Molecular-scale CO spillover on a dual-site electrocatalyst enhances methanol production from CO2 reduction
Cobalt phthalocyanine (CoPc) is recognized for catalysing electrochemical CO 2 reduction into methanol at high Faradaic efficiency but is subject to deactivation. Cobalt tetraaminophthalocyanine (CoPc-NH 2 ) shows improved stability, but its methanol Faradaic efficiency is below 30%. This study addr...
Saved in:
Published in | Nature nanotechnology Vol. 20; no. 4; pp. 515 - 522 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.04.2025
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cobalt phthalocyanine (CoPc) is recognized for catalysing electrochemical CO
2
reduction into methanol at high Faradaic efficiency but is subject to deactivation. Cobalt tetraaminophthalocyanine (CoPc-NH
2
) shows improved stability, but its methanol Faradaic efficiency is below 30%. This study addresses these limitations in selectivity, reactivity and stability by rationally designing a dual-site cascade catalyst. Here we quantify the local concentration of CO, a key intermediate of the reaction, near a working CoPc-NH
2
catalyst and show that co-loading nickel tetramethoxyphthalocyanine (NiPc-OCH
3
) with CoPc-NH
2
on multiwalled carbon nanotubes increases the generation and local concentration of CO. This dual-site cascade catalyst exhibits substantially higher performance than the original single-site CoPc-NH
2
/carbon nanotube catalyst, reaching a partial current density of 150 mA cm
−2
and a Faradaic efficiency of 50% for methanol production. Kinetic analysis and in situ sum-frequency generation vibrational spectroscopy attribute this notable performance improvement to molecular-scale CO spillover from NiPc-OCH
3
sites to methanol-active CoPc-NH
2
sites.
A dual-site electrocatalyst is developed to greatly enhance methanol production from CO
2
reduction via a cascade process, taking advantage of molecular-scale CO spillover. |
---|---|
AbstractList | Cobalt phthalocyanine (CoPc) is recognized for catalysing electrochemical CO2 reduction into methanol at high Faradaic efficiency but is subject to deactivation. Cobalt tetraaminophthalocyanine (CoPc-NH2) shows improved stability, but its methanol Faradaic efficiency is below 30%. This study addresses these limitations in selectivity, reactivity and stability by rationally designing a dual-site cascade catalyst. Here we quantify the local concentration of CO, a key intermediate of the reaction, near a working CoPc-NH2 catalyst and show that co-loading nickel tetramethoxyphthalocyanine (NiPc-OCH3) with CoPc-NH2 on multiwalled carbon nanotubes increases the generation and local concentration of CO. This dual-site cascade catalyst exhibits substantially higher performance than the original single-site CoPc-NH2/carbon nanotube catalyst, reaching a partial current density of 150 mA cm−2 and a Faradaic efficiency of 50% for methanol production. Kinetic analysis and in situ sum-frequency generation vibrational spectroscopy attribute this notable performance improvement to molecular-scale CO spillover from NiPc-OCH3 sites to methanol-active CoPc-NH2 sites.A dual-site electrocatalyst is developed to greatly enhance methanol production from CO2 reduction via a cascade process, taking advantage of molecular-scale CO spillover. Cobalt phthalocyanine (CoPc) is recognized for catalysing electrochemical CO2 reduction into methanol at high Faradaic efficiency but is subject to deactivation. Cobalt tetraaminophthalocyanine (CoPc-NH2) shows improved stability, but its methanol Faradaic efficiency is below 30%. This study addresses these limitations in selectivity, reactivity and stability by rationally designing a dual-site cascade catalyst. Here we quantify the