE system are investigated by using Normal form theory and Centre manifold theory. Finally, we study the numerical simulations of this system to illustrate the theoretical analysis. |
ArticleNumber | 113794 |
Author | Jiang, Yaolin Feng, Xiaozhou Sun, Cong Liu, Xia |
Author_xml | – sequence: 1 givenname: Xiaozhou surname: Feng fullname: Feng, Xiaozhou email: flxzfxz8@163.com organization: College of Science, Xi’an Technological University, Xi’an 710032, China – sequence: 2 givenname: Xia surname: Liu fullname: Liu, Xia organization: College of Science, Xi’an Technological University, Xi’an 710032, China – sequence: 3 givenname: Cong surname: Sun fullname: Sun, Cong organization: College of Science, Xi’an Technological University, Xi’an 710032, China – sequence: 4 givenname: Yaolin surname: Jiang fullname: Jiang, Yaolin organization: School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an 710049, China |
BookMark | eNqFkLFOwzAQhj0UiRZ4Aha_QMs5Tp14YIACLVIlhsJsOc6FukrjynapujHxArwhT0LSMjHAcv_p9H-_dP-A9BrXICGXDEYMmLhajcxSuzBKIOEjxngm0x7pgxQwhCyTp2QQwgoAGIikTz4WURe2tnFPdVPSmdtUtLDV1hsdrWuoq6ima1faymJJ5xhqi1_vn1O3Q083HksdnW8P7brvfFjTnY1Lulh389W7XSteRzzE37bOO1ptG9OF65p6DBvXBDwnJ5WuA1786Bl5ebh_nsyG86fp4-RmPjQceBwaADPmkORCm7yEsTBCp6kUMsc84zkTCRayhFRLkWSpZGIs8hRBZLwq8iLR_IzIY67xLgSPlTI2Hj6NXttaMVBdiWqlDiWqrkR1LLFl-S924-1a-_0_1PWRwvatN4teBWOxMVhajyaq0tk_-W_4NJTg |
CitedBy_id | crossref_primary_10_1002_mma_10470 crossref_primary_10_1016_j_cjph_2024_09_015 crossref_primary_10_3390_math11234808 crossref_primary_10_3390_axioms13100704 crossref_primary_10_3934_math_20241445 crossref_primary_10_3934_math_20241520 crossref_primary_10_4236_jamp_2024_126133 crossref_primary_10_1016_j_cnsns_2024_108477 crossref_primary_10_3390_math12121796 crossref_primary_10_3934_era_2024299 crossref_primary_10_1002_mma_10416 crossref_primary_10_1016_j_matcom_2024_07_034 crossref_primary_10_3934_math_2024080 crossref_primary_10_3934_mbe_2023931 |
Cites_doi | 10.1016/j.jde.2011.03.004 10.1186/s13662-018-1735-3 10.1007/s12190-013-0663-3 10.1016/j.cnsns.2009.03.006 10.1142/S1793524515500138 10.1016/j.nonrwa.2022.103638 10.1109/ACCESS.2019.2938772 10.1155/2013/267173 10.1016/j.nonrwa.2022.103766 10.1016/j.matcom.2015.05.006 10.1016/j.cnsns.2023.107109 10.1016/j.heliyon.2021.e06193 10.2307/1936298 10.2307/1933011 10.1186/s13662-020-02879-4 10.1016/j.aml.2022.108561 10.1016/j.jmaa.2011.09.049 10.2307/2333294 10.1016/j.matcom.2022.05.017 10.2307/3866 |
ContentType | Journal Article |
Copyright | 2023 |
Copyright_xml | – notice: 2023 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.chaos.2023.113794 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Mathematics |
ExternalDocumentID | 10_1016_j_chaos_2023_113794 S0960077923006951 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO ABMAC ABNEU ABTAH ABXDB ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HLZ HMV HVGLF HZ~ IHE J1W KOM LG9 M38 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SPD SPG SSQ SSZ T5K WUQ XPP ZY4 ~G- AATTM AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c303t-c00c530286ac8d056c6a449698e8738162eb9d04a962749165684e0673fb8b2a3 |
IEDL.DBID | .~1 |
ISSN | 0960-0779 |
IngestDate | Thu Apr 24 23:09:23 EDT 2025 Tue Jul 01 02:01:16 EDT 2025 Tue Dec 03 03:45:16 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Leslie–Gower model Stability 92D25 Turing instability Neumann boundary condition Hopf bifurcation 35J55 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c303t-c00c530286ac8d056c6a449698e8738162eb9d04a962749165684e0673fb8b2a3 |
