Complexity reduction in the 3D Kuramoto model

•We propose a new type of complexity reduction formalism for the 3D Kuramoto model.•We accurately reproduce the first order transition for different distributions.•Our order parameter dynamics is equally accurate and simpler than previous works.•This novel derivation brings out computational advanta...

Full description

Saved in:
Bibliographic Details
Published inChaos, solitons and fractals Vol. 149; p. 111090
Main Authors Barioni, Ana Elisa D., de Aguiar, Marcus A.M.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.08.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •We propose a new type of complexity reduction formalism for the 3D Kuramoto model.•We accurately reproduce the first order transition for different distributions.•Our order parameter dynamics is equally accurate and simpler than previous works.•This novel derivation brings out computational advantages.•The approach might be extended to larger dimensions or other systems of coupled equations. The dynamics of large systems of coupled oscillators is a subject of increasing importance with prominent applications in several areas such as physics and biology. The Kuramoto model, where a set of oscillators move around a circle representing their phases, is a paradigm in this field, exhibiting a continuous transition between disordered and synchronous motion. Reinterpreting the oscillators as rotating unit vectors, the model was extended to higher dimensions by allowing vectors to move on the surface of D-dimensional spheres, with D=2 corresponding to the original model. It was shown that the transition to synchronous dynamics was discontinuous for odd D. Inspired by results in 2D, Ott et al proposed an ansatz for the density function describing the oscillators and derived equations for the ansatz parameters, effectively reducing the dynamics complexity. Here we take a different approach for the 3D system and construct an ansatz based on spherical harmonics decomposition of the distribution function. Our result differs from Ott’s work and leads to similar but simpler equations determining the dynamics of the order parameter. We derive the phase diagram of equilibrium solutions for several distributions of natural frequencies and find excellent agreement with numerical solutions for the full system dynamics. We believe our approach can be generalized to higher dimensions, leading to complexity reduction in other systems of coupled equations.
AbstractList •We propose a new type of complexity reduction formalism for the 3D Kuramoto model.•We accurately reproduce the first order transition for different distributions.•Our order parameter dynamics is equally accurate and simpler than previous works.•This novel derivation brings out computational advantages.•The approach might be extended to larger dimensions or other systems of coupled equations. The dynamics of large systems of coupled oscillators is a subject of increasing importance with prominent applications in several areas such as physics and biology. The Kuramoto model, where a set of oscillators move around a circle representing their phases, is a paradigm in this field, exhibiting a continuous transition between disordered and synchronous motion. Reinterpreting the oscillators as rotating unit vectors, the model was extended to higher dimensions by allowing vectors to move on the surface of D-dimensional spheres, with D=2 corresponding to the original model. It was shown that the transition to synchronous dynamics was discontinuous for odd D. Inspired by results in 2D, Ott et al proposed an ansatz for the density function describing the oscillators and derived equations for the ansatz parameters, effectively reducing the dynamics complexity. Here we take a different approach for the 3D system and construct an ansatz based on spherical harmonics decomposition of the distribution function. Our result differs from Ott’s work and leads to similar but simpler equations determining the dynamics of the order parameter. We derive the phase diagram of equilibrium solutions for several distributions of natural frequencies and find excellent agreement with numerical solutions for the full system dynamics. We believe our approach can be generalized to higher dimensions, leading to complexity reduction in other systems of coupled equations.
ArticleNumber 111090
Author Barioni, Ana Elisa D.
de Aguiar, Marcus A.M.
Author_xml – sequence: 1
  givenname: Ana Elisa D.
  surname: Barioni
  fullname: Barioni, Ana Elisa D.
