Experimental investigation on characteristics of cavitation-induced vibration on the runner of a bulb turbine
Cavitation may result in reduced efficiency, increased noise and vibration and weight loss of a hydraulic turbine when local pressure is lower than the vaporization pressure. In this paper, a synchronous test system including high-speed camera and Laser Doppler Vibrometer (LDV) is established to ana...
Saved in:
Published in | Mechanical systems and signal processing Vol. 189; p. 110097 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.04.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0888-3270 1096-1216 |
DOI | 10.1016/j.ymssp.2023.110097 |
Cover
Abstract | Cavitation may result in reduced efficiency, increased noise and vibration and weight loss of a hydraulic turbine when local pressure is lower than the vaporization pressure. In this paper, a synchronous test system including high-speed camera and Laser Doppler Vibrometer (LDV) is established to analyze characteristics of cavitation-induced vibration on the runner of a bulb turbine under different cavitation states. The results show that the peak-to-peak and Root Mean Square (RMS) values of vibration velocities on the turbine runner both increase with the severity of cavitation, but the growth rate is remarkably different which strongly depends on the cavitation state. The runner vibration velocity holds a normal distribution for all cavitation states, and the variance of the normal distribution increases gradually with the severity of cavitation. The increase of cavitation level is accompanied by frequency band migration of vibration signals. In the state of complete cavitation, the local energy extreme of the medium-high frequency component of the runner vibration velocity signal migrates to the low frequency region, resulting in an obvious increase in the energy of the low frequency region. |
---|---|
AbstractList | Cavitation may result in reduced efficiency, increased noise and vibration and weight loss of a hydraulic turbine when local pressure is lower than the vaporization pressure. In this paper, a synchronous test system including high-speed camera and Laser Doppler Vibrometer (LDV) is established to analyze characteristics of cavitation-induced vibration on the runner of a bulb turbine under different cavitation states. The results show that the peak-to-peak and Root Mean Square (RMS) values of vibration velocities on the turbine runner both increase with the severity of cavitation, but the growth rate is remarkably different which strongly depends on the cavitation state. The runner vibration velocity holds a normal distribution for all cavitation states, and the variance of the normal distribution increases gradually with the severity of cavitation. The increase of cavitation level is accompanied by frequency band migration of vibration signals. In the state of complete cavitation, the local energy extreme of the medium-high frequency component of the runner vibration velocity signal migrates to the low frequency region, resulting in an obvious increase in the energy of the low frequency region. |
ArticleNumber | 110097 |
Author | Liu, Boxing Wu, Guangkuan Feng, Jianjun Li, Kang Zhu, Guojun Luo, Xingqi |