local concentration of CO, a key intermediate of the reaction, near a working CoPc-NH2 catalyst and show that co-loading nickel tetramethoxyphthalocyanine (NiPc-OCH3) with CoPc-NH2 on multiwalled carbon nanotubes increases the generation and local concentration of CO. This dual-site cascade catalyst exhibits substantially higher performance than the original single-site CoPc-NH2/carbon nanotube catalyst, reaching a partial current density of 150 mA cm-2 and a Faradaic efficiency of 50% for methanol production. Kinetic analysis and in situ sum-frequency generation vibrational spectroscopy attribute this notable performance improvement to molecular-scale CO spillover from NiPc-OCH3 sites to methanol-active CoPc-NH2 sites.Cobalt phthalocyanine (CoPc) is recognized for catalysing electrochemical CO2 reduction into methanol at high Faradaic efficiency but is subject to deactivation. Cobalt tetraaminophthalocyanine (CoPc-NH2) shows improved stability, but its methanol Faradaic efficiency is below 30%. This study addresses these limitations in selectivity, reactivity and stability by rationally designing a dual-site cascade catalyst. Here we quantify the local concentration of CO, a key intermediate of the reaction, near a working CoPc-NH2 catalyst and show that co-loading nickel tetramethoxyphthalocyanine (NiPc-OCH3) with CoPc-NH2 on multiwalled carbon nanotubes increases the generation and local concentration of CO. This dual-site cascade catalyst exhibits substantially higher performance than the original single-site CoPc-NH2/carbon nanotube catalyst, reaching a partial current density of 150 mA cm-2 and a Faradaic efficiency of 50% for methanol production. Kinetic analysis and in situ sum-frequency generation vibrational spectroscopy attribute this notable performance improvement to molecular-scale CO spillover from NiPc-OCH3 sites to methanol-active CoPc-NH2 sites. Cobalt phthalocyanine (CoPc) is recognized for catalysing electrochemical CO 2 reduction into methanol at high Faradaic efficiency but is subject to deactivation. Cobalt tetraaminophthalocyanine (CoPc-NH 2 ) shows improved stability, but its methanol Faradaic efficiency is below 30%. This study addresses these limitations in selectivity, reactivity and stability by rationally designing a dual-site cascade catalyst. Here we quantify the local concentration of CO, a key intermediate of the reaction, near a working CoPc-NH 2 catalyst and show that co-loading nickel tetramethoxyphthalocyanine (NiPc-OCH 3 ) with CoPc-NH 2 on multiwalled carbon nanotubes increases the generation and local concentration of CO. This dual-site cascade catalyst exhibits substantially higher performance than the original single-site CoPc-NH 2 /carbon nanotube catalyst, reaching a partial current density of 150 mA cm −2 and a Faradaic efficiency of 50% for methanol production. Kinetic analysis and in situ sum-frequency generation vibrational spectroscopy attribute this notable performance improvement to molecular-scale CO spillover from NiPc-OCH 3 sites to methanol-active CoPc-NH 2 sites. A dual-site electrocatalyst is developed to greatly enhance methanol production from CO 2 reduction via a cascade process, taking advantage of molecular-scale CO spillover. |
Author | Feng, Zhenxing Jiang, Zhan Liang, Yongye Chang, Alvin Wang, Hailiang Li, Huan Li, Jing Gao, Yuanzuo Yang, Shize Ren, Longtao Cheon, Seonjeong Zhu, Quansong Robert Baker, L. Rooney, Conor L. Shang, Bo |