– sequence: 2
  givenname: Marcus A.M.
  orcidid: 0000-0003-1379-7568
  surname: de Aguiar
  fullname: de Aguiar, Marcus A.M.
  email: aguiar@ifi.unicamp.br
BookMark eNqFj71OwzAUhS1UJNrCE7DkBRLujWnsDAyo_IpKLDBb9rWjukriynERfXtSysQAw9WZvnPuN2OTPvSOsUuEAgGrq01Bax2GooQSC0SEGk7YFKXgeSmlmLAp1BXkIER9xmbDsAEAhKqcsnwZum3rPn3aZ9HZHSUf-sz3WVq7jN9lL7uou5BC1gXr2nN22uh2cBc_OWfvD_dvy6d89fr4vLxd5cSBp9xYY_UCqNTjCpERXFbAUUNTgShroREtLaRZwPV4II3hWGtqyJJ00mg-Z_Wxl2IYhugaRT7pw2spat8qBHXwVhv17a0O3uroPbL8F7uNvtNx_w91c6TcqPXhXVQDedeTsz46SsoG_yf_BZV_dCw
CitedBy_id crossref_primary_10_1088_1751_8121_ad2226
crossref_primary_10_1088_1751_8121_acf4d6
crossref_primary_10_1155_2022_2904178
crossref_primary_10_1016_j_chaos_2024_115467
crossref_primary_10_1063_5_0205897
crossref_primary_10_1016_j_chaos_2023_114431
crossref_primary_10_1063_5_0069350
crossref_primary_10_1063_5_0108672
crossref_primary_10_1103_PhysRevE_109_034215
crossref_primary_10_1103_PhysRevLett_130_107202
crossref_primary_10_1007_s13538_024_01493_z
Cites_doi 10.1016/0167-2789(94)90196-1
10.1063/1.5093038
10.1016/j.physrep.2015.10.008
10.1016/j.physa.2019.122051
10.1063/1.5097847
10.1119/1.1501118
10.1103/PhysRevE.77.046204
10.1137/10081530X
10.1103/PhysRevE.90.042905
10.1103/PhysRevLett.82.648
10.1103/PhysRevLett.110.218701
10.1016/j.physa.2018.09.096
10.1103/PhysRevLett.106.054102
10.1134/S1054661814030146
10.1063/1.3049136
10.1016/0167-2789(95)90049-7
10.1038/srep11548
10.1063/1.3247089
10.1103/PhysRevLett.106.128701
10.1103/RevModPhys.77.137
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.chaos.2021.111090
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1873-2887
ExternalDocumentID 10_1016_j_chaos_2021_111090
S0960077921004446
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABMAC
ABNEU
ABTAH
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLZ
HMV
HVGLF
HZ~
IHE
J1W
KOM
LG9
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SPG
SSQ
SSZ
T5K
WUQ
XPP
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c303t-bdbda50c2a010ccb7386031a0f607297a11dc58b504b5008bb319acfcdc8e8ba3
IEDL.DBID .~1
ISSN 0960-0779
IngestDate Thu Apr 24 22:59:35 EDT 2025
Tue Jul 01 02:00:56 EDT 2025
Fri Feb 23 02:43:38 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Kuramoto
Dynamics
Equilibrium
Oscillators
Syncronization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c303t-bdbda50c2a010ccb7386031a0f607297a11dc58b504b5008bb319acfcdc8e8ba3
ORCID 0000-0003-1379-7568
ParticipantIDs crossref_citationtrail_10_1016_j_chaos_2021_111090
crossref_primary_10_1016_j_chaos_2021_111090
elsevier_sciencedirect_doi_10_1016_j_chaos_2021_111090
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2021
2021-08-00
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: August 2021
PublicationDecade 2020
PublicationTitle Chaos, solitons and fractals
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Tanaka (bib0026) 2014; 16
Hu, Boccaletti, Huang, Zhang, Liu, Guan (bib0027) 2014; 4
Kuramoto (bib0007) 1984
Ji, Peron, Menck, Rodrigues, Kurths (bib0014) 2013; 110
Dörfler, Bullo (bib0016) 2011; 10
Chandra, Girvan, Ott (bib0001) 2019; 29
Climaco, Saa (bib0012) 2019; 29
Moreira, de Aguiar (bib0019) 2019; 514
Moreira, de Aguiar (bib0020) 2019; 533
Yeung, Strogatz (bib0009) 1999; 82
Breakspear, Heitmann, Daffertshofer (bib0010) 2010; 4