ParticipantIDs | crossref_citationtrail_10_1016_j_chaos_2023_113794 crossref_primary_10_1016_j_chaos_2023_113794 elsevier_sciencedirect_doi_10_1016_j_chaos_2023_113794 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2023 2023-09-00 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: September 2023 |
PublicationDecade | 2020 |
PublicationTitle | Chaos, solitons and fractals |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Jiang, Wang, Yao (b16) 2015; 117 Leslie, Gower (b2) 1960; 47 Feng, Sun, Yang, Li (b14) 2023 Ali, Jazar (b6) 2013; 43 Chen, Takeuchi, Zhang (b7) 2023 Li, He, Li (b4) 2022; 201 Feng, Sun, Xiao (b10) 2020; 2020 Jiang, Fang, Wu (b22) 2020; 2020 Sivakumar, Sambath, Balachandran (b25) 2015; 8 Yue, Wang (b19) 2013 Misra, Raveendra (b20) 2014; 2 Fang, Jiang (b1) 2009; 14 Zhang, Wang, Wang (b17) 2011; 387 Feng, Song, Liu, Wang (b9) 2018; 2018 Beddington (b12) 1975; 44 Luo, Wang (b15) 2022 Hassard, Kazarinoff, Wan (b26) 1981 Smith (b18) 1963; 44 Han, Lei (b23) 2022 Ved, Rajnesh, Devendra (b11) 2020; 13 Shi, Cheng, Liu, Li (b21) 2019; 7 Melese, Feyissa (b8) 2021 Wang, Shi, Wei (b24) 2011; 251 Min, Wang (b5) 2018; 23 DeAngelis, Goldstein, O’Neill (b13) 1975; 56 He, Li (b3) 2023 Hassard (10.1016/j.chaos.2023.113794_b26) 1981 Melese (10.1016/j.chaos.2023.113794_b8) 2021 Beddington (10.1016/j.chaos.2023.113794_b12) 1975; 44 Misra (10.1016/j.chaos.2023.113794_b20) 2014; 2 Jiang (10.1016/j.chaos.2023.113794_b22) 2020; 2020 Yue (10.1016/j.chaos.2023.113794_b19) 2013 Ali (10.1016/j.chaos.2023.113794_b6) 2013; 43 Zhang (10.1016/j.chaos.2023.113794_b17) 2011; 387 Ved (10.1016/j.chaos.2023.113794_b11) 2020; 13 Chen (10.1016/j.chaos.2023.113794_b7) 2023 Feng (10.1016/j.chaos.2023.113794_b14) 2023 Smith (10.1016/j.chaos.2023.113794_b18) 1963; 44 Shi (10.1016/j.chaos.2023.113794_b21) 2019; 7 Fang (10.1016/j.chaos.2023.113794_b1) 2009; 14 He (10.1016/j.chaos.2023.113794_b3) 2023 Feng (10.1016/j.chaos.2023.113794_b9) 2018; 2018 Feng (10.1016/j.chaos.2023.113794_b10) 2020; 2020 Wang (10.1016/j.chaos.2023.113794_b24) 2011; 251 Han (10.1016/j.chaos.2023.113794_b23) 2022 Leslie (10.1016/j.chaos.2023.113794_b2) 1960; 47 DeAngelis (10.1016/j.chaos.2023.113794_b13) 1975; 56 Min (10.1016/j.chaos.2023.113794_b5) 2018; 23 Jiang (10.1016/j.chaos.2023.113794_b16) 2015; 117 Li (10.1016/j.chaos.2023.113794_b4) 2022; 201 Sivakumar (10.1016/j.chaos.2023.113794_b25) 2015; 8 Luo (10.1016/j.chaos.2023.113794_b15) 2022 |
References_xml | – volume: 117 start-page: 39 year: 2015 end-page: 53 ident: b16 article-title: Numerical simulation and qualitative analysis for a predator–prey model with B–D functional response publication-title: Math Comput Simulation – volume: 2020 start-page: 1 year: 2020 end-page: 17 ident: b22 article-title: Hopf bifurcation in a diffusive predator–prey model with Smithgrowth rate and herd behavior publication-title: Adv Difference Equ – volume: 2020 start-page: 1 year: 2020 end-page: 10 ident: b10 article-title: Stability and coexistence of a diffusive predator-prey system with nonmonotonic functional response and fear effect publication-title: Complexity – volume: 43 start-page: 271 year: 2013 end-page: 293 ident: b6 article-title: Global dynamics of a modified Leslie–Gower predator–prey model with