The Interplay of Magnetism and Thermoelectricity: A Review
The introduction of magnetism into a solid material might significantly modulate its electronic transport behavior, thereby serving as a means to tune the thermoelectric properties that have attracted considerable research attention in recent years. In this review, an introduction to recent studies...
Saved in:
Published in | Advanced Physics Research Vol. 2; no. 9 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Edinburgh
John Wiley & Sons, Inc
01.09.2023
Wiley-VCH |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The introduction of magnetism into a solid material might significantly modulate its electronic transport behavior, thereby serving as a means to tune the thermoelectric properties that have attracted considerable research attention in recent years. In this review, an introduction to recent studies on the interplay of magnetism and the thermoelectric Seebeck and Nernst effects is given. Concerning the Seebeck effect, the influence of superparamagnetic nanoparticles on the electronic and phonon transport of conventional nonmagnetic thermoelectric materials, as well as the spin‐related thermoelectric transport phenomenon in magnetic materials, are discussed. Then, the Nernst effect‐related transverse thermoelectric transport properties in nonmagnetic and magnetic topological materials are summarized, followed by a short introduction to the Nernst devices. Last, a further outlook on this new research direction is offered. |
---|---|
AbstractList | The introduction of magnetism into a solid material might significantly modulate its electronic transport behavior, thereby serving as a means to tune the thermoelectric properties that have attracted considerable research attention in recent years. In this review, an introduction to recent studies on the interplay of magnetism and the thermoelectric Seebeck and Nernst effects is given. Concerning the Seebeck effect, the influence of superparamagnetic nanoparticles on the electronic and phonon transport of conventional nonmagnetic thermoelectric materials, as well as the spin‐related thermoelectric transport phenomenon in magnetic materials, are discussed. Then, the Nernst effect‐related transverse thermoelectric transport properties in nonmagnetic and magnetic topological materials are summarized, followed by a short introduction to the Nernst devices. Last, a further outlook on this new research direction is offered. Abstract The introduction of magnetism into a solid material might significantly modulate its electronic transport behavior, thereby serving as a means to tune the thermoelectric properties that have attracted considerable research attention in recent years. In this review, an introduction to recent studies on the interplay of magnetism and the thermoelectric Seebeck and Nernst effects is given. Concerning the Seebeck effect, the influence of superparamagnetic nanoparticles on the electronic and phonon transport of conventional nonmagnetic thermoelectric materials, as well as the spin‐related thermoelectric transport phenomenon in magnetic materials, are discussed. Then, the Nernst effect‐related transverse thermoelectric transport properties in nonmagnetic and magnetic topological materials are summarized, followed by a short introduction to the Nernst devices. Last, a further outlook on this new research direction is offered. |