Chandra, Girvan, Edward (bib0021) 2019; 9
Novikov, Benderskaya (bib0005) 2014; 24
Olmi, Navas, Boccaletti, Torcini (bib0017) 2014; 90
Acebrón, Bonilla, Vicente, Ritort, Spigler (bib0015) 2005; 77
Watanabe, Strogatz (bib0023) 1994; 74
Ott, Antonsen (bib0022) 2008; 18
Pantaleone (bib0003) 2002; 70
Goebel (bib0024) 1995; 80
Rodrigues, Peron, Ji, Kurths (bib0011) 2016; 610
Kiss, Zhai, Hudson (bib0004) 2008; 77
Kuramoto (bib0006) 1975
Marvel, Mirollo, Strogatz (bib0025) 2009; 19
Gomez-Gardenes, Gomez, Arenas, Moreno (bib0013) 2011; 106
Oliveira H. M., Melo L. V.. Huygens synchronization of two pendulum clocks. 2014. ArXiv preprint arXiv:1410.7926.
Hong, Strogatz (bib0008) 2011; 106
Childs, Strogatz (bib0018) 2008; 18
Pantaleone (10.1016/j.chaos.2021.111090_bib0003) 2002; 70
Ji (10.1016/j.chaos.2021.111090_sbref0014) 2013; 110
Ott (10.1016/j.chaos.2021.111090_sbref0022) 2008; 18
Chandra (10.1016/j.chaos.2021.111090_bib0021) 2019; 9
Watanabe (10.1016/j.chaos.2021.111090_bib0023) 1994; 74
Rodrigues (10.1016/j.chaos.2021.111090_sbref0011) 2016; 610
Kiss (10.1016/j.chaos.2021.111090_bib0004) 2008; 77
Acebrón (10.1016/j.chaos.2021.111090_sbref0015) 2005; 77
Chandra (10.1016/j.chaos.2021.111090_bib0001) 2019; 29
Marvel (10.1016/j.chaos.2021.111090_bib0025) 2009; 19
Moreira (10.1016/j.chaos.2021.111090_bib0020) 2019; 533
Hong (10.1016/j.chaos.2021.111090_bib0008) 2011; 106
Kuramoto (10.1016/j.chaos.2021.111090_bib0006) 1975
Goebel (10.1016/j.chaos.2021.111090_sbref0024) 1995; 80
Kuramoto (10.1016/j.chaos.2021.111090_bib0007) 1984
Hu (10.1016/j.chaos.2021.111090_bib0027) 2014; 4
Climaco (10.1016/j.chaos.2021.111090_bib0012) 2019; 29
Gomez-Gardenes (10.1016/j.chaos.2021.111090_sbref0013) 2011; 106
10.1016/j.chaos.2021.111090_bib0002
Olmi (10.1016/j.chaos.2021.111090_bib0017) 2014; 90
Childs (10.1016/j.chaos.2021.111090_sbref0018) 2008; 18
Dörfler (10.1016/j.chaos.2021.111090_bib0016) 2011; 10
Tanaka (10.1016/j.chaos.2021.111090_bib0026) 2014; 16
Novikov (10.1016/j.chaos.2021.111090_sbref0005) 2014; 24
Yeung (10.1016/j.chaos.2021.111090_bib0009) 1999; 82
Breakspear (10.1016/j.chaos.2021.111090_bib0010) 2010; 4
Moreira (10.1016/j.chaos.2021.111090_bib0019) 2019; 514
References_xml – volume: 106
  start-page: 054102
  year: 2011
  ident: bib0008
  article-title: Kuramoto model of coupled oscillators with positive and negative coupling parameters: an example of conformist and contrarian oscillators
  publication-title: Phy Rev Lett
– volume: 29
  start-page: 053107
  year: 2019
  ident: bib0001
  article-title: Complexity reduction ansatz for systems of interacting orientable agents: beyond the Kuramoto model
  publication-title: Chaos
– volume: 4
  start-page: 190
  year: 2010
  ident: bib0010
  article-title: Generative models of cortical oscillations: neurobiological implications of the Kuramoto model
  publication-title: FrontHumNeurosci
– volume: 9
  start-page: 011002
  year: 2019
  ident: bib0021
  article-title: Continuous versus discontinuous transitions in the d-dimensional generalized Kuramoto model: odd d is different
  publication-title: Phys Rev X
– volume: 74
  start-page: 197
  year: 1994
  end-page: 253
  ident: bib0023
  article-title: Constants of motion for superconducting Josephson arrays