Author_xml | – sequence: 1 givenname: Jianjun surname: Feng fullname: Feng, Jianjun email: jianjunfeng@xaut.edu.cn – sequence: 2 givenname: Boxing surname: Liu fullname: Liu, Boxing – sequence: 3 givenname: Xingqi surname: Luo fullname: Luo, Xingqi email: luoxq@xaut.edu.cn – sequence: 4 givenname: Guojun surname: Zhu fullname: Zhu, Guojun – sequence: 5 givenname: Kang surname: Li fullname: Li, Kang – sequence: 6 givenname: Guangkuan surname: Wu fullname: Wu, Guangkuan |
BookMark | eNqFkMtKAzEUhoNUsK0-gZu8wIy5OLeFCyn1AgU3ug65nLEp00xJMoN9e9MLLlwoBA45_N-B_5uhiesdIHRLSU4JLe82-X4bwi5nhPGcUkKa6gJNKWnKjDJaTtCU1HWdcVaRKzQLYUNS5J6UU7Rdfu3A2y24KDts3Qgh2k8Zbe9wenotvdQxJdJaB9y3WMvRxmMgs84MGgwerfI_SFwD9oNz4A9pidXQKRwHr6yDa3TZyi7AzXnO0cfT8n3xkq3enl8Xj6tMc8JjppoSKBRc1rIuq7plBdUy_cHUpmWsqlqluK5MWQBvVFurglYGVNFIzpkhlM8RP93Vvg_BQyt2qaP0e0GJOBgTG3E0Jg7GxMlYoppflD43jV7a7h_24cRCqjVa8CJoCy7ZsR50FKa3f_LfMwCONQ |
CitedBy_id | crossref_primary_10_1016_j_oceaneng_2024_119055 crossref_primary_10_1088_1742_6596_2752_1_012159 crossref_primary_10_1016_j_apenergy_2023_122478 crossref_primary_10_1063_5_0252423 crossref_primary_10_1063_5_0217655 crossref_primary_10_1016_j_ymssp_2023_111042 crossref_primary_10_1016_j_ymssp_2024_111698 crossref_primary_10_1007_s42241_024_0084_9 crossref_primary_10_1016_j_renene_2023_119114 crossref_primary_10_1063_5_0209618 crossref_primary_10_1063_5_0239286 crossref_primary_10_3390_jmse13030538 |
Cites_doi | 10.3182/20080706-5-KR-1001.02273 10.1109/ECCE.2012.6342276 10.1016/j.cej.2017.03.044 10.1109/APPEEC.2009.4918211 10.1016/j.simpat.2016.11.005 10.1142/S1793536909000047 10.1016/j.apacoust.2021.108289 10.1109/TIA.2020.2966168 10.1098/rspa.1998.0193 10.1142/S1793536909000187 10.1016/j.jsv.2020.115682 10.1016/j.oceaneng.2020.108512 10.1007/s40799-020-00362-z 10.1016/j.eswa.2014.07.029 10.1016/j.ymssp.2019.106613 10.1016/S1001-6058(16)60638-8 10.1016/j.rser.2015.06.023 10.1016/j.ymssp.2004.08.006 10.1016/j.ymssp.2018.07.053 10.1209/0295-5075/123/20011 10.1109/TIP.2013.2286326 10.29252/jafm.12.06.29901 10.1103/PhysRevLett.100.084102 10.1016/j.euromechflu.2018.10.015 10.1016/j.eswa.2007.08.021 10.1016/j.ijheatfluidflow.2015.04.001 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd |
Copyright_xml | – notice: 2023 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ymssp.2023.110097 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1096-1216 |
ExternalDocumentID | 10_1016_j_ymssp_2023_110097 S0888327023000043 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG5 LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SPD SST SSV SSZ T5K XPP ZMT ZU3 ~G- 29M AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABEFU ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADFGL ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CAG CITATION COF EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- RIG SBC SET SSH WUQ |
ID | FETCH-LOGICAL-c303t-b96e1e53a8a8678f251cae53ed8df2277fbb3c7d65e39bf8b517deb59a332d013 |
IEDL.DBID | AIKHN |
ISSN | 0888-3270 |
IngestDate | Thu Apr 24 23:03:56 EDT 2025 Tue Jul 01 04:30:16 EDT 2025 Fri Feb 23 02:35:32 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Signal processing Frequency analysis Vibration Bulb turbine Cavitation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c303t-b96e1e53a8a8678f251cae53ed8df2277fbb3c7d65e39bf8b517deb59a332d013 |
ParticipantIDs | crossref_primary_10_1016_j_ymssp_2023_110097 crossref_citationtrail_10_1016_j_ymssp_2023_110097 elsevier_sciencedirect_doi_10_1016_j_ymssp_2023_110097 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-04-15 |
