Molecular-scale CO spillover on a dual-site electrocatalyst enhances methanol production from CO2 reduction

Cobalt phthalocyanine (CoPc) is recognized for catalysing electrochemical CO 2 reduction into methanol at high Faradaic efficiency but is subject to deactivation. Cobalt tetraaminophthalocyanine (CoPc-NH 2 ) shows improved stability, but its methanol Faradaic efficiency is below 30%. This study addr...

Full description

Saved in:
Bibliographic Details
Published inNature nanotechnology Vol. 20; no. 4; pp. 515 - 522
Main Authors Li, Jing, Zhu, Quansong, Chang, Alvin, Cheon, Seonjeong, Gao, Yuanzuo, Shang, Bo, Li, Huan, Rooney, Conor L., Ren, Longtao, Jiang, Zhan, Liang, Yongye, Feng, Zhenxing, Yang, Shize, Robert Baker, L., Wang, Hailiang
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.04.2025
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cobalt phthalocyanine (CoPc) is recognized for catalysing electrochemical CO 2 reduction into methanol at high Faradaic efficiency but is subject to deactivation. Cobalt tetraaminophthalocyanine (CoPc-NH 2 ) shows improved stability, but its methanol Faradaic efficiency is below 30%. This study addresses these limitations in selectivity, reactivity and stability by rationally designing a dual-site cascade catalyst. Here we quantify the local concentration of CO, a key intermediate of the reaction, near a working CoPc-NH 2 catalyst and show that co-loading nickel tetramethoxyphthalocyanine (NiPc-OCH 3 ) with CoPc-NH 2 on multiwalled carbon nanotubes increases the generation and local concentration of CO. This dual-site cascade catalyst exhibits substantially higher performance than the original single-site CoPc-NH 2 /carbon nanotube catalyst, reaching a partial current density of 150 mA cm −2 and a Faradaic efficiency of 50% for methanol production. Kinetic analysis and in situ sum-frequency generation vibrational spectroscopy attribute this notable performance improvement to molecular-scale CO spillover from NiPc-OCH 3 sites to methanol-active CoPc-NH 2 sites. A dual-site electrocatalyst is developed to greatly enhance methanol production from CO 2 reduction via a cascade process, taking advantage of molecular-scale CO spillover.
AbstractList Cobalt phthalocyanine (CoPc) is recognized for catalysing electrochemical CO2 reduction into methanol at high Faradaic efficiency but is subject to deactivation. Cobalt tetraaminophthalocyanine (CoPc-NH2) shows improved stability, but its methanol Faradaic efficiency is below 30%. This study addresses these limitations in selectivity, reactivity and stability by rationally designing a dual-site cascade catalyst. Here we quantify the local concentration of CO, a key intermediate of the reaction, near a working CoPc-NH2 catalyst and show that co-loading nickel tetramethoxyphthalocyanine (NiPc-OCH3) with CoPc-NH2 on multiwalled carbon nanotubes increases the generation and local concentration of CO. This dual-site cascade catalyst exhibits substantially higher performance than the original single-site CoPc-NH2/carbon nanotube catalyst, reaching a partial current density of 150 mA cm−2 and a Faradaic efficiency of 50% for methanol production. Kinetic analysis and in situ sum-frequency generation vibrational spectroscopy attribute this notable performance improvement to molecular-scale CO spillover from NiPc-OCH3 sites to methanol-active CoPc-NH2 sites.A dual-site electrocatalyst is developed to greatly enhance methanol production from CO2 reduction via a cascade process, taking advantage of molecular-scale CO spillover.