  publication-title: Physica D
– volume: 16
  start-page: 01
  year: 2014
  ident: bib0026
  article-title: Solvable model of the collective motion of heterogeneous particles interacting on a sphere
  publication-title: New J Phy
– volume: 70
  start-page: 992
  year: 2002
  end-page: 1000
  ident: bib0003
  article-title: Synchronization of metronomes
  publication-title: Am J Phys
– volume: 19
  start-page: 043104
  year: 2009
  ident: bib0025
  article-title: Identical phase oscillators with global sinusoidal coupling evolve by Möbius group action
  publication-title: Chaos
– volume: 18
  start-page: 1
  year: 2008
  end-page: 6
  ident: bib0022
  article-title: Low dimensional behavior of large systems of globally coupled oscillators
  publication-title: Chaos
– volume: 80
  start-page: 18
  year: 1995
  end-page: 20
  ident: bib0024
  article-title: Comment on “constants of motion for superconductor arrays”
  publication-title: Physica D
– volume: 610
  start-page: 1
  year: 2016
  end-page: 98
  ident: bib0011
  article-title: The Kuramoto model in complex networks
  publication-title: Phys Rep
– volume: 10
  start-page: 1070
  year: 2011
  end-page: 1099
  ident: bib0016
  article-title: On the critical coupling for Kuramoto oscillators
  publication-title: SIAM J Appl Dyn Syst
– start-page: 89
  year: 1984
  end-page: 110
  ident: bib0007
  article-title: Chemical waves
  publication-title: Chemical oscillations, waves, and turbulence
– volume: 106
  start-page: 1
  year: 2011
  end-page: 4
  ident: bib0013
  article-title: Explosive synchronization transitions in scale-free networks
  publication-title: Phys Rev Lett
– volume: 82
  start-page: 648
  year: 1999
  ident: bib0009
  article-title: Time delay in the Kuramoto model of coupled oscillators
  publication-title: Phys Rev Lett
– volume: 110
  start-page: 1
  year: 2013
  end-page: 5
  ident: bib0014
  article-title: Cluster explosive synchronization in complex networks
  publication-title: Phys Rev Lett
– volume: 29
  start-page: 073115
  year: 2019
  ident: bib0012
  article-title: Optimal global synchronization of partially forced Kuramoto oscillators
  publication-title: Chaos
– volume: 90
  start-page: 042905
  year: 2014
  ident: bib0017
  article-title: Hysteretic transitions in the Kuramoto model with inertia
  publication-title: Phys Rev E
– volume: 77
  start-page: 046204
  year: 2008
  ident: bib0004
  article-title: Resonance clustering in globally coupled electrochemical oscillators with external forcing
  publication-title: Phys Rev E
– volume: 514
  start-page: 487
  year: 2019
  end-page: 496
  ident: bib0019
  article-title: Global synchronization of partially forced Kuramoto oscillators on networks
  publication-title: Physica A
– volume: 77
  start-page: 137
  year: 2005
  end-page: 185
  ident: bib0015
  article-title: The Kuramoto model: a simple paradigm for synchronization phenomena
  publication-title: Rev Mod Phys
– volume: 533
  start-page: 122051
  year: 2019
  ident: bib0020
  article-title: Modular structure in C. elegans neural network and its response to external localized stimuli
  publication-title: Physica A
– reference: Oliveira H. M., Melo L. V.. Huygens synchronization of two pendulum clocks. 2014. ArXiv preprint arXiv:1410.7926.