Author_xml | – sequence: 1 givenname: Jing orcidid: 0000-0001-7538-246X surname: Li fullname: Li, Jing organization: Department of Chemistry, Yale University, Energy Sciences Institute, Yale University – sequence: 2 givenname: Quansong orcidid: 0000-0002-5376-1247 surname: Zhu fullname: Zhu, Quansong organization: Department of Chemistry and Biochemistry, The Ohio State University – sequence: 3 givenname: Alvin orcidid: 0000-0001-5262-5414 surname: Chang fullname: Chang, Alvin organization: School of Mechanical, Industrial, and Manufacturing Engineering, Oregon State University – sequence: 4 givenname: Seonjeong surname: Cheon fullname: Cheon, Seonjeong organization: Department of Chemistry, Yale University, Energy Sciences Institute, Yale University – sequence: 5 givenname: Yuanzuo surname: Gao fullname: Gao, Yuanzuo organization: Department of Chemistry, Yale University, Energy Sciences Institute, Yale University – sequence: 6 givenname: Bo orcidid: 0000-0002-2294-6062 surname: Shang fullname: Shang, Bo organization: Department of Chemistry, Yale University, Energy Sciences Institute, Yale University – sequence: 7 givenname: Huan surname: Li fullname: Li, Huan organization: Shenzhen Key Laboratory of Printed Electronics and Department of Materials Science and Engineering, Southern University of Science and Technology – sequence: 8 givenname: Conor L. orcidid: 0000-0001-7058-568X surname: Rooney fullname: Rooney, Conor L. organization: Department of Chemistry, Yale University, Energy Sciences Institute, Yale University – sequence: 9 givenname: Longtao surname: Ren fullname: Ren, Longtao organization: Department of Chemistry, Yale University, Energy Sciences Institute, Yale University – sequence: 10 givenname: Zhan orcidid: 0000-0002-4802-2626 surname: Jiang fullname: Jiang, Zhan organization: Shenzhen Key Laboratory of Printed Electronics and Department of Materials Science and Engineering, Southern University of Science and Technology – sequence: 11 givenname: Yongye orcidid: 0000-0002-7416-8792 surname: Liang fullname: Liang, Yongye organization: Shenzhen Key Laboratory of Printed Electronics and Department of Materials Science and Engineering, Southern University of Science and Technology – sequence: 12 givenname: Zhenxing orcidid: 0000-0001-7598-5076 surname: Feng fullname: Feng, Zhenxing organization: School of Chemical, Biological, and Environmental Engineering, Oregon State University – sequence: 13 givenname: Shize orcidid: 0000-0002-0421-006X surname: Yang fullname: Yang, Shize email: shize.yang@yale.edu organization: Energy Sciences Institute, Yale University – sequence: 14 givenname: L. orcidid: 0000-0001-6740-864X surname: Robert Baker fullname: Robert Baker, L. email: baker.2364@osu.edu organization: Department of Chemistry and Biochemistry, The Ohio State University – sequence: 15 givenname: Hailiang orcidid: 0000-0003-4409-2034 surname: Wang fullname: Wang, Hailiang email: hailiang.wang@yale.edu organization: Department of Chemistry, Yale University, Energy Sciences Institute, Yale University |
BookMark | eNp9kE1LAzEQhoNUsK3-AU8BL15W87HZzR6l-AWVXvQcknSiW9NNTXaF_ntTWxQ8eMhkmHnel-GdoFEXOkDonJIrSri8TiUVlSgIy4_KqirkERrTupQF540Y_fSyPkGTlFaECNawcozen4IHO3gdi2S1Bzxb4LRpvQ-fEHHosMbLQfsitT1gyGgfg9W99tvUY-jedGch4TX0uQseb2JYDrZvs9DFsM5uDEc4jE7RsdM-wdnhn6KXu9vn2UMxX9w_zm7mheWE94VZ0qpeCgolMbWx0jXGOmakpsLWzJm8E1RSx7SoS5IrkIZp01SOC2eo4VN0uffN13wMkHq1bpMF73UHYUiK00ryhjAuM3rxB12FIXb5OsUZ5bVgjItMsT1lY0gpglOb2K513CpK1C5_tc9f5fzVd_5qZ833opTh7hXir_U_qi9JGotL |