Cobalt phthalocyanine (CoPc) is recognized for catalysing electrochemical CO2 reduction into methanol at high Faradaic efficiency but is subject to deactivation. Cobalt tetraaminophthalocyanine (CoPc-NH2) shows improved stability, but its methanol Faradaic efficiency is below 30%. This study addresses these limitations in selectivity, reactivity and stability by rationally designing a dual-site cascade catalyst. Here we quantify the local concentration of CO, a key intermediate of the reaction, near a working CoPc-NH2 catalyst and show that co-loading nickel tetramethoxyphthalocyanine (NiPc-OCH3) with CoPc-NH2 on multiwalled carbon nanotubes increases the generation and local concentration of CO. This dual-site cascade catalyst exhibits substantially higher performance than the original single-site CoPc-NH2/carbon nanotube catalyst, reaching a partial current density of 150 mA cm-2 and a Faradaic efficiency of 50% for methanol production. Kinetic analysis and in situ sum-frequency generation vibrational spectroscopy attribute this notable performance improvement to molecular-scale CO spillover from NiPc-OCH3 sites to methanol-active CoPc-NH2 sites.Cobalt phthalocyanine (CoPc) is recognized for catalysing electrochemical CO2 reduction into methanol at high Faradaic efficiency but is subject to deactivation. Cobalt tetraaminophthalocyanine (CoPc-NH2) shows improved stability, but its methanol Faradaic efficiency is below 30%. This study addresses these limitations in selectivity, reactivity and stability by rationally designing a dual-site cascade catalyst. Here we quantify the local concentration of CO, a key intermediate of the reaction, near a working CoPc-NH2 catalyst and show that co-loading nickel tetramethoxyphthalocyanine (NiPc-OCH3) with CoPc-NH2 on multiwalled carbon nanotubes increases the generation and local concentration of CO. This dual-site cascade catalyst exhibits substantially higher performance than the original single-site CoPc-NH2/carbon nanotube catalyst, reaching a partial current density of 150 mA cm-2 and a Faradaic efficiency of 50% for methanol production. Kinetic analysis and in situ sum-frequency generation vibrational spectroscopy attribute this notable performance improvement to molecular-scale CO spillover from NiPc-OCH3 sites to methanol-active CoPc-NH2 sites.
Cobalt phthalocyanine (CoPc) is recognized for catalysing electrochemical CO 2 reduction into methanol at high Faradaic efficiency but is subject to deactivation. Cobalt tetraaminophthalocyanine (CoPc-NH 2 ) shows improved stability, but its methanol Faradaic efficiency is below 30%. This study addresses these limitations in selectivity, reactivity and stability by rationally designing a dual-site cascade catalyst. Here we quantify the local concentration of CO, a key intermediate of the reaction, near a working CoPc-NH 2 catalyst and show that co-loading nickel tetramethoxyphthalocyanine (NiPc-OCH 3 ) with CoPc-NH 2 on multiwalled carbon nanotubes increases the generation and local concentration of CO. This dual-site cascade catalyst exhibits substantially higher performance than the original single-site CoPc-NH 2 /carbon nanotube catalyst, reaching a partial current density of 150 mA cm −2 and a Faradaic efficiency of 50% for methanol production. Kinetic analysis and in situ sum-frequency generation vibrational spectroscopy attribute this notable performance improvement to molecular-scale CO spillover from NiPc-OCH 3 sites to methanol-active CoPc-NH 2 sites. A dual-site electrocatalyst is developed to greatly enhance methanol production from CO 2 reduction via a cascade process, taking advantage of molecular-scale CO spillover.
Author Feng, Zhenxing
Jiang, Zhan
Liang, Yongye
Chang, Alvin
Wang, Hailiang
Li, Huan
Li, Jing
Gao, Yuanzuo
Yang, Shize
Ren, Longtao
Cheon, Seonjeong
Zhu, Quansong
Robert Baker, L.
Rooney, Conor L.
Shang, Bo
Author_xml – sequence: 1
  givenname: Jing
  orcidid: 0000-0001-7538-246X
  surname: Li
  fullname: Li, Jing
  organization: Department of Chemistry, Yale University, Energy Sciences Institute, Yale University
– sequence: 2
  givenname: Quansong
  orcidid: 0000-0002-5376-1247
  surname: Zhu
  fullname: Zhu, Quansong
  organization: Department of Chemistry and Biochemistry, The Ohio State University
– sequence: 3
  givenname: Alvin
  orcidid: 0000-0001-5262-5414
  surname: Chang
  fullname: Chang, Alvin
  organization: School of Mechanical, Industrial, and Manufacturing Engineering, Oregon State University
– sequence: 4
  givenname: Seonjeong
  surname: Cheon
  fullname: Cheon, Seonjeong
  organization: Department of Chemistry, Yale University, Energy Sciences Institute, Yale University
– sequence: 5
  givenname: Yuanzuo
  surname: Gao
  fullname: Gao, Yuanzuo
  organization: Department of Chemistry, Yale University, Energy Sciences Institute, Yale University
– sequence: 6
  givenname: Bo
  orcidid: 0000-0002-2294-6062
  surname: Shang
  fullname: Shang, Bo
  organization: Department of Chemistry, Yale University, Energy Sciences Institute, Yale University
– sequence: 7
  givenname: Huan
  surname: Li
  fullname: Li, Huan
  organization: Shenzhen Key Laboratory of Printed Electronics and Department of Materials Science and Engineering, Southern University of Science and Technology
– sequence: 8
  givenname: Conor L.