Crowley–Martin functional responses publication-title: J Appl Math Comput – volume: 14 start-page: 4292 year: 2009 end-page: 4303 ident: b1 article-title: Stability and Hopf bifurcation for a regulated logistic growth model with discrete and distributed delays publication-title: Commun Nonlinear Sci Numer Simul – volume: 13 start-page: 22 year: 2020 end-page: 24 ident: b11 article-title: Numerical solution of time-fractional three-species food chain model arising in the realm of mathematical ecology publication-title: Int J Biomath – year: 2023 ident: b3 article-title: Global dynamics of a Leslie–Gower predator–prey model with square root response function publication-title: Appl Math Lett – volume: 201 start-page: 417 year: 2022 end-page: 439 ident: b4 article-title: Dynamics of a ratio-dependent Leslie–Gower predator–prey model with Allee effect and fear effect publication-title: Math Comput Simulation – year: 2023 ident: b7 article-title: Dynamic complexity of a modified Leslie–Gower predator–prey system with fear effect publication-title: Commun Nonlinear Sci Numer Simul – year: 2022 ident: b15 article-title: Global bifurcation and pattern formation for a reaction–diffusion predator–prey model with prey-taxis and double Beddington–DeAngelis functional responses publication-title: Nonlinear Anal RWA – volume: 8 start-page: 1550013 year: 2015 ident: b25 article-title: Stability and Hopf bifurcation analysis of a diffusive predator–prey model with Smith growth publication-title: Int J Biomath – year: 2022 ident: b23 article-title: Bifurcation and turing instability analysis for a space- and time-discrete predator–prey system with smith growth function publication-title: Chaos Solitons Fractals – volume: 7 start-page: 126066 year: 2019 end-page: 126076 ident: b21 article-title: A cydia pomonella integrated management predator–prey model with Smith growth and linear feedback control publication-title: IEEE Access – volume: 2018 start-page: 1 year: 2018 end-page: 17 ident: b9 article-title: Permanence, stability, and coexistence of a diffusive predator–prey model with modified Leslie–Gower and B–D functional response publication-title: Adv Difference Equ – year: 2023 ident: b14 article-title: Dynamics of a predator–prey model with nonlinear growth rate and B–D functional response publication-title: Nonlinear Anal RWA – year: 2013 ident: b19 article-title: Qualitative analysis of a diffusive ratio-dependent Holling–Tanner predator–prey model with Smith growth publication-title: Discrete Dyn Nat Soc – year: 2021 ident: b8 article-title: Stability and bifurcation analysis of a diffusive modified Leslie–Gower prey-predator model with prey infection and Beddington DeAngelis functional response publication-title: Heliyon – volume: 2 start-page: 120 year: 2014 end-page: 145 ident: b20 article-title: A model for the effect of toxicant on a three species food-chain system with food-limited growth of prey population publication-title: Glob J Math Anal – volume: 44 start-page: 651 year: 1963 end-page: 663 ident: b18 article-title: Population dynamics in Daphnia magna and a new model for population growth publication-title: Ecology – volume: 56 start-page: 881 year: 1975 end-page: 892 ident: b13 article-title: A model for tropic interaction publication-title: Ecology – year: 1981 ident: b26 article-title: Theory and applications of Hopf bifurcation – volume: 251 