PublicationDateYYYYMMDD | 2023-04-15 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Mechanical systems and signal processing |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | McKee, Forbes, Mazhar, Entwistle, Hodkiewicz, Howard (b0025) 2015; 42 Mousmoulis, Karlsen-Davies, Aggidis, Anagnostopoulos, Papantonis (b0035) 2019; 75 Wu, Huang, Chen (b0130) 2009; 1 Al-Obaidi (b0050) 2020; 44 Luo, Ji, Tsujimoto (b0015) 2016; 28 Huang, Shen, Long, Wu, Shih, Zheng, Yen, Tung, Liu (b0120) 1998; 454 Al-Obaidi, Towsyfyan (b0045) 2019; 12 X. Escaler, I. Vilberg, J. Ekanger, et al., Assessment of remote cavitation detection methods with flow visualization in a full scale francis turbine, in: International Symposium on Cavitation (CAV2018), Baltimore, USA, 2018. Al-Obaidi (b0055) 2020; 45 Sun, Si, Chen, Yuan (b0075) 2020; 139 L. Zhan, Y. Peng, X. Chen, Cavitation vibration monitoring in the Kaplan turbine, Asia-Pacific Power and Energy Engineering Conference (APPEEC 2009), Wuhan, China, 2009. Liu, Luo, Karney, Wang (b0010) 2015; 51 Minakov, Platonov, Dekterev, Sentyabov, Zakharov (b0115) 2015; 53 Yan, Zhai, Zhang, Wang, Jin (b0140) 2017; 320 Favrel, Gomes Pereira Junior, Landry, Müller, Yamaishi, Avellan (b0110) 2019; 117 Wu, Huang (b0125) 2009; 1 Estellers, Zosso, Bresson, Thiran (b0135) 2014; 23 X. Escaler, M. Farhat, P. Ausoni, et al., Cavitation monitoring of hydroturbines: tests in a francis turbine model, in: The Sixth International Symposium on Cavitation, Wageningen, The Netherlands, 2006. Escaler, Egusquiza, Farhat, Avellan, Coussirat (b0090) 2006; 20 Podobnik, Stanley (b0150) 2008; 100 Wu, Xing, Chu, Wu, Cao, Wu (b0060) 2020; 489 Brito, Santos, Castro, Lima, Zebende, Lima (b0145) 2018; 123 Lahdelma, Juuso (b0100) 2008; 41 Mousmoulis, Yiakopoulos, Aggidis, Antoniadis, Anagnostopoulos (b0040) 2021; 182 M. Stopa, B. Filho, Load Torque Signature Analysis: An alternative to MCSA to detect faults in motor driven loads, IEEE Energy Conversion Congress and Exposition (ECCE), Raleigh, USA, 2012. Brijkishore, Khare (b0020) 2021; 221 Escaler, Egusquiza, Farhat (b0080) 2003 Buono, Siano, Frosina, Senatore (b0030) 2017; 71 Quaranta, Bahreini, Riasi, Revelli (b0005) 2022; 51 Stopa, Lima, Cardoso, Miranda, Martinez (b0065) 2020; 56 Wu, Liu (b0155) 2008; 35 10.1016/j.ymssp.2023.110097_b0070 Escaler (10.1016/j.ymssp.2023.110097_b0090) 2006; 20 Al-Obaidi (10.1016/j.ymssp.2023.110097_b0055) 2020; 45 Wu (10.1016/j.ymssp.2023.110097_b0125) 2009; 1 Mousmoulis (10.1016/j.ymssp.2023.110097_b0040) 2021; 182 Huang (10.1016/j.ymssp.2023.110097_b0120) 1998; 454 Escaler (10.1016/j.ymssp.2023.110097_b0080) 2003 Estellers (10.1016/j.ymssp.2023.110097_b0135) 2014; 23 Buono (10.1016/j.ymssp.2023.110097_b0030) 2017; 71 10.1016/j.ymssp.2023.110097_b0095 Stopa (10.1016/j.ymssp.2023.110097_b0065) 2020; 56 Wu (10.1016/j.ymssp.2023.110097_b0155) 2008; 35 Al-Obaidi (10.1016/j.ymssp.2023.110097_b0050) 2020; 44 10.1016/j.ymssp.2023.110097_b0105 Lahdelma (10.1016/j.ymssp.2023.110097_b0100) 2008; 41 Brijkishore (10.1016/j.ymssp.2023.110097_b0020) 2021; 221 Sun (10.1016/j.ymssp.2023.110097_b0075) 2020; 139 Al-Obaidi (10.1016/j.ymssp.2023.110097_b0045) 2019; 12 Brito (10.1016/j.ymssp.2023.110097_b0145) 2018; 123 Podobnik (10.1016/j.ymssp.2023.110097_b0150) 2008; 100 Liu (10.1016/j.ymssp.2023.110097_b0010) 