  orcidid: 0000-0001-7058-568X
  surname: Rooney
  fullname: Rooney, Conor L.
  organization: Department of Chemistry, Yale University, Energy Sciences Institute, Yale University
– sequence: 9
  givenname: Longtao
  surname: Ren
  fullname: Ren, Longtao
  organization: Department of Chemistry, Yale University, Energy Sciences Institute, Yale University
– sequence: 10
  givenname: Zhan
  orcidid: 0000-0002-4802-2626
  surname: Jiang
  fullname: Jiang, Zhan
  organization: Shenzhen Key Laboratory of Printed Electronics and Department of Materials Science and Engineering, Southern University of Science and Technology
– sequence: 11
  givenname: Yongye
  orcidid: 0000-0002-7416-8792
  surname: Liang
  fullname: Liang, Yongye
  organization: Shenzhen Key Laboratory of Printed Electronics and Department of Materials Science and Engineering, Southern University of Science and Technology
– sequence: 12
  givenname: Zhenxing
  orcidid: 0000-0001-7598-5076
  surname: Feng
  fullname: Feng, Zhenxing
  organization: School of Chemical, Biological, and Environmental Engineering, Oregon State University
– sequence: 13
  givenname: Shize
  orcidid: 0000-0002-0421-006X
  surname: Yang
  fullname: Yang, Shize
  email: shize.yang@yale.edu
  organization: Energy Sciences Institute, Yale University
– sequence: 14
  givenname: L.
  orcidid: 0000-0001-6740-864X
  surname: Robert Baker
  fullname: Robert Baker, L.
  email: baker.2364@osu.edu
  organization: Department of Chemistry and Biochemistry, The Ohio State University
– sequence: 15
  givenname: Hailiang
  orcidid: 0000-0003-4409-2034
  surname: Wang
  fullname: Wang, Hailiang
  email: hailiang.wang@yale.edu
  organization: Department of Chemistry, Yale University, Energy Sciences Institute, Yale University
BookMark eNp9kE1LAzEQhoNUsK3-AU8BL15W87HZzR6l-AWVXvQcknSiW9NNTXaF_ntTWxQ8eMhkmHnel-GdoFEXOkDonJIrSri8TiUVlSgIy4_KqirkERrTupQF540Y_fSyPkGTlFaECNawcozen4IHO3gdi2S1Bzxb4LRpvQ-fEHHosMbLQfsitT1gyGgfg9W99tvUY-jedGch4TX0uQseb2JYDrZvs9DFsM5uDEc4jE7RsdM-wdnhn6KXu9vn2UMxX9w_zm7mheWE94VZ0qpeCgolMbWx0jXGOmakpsLWzJm8E1RSx7SoS5IrkIZp01SOC2eo4VN0uffN13wMkHq1bpMF73UHYUiK00ryhjAuM3rxB12FIXb5OsUZ5bVgjItMsT1lY0gpglOb2K513CpK1C5_tc9f5fzVd_5qZ833opTh7hXir_U_qi9JGotL
Cites_doi 10.1021/acscatal.3c04957
10.1021/jacs.7b06765
10.1038/s41929-019-0388-2
10.1021/acs.accounts.1c00200
10.1016/j.joule.2020.03.013
10.1021/acsaem.3c02979
10.1016/j.jechem.2021.04.059
10.1021/acscatal.0c05567
10.1038/s41586-019-1760-8
10.1038/s41929-024-01190-9
10.1126/science.aad1920
10.1039/D0CS00835D
10.1038/s41467-023-39153-6
10.1038/s41929-023-01005-3
10.1021/acscatal.6b02162
10.1039/D3CC00705G
10.1016/j.electacta.2022.140410
10.1149/2.1161607jes
10.1021/acs.organomet.1c00431
10.1002/anie.202310623
10.1126/sciadv.abd2569
10.1021/jacs.9b07415
10.1063/5.0068517
10.1021/jacsau.1c00512
10.1021/acs.iecr.7b03514
10.1021/jacs.4c05961
10.1038/s41467-020-18567-6
10.1021/acs.inorgchem.2c00739
10.1002/anie.202215406
10.1002/cssc.202001396
10.1039/C8CP01319E
10.1073/pnas.1900761116
10.1021/acs.jpca.0c04268
10.1002/aenm.202203603
10.1002/cssc.202201788
10.1038/s44160-023-00384-6
10.1038/s41560-020-0667-9
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Nature Publishing Group Apr 2025
2025. The Author(s), under exclusive licence to Springer Nature Limited.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Nature Publishing Group Apr 2025
– notice: 2025. The Author(s), under exclusive licence to Springer Nature Limited.