start-page: 1276 year: 2011 end-page: 1304 ident: b24 article-title: Dynamics and pattern formation in a diffusive predator–prey system with strong Allee effect in prey publication-title: J Differential Equations – volume: 47 start-page: 219 year: 1960 end-page: 234 ident: b2 article-title: The properties of a stochastic model for the predator–prey type of interaction between two species publication-title: Biometrika – volume: 23 start-page: 1721 year: 2018 end-page: 1737 ident: b5 article-title: Dynamics of a diffusive prey-predator system with strong allee effect growth rate and a protection zone for the prey publication-title: Discrete Contin Dyn Syst - B – volume: 387 start-page: 931 year: 2011 end-page: 948 ident: b17 article-title: Coexistence states for a diffusive one-prey and two-predators model with B–D functional response publication-title: J Math Anal Appl – volume: 44 start-page: 331 year: 1975 end-page: 340 ident: b12 article-title: Mutual interference between parasites or predators and its effect on searching efficiency publication-title: J Anim Ecol – volume: 251 start-page: 1276 issue: 4 year: 2011 ident: 10.1016/j.chaos.2023.113794_b24 article-title: Dynamics and pattern formation in a diffusive predator–prey system with strong Allee effect in prey publication-title: J Differential Equations doi: 10.1016/j.jde.2011.03.004 – volume: 2018 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.chaos.2023.113794_b9 article-title: Permanence, stability, and coexistence of a diffusive predator–prey model with modified Leslie–Gower and B–D functional response publication-title: Adv Difference Equ doi: 10.1186/s13662-018-1735-3 – volume: 23 start-page: 1721 issue: 4 year: 2018 ident: 10.1016/j.chaos.2023.113794_b5 article-title: Dynamics of a diffusive prey-predator system with strong allee effect growth rate and a protection zone for the prey publication-title: Discrete Contin Dyn Syst - B – volume: 43 start-page: 271 issue: 1–2 year: 2013 ident: 10.1016/j.chaos.2023.113794_b6 article-title: Global dynamics of a modified Leslie–Gower predator–prey model with Crowley–Martin functional responses publication-title: J Appl Math Comput doi: 10.1007/s12190-013-0663-3 – volume: 14 start-page: 4292 issue: 12 year: 2009 ident: 10.1016/j.chaos.2023.113794_b1 article-title: Stability and Hopf bifurcation for a regulated logistic growth model with discrete and distributed delays publication-title: Commun Nonlinear Sci Numer Simul doi: 10.1016/j.cnsns.2009.03.006 – volume: 8 start-page: 1550013 issue: 1 year: 2015 ident: 10.1016/j.chaos.2023.113794_b25 article-title: Stability and Hopf bifurcation analysis of a diffusive predator–prey model with Smith growth publication-title: Int J Biomath doi: 10.1142/S1793524515500138 – year: 2022 ident: 10.1016/j.chaos.2023.113794_b15 article-title: Global bifurcation and pattern formation for a reaction–diffusion predator–prey model with prey-taxis and double Beddington–DeAngelis functional responses publication-title: Nonlinear Anal RWA doi: 10.1016/j.nonrwa.2022.103638 – volume: 7 start-page: 126066 issue: 6 year: 2019 ident: 10.1016/j.chaos.2023.113794_b21 article-title: A cydia pomonella integrated management predator–prey model with Smith growth and linear feedback control publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2938772 – volume: 13 start-page: 22 issue: 02 year: 2020 ident: 10.1016/j.chaos.2023.113794_b11 