– volume: 24
  start-page: 365
  year: 2014
  end-page: 371
  ident: bib0005
  article-title: Oscillatory neural networks based on the Kuramoto model for cluster analysis
  publication-title: Pattern Recognit Image Anal
– volume: 18
  start-page: 1
  year: 2008
  end-page: 9
  ident: bib0018
  article-title: Stability diagram for the forced Kuramoto model
  publication-title: Chaos
– start-page: 420
  year: 1975
  end-page: 422
  ident: bib0006
  article-title: Self-entrainment of a population of coupled non-linear oscillators
  publication-title: International symposium on mathematical problems in theoretical physics
– volume: 4
  start-page: 1
  year: 2014
  end-page: 6
  ident: bib0027
  article-title: Exact solution for first-order synchronization transition in a generalized Kuramoto model
  publication-title: SciRep
– volume: 74
  start-page: 197
  issue: 3–4
  year: 1994
  ident: 10.1016/j.chaos.2021.111090_bib0023
  article-title: Constants of motion for superconducting Josephson arrays
  publication-title: Physica D
  doi: 10.1016/0167-2789(94)90196-1
– start-page: 420
  year: 1975
  ident: 10.1016/j.chaos.2021.111090_bib0006
  article-title: Self-entrainment of a population of coupled non-linear oscillators
– volume: 4
  start-page: 190
  year: 2010
  ident: 10.1016/j.chaos.2021.111090_bib0010
  article-title: Generative models of cortical oscillations: neurobiological implications of the Kuramoto model
  publication-title: FrontHumNeurosci
– volume: 29
  start-page: 053107
  issue: 5
  year: 2019
  ident: 10.1016/j.chaos.2021.111090_bib0001
  article-title: Complexity reduction ansatz for systems of interacting orientable agents: beyond the Kuramoto model
  publication-title: Chaos
  doi: 10.1063/1.5093038
– volume: 610
  start-page: 1
  year: 2016
  ident: 10.1016/j.chaos.2021.111090_sbref0011
  article-title: The Kuramoto model in complex networks
  publication-title: Phys Rep
  doi: 10.1016/j.physrep.2015.10.008
– volume: 18
  start-page: 1
  issue: 3
  year: 2008
  ident: 10.1016/j.chaos.2021.111090_sbref0022
  article-title: Low dimensional behavior of large systems of globally coupled oscillators
  publication-title: Chaos
– volume: 4
  start-page: 1
  issue: 1
  year: 2014
  ident: 10.1016/j.chaos.2021.111090_bib0027
  article-title: Exact solution for first-order synchronization transition in a generalized Kuramoto model
  publication-title: SciRep
– volume: 533
  start-page: 122051
  year: 2019
  ident: 10.1016/j.chaos.2021.111090_bib0020
  article-title: Modular structure in C. elegans neural network and its response to external localized stimuli
  publication-title: Physica A
  doi: 10.1016/j.physa.2019.122051
– volume: 29
  start-page: 073115
  issue: 7
  year: 2019
  ident: 10.1016/j.chaos.2021.111090_bib0012
  article-title: Optimal global synchronization of partially forced Kuramoto oscillators
  publication-title: Chaos
  doi: 10.1063/1.5097847
– volume: 9
  start-page: 011002
  issue: 1
  year: 2019
  ident: 10.1016/j.chaos.2021.111090_bib0021
  article-title: Continuous versus discontinuous transitions in the d-dimensional generalized Kuramoto model: odd d is different