DBID AAYXX
CITATION
7QO
7U5
8FD
F28
FR3
K9.
L7M
P64
7X8
DOI 10.1038/s41565-025-01866-8
DatabaseName CrossRef
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
Biotechnology Research Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Biotechnology Research Abstracts
MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1748-3395
EndPage 522
ExternalDocumentID 10_1038_s41565_025_01866_8
GrantInformation_xml – fundername: National Science Foundation (NSF)
  grantid: CHE-2154724; CBET-2129963
  funderid: https://doi.org/10.13039/100000001
GroupedDBID ---
-~X
0R~
123
29M
39C
4.4
53G
5BI
5M7
5S5
6OB
70F
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AARCD
AAYZH
ABAWZ
ABDBF
ABJCF
ABJNI
ABLJU
ABUWG
ACBWK
ACGFS
ACIWK
ACPRK
ACUHS
ADBBV
AENEX
AEUYN
AFANA
AFBBN
AFKRA
AFLOW
AFRAH
AFSHS
AFWHJ
AGAYW
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALPWD
ARAPS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
D1I
DB5
DU5
EBS
EE.
EJD
EMOBN
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
HCIFZ
HMCUK
HVGLF
HZ~
I-F
KB.
L6V
LK8
M1P
M7P
M7S
MM.
NFIDA
NNMJJ
O9-
ODYON
P2P
P62
PDBOC
PHGZT
PQQKQ
PROAC
PSQYO
PTHSS
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
~8M
AAYXX
ABFSG
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
ATHPR
CITATION
7QO
7U5
8FD
F28
FR3
K9.
L7M
P64
7X8
ID FETCH-LOGICAL-c303t-bd167d51e40b7bc8f9bcf2b8a15c72fb7d55181f2a57402a5e092ab96f35fb1b3
ISSN 1748-3387
1748-3395
IngestDate Tue Aug 05 10:54:00 EDT 2025
Sat Aug 23 12:55:44 EDT 2025
Tue Aug 05 12:05:59 EDT 2025
Wed Apr 23 01:21:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c303t-bd167d51e40b7bc8f9bcf2b8a15c72fb7d55181f2a57402a5e092ab96f35fb1b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5262-5414
0000-0001-7598-5076
0000-0001-7058-568X
0000-0002-4802-2626
0000-0002-5376-1247
0000-0001-7538-246X
0000-0002-0421-006X
0000-0002-7416-8792
0000-0002-2294-6062
0000-0003-4409-2034
0000-0001-6740-864X
PQID 3213752235
PQPubID 546299
PageCount 8
ParticipantIDs proquest_miscellaneous_3168390238
proquest_journals_3213752235
crossref_primary_10_1038_s41565_025_01866_8
springer_journals_10_1038_s41565_025_01866_8
PublicationCentury 2000
PublicationDate 2025-04-01
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature nanotechnology
PublicationTitleAbbrev Nat. Nanotechnol
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References CL Rooney (1866_CR16) 2024; 63
J Li (1866_CR8) 2023; 2
LC Weng (1866_CR19) 2018; 20
X Chen (1866_CR17) 2021; 40
X Ren (1866_CR9) 2023; 14
Z Jiang (1866_CR21) 2022; 13
J Li (1866_CR28) 2021; 155
Y Wu (1866_CR13) 2020; 13
JY Li (1866_CR30) 2019; 116
NS Lewis (1866_CR3) 2016; 351
M Jouny (1866_CR2) 2019; 2
T Chan (1866_CR10) 2024; 7
M Sabharwal (1866_CR37) 2022; 419
J Chen (1866_CR26) 2023; 62
YC Tan (1866_CR18) 2020; 4
L Yao (1866_CR11) 2023; 14
XY Liu (1866_CR15) 2022; 64
H Xiong (1866_CR1) 2023; 59
Y Wu (1866_CR6) 2021; 54
S Cheon (1866_CR22) 2024; 146
J Su (1866_CR7) 2023; 6
QS Zhu (1866_CR29) 2024; 7
IV Zenyuk (1866_CR36) 2016; 163
M Jouny (1866_CR35) 2018; 57
S Wallentine (1866_CR33) 2020; 124
R Cao (1866_CR5) 2022; 15
X Zhang (1866_CR20) 2020; 5
M Xiong (1866_CR24) 2020; 11
AS Malkani (1866_CR31) 2020; 6
LL Shi (1866_CR14) 2022; 61
F Franco (1866_CR4) 2020; 49
D Ren (1866_CR25) 2016; 6
M Xiong (1866_CR23) 2021; 11
J Gao (1866_CR27) 2019; 141
QS Zhu (1866_CR34) 2022; 2
Y Wu (1866_CR12) 2019; 575
J Resasco (1866_CR32) 2017; 139
References_xml – volume: 14
  start-page: 366
  year: 2023
  ident: 1866_CR11
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.3c04957
– volume: 139
  start-page: 11277
  year: 2017
  ident: 1866_CR32
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b06765
– volume: 2
  start-page: 1062
  year: 2019
  ident: 1866_CR2
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0388-2
– volume: 54
  start-page: 3149
  year: 2021
  ident: 1866_CR6
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.1c00200
– volume: 4