2015; 51 Wu (10.1016/j.ymssp.2023.110097_b0060) 2020; 489 10.1016/j.ymssp.2023.110097_b0085 Quaranta (10.1016/j.ymssp.2023.110097_b0005) 2022; 51 McKee (10.1016/j.ymssp.2023.110097_b0025) 2015; 42 Mousmoulis (10.1016/j.ymssp.2023.110097_b0035) 2019; 75 Wu (10.1016/j.ymssp.2023.110097_b0130) 2009; 1 Favrel (10.1016/j.ymssp.2023.110097_b0110) 2019; 117 Luo (10.1016/j.ymssp.2023.110097_b0015) 2016; 28 Minakov (10.1016/j.ymssp.2023.110097_b0115) 2015; 53 Yan (10.1016/j.ymssp.2023.110097_b0140) 2017; 320 |
References_xml | – volume: 45 start-page: 541 year: 2020 end-page: 556 ident: b0055 article-title: Experimental comparative investigation to evaluate cavitation conditions within a centrifugal pump based on vibration and acoustic analyses techniques publication-title: Arch. Acoust. – volume: 454 start-page: 903 year: 1998 end-page: 995 ident: b0120 article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis publication-title: Proc. Math. Phys. Eng. Sci. – volume: 489 start-page: 115682 year: 2020 ident: b0060 article-title: A carrier wave extraction method for cavitation characterization based on time synchronous average and time-frequency analysis publication-title: J. Sound Vib. – volume: 20 start-page: 983 year: 2006 end-page: 1007 ident: b0090 article-title: Detection of cavitation in hydraulic turbines publication-title: Mech. Syst. Signal Process. – volume: 1 start-page: 339 year: 2009 end-page: 372 ident: b0130 article-title: The multi-dimensional ensemble empirical mode decomposition method publication-title: Adv. Adaptive Data Anal. – volume: 41 start-page: 13420 year: 2008 end-page: 13425 ident: b0100 article-title: Vibration analysis of cavitation in Kaplan water turbines publication-title: IFAC Proceedings Volumes – volume: 28 start-page: 335 year: 2016 end-page: 358 ident: b0015 article-title: A review of cavitation in hydraulic machinery publication-title: J. Hydrodyn. – reference: X. Escaler, I. Vilberg, J. Ekanger, et al., Assessment of remote cavitation detection methods with flow visualization in a full scale francis turbine, in: International Symposium on Cavitation (CAV2018), Baltimore, USA, 2018. – volume: 100 year: 2008 ident: b0150 article-title: Detrended cross-correlation analysis: A new method for analyzing two nonstationary time series publication-title: Phys. Rev. Lett. – volume: 42 start-page: 67 year: 2015 end-page: 78 ident: b0025 article-title: A vibration cavitation sensitivity parameter based on spectral and statistical methods publication-title: Expert Syst. Appl. – reference: L. Zhan, Y. Peng, X. Chen, Cavitation vibration monitoring in the Kaplan turbine, Asia-Pacific Power and Energy Engineering Conference (APPEEC 2009), Wuhan, China, 2009. – reference: X. Escaler, M. Farhat, P. Ausoni, et al., Cavitation monitoring of hydroturbines: tests in a francis turbine model, in: The Sixth International Symposium on Cavitation, Wageningen, The Netherlands, 2006. – volume: 182 start-page: 108289 year: 2021 ident: b0040 article-title: Application of Spectral Kurtosis on vibration signals for the detection of cavitation in centrifugal pumps publication-title: Appl. Acoust. – volume: 117 start-page: 81 year: 2019 end-page: 96 ident: b0110 article-title: Dynamic modal analysis during reduced scale model tests of hydraulic turbines for hydro-acoustic characterization of cavitation