  publication-title: Phys Rev X
– volume: 16
  start-page: 01
  year: 2014
  ident: 10.1016/j.chaos.2021.111090_bib0026
  article-title: Solvable model of the collective motion of heterogeneous particles interacting on a sphere
  publication-title: New J Phy
– volume: 70
  start-page: 992
  issue: 10
  year: 2002
  ident: 10.1016/j.chaos.2021.111090_bib0003
  article-title: Synchronization of metronomes
  publication-title: Am J Phys
  doi: 10.1119/1.1501118
– volume: 77
  start-page: 046204
  year: 2008
  ident: 10.1016/j.chaos.2021.111090_bib0004
  article-title: Resonance clustering in globally coupled electrochemical oscillators with external forcing
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.77.046204
– volume: 10
  start-page: 1070
  issue: 3
  year: 2011
  ident: 10.1016/j.chaos.2021.111090_bib0016
  article-title: On the critical coupling for Kuramoto oscillators
  publication-title: SIAM J Appl Dyn Syst
  doi: 10.1137/10081530X
– volume: 90
  start-page: 042905
  issue: 4
  year: 2014
  ident: 10.1016/j.chaos.2021.111090_bib0017
  article-title: Hysteretic transitions in the Kuramoto model with inertia
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.90.042905
– volume: 82
  start-page: 648
  issue: 3
  year: 1999
  ident: 10.1016/j.chaos.2021.111090_bib0009
  article-title: Time delay in the Kuramoto model of coupled oscillators
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.82.648
– volume: 110
  start-page: 1
  issue: 21
  year: 2013
  ident: 10.1016/j.chaos.2021.111090_sbref0014
  article-title: Cluster explosive synchronization in complex networks
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.110.218701
– volume: 514
  start-page: 487
  year: 2019
  ident: 10.1016/j.chaos.2021.111090_bib0019
  article-title: Global synchronization of partially forced Kuramoto oscillators on networks
  publication-title: Physica A
  doi: 10.1016/j.physa.2018.09.096
– volume: 106
  start-page: 054102
  issue: 5
  year: 2011
  ident: 10.1016/j.chaos.2021.111090_bib0008
  article-title: Kuramoto model of coupled oscillators with positive and negative coupling parameters: an example of conformist and contrarian oscillators
  publication-title: Phy Rev Lett
  doi: 10.1103/PhysRevLett.106.054102
– volume: 24
  start-page: 365
  issue: 3
  year: 2014
  ident: 10.1016/j.chaos.2021.111090_sbref0005
  article-title: Oscillatory neural networks based on the Kuramoto model for cluster analysis
  publication-title: Pattern Recognit Image Anal
  doi: 10.1134/S1054661814030146
– volume: 18
  start-page: 1
  issue: 4
  year: 2008
  ident: 10.1016/j.chaos.2021.111090_sbref0018
  article-title: Stability diagram for the forced Kuramoto model
  publication-title: Chaos
  doi: 10.1063/1.3049136
– volume: 80
  start-page: 18
  issue: 1
  year: 1995
  ident: 10.1016/j.chaos.2021.111090_sbref0024
  article-title: Comment on “constants of motion for superconductor arrays”
  publication-title: Physica D
  doi: 10.1016/0167-2789(95)90049-7
– ident: 10.1016/j.chaos.2021.111090_bib0002
  doi: 10.1038/srep11548
– volume: 19