article-title: Numerical solution of time-fractional three-species food chain model arising in the realm of mathematical ecology publication-title: Int J Biomath – year: 2013 ident: 10.1016/j.chaos.2023.113794_b19 article-title: Qualitative analysis of a diffusive ratio-dependent Holling–Tanner predator–prey model with Smith growth publication-title: Discrete Dyn Nat Soc doi: 10.1155/2013/267173 – year: 2023 ident: 10.1016/j.chaos.2023.113794_b14 article-title: Dynamics of a predator–prey model with nonlinear growth rate and B–D functional response publication-title: Nonlinear Anal RWA doi: 10.1016/j.nonrwa.2022.103766 – volume: 117 start-page: 39 issue: 05 year: 2015 ident: 10.1016/j.chaos.2023.113794_b16 article-title: Numerical simulation and qualitative analysis for a predator–prey model with B–D functional response publication-title: Math Comput Simulation doi: 10.1016/j.matcom.2015.05.006 – year: 2023 ident: 10.1016/j.chaos.2023.113794_b7 article-title: Dynamic complexity of a modified Leslie–Gower predator–prey system with fear effect publication-title: Commun Nonlinear Sci Numer Simul doi: 10.1016/j.cnsns.2023.107109 – year: 2021 ident: 10.1016/j.chaos.2023.113794_b8 article-title: Stability and bifurcation analysis of a diffusive modified Leslie–Gower prey-predator model with prey infection and Beddington DeAngelis functional response publication-title: Heliyon doi: 10.1016/j.heliyon.2021.e06193 – volume: 56 start-page: 881 issue: 4 year: 1975 ident: 10.1016/j.chaos.2023.113794_b13 article-title: A model for tropic interaction publication-title: Ecology doi: 10.2307/1936298 – volume: 44 start-page: 651 issue: 4 year: 1963 ident: 10.1016/j.chaos.2023.113794_b18 article-title: Population dynamics in Daphnia magna and a new model for population growth publication-title: Ecology doi: 10.2307/1933011 – volume: 2020 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.chaos.2023.113794_b22 article-title: Hopf bifurcation in a diffusive predator–prey model with Smithgrowth rate and herd behavior publication-title: Adv Difference Equ doi: 10.1186/s13662-020-02879-4 – year: 1981 ident: 10.1016/j.chaos.2023.113794_b26 – year: 2023 ident: 10.1016/j.chaos.2023.113794_b3 article-title: Global dynamics of a Leslie–Gower predator–prey model with square root response function publication-title: Appl Math Lett doi: 10.1016/j.aml.2022.108561 – volume: 387 start-page: 931 issue: 2 year: 2011 ident: 10.1016/j.chaos.2023.113794_b17 article-title: Coexistence states for a diffusive one-prey and two-predators model with B–D functional response publication-title: J Math Anal Appl doi: 10.1016/j.jmaa.2011.09.049 – volume: 47 start-page: 219 issue: 3/4 year: 1960 ident: 10.1016/j.chaos.2023.113794_b2 article-title: The properties of a stochastic model for the predator–prey type of interaction between two species publication-title: Biometrika doi: 10.2307/2333294 – volume: 201 start-page: 417 issue: 05 year: 2022 ident: 10.1016/j.chaos.2023.113794_b4 article-title: Dynamics of a ratio-dependent Leslie–Gower predator–prey model with Allee effect and fear effect publication-title: Math Comput Simulation doi: 10.1016/j.matcom.2022.05.017 – volume: 2 start-page: 120 issue: 3 year: 2014 ident: 10.1016/j.chaos.2023.113794_b20 article-title: A model for the effect of toxicant on a three species food-chain system with food-limited growth of prey population