Author | Zhu, Tiejun Fu, Chenguang Chen, Mengzhao Liu, Shuo |
Author_xml | – sequence: 1 givenname: Shuo surname: Liu fullname: Liu, Shuo organization: State Key Laboratory of Silicon Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China – sequence: 2 givenname: Mengzhao surname: Chen fullname: Chen, Mengzhao organization: State Key Laboratory of Silicon Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China – sequence: 3 givenname: Chenguang surname: Fu fullname: Fu, Chenguang organization: State Key Laboratory of Silicon Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China – sequence: 4 givenname: Tiejun orcidid: 0000-0002-3868-0633 surname: Zhu fullname: Zhu, Tiejun organization: State Key Laboratory of Silicon Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China |
BookMark | eNp1UMtKA0EQHERBjbl6XvCc2D2P3R1vIj4CiiDxPMzOQydsduLs-MjfuxoVETx1011VVNU-2e5i5wg5RJgiAD3Wq7c0pUAZAKDYInu0EjhBCrD9a98l475fDBBaS2Qc98jJ_NEVsy67tGr1uoi-uNEPncuhXxa6s8XwTsvoWmdyCibk9UlxWty5l-BeD8iO123vxl9zRO4vzudnV5Pr28vZ2en1xDBgedJUUkJV-lJYzyuvJbXcyMZ4iwYE974yHmtRAfMVL4UXqJmzKIXllJYU2IjMNro26oVapbDUaa2iDurzENOD0ikH0zpVcw4N1hYFBc69bEojDbMOsazrhvFB62ijtUrx6dn1WS3ic-oG-4qBxFJUopYDim9QJsW-T86rIbnOIXY56dAqBPVRuvooXf2UPtCmf2jfZv8hvANxEoNY |
CitedBy_id | crossref_primary_10_1016_j_solidstatesciences_2024_107454 crossref_primary_10_1557_s43578_024_01457_8 crossref_primary_10_1016_j_cplett_2024_141748 crossref_primary_10_1002_adem_202400487 crossref_primary_10_1016_j_jallcom_2025_179319 crossref_primary_10_1002_aenm_202400411 crossref_primary_10_1007_s00158_024_03897_6 crossref_primary_10_1016_j_ceramint_2024_07_102 crossref_primary_10_1103_PhysRevB_111_045149 crossref_primary_10_1021_acs_chemmater_4c01535 |
Cites_doi | 10.1038/s41467-020-20838-1 10.1063/1.1777361 10.1039/c2jm32916f 10.1103/PhysRevLett.99.086602 10.1038/s41586-020-2230-z 10.1063/1.3672207 10.1038/126274a0 10.1201/9781420049718 10.1038/s41563-021-01149-2 10.1016/0011-2275(90)90258-E 10.1063/1.2768005 10.1039/C9TA01156K 10.1016/j.joule.2022.08.016 10.1103/PhysRevB.98.165113 10.1021/acs.chemrev.0c00026 10.1146/annurev-conmatphys-031016-025458 10.1002/adfm.202206519 10.1038/s41467-018-06088-2 10.1038/s41467-021-25722-0 10.1103/PhysRevB.70.115334 10.1119/1.1934006 10.1038/s42254-022-00477-9 10.1103/PhysRevB.98.201107 10.1126/science.aad3749 10.1039/C4EE03042G 10.1039/C8EE02077A 10.1038/ncomms10766 10.1002/adma.202201350 10.1038/nphys3969 10.1103/PhysRevLett.97.026603 10.1016/j.physb.2006.03.067 10.1002/adma.202003168 10.1002/adfm.202202188 10.1103/PhysRevB.99.165117 10.1103/PhysRevB.100.054422 10.1103/PhysRevB.47.12727 10.1038/nphys3347 10.1063/5.0023111 10.1080/14686996.2021.1951593 