  start-page: 043104
  issue: 4
  year: 2009
  ident: 10.1016/j.chaos.2021.111090_bib0025
  article-title: Identical phase oscillators with global sinusoidal coupling evolve by Möbius group action
  publication-title: Chaos
  doi: 10.1063/1.3247089
– volume: 106
  start-page: 1
  issue: 12
  year: 2011
  ident: 10.1016/j.chaos.2021.111090_sbref0013
  article-title: Explosive synchronization transitions in scale-free networks
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.106.128701
– volume: 77
  start-page: 137
  issue: 1
  year: 2005
  ident: 10.1016/j.chaos.2021.111090_sbref0015
  article-title: The Kuramoto model: a simple paradigm for synchronization phenomena
  publication-title: Rev Mod Phys
  doi: 10.1103/RevModPhys.77.137
– start-page: 89
  year: 1984
  ident: 10.1016/j.chaos.2021.111090_bib0007
  article-title: Chemical waves
SSID ssj0001062
Score 2.3965878
Snippet •We propose a new type of complexity reduction formalism for the 3D Kuramoto model.•We accurately reproduce the first order transition for different...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 111090
SubjectTerms Dynamics
Equilibrium
Kuramoto
Oscillators
Syncronization
Title Complexity reduction in the 3D Kuramoto model
URI https://dx.doi.org/10.1016/j.chaos.2021.111090
Volume 149
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAaAFRHpUHBpAwdRLbSceqUBWqdoFK3SLbsUURSqs2HVj47fjy4CGhDgwZEt1JyWffd458_g6hy0TYUFEpibABI6zLDJGWU8IN1cpX0oYMDiePJ2I4ZY8zPquhfnUWBsoqS-4vOD1n6_JJp0Szs5zPO0-w-KZh2PUL0TOQ3WYshFl--_Fd5uF-efKdBGdMwLpSHsprvPSLXIBmt-8BdVAg5r-y04-MMzhA--VSEfeKt2mgmkmbaG_8pbO6bqJGGZprfFXqR18fIgIxDjqX2TtegTIrYI_nKXaOOLjDo81KugFa4LwLzhGaDu6f-0NSdkUg2qWbjKhEJZJT7Uv3bVor6NrpIlNSK0AFPJSel2geKU6Zu2iklIsyqa1OdGQiJYNjVE8XqTlBWBtNuQ2sUsYy31My4oIJ6VmTyFB0eQv5FRqxLiXDoXPFW1zVhr3GOYQxQBgXELbQzZfTslDM2G4uKpjjXwMfO07f5nj6X8cztAt3RRXfOapnq425cCuLTLXzqdNGO72H0XDyCSc1zIU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NTxsxEB1BegAOFVAQ4aP1AaQiYeLd2N7NgQMiRaH5uAASt8X22iIIJSgJQrn0T_UP1rPrTVup4lCJw152d1be59GbsTx-A3CYS5dophSVrskpb3FLlROMCsuMjrVyCcfDyf2B7Nzy73fibgl-VmdhsKwycH_J6QVbhzuNgGbjeThsXGPyzZKkFZeiZzJUVnbt_NWv26ZnV20_yUdxfPnt5qJDQ2sBajxnz6jOda4EM7Hy6xFjNLa-9O6tmJMopZ2oKMqNSLVg3F8s1dq7qjLO5Ca1qVZN_91l-MA9XWDbhNMfv-tK_Bqr2Lrwo6M4vErqqCgqMw9qjCLhcYRcxTAS_Csc_hHiLtfhY8hNyXn5-xuwZEebsNZfCLtON2EjcMGUfA2C1cefgCKpoLDmbE4mKAWLk02GI-INSbNNui8T5T1iTIq2O1tw-y5YbUNtNB7ZHSDGGiZc02ltHY8jrVIhuVSRs7lKZEvUIa7QyEzQKMdWGU9ZVYz2mBUQZghhVkJYh5OF0XMp0fH267KCOfvL0zIfRN4y3P1fwy-w0rnp97Le1aC7B6v4pCwh3IfabPJiD3xaM9OfCzcicP_efvsLo6EJBg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Complexity+reduction+in+the+3D+Kuramoto+model&rft.jtitle=Chaos%2C+solitons+and+fractals&rft.au=Barioni%2C+Ana+Elisa+D.&rft.au=de+Aguiar%2C+Marcus+A.M.&rft.date=2021-08-01&rft.issn=0960-0779&rft.volume=149&rft.spage=111090&rft_id=info:doi/10.1016%2Fj.chaos.2021.111090&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_chaos_2021_111090
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-0779&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-0779&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-0779&client=summon