  start-page: 1104
  year: 2020
  ident: 1866_CR18
  publication-title: Joule
  doi: 10.1016/j.joule.2020.03.013
– volume: 7
  start-page: 3091
  year: 2024
  ident: 1866_CR10
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.3c02979
– volume: 64
  start-page: 263
  year: 2022
  ident: 1866_CR15
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2021.04.059
– volume: 11
  start-page: 3159
  year: 2021
  ident: 1866_CR23
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c05567
– volume: 575
  start-page: 639
  year: 2019
  ident: 1866_CR12
  publication-title: Nature
  doi: 10.1038/s41586-019-1760-8
– volume: 7
  start-page: 987
  year: 2024
  ident: 1866_CR29
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-024-01190-9
– volume: 351
  year: 2016
  ident: 1866_CR3
  publication-title: Science
  doi: 10.1126/science.aad1920
– volume: 49
  start-page: 6884
  year: 2020
  ident: 1866_CR4
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS00835D
– volume: 14
  year: 2023
  ident: 1866_CR9
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-39153-6
– volume: 6
  start-page: 818
  year: 2023
  ident: 1866_CR7
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-023-01005-3
– volume: 6
  start-page: 8239
  year: 2016
  ident: 1866_CR25
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b02162
– volume: 59
  start-page: 5615
  year: 2023
  ident: 1866_CR1
  publication-title: Chem. Commun.
  doi: 10.1039/D3CC00705G
– volume: 419
  start-page: 140410
  year: 2022
  ident: 1866_CR37
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2022.140410
– volume: 163
  start-page: F691
  year: 2016
  ident: 1866_CR36
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.1161607jes
– volume: 40
  start-page: 3087
  year: 2021
  ident: 1866_CR17
  publication-title: Organometallics
  doi: 10.1021/acs.organomet.1c00431
– volume: 63
  start-page: e202310623
  year: 2024
  ident: 1866_CR16
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202310623
– volume: 6
  year: 2020
  ident: 1866_CR31
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abd2569
– volume: 141
  start-page: 18704
  year: 2019
  ident: 1866_CR27
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b07415
– volume: 155
  start-page: 164701
  year: 2021
  ident: 1866_CR28
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0068517
– volume: 2
  start-page: 472
  year: 2022
  ident: 1866_CR34
  publication-title: JACS Au
  doi: 10.1021/jacsau.1c00512
– volume: 57
  start-page: 2165
  year: 2018
  ident: 1866_CR35
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.7b03514
– volume: 146
  start-page: 16348
  year: 2024
  ident: 1866_CR22
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.4c05961
– volume: 11
  year: 2020
  ident: 1866_CR24
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18567-6
– volume: 61
  start-page: 16549
  year: 2022
  ident: 1866_CR14
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.2c00739
– volume: 62
  start-page: e202215406
  year: 2023
  ident: 1866_CR26
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202215406
– volume: 13
  start-page: 6296
  year: 2020
  ident: 1866_CR13
  publication-title: ChemSusChem
  doi: 10.1002/cssc.202001396
– volume: 20
  start-page: 16973
  year: 2018
  ident: 1866_CR19
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C8CP01319E
– volume: 116
  start-page: 9220
  year: 2019
  ident: 1866_CR30
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1900761116
– volume: 124
  start-page: 8057
  year: 2020
  ident: 1866_CR33
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.0c04268
– volume: 13
  start-page: 2203603
  year: 2022
  ident: 1866_CR21
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202203603
– volume: 15
  year: 2022
  ident: 1866_CR5
  publication-title: ChemSusChem
  doi: 10.1002/cssc.202201788
– volume: 2
  start-page: 1194
  year: 2023
  ident: 1866_CR8
  publication-title: Nat. Synth.