flows publication-title: Mech. Syst. Sig. Process. – volume: 1 start-page: 1 year: 2009 end-page: 41 ident: b0125 article-title: Ensemble empirical mode decomposition: a noise-assisted data analysis method publication-title: Adv. Adaptive Data Anal. – volume: 221 year: 2021 ident: b0020 article-title: Prasad, Prediction of cavitation and its mitigation techniques in hydraulic turbines – a review publication-title: Ocean Eng. – volume: 75 start-page: 300 year: 2019 end-page: 311 ident: b0035 article-title: Experimental analysis of cavitation in a centrifugal pump using acoustic emission, vibration measurements and flow visualization publication-title: Eur. J. Mech.-B/Fluids – volume: 12 start-page: 2057 year: 2019 end-page: 2067 ident: b0045 article-title: An experimental study on vibration signatures for detecting incipient cavitation in centrifugal pumps based on envelope spectrum analysis publication-title: J. Appl. Fluid Mech. – volume: 44 start-page: 329 year: 2020 end-page: 347 ident: b0050 article-title: Detection of cavitation phenomenon within a centrifugal pump based on vibration analysis technique in both time and frequency domains publication-title: Exp. Tech. – volume: 51 start-page: 101924 year: 2022 ident: b0005 article-title: The very low head turbine for hydropower generation in existing hydraulic infrastructures: State of the art and future challenges publication-title: Sustain. Energy Technol. Assess. – volume: 71 start-page: 61 year: 2017 end-page: 82 ident: b0030 article-title: Gerotor pump cavitation monitoring and fault diagnosis using vibration analysis through the employment of auto-regressive-moving-average technique publication-title: Simul. Model. Pract. Theory – volume: 53 start-page: 183 year: 2015 end-page: 194 ident: b0115 article-title: The analysis of unsteady flow structure and low frequency pressure pulsations in the high-head Francis turbines publication-title: Int. J. Heat Fluid Flow – volume: 56 start-page: 2107 year: 2020 end-page: 2116 ident: b0065 article-title: Detection of gaseous nuclei in centrifugal motor pumps by analysis of their estimated torque publication-title: IEEE Transactions on Industry Applications – volume: 123 start-page: 20011 year: 2018 ident: b0145 article-title: Cross-correlation in a turbulent flow: Analysis of the velocity field using the ρ publication-title: Europhys. Lett. – volume: 35 start-page: 1200 year: 2008 end-page: 1213 ident: b0155 article-title: Investigation of engine fault diagnosis using discrete wavelet transform and neural network publication-title: Expert Syst. Appl. – volume: 51 start-page: 18 year: 2015 end-page: 28 ident: b0010 article-title: A selected literature review of efficiency improvements in hydraulic turbines publication-title: Renew. Sustain. Energy Rev. – volume: 139 start-page: 106613 year: 2020 ident: b0075 article-title: HHT-based feature extraction of pump operation instability under cavitation conditions through motor current signal analysis publication-title: Mech. Syst. Sig. Process. – volume: 23 start-page: 69 year: 2014 end-page: 82 ident: b0135 article-title: Harmonic active contours publication-title: IEEE Trans. Image Process. – volume: 320 start-page: 416 year: 2017 end-page: 426 ident: b0140 article-title: Cross-correlation analysis of interfacial wave and droplet entrainment in horizontal liquid-liquid two-phase