10.1002/smll.201702013 10.1039/C9TC06330G 10.1002/adfm.201705845 10.1038/s41567-018-0225-6 10.1103/RevModPhys.82.1959 10.7567/APEX.6.033003 10.1103/PhysRevB.97.161404 10.1063/1.5127553 10.1103/PhysRevB.87.224403 10.1007/s12598-020-01652-6 10.1016/S0022-3697(72)80431-1 10.1126/sciadv.aat5935 10.1038/nmat3201 10.1103/PhysRevB.77.214304 10.1002/adfm.202202143 10.1103/RevModPhys.82.3045 10.1080/01422418608228774 10.2183/pjab.97.004 10.1103/PhysRevB.87.064411 10.1103/PhysRevB.88.104412 10.1103/PhysRevB.101.134407 10.1038/nature01639 10.1140/epjp/i2016-16076-8 10.1143/JPSJ.11.1083 10.1080/14686996.2019.1585143 10.1103/PhysRevB.82.195105 10.1039/C5TA04418A 10.1016/0038-1101(64)90087-5 10.1016/j.mtphys.2017.05.003 10.1063/1.4868584 10.1126/science.aaa9297 10.1103/RevModPhys.90.015001 10.1126/science.1093164 10.1002/advs.202100782 10.1063/5.0005481 10.1103/PhysRevB.81.064404 10.7566/JPSJ.90.122001 10.1063/1.1719824 10.1038/nphys3465 10.1002/adma.201103153 10.1038/s41586-021-04105-x 10.1038/s41427-019-0116-z 10.1126/sciadv.abf1467 10.1021/acsami.9b02124 10.1016/j.xcrp.2021.100614 10.1038/nature11439 10.1038/nphys4181 10.1103/PhysRevB.13.2072 10.1016/j.mtener.2022.100960 10.1038/s43246-020-00088-w 10.1038/s41467-022-35289-z 10.1038/s41467-021-24161-1 10.1103/PhysRevB.94.144407 10.1088/1361-6633/ac105f 10.1103/PhysRevB.74.075201 10.1002/adma.202200931 10.1063/5.0041100 10.1002/adma.202100751 10.1103/PhysRevLett.125.086602 10.1103/PhysRevB.101.180404 10.1017/CBO9780511845000 10.1126/sciadv.aat9461 10.1103/PhysRevB.77.104532 10.1038/nnano.2016.182 10.1063/1.1729315 10.1038/s41524-020-0342-5 10.1063/1.5131001 10.1103/PhysRev.126.2040 10.1088/0508-3443/5/11/303 10.1126/science.aak9997 10.1103/RevModPhys.83.1057 10.1039/C9TA13284H 10.1038/nphys3372 10.1126/sciadv.abk1480 10.1038/549169a 10.1038/nature23667 10.1016/j.progsolidstchem.2011.02.001 10.1126/science.aav2327 10.1103/PhysRevLett.118.136601 10.1038/nmat2090 10.1039/C7TC01480E 10.1038/s41578-018-0036-5 10.1063/1.5003611 10.35848/1882-0786/ac8637 10.1103/PhysRevB.72.020402 10.1007/s11433-019-1445-4 10.1039/C9EE03446C 10.1038/s41567-018-0234-5 10.1103/RevModPhys.82.1539 10.1002/adma.201605884 10.1021/acsami.0c21813 10.1038/ncomms13013 10.1103/PhysRevB.83.205101 10.1063/1.1753970 10.1038/s41563-020-00820-4 10.1002/adma.201806622 10.1016/j.ssc.2009.10.044 10.1103/PhysRevLett.18.395 10.1002/adma.201202919 10.1073/pnas.1111419109 10.1063/1.2185850 10.1126/science.1159725 10.1139/p76-011 10.1103/PhysRevB.88.094410 10.1038/nphys1270 10.1016/S0031-9163(64)80006-8 10.1103/PhysRev.73.1349 |
ContentType | Journal Article |
Copyright | 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7XB 88I 8FE 8FG 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU D1I DWQXO GNUQQ HCIFZ KB. M2P PCBAR PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI Q9U DOA |
DOI | 10.1002/apxr.202300015 |
DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central ProQuest Central Student ProQuest SciTech Premium Collection Materials Science Database Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2751-1200 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_8440b18d152044f9b6c9c3de11688b34 10_1002_apxr_202300015 |