publication-title: Glob J Math Anal – year: 2022 ident: 10.1016/j.chaos.2023.113794_b23 article-title: Bifurcation and turing instability analysis for a space- and time-discrete predator–prey system with smith growth function publication-title: Chaos Solitons Fractals – volume: 44 start-page: 331 issue: 1 year: 1975 ident: 10.1016/j.chaos.2023.113794_b12 article-title: Mutual interference between parasites or predators and its effect on searching efficiency publication-title: J Anim Ecol doi: 10.2307/3866 – volume: 2020 start-page: 1 issue: 6 year: 2020 ident: 10.1016/j.chaos.2023.113794_b10 article-title: Stability and coexistence of a diffusive predator-prey system with nonmonotonic functional response and fear effect publication-title: Complexity |
SSID | ssj0001062 |
Score | 2.4915805 |
Snippet | This paper is concerned with a modified Leslie–Gower predator–prey diffusive dynamics system with Smith growth subject to homogeneous Neumann boundary... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 113794 |
SubjectTerms | Hopf bifurcation Leslie–Gower model Neumann boundary condition Stability Turing instability |
Title | Stability and Hopf bifurcation of a modified Leslie–Gower predator–prey model with Smith growth rate and B–D functional response |
URI | https://dx.doi.org/10.1016/j.chaos.2023.113794 |
Volume | 174 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQLDAgKCCe1Q0MIBHaum4cj6U8yqsLILFFfgWKIKlKGVgQE3-Af8gvweckBSTEwJTEOkeRz_E9fP4-QjYNFzZMDHexSRQGzCoWCItRiubaNISk3O-YnvfC7hU7uW5dT5BOeRYGyyqLtT9f0_1qXbTUitGsDfr92gU633WO-HcIt-uPUTPGcZbvvnyVebiQx-8kOOEApUvkIV_jpW9lhpjdtIncJlyw363TN4tzOEdmC1cR2vnXzJMJm1bIzPkYZ_WxQuaLX_MRtgr86O0F8uYcSF_y-gwyNdDNBgmofvI0zLNzkCUg4SEz_cS5n3BmnadpP17fj5AvDQZDazAOdw3u9hk8Uw5gthZ8EgZuXNzuLogw4V-_5yT3Ac1jnlWEYV51axfJ1eHBZacbFHQLgXZ2bBToel0jh1AUSh0Z5xjpUDImQhHZiOP-IrVKmDqTnq9HIGxPxCwS3SQqUlQ2l8hkmqV2mUBTNUJlW1wlzgVglMkGNS2aSG6taEhOVwgthznWBRY5UmLcx2XR2V3sdROjbuJcNytkZ9xpkENx_C0elvqLf8yo2BmLvzqu_rfjGpnGp7wCbZ1MjoZPdsO5LCNV9XOySqbax6fd3idpCu2X |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB6hcGg5IB6teLZz6AGkWkk2G6_3CLTUlCQXQOJm7cs0VRtHIRy4ceIP8A_5Jeys11ErVRx6srXesayd9c43s7PfAHyyQrq0tML7JlmacKd5Ih15KUYY25WKibBjOhyl-RX_ft2_XoKT5iwMpVXGtb9e08NqHVvacTTb0_G4fUHguyOI_47odukY9TKxU_VbsHx0dp6PFguy93rCZoLvn5BAQz4U0rzMD1URbTfrUXkTIfm_DdQfRud0DVYjWsSj-oPWYclNNmBluKBavd2A9fh33uJBpJA-3IRHjyFD1us9qonFvJqWqMfl3awO0GFVosLflR2XHoHiwHmw6Z4fnr5RyTSczpwlV9w3-Nt7DMVykAK2GOIweONdd38hkonw-mPf8wuShawDizirE2_dO7g6_Xp5kiex4kJivCmbJ6bTMVRGKEuVyazHRiZVnMtUZi4TtMXInJa2w1Uo2SOJuSfjjmrdlDrTTPXeQ2tSTdwWYE93U-36QpceBXDGVZfZPiuVcE52lWDbwJphLkykI6eqGL-KJu_sZxF0U5Builo32_B5ITSt2The7542-iv-mlSFtxevCe78r-BHeJNfDgfF4Gx0vgtv6UmdkLYHrfnszu17BDPXH-IMfQGKuPBI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stability+and+Hopf+bifurcation+of+a+modified+Leslie%E2%80%93Gower+predator%E2%80%93prey+model+with+Smith+growth+rate+and+B%E2%80%93D+functional+response&rft.jtitle=Chaos%2C+solitons+and+fractals&rft.au=Feng%2C+Xiaozhou&rft.au=Liu%2C+Xia&rft.au=Sun%2C+Cong&rft.au=Jiang%2C+Yaolin&rft.date=2023-09-01&rft.issn=0960-0779&rft.volume=174&rft.spage=113794&rft_id=info:doi/10.1016%2Fj.chaos.2023.113794&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_chaos_2023_113794 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-0779&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-0779&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-0779&client=summon |