flows publication-title: Chem. Eng. J. – reference: M. Stopa, B. Filho, Load Torque Signature Analysis: An alternative to MCSA to detect faults in motor driven loads, IEEE Energy Conversion Congress and Exposition (ECCE), Raleigh, USA, 2012. – year: 2003 ident: b0080 publication-title: Vibration cavitation detection using onboard measurements, Fifth international symposium on cavitation (CAV2003) – volume: 41 start-page: 13420 issue: 2 year: 2008 ident: 10.1016/j.ymssp.2023.110097_b0100 article-title: Vibration analysis of cavitation in Kaplan water turbines publication-title: IFAC Proceedings Volumes doi: 10.3182/20080706-5-KR-1001.02273 – ident: 10.1016/j.ymssp.2023.110097_b0070 doi: 10.1109/ECCE.2012.6342276 – volume: 320 start-page: 416 year: 2017 ident: 10.1016/j.ymssp.2023.110097_b0140 article-title: Cross-correlation analysis of interfacial wave and droplet entrainment in horizontal liquid-liquid two-phase flows publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.03.044 – ident: 10.1016/j.ymssp.2023.110097_b0105 doi: 10.1109/APPEEC.2009.4918211 – ident: 10.1016/j.ymssp.2023.110097_b0095 – volume: 51 start-page: 101924 year: 2022 ident: 10.1016/j.ymssp.2023.110097_b0005 article-title: The very low head turbine for hydropower generation in existing hydraulic infrastructures: State of the art and future challenges publication-title: Sustain. Energy Technol. Assess. – ident: 10.1016/j.ymssp.2023.110097_b0085 – volume: 71 start-page: 61 year: 2017 ident: 10.1016/j.ymssp.2023.110097_b0030 article-title: Gerotor pump cavitation monitoring and fault diagnosis using vibration analysis through the employment of auto-regressive-moving-average technique publication-title: Simul. Model. Pract. Theory doi: 10.1016/j.simpat.2016.11.005 – volume: 45 start-page: 541 issue: 3 year: 2020 ident: 10.1016/j.ymssp.2023.110097_b0055 article-title: Experimental comparative investigation to evaluate cavitation conditions within a centrifugal pump based on vibration and acoustic analyses techniques publication-title: Arch. Acoust. – volume: 1 start-page: 1 issue: 01 year: 2009 ident: 10.1016/j.ymssp.2023.110097_b0125 article-title: Ensemble empirical mode decomposition: a noise-assisted data analysis method publication-title: Adv. Adaptive Data Anal. doi: 10.1142/S1793536909000047 – volume: 182 start-page: 108289 year: 2021 ident: 10.1016/j.ymssp.2023.110097_b0040 article-title: Application of Spectral Kurtosis on vibration signals for the detection of cavitation in centrifugal pumps publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2021.108289 – volume: 56 start-page: 2107 issue: 2 year: 2020 ident: 10.1016/j.ymssp.2023.110097_b0065 article-title: Detection of gaseous nuclei in centrifugal motor pumps by analysis of their estimated torque publication-title: IEEE Transactions on Industry Applications doi: 10.1109/TIA.2020.2966168 – year: 2003 ident: 10.1016/j.ymssp.2023.110097_b0080 – volume: 454 start-page: 903 issue: 1971 year: 1998 ident: 10.1016/j.ymssp.2023.110097_b0120 article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis publication-title: Proc. Math. Phys. Eng. Sci. doi: 10.1098/rspa.1998.0193 – volume: 1 start-page: 339 issue: 03 year: 2009 ident: 10.1016/j.ymssp.2023.110097_b0130 article-title: The multi-dimensional ensemble empirical mode decomposition method publication-title: Adv. Adaptive Data Anal. doi: 