GroupedDBID | 0R~ 24P 88I AAFWJ AAYXX ABJCF ABUWG ACCMX AEUYN AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ALUQN AVUZU AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU CITATION DWQXO EBS GNUQQ GROUPED_DOAJ HCIFZ KB. M2P M~E PCBAR PDBOC PHGZM PHGZT PIMPY 3V. 7XB 8FE 8FG 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY ARCSS D1I PKEHL PQEST PQGLB PQQKQ PQUKI Q9U WIN PUEGO |
ID | FETCH-LOGICAL-c303t-b799076f65df47fa92d4c9bcfd1c054ff7cf185703f7465f51a3ed195d4226203 |
IEDL.DBID | BENPR |
ISSN | 2751-1200 |
IngestDate | Wed Aug 27 01:25:42 EDT 2025 Wed Aug 13 08:11:14 EDT 2025 Thu Apr 24 23:02:51 EDT 2025 Tue Jul 01 02:32:59 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c303t-b799076f65df47fa92d4c9bcfd1c054ff7cf185703f7465f51a3ed195d4226203 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3868-0633 |
OpenAccessLink | https://www.proquest.com/docview/3091657589?pq-origsite=%requestingapplication% |
PQID | 3091657589 |
PQPubID | 6852862 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8440b18d152044f9b6c9c3de11688b34 proquest_journals_3091657589 crossref_citationtrail_10_1002_apxr_202300015 crossref_primary_10_1002_apxr_202300015 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-00 20230901 2023-09-01 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-00 |
PublicationDecade | 2020 |
PublicationPlace | Edinburgh |
PublicationPlace_xml | – name: Edinburgh |
PublicationTitle | Advanced Physics Research |
PublicationYear | 2023 |
Publisher | John Wiley & Sons, Inc Wiley-VCH |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley-VCH |
References | e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 Heremans J. P. (e_1_2_8_103_1) 2021 e_1_2_8_1_2 e_1_2_8_5_1 e_1_2_8_9_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_64_2 e_1_2_8_60_3 e_1_2_8_60_4 e_1_2_8_83_2 e_1_2_8_1_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_60_2 e_1_2_8_19_1 e_1_2_8_19_2 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_15_2 e_1_2_8_91_1 e_1_2_8_95_1 e_1_2_8_95_2 e_1_2_8_95_3 e_1_2_8_95_4 e_1_2_8_99_1 e_1_2_8_30_3 e_1_2_8_30_2 e_1_2_8_76_2 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_53_2 e_1_2_8_101_1 e_1_2_8_72_2 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_29_2 e_1_2_8_25_1 Ding L. C. (e_1_2_8_88_1) 2019; 9 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_6_2 e_1_2_8_6_1 e_1_2_8_63_4 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_21_2 e_1_2_8_63_2 e_1_2_8_44_1 e_1_2_8_63_3 e_1_2_8_86_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_82_1 e_1_2_8_18_1 e_1_2_8_18_2 e_1_2_8_14_1 e_1_2_8_79_3 e_1_2_8_79_2 e_1_2_8_37_1 e_1_2_8_79_1 e_1_2_8_94_1 e_1_2_8_90_1 e_1_2_8_98_1 e_1_2_8_98_2 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_102_1 e_1_2_8_71_1 e_1_2_8_28_1 e_1_2_8_28_2 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_47_2 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 