  doi: 10.1038/s44160-023-00384-6
– volume: 5
  start-page: 684
  year: 2020
  ident: 1866_CR20
  publication-title: Nat. Energy
  doi: 10.1038/s41560-020-0667-9
SSID ssj0052924
Score 2.5167851
Snippet Cobalt phthalocyanine (CoPc) is recognized for catalysing electrochemical CO 2 reduction into methanol at high Faradaic efficiency but is subject to...
Cobalt phthalocyanine (CoPc) is recognized for catalysing electrochemical CO2 reduction into methanol at high Faradaic efficiency but is subject to...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 515
SubjectTerms 639/301/357
639/4077/4057
639/638/161
Carbon dioxide
Catalysts
Chemistry and Materials Science
Cobalt
Efficiency
Electrocatalysts
Materials Science
Methanol
Multi wall carbon nanotubes
Nanotechnology
Nanotechnology and Microengineering
Nanotubes
Spectroscopy
Spectrum analysis
Stability
Title Molecular-scale CO spillover on a dual-site electrocatalyst enhances methanol production from CO2 reduction
URI https://link.springer.com/article/10.1038/s41565-025-01866-8
https://www.proquest.com/docview/3213752235
https://www.proquest.com/docview/3168390238
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfK9gIPiE9RGMhIvAVD7MRO8thFTNPEWiE2aW-RnThiUKXTkiDBH8LfyzmOk9AyifHiVpf0kvp-vg_7zkbojSzCsozLhMSBVCRUnJI4kZokUpRBQGnh56be-XQpjs_Dkwt-MZv9mmQttY16l__8a13J_0gVaCBXUyV7C8kOTIEA30G-0IKEof0nGZ-6s21JDV2tvXTl1VeX6y4t06wCSM9UWhGzQOz159100zU_6sbT1Rcj8Lo7Q1pWm7VJ1SrsXrK26CRdMe9a96SpE7vsNgP1KvhVszMz_7FLDzhxFrGbk24N6VMrTaHZQE7dVPVi_f2yGqna5gF8hs-v2t3fz0swPklnsao0CmMCAbA1p3pKs8dqOv3L_AnOwoky5bbQs7fL3NYv76h8u8F7bQJRU2tuUhFjIUg8Gji3qL9l94ZsxG4dPogzyyMDHlnHI4vvoH0G4Qfoz_3F0eHh0tl4zhJ7XLL7j305FnB5v_smf7o8YxyztfTeeTRnD9D9PhTBC4urh2imq0fo3mSDysfo2xbCcLrCA8LwpsISDwjDWwjDDmHYIQyPCMMGYcCN4QFhT9D50Yez9Jj0x3OQHPyehqiCiqjgVIe-ilQOA17lJVOxpDyPWKngGgf_sWSSR6EPrfYTJlUCSoCXiqrgKdqrNpV-hrBMtAxFEgVSmP0KIYpRVLCoAN8J_H8l5shzPZhd2V1YspulNkcHrpOzfrTWWcBoEAGGAj5Hr4fLoEvNApms9KaFe6iAeMF4sXP01glnZHHzE5_f6v1eoLvjgDlAe811q1-Ca9uoVz3OfgN8caF-
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular-scale+CO+spillover+on+a+dual-site+electrocatalyst+enhances+methanol+production+from+CO2+reduction&rft.jtitle=Nature+nanotechnology&rft.au=Li%2C+Jing&rft.au=Zhu%2C+Quansong&rft.au=Chang%2C+Alvin&rft.au=Cheon%2C+Seonjeong&rft.date=2025-04-01&rft.issn=1748-3387&rft.eissn=1748-3395&rft.volume=20&rft.issue=4&rft.spage=515&rft.epage=522&rft_id=info:doi/10.1038%2Fs41565-025-01866-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41565_025_01866_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-3387&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-3387&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-3387&client=summon