10.1142/S1793536909000187 – volume: 489 start-page: 115682 year: 2020 ident: 10.1016/j.ymssp.2023.110097_b0060 article-title: A carrier wave extraction method for cavitation characterization based on time synchronous average and time-frequency analysis publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2020.115682 – volume: 221 year: 2021 ident: 10.1016/j.ymssp.2023.110097_b0020 article-title: Prasad, Prediction of cavitation and its mitigation techniques in hydraulic turbines – a review publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2020.108512 – volume: 44 start-page: 329 issue: 3 year: 2020 ident: 10.1016/j.ymssp.2023.110097_b0050 article-title: Detection of cavitation phenomenon within a centrifugal pump based on vibration analysis technique in both time and frequency domains publication-title: Exp. Tech. doi: 10.1007/s40799-020-00362-z – volume: 42 start-page: 67 issue: 1 year: 2015 ident: 10.1016/j.ymssp.2023.110097_b0025 article-title: A vibration cavitation sensitivity parameter based on spectral and statistical methods publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2014.07.029 – volume: 139 start-page: 106613 year: 2020 ident: 10.1016/j.ymssp.2023.110097_b0075 article-title: HHT-based feature extraction of pump operation instability under cavitation conditions through motor current signal analysis publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2019.106613 – volume: 28 start-page: 335 issue: 3 year: 2016 ident: 10.1016/j.ymssp.2023.110097_b0015 article-title: A review of cavitation in hydraulic machinery publication-title: J. Hydrodyn. doi: 10.1016/S1001-6058(16)60638-8 – volume: 51 start-page: 18 year: 2015 ident: 10.1016/j.ymssp.2023.110097_b0010 article-title: A selected literature review of efficiency improvements in hydraulic turbines publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.06.023 – volume: 20 start-page: 983 issue: 4 year: 2006 ident: 10.1016/j.ymssp.2023.110097_b0090 article-title: Detection of cavitation in hydraulic turbines publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2004.08.006 – volume: 117 start-page: 81 year: 2019 ident: 10.1016/j.ymssp.2023.110097_b0110 article-title: Dynamic modal analysis during reduced scale model tests of hydraulic turbines for hydro-acoustic characterization of cavitation flows publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2018.07.053 – volume: 123 start-page: 20011 issue: 2 year: 2018 ident: 10.1016/j.ymssp.2023.110097_b0145 article-title: Cross-correlation in a turbulent flow: Analysis of the velocity field using the ρDCCA coefficient publication-title: Europhys. Lett. doi: 10.1209/0295-5075/123/20011 – volume: 23 start-page: 69 issue: 1 year: 2014 ident: 10.1016/j.ymssp.2023.110097_b0135 article-title: Harmonic active contours publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2013.2286326 – volume: 12 start-page: 2057 issue: 6 year: 2019 ident: 10.1016/j.ymssp.2023.110097_b0045 article-title: An experimental study on vibration signatures for detecting incipient cavitation in centrifugal pumps based on envelope spectrum analysis publication-title: J. Appl. Fluid Mech. doi: 10.29252/jafm.12.06.29901 – volume: 100 issue: 8 year: 2008 ident: 10.1016/j.ymssp.2023.110097_b0150 article-title: Detrended cross-correlation analysis: A new method for analyzing two nonstationary time series publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.084102 – volume: 75 start-page: 300 year: 2019 ident: 10.1016/j.ymssp.2023.110097_b0035 article-title: Experimental analysis of cavitation in a centrifugal pump using acoustic emission, vibration measurements and flow visualization publication-title: Eur. J. Mech.