Sun P. (e_1_2_8_41_1) 2021; 2 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_59_3 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_59_2 e_1_2_8_70_1 e_1_2_8_97_1 e_1_2_8_97_2 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_93_1 e_1_2_8_27_2 e_1_2_8_27_3 e_1_2_8_27_4 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_69_1 e_1_2_8_27_6 e_1_2_8_27_7 e_1_2_8_27_8 e_1_2_8_27_9 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_8_1 e_1_2_8_65_2 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_65_1 Li A. R. (e_1_2_8_87_1) 2020; 2020 e_1_2_8_84_1 e_1_2_8_61_1 e_1_2_8_16_2 e_1_2_8_16_3 e_1_2_8_39_1 e_1_2_8_16_4 e_1_2_8_16_5 e_1_2_8_35_2 e_1_2_8_58_2 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 e_1_2_8_92_1 e_1_2_8_96_1 e_1_2_8_100_1 e_1_2_8_96_2 Kittel C. (e_1_2_8_17_1) 1996 e_1_2_8_77_2 e_1_2_8_31_1 e_1_2_8_77_1 Hu H. P. (e_1_2_8_1_3) 2022; 3 e_1_2_8_12_1 e_1_2_8_27_10 e_1_2_8_54_1 e_1_2_8_50_2 e_1_2_8_100_2 Xu Y. J. (e_1_2_8_27_5) 2021; 2 e_1_2_8_73_1 e_1_2_8_50_1 |
References_xml | – ident: e_1_2_8_84_1 doi: 10.1038/s41467-020-20838-1 – ident: e_1_2_8_60_4 doi: 10.1063/1.1777361 – ident: e_1_2_8_15_2 doi: 10.1039/c2jm32916f – ident: e_1_2_8_82_1 doi: 10.1103/PhysRevLett.99.086602 – ident: e_1_2_8_27_3 doi: 10.1038/s41586-020-2230-z – ident: e_1_2_8_47_1 doi: 10.1063/1.3672207 – ident: e_1_2_8_34_1 doi: 10.1038/126274a0 – ident: e_1_2_8_5_1 doi: 10.1201/9781420049718 – ident: e_1_2_8_85_1 doi: 10.1038/s41563-021-01149-2 – ident: e_1_2_8_52_1 doi: 10.1016/0011-2275(90)90258-E – ident: e_1_2_8_54_1 doi: 10.1063/1.2768005 – ident: e_1_2_8_16_5 doi: 10.1039/C9TA01156K – ident: e_1_2_8_27_7 doi: 10.1016/j.joule.2022.08.016 – ident: e_1_2_8_29_2 doi: 10.1103/PhysRevB.98.165113 – ident: e_1_2_8_1_2 doi: 10.1021/acs.chemrev.0c00026 – ident: e_1_2_8_28_2 doi: 10.1146/annurev-conmatphys-031016-025458 – ident: e_1_2_8_90_1 doi: 10.1002/adfm.202206519 – ident: e_1_2_8_83_2 doi: 10.1038/s41467-018-06088-2 – ident: e_1_2_8_14_1 doi: 10.1038/s41467-021-25722-0 – ident: e_1_2_8_35_1 doi: 10.1103/PhysRevB.70.115334 – ident: e_1_2_8_89_1 doi: 10.1038/s41586-020-2230-z – ident: e_1_2_8_32_1 doi: 10.1119/1.1934006 – ident: e_1_2_8_74_1 doi: 10.1038/s42254-022-00477-9 – ident: e_1_2_8_77_1 doi: 10.1103/PhysRevB.98.201107 – ident: e_1_2_8_10_1 doi: 10.1126/science.aad3749 – ident: e_1_2_8_11_1 doi: 10.1039/C4EE03042G – ident: e_1_2_8_62_1 doi: 10.1039/C8EE02077A – ident: e_1_2_8_6_2 doi: 10.1038/ncomms10766 – ident: e_1_2_8_86_1 doi: 10.1002/adma.202201350 – ident: e_1_2_8_29_1 doi: 10.1038/nphys3969 – ident: e_1_2_8_81_1 doi: 10.1103/PhysRevLett.97.026603 – ident: e_1_2_8_55_1 doi: 10.1016/j.physb.2006.03.067 – ident: e_1_2_8_71_1 doi: 10.1002/adma.202003168 – ident: e_1_2_8_26_1 doi: 10.1002/adfm.202202188 – ident: e_1_2_8_67_1 doi: 10.1103/PhysRevB.99.165117 – ident: e_1_2_8_95_1 doi: 10.1103/PhysRevB.100.054422 – volume: 2020 year: 2020 ident: e_1_2_8_87_1 publication-title: Research – ident: e_1_2_8_4_1 doi: 10.1103/PhysRevB.47.12727 – ident: e_1_2_8_18_1 doi: 10.1038/nphys3347 – ident: e_1_2_8_98_2 doi: 10.1063/5.0023111 – ident: e_1_2_8_24_1 doi: 10.1080/14686996.2021.1951593 – ident: e_1_2_8_30_1 doi: 10.1002/smll.201702013 – ident: e_1_2_8_56_1 doi: 10.1039/C9TC06330G – ident: e_1_2_8_58_1 doi: 10.1002/adfm.201705845 – ident: e_1_2_8_27_4 doi: 10.1038/s41567-018-0225-6 – ident: e_1_2_8_76_2 doi: 10.1103/RevModPhys.82.1959 – ident: e_1_2_8_100_2 doi: 10.7567/APEX.6.033003 – ident: e_1_2_8_77_2 doi: 10.1103/PhysRevB.97.161404 – ident: e_1_2_8_95_2 doi: 10.1063/1.5127553 – ident: e_1_2_8_96_2 doi: 10.1103/PhysRevB.87.224403 – ident: e_1_2_8_30_2 doi: 10.1007/s12598-020-01652-6 – ident: e_1_2_8_21_1 doi: 10.1016/S0022-3697(72)80431-1 – ident: e_1_2_8_57_1 doi: 10.1126/sciadv.aat5935 – ident: e_1_2_8_18_2 doi: 10.1038/nmat3201 – volume-title: Advances in Thermoelectricity: Foundational Issues, Materials and Nanotechnology year: 2021 ident: e_1_2_8_103_1 – ident: e_1_2_8_35_2 doi: 10.1103/PhysRevB.77.214304 – ident: e_1_2_8_63_4 doi: 10.1002/adfm.202202143 – ident: e_1_2_8_64_1 doi: 10.1103/RevModPhys.82.3045 – ident: e_1_2_8_75_1 doi: 10.1080/01422418608228774 – ident: e_1_2_8_42_1 doi: 10.2183/pjab.97.004 – ident: e_1_2_8_96_1 doi: 10.1103/PhysRevB.87.064411 – ident: e_1_2_8_73_1 doi: 10.1103/PhysRevB.88.104412 – ident: e_1_2_8_97_1 doi: 10.1103/PhysRevB.101.134407 – ident: e_1_2_8_23_1 doi: 10.1038/nature01639 – ident: e_1_2_8_50_2 doi: 10.1140/epjp/i2016-16076-8 – ident: e_1_2_8_22_1 doi: 10.1143/JPSJ.11.1083 – ident: e_1_2_8_27_10 doi: 10.1080/14686996.2019.1585143 – ident: e_1_2_8_51_1 doi: 10.1103/PhysRevB.82.195105 – ident: e_1_2_8_58_2 doi: 10.1039/C5TA04418A – ident: e_1_2_8_60_2 doi: 10.1016/0038-1101(64)90087-5 – ident: e_1_2_8_45_1 doi: 10.1016/j.mtphys.2017.05.003 – ident: e_1_2_8_37_1 doi: 10.1063/1.4868584 – ident: e_1_2_8_72_1 doi: 10.1126/science.aaa9297 – ident: e_1_2_8_66_1 doi: 10.1103/RevModPhys.90.015001 – ident: e_1_2_8_6_1 doi: 10.1126/science.1093164 – ident: e_1_2_8_27_2 doi: 10.1002/advs.202100782 – ident: e_1_2_8_27_1 doi: 10.1063/5.0005481 – ident: e_1_2_8_53_2 doi: 10.1103/PhysRevB.81.064404 – ident: e_1_2_8_27_6 doi: 10.7566/JPSJ.90.122001 – ident: e_1_2_8_60_1 doi: 10.1063/1.1719824 – ident: e_1_2_8_47_2 doi: 10.1038/nphys3465 – ident: e_1_2_8_9_1 doi: 10.1002/adma.201103153 – ident: e_1_2_8_65_1 doi: 10.1038/s41586-021-04105-x – ident: e_1_2_8_79_3 doi: 10.1038/s41427-019-0116-z – ident: e_1_2_8_100_1 doi: 10.1080/14686996.2019.1585143 – volume-title: Introduction to Solid State Physics year: 1996 ident: e_1_2_8_17_1 – ident: e_1_2_8_79_2 doi: 10.1126/sciadv.abf1467 – ident: e_1_2_8_59_1 doi: 10.1021/acsami.9b02124 – volume: 2 year: 2021 ident: e_1_2_8_27_5 publication-title: Innovation – ident: e_1_2_8_40_1 doi: 10.1016/j.xcrp.2021.100614 – ident: e_1_2_8_15_1 doi: 10.1038/nature11439 – ident: e_1_2_8_83_1 doi: 10.1038/nphys4181 – ident: e_1_2_8_44_1 doi: 10.1103/PhysRevB.13.2072 – ident: e_1_2_8_59_3 doi: 10.1016/j.mtener.2022.100960 – ident: e_1_2_8_97_2 doi: 10.1038/s43246-020-00088-w – ident: e_1_2_8_63_3 doi: 