Cites_doi | 10.1021/acscatal.3c04957 10.1021/jacs.7b06765 10.1038/s41929-019-0388-2 10.1021/acs.accounts.1c00200 10.1016/j.joule.2020.03.013 10.1021/acsaem.3c02979 10.1016/j.jechem.2021.04.059 10.1021/acscatal.0c05567 10.1038/s41586-019-1760-8 10.1038/s41929-024-01190-9 10.1126/science.aad1920 10.1039/D0CS00835D 10.1038/s41467-023-39153-6 10.1038/s41929-023-01005-3 10.1021/acscatal.6b02162 10.1039/D3CC00705G 10.1016/j.electacta.2022.140410 10.1149/2.1161607jes 10.1021/acs.organomet.1c00431 10.1002/anie.202310623 10.1126/sciadv.abd2569 10.1021/jacs.9b07415 10.1063/5.0068517 10.1021/jacsau.1c00512 10.1021/acs.iecr.7b03514 10.1021/jacs.4c05961 10.1038/s41467-020-18567-6 10.1021/acs.inorgchem.2c00739 10.1002/anie.202215406 10.1002/cssc.202001396 10.1039/C8CP01319E 10.1073/pnas.1900761116 10.1021/acs.jpca.0c04268 10.1002/aenm.202203603 10.1002/cssc.202201788 10.1038/s44160-023-00384-6 10.1038/s41560-020-0667-9 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Nature Publishing Group Apr 2025 2025. The Author(s), under exclusive licence to Springer Nature Limited. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Nature Publishing Group Apr 2025 – notice: 2025. The Author(s), under exclusive licence to Springer Nature Limited. |
DBID | AAYXX CITATION 7QO 7U5 8FD F28 FR3 K9. L7M P64 7X8 |
DOI | 10.1038/s41565-025-01866-8 |
DatabaseName | CrossRef Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef Biotechnology Research Abstracts Technology Research Database ProQuest Health & Medical Complete (Alumni) Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Biotechnology Research Abstracts MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1748-3395 |
EndPage | 522 |
ExternalDocumentID | 10_1038_s41565_025_01866_8 |
GrantInformation_xml | – fundername: National Science Foundation (NSF) grantid: CHE-2154724; CBET-2129963 funderid: https://doi.org/10.13039/100000001 |
GroupedDBID | --- -~X 0R~ 123 29M 39C 4.4 53G 5BI 5M7 5S5 6OB 70F 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AARCD AAYZH ABAWZ ABDBF ABJCF ABJNI ABLJU ABUWG ACBWK ACGFS ACIWK ACPRK ACUHS ADBBV AENEX AEUYN AFANA AFBBN AFKRA AFLOW AFRAH AFSHS AFWHJ AGAYW AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ALPWD ARAPS ARMCB ASPBG AVWKF AXYYD AZFZN BBNVY BENPR BGLVJ BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 D1I DB5 DU5 EBS EE. EJD EMOBN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA HCIFZ HMCUK HVGLF HZ~ I-F KB. L6V LK8 M1P M7P M7S MM. NFIDA NNMJJ O9- ODYON P2P P62 PDBOC PHGZT PQQKQ PROAC PSQYO PTHSS Q2X RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP ~8M AAYXX ABFSG ACSTC AEZWR AFHIU AHWEU AIXLP ATHPR CITATION 7QO 7U5 8FD F28 FR3 K9. L7M P64 7X8 |
ID | FETCH-LOGICAL-c303t-bd167d51e40b7bc8f9bcf2b8a15c72fb7d55181f2a57402a5e092ab96f35fb1b3 |
ISSN | 1748-3387 1748-3395 |
IngestDate | Tue Aug 05 10:54:00 EDT 2025 Sat Aug 23 12:55:44 EDT 2025 Tue Aug 05 12:05:59 EDT 2025 Wed Apr 23 01:21:02 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c303t-bd167d51e40b7bc8f9bcf2b8a15c72fb7d55181f2a57402a5e092ab96f35fb1b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5262-5414 0000-0001-7598-5076 0000-0001-7058-568X 0000-0002-4802-2626 0000-0002-5376-1247 0000-0001-7538-246X 0000-0002-0421-006X 0000-0002-7416-8792 0000-0002-2294-6062 0000-0003-4409-2034 0000-0001-6740-864X |
PQID | 3213752235 |
PQPubID | 546299 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_3168390238 proquest_journals_3213752235 crossref_primary_10_1038_s41565_025_01866_8 springer_journals_10_1038_s41565_025_01866_8 |
PublicationCentury | 2000 |
PublicationDate | 2025-04-01 |
PublicationDateYYYYMMDD | 2025-04-01 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature nanotechnology |
PublicationTitleAbbrev | Nat. Nanotechnol |