-B/Fluids doi: 10.1016/j.euromechflu.2018.10.015 – volume: 35 start-page: 1200 issue: 3 year: 2008 ident: 10.1016/j.ymssp.2023.110097_b0155 article-title: Investigation of engine fault diagnosis using discrete wavelet transform and neural network publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2007.08.021 – volume: 53 start-page: 183 year: 2015 ident: 10.1016/j.ymssp.2023.110097_b0115 article-title: The analysis of unsteady flow structure and low frequency pressure pulsations in the high-head Francis turbines publication-title: Int. J. Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2015.04.001 |
SSID | ssj0009406 |
Score | 2.4719074 |
Snippet | Cavitation may result in reduced efficiency, increased noise and vibration and weight loss of a hydraulic turbine when local pressure is lower than the... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 110097 |
SubjectTerms | Bulb turbine Cavitation Frequency analysis Signal processing Vibration |
Title | Experimental investigation on characteristics of cavitation-induced vibration on the runner of a bulb turbine |
URI | https://dx.doi.org/10.1016/j.ymssp.2023.110097 |
Volume | 189 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JasMwEB2yXNpD6UrTJejQY9XElm3ZxxAS0pbm0gZyM5IsQUo2skEv_faOvDQJlBwKvshowB7Jem-Y8RuAB2ZZuBCChkEUUA8jCCr9iFE_MpESTSU9ZTO6b_2gN_Behv6wBO3iXxhbVpmf_dmZnp7W-Z1G7s3GfDRqvOP3gduRWxKdJrTKUHVZFPgVqLaeX3v9rfaul7bYtPOpNSjEh9Iyr6_Jcml1K11mK-JT8ae_AGoHdLqncJKzRdLKHugMSnp6Dsc7GoIXMOnsaPST0VY2YzYleKl9QWYyM0SJTS7MTTEgx6VNyMYGzYUJUkKyWNuWXHa2IHI9lgSRCWNofQmDbuej3aN5DwWqEJxWVEaBdrTPRChCxCWDdEYJHOskTIzrcm6kZIonga9ZJE0ofYcnGpdLMOYmyA-voDKdTfU1ENZ0jTTCBBJpFxdceJx5CdLBBCGfG68GbuG4WOXvYftcjOOikuwzTr0dW2_Hmbdr8PhrNM_0NQ5PD4oVife2SYwIcMjw5r-Gt3BkRzaB5Ph3UFkt1voeechK1qH89O3U8932AyFi3xk |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4gHtSD8RnxuQePrkB3222PhkBQgYuQcGv2mWB4hVfixd_ubB8CieFg0kvbmaSd3c58k5l-g9AjdShcCEHCIAoIgwyCSD-ixI9spERFSaZcRbfdCZo99tb3-wVUy_-FcW2Vme9PfXrirbMr5cya5elgUP6A7wO2I3cgOilo7aF95lPu-vqev9d9HhFLBmw6aeLEc-qhpMnrazSfO9ZKj7p--IT66a_wtBFyGifoOMOK-CV9nFNUMOMzdLTBIHiORvUNhn48WJNmTMYYDrVNx4wnFiuxymi5CaTjsLAar1zKnKsAIMSzpRvI5aQFlsuhxBCXIIM2F6jXqHdrTZJNUCAKQtOCyCgwVeNTEYoQopIFMKMEnBsdaut5nFspqeI68A2NpA2lX-XawGIJSj0N6PASFceTsblCmFY8K62wgQTQxQUXjFOmAQxqCPjcshLycsPFKnsPN-ViGOd9ZJ9xYu3YWTtOrV1CT79K05RdY7d4kK9IvLVJYvD_uxSv_6v4gA6a3XYrbr123m_QobvjSklV_xYVF7OluQNEspD3yY77AQZf3-Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+investigation+on+characteristics+of+cavitation-induced+vibration+on+the+runner+of+a+bulb+turbine&rft.jtitle=Mechanical+systems+and+signal+processing&rft.au=Feng%2C+Jianjun&rft.au=Liu%2C+Boxing&rft.au=Luo%2C+Xingqi&rft.au=Zhu%2C+Guojun&rft.date=2023-04-15&rft.issn=0888-3270&rft.volume=189&rft.spage=110097&rft_id=info:doi/10.1016%2Fj.ymssp.2023.110097&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ymssp_2023_110097 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-3270&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-3270&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-3270&client=summon |