PublicationYear | 2025 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | CL Rooney (1866_CR16) 2024; 63 J Li (1866_CR8) 2023; 2 LC Weng (1866_CR19) 2018; 20 X Chen (1866_CR17) 2021; 40 X Ren (1866_CR9) 2023; 14 Z Jiang (1866_CR21) 2022; 13 J Li (1866_CR28) 2021; 155 Y Wu (1866_CR13) 2020; 13 JY Li (1866_CR30) 2019; 116 NS Lewis (1866_CR3) 2016; 351 M Jouny (1866_CR2) 2019; 2 T Chan (1866_CR10) 2024; 7 M Sabharwal (1866_CR37) 2022; 419 J Chen (1866_CR26) 2023; 62 YC Tan (1866_CR18) 2020; 4 L Yao (1866_CR11) 2023; 14 XY Liu (1866_CR15) 2022; 64 H Xiong (1866_CR1) 2023; 59 Y Wu (1866_CR6) 2021; 54 S Cheon (1866_CR22) 2024; 146 J Su (1866_CR7) 2023; 6 QS Zhu (1866_CR29) 2024; 7 IV Zenyuk (1866_CR36) 2016; 163 M Jouny (1866_CR35) 2018; 57 S Wallentine (1866_CR33) 2020; 124 R Cao (1866_CR5) 2022; 15 X Zhang (1866_CR20) 2020; 5 M Xiong (1866_CR24) 2020; 11 AS Malkani (1866_CR31) 2020; 6 LL Shi (1866_CR14) 2022; 61 F Franco (1866_CR4) 2020; 49 D Ren (1866_CR25) 2016; 6 M Xiong (1866_CR23) 2021; 11 J Gao (1866_CR27) 2019; 141 QS Zhu (1866_CR34) 2022; 2 Y Wu (1866_CR12) 2019; 575 J Resasco (1866_CR32) 2017; 139 |
References_xml | – volume: 14 start-page: 366 year: 2023 ident: 1866_CR11 publication-title: ACS Catal. doi: 10.1021/acscatal.3c04957 – volume: 139 start-page: 11277 year: 2017 ident: 1866_CR32 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b06765 – volume: 2 start-page: 1062 year: 2019 ident: 1866_CR2 publication-title: Nat. Catal. doi: 10.1038/s41929-019-0388-2 – volume: 54 start-page: 3149 year: 2021 ident: 1866_CR6 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.1c00200 – volume: 4 start-page: 1104 year: 2020 ident: 1866_CR18 publication-title: Joule doi: 10.1016/j.joule.2020.03.013 – volume: 7 start-page: 3091 year: 2024 ident: 1866_CR10 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.3c02979 – volume: 64 start-page: 263 year: 2022 ident: 1866_CR15 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2021.04.059 – volume: 11 start-page: 3159 year: 2021 ident: 1866_CR23 publication-title: ACS Catal. doi: 10.1021/acscatal.0c05567 – volume: 575 start-page: 639 year: 2019 ident: 1866_CR12 publication-title: Nature doi: 10.1038/s41586-019-1760-8 – volume: 7 start-page: 987 year: 2024 ident: 1866_CR29 publication-title: Nat. Catal. doi: 10.1038/s41929-024-01190-9 – volume: 351 year: 2016 ident: 1866_CR3 publication-title: Science doi: 10.1126/science.aad1920 – volume: 49 start-page: 6884 year: 2020 ident: 1866_CR4 publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS00835D – volume: 14 year: 2023 ident: 1866_CR9 publication-title: Nat. Commun. doi: 10.1038/s41467-023-39153-6 – volume: 6 start-page: 818 year: 2023 ident: 1866_CR7 publication-title: Nat. Catal. doi: 10.1038/s41929-023-01005-3 – volume: 6 start-page: 8239 year: 2016 ident: 1866_CR25 publication-title: ACS Catal. doi: 10.1021/acscatal.6b02162 – volume: 59 start-page: 5615 year: 2023 ident: 1866_CR1 publication-title: Chem. Commun. doi: 10.1039/D3CC00705G – volume: 419 start-page: 140410 year: 2022 ident: 1866_CR37 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2022.140410 – volume: 163 start-page: F691 year: 2016 ident: 1866_CR36 publication-title: J. Electrochem. Soc. doi: 10.1149/2.1161607jes – volume: 40 start-page: 3087 year: 2021 ident: 1866_CR17 publication-title: Organometallics doi: 10.1021/acs.organomet.1c00431 – volume: 63 start-page: e202310623 year: 2024 ident: 1866_CR16 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202310623 – volume: 6 year: 2020 ident: 1866_CR31 publication-title: Sci. Adv. doi: 10.1126/sciadv.abd2569 – volume: 141 start-page: 18704 year: 2019 ident: 1866_CR27 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b07415 – volume: 155 start-page: 164701 year: 2021 ident: 1866_CR28 publication-title: J. Chem. Phys. doi: 10.1063/5.0068517 – volume: 2 start-page: 472 year: 2022 ident: 1866_CR34 publication-title: JACS Au doi: 10.1021/jacsau.1c00512 – volume: 57 start-page: 2165 year: 2018 ident: 1866_CR35 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.7b03514 – volume: 146 start-page: 16348 year: 2024 ident: 1866_CR22 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.4c05961 – volume: 11 year: 2020 ident: 1866_CR24 publication-title: Nat. Commun. doi: 10.1038/s41467-020-18567-6 – volume: 61 start-page: 16549 year: 2022 ident: 1866_CR14 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.2c00739 – volume: 62 start-page: e202215406 year: 2023 ident: 1866_CR26 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202215406 – volume: 13 start-page: 6296 year: 2020 ident: 1866_CR13 publication-title: ChemSusChem doi: 10.1002/cssc.202001396 – volume: 20 start-page: 16973 year: 2018 ident: 1866_CR19 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C8CP01319E – volume: 116 start-page: 9220 year: 2019 ident: 1866_CR30 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1900761116 – volume: 124 start-page: 8057 year: 2020 ident: 1866_CR33 publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.0c04268 – volume: 13 start-page: 2203603 year: 2022 ident: 1866_CR21 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202203603 – volume: 15 year: 2022 ident: 1866_CR5 publication-title: ChemSusChem doi: 10.1002/cssc.202201788 – volume: 2 start-page: 1194 year: 2023 ident: 1866_CR8 publication-title: Nat. Synth. doi: 10.1038/s44160-023-00384-6 – volume: 5 start-page: 684 year: 2020 ident: 1866_CR20 publication-title: Nat. Energy doi: 10.1038/s41560-020-0667-9 |
SSID | ssj0052924 |
Score | 2.5167851 |
Snippet | Cobalt phthalocyanine (CoPc) is recognized for catalysing electrochemical CO
2
reduction into methanol at high Faradaic efficiency but is subject to... Cobalt phthalocyanine (CoPc) is recognized for catalysing electrochemical CO2 reduction into methanol at high Faradaic efficiency but is subject to... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 515 |
SubjectTerms | 639/301/357 639/4077/4057 639/638/161 Carbon dioxide Catalysts Chemistry and Materials Science Cobalt Efficiency Electrocatalysts Materials Science Methanol Multi wall carbon nanotubes Nanotechnology Nanotechnology and Microengineering Nanotubes Spectroscopy Spectrum analysis Stability |
Title | Molecular-scale CO spillover on a dual-site electrocatalyst enhances methanol production from CO2 reduction |
URI | https://link.springer.com/article/10.1038/s41565-025-01866-8 https://www.proquest.com/docview/3213752235 https://www.proquest.com/docview/3168390238 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfK9gIPiE9RGMhIvAVD7MRO8thFTNPEWiE2aW-RnThiUKXTkiDBH8LfyzmOk9AyifHiVpf0kvp-vg_7zkbojSzCsozLhMSBVCRUnJI4kZokUpRBQGnh56be-XQpjs_Dkwt-MZv9mmQttY16l__8a13J_0gVaCBXUyV7C8kOTIEA30G-0IKEof0nGZ-6s21JDV2tvXTl1VeX6y4t06wCSM9UWhGzQOz159100zU_6sbT1Rcj8Lo7Q1pWm7VJ1SrsXrK26CRdMe9a96SpE7vsNgP1KvhVszMz_7FLDzhxFrGbk24N6VMrTaHZQE7dVPVi_f2yGqna5gF8hs-v2t3fz0swPklnsao0CmMCAbA1p3pKs8dqOv3L_AnOwoky5bbQs7fL3NYv76h8u8F7bQJRU2tuUhFjIUg8Gji3qL9l94ZsxG4dPogzyyMDHlnHI4vvoH0G4Qfoz_3F0eHh0tl4zhJ7XLL7j305FnB5v_smf7o8YxyztfTeeTRnD9D9PhTBC4urh2imq0fo3mSDysfo2xbCcLrCA8LwpsISDwjDWwjDDmHYIQyPCMMGYcCN4QFhT9D50Yez9Jj0x3OQHPyehqiCiqjgVIe-ilQOA17lJVOxpDyPWKngGgf_sWSSR6EPrfYTJlUCSoCXiqrgKdqrNpV-hrBMtAxFEgVSmP0KIYpRVLCoAN8J_H8l5shzPZhd2V1YspulNkcHrpOzfrTWWcBoEAGGAj5Hr4fLoEvNApms9KaFe6iAeMF4sXP01glnZHHzE5_f6v1eoLvjgDlAe811q1-Ca9uoVz3OfgN8caF- |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular-scale+CO+spillover+on+a+dual-site+electrocatalyst+enhances+methanol+production+from+CO2+reduction&rft.jtitle=Nature+nanotechnology&rft.au=Li%2C+Jing&rft.au=Zhu%2C+Quansong&rft.au=Chang%2C+Alvin&rft.au=Cheon%2C+Seonjeong&rft.date=2025-04-01&rft.issn=1748-3387&rft.eissn=1748-3395&rft.volume=20&rft.issue=4&rft.spage=515&rft.epage=522&rft_id=info:doi/10.1038%2Fs41565-025-01866-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41565_025_01866_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-3387&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-3387&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-3387&client=summon |