10.1038/s41467-022-35289-z – ident: e_1_2_8_63_1 doi: 10.1038/s41467-021-24161-1 – volume: 3 year: 2022 ident: e_1_2_8_1_3 publication-title: Innovation – ident: e_1_2_8_19_1 doi: 10.1103/PhysRevB.94.144407 – ident: e_1_2_8_30_3 doi: 10.1088/1361-6633/ac105f – ident: e_1_2_8_50_1 doi: 10.1103/PhysRevB.74.075201 – ident: e_1_2_8_63_2 doi: 10.1002/adma.202200931 – ident: e_1_2_8_95_4 doi: 10.1063/5.0041100 – ident: e_1_2_8_101_1 doi: 10.1002/adma.202100751 – ident: e_1_2_8_93_1 doi: 10.1103/PhysRevLett.125.086602 – ident: e_1_2_8_95_3 doi: 10.1103/PhysRevB.101.180404 – ident: e_1_2_8_33_1 doi: 10.1017/CBO9780511845000 – ident: e_1_2_8_21_2 doi: 10.1126/sciadv.aat9461 – ident: e_1_2_8_49_1 doi: 10.1103/PhysRevB.77.104532 – ident: e_1_2_8_16_1 doi: 10.1038/nnano.2016.182 – ident: e_1_2_8_60_3 doi: 10.1063/1.1729315 – ident: e_1_2_8_92_1 doi: 10.1038/s41524-020-0342-5 – ident: e_1_2_8_98_1 doi: 10.1063/1.5131001 – ident: e_1_2_8_43_1 doi: 10.1103/PhysRev.126.2040 – ident: e_1_2_8_3_1 doi: 10.1088/0508-3443/5/11/303 – ident: e_1_2_8_1_1 doi: 10.1126/science.aak9997 – ident: e_1_2_8_64_2 doi: 10.1103/RevModPhys.83.1057 – ident: e_1_2_8_16_4 doi: 10.1039/C9TA13284H – ident: e_1_2_8_78_1 doi: 10.1038/nphys3372 – ident: e_1_2_8_91_1 doi: 10.1126/sciadv.abk1480 – ident: e_1_2_8_36_1 doi: 10.1038/549169a – ident: e_1_2_8_16_2 doi: 10.1038/nature23667 – ident: e_1_2_8_94_1 doi: 10.1016/j.progsolidstchem.2011.02.001 – ident: e_1_2_8_69_1 doi: 10.1126/science.aav2327 – ident: e_1_2_8_80_1 doi: 10.1103/PhysRevLett.118.136601 – ident: e_1_2_8_2_1 doi: 10.1038/nmat2090 – ident: e_1_2_8_39_1 doi: 10.1039/C7TC01480E – ident: e_1_2_8_68_1 doi: 10.1038/s41578-018-0036-5 – ident: e_1_2_8_102_1 doi: 10.1063/1.5003611 – ident: e_1_2_8_27_9 doi: 10.35848/1882-0786/ac8637 – ident: e_1_2_8_25_1 doi: 10.1103/PhysRevB.72.020402 – ident: e_1_2_8_61_1 doi: 10.1007/s11433-019-1445-4 – volume: 9 year: 2019 ident: e_1_2_8_88_1 publication-title: Phys. Rev. X – ident: e_1_2_8_16_3 doi: 10.1039/C9EE03446C – ident: e_1_2_8_99_1 doi: 10.1038/s41567-018-0234-5 – ident: e_1_2_8_76_1 doi: 10.1103/RevModPhys.82.1539 – ident: e_1_2_8_8_1 doi: 10.1002/adma.201605884 – ident: e_1_2_8_59_2 doi: 10.1021/acsami.0c21813 – ident: e_1_2_8_72_2 doi: 10.1038/ncomms13013 – ident: e_1_2_8_70_1 doi: 10.1103/PhysRevB.83.205101 – ident: e_1_2_8_27_8 doi: 10.1063/1.1753970 – volume: 2 year: 2021 ident: e_1_2_8_41_1 publication-title: Innovation – ident: e_1_2_8_28_1 doi: 10.1038/s41563-020-00820-4 – ident: e_1_2_8_79_1 doi: 10.1002/adma.201806622 – ident: e_1_2_8_53_1 doi: 10.1016/j.ssc.2009.10.044 – ident: e_1_2_8_19_2 doi: 10.1103/PhysRevLett.18.395 – ident: e_1_2_8_7_1 doi: 10.1002/adma.201202919 – ident: e_1_2_8_13_1 doi: 10.1073/pnas.1111419109 – ident: e_1_2_8_31_1 doi: 10.1063/1.2185850 – ident: e_1_2_8_12_1 doi: 10.1126/science.1159725 – ident: e_1_2_8_20_1 doi: 10.1139/p76-011 – ident: e_1_2_8_46_1 doi: 10.1103/PhysRevB.88.094410 – ident: e_1_2_8_65_2 doi: 10.1038/nphys1270 – ident: e_1_2_8_38_1 doi: 10.1016/S0031-9163(64)80006-8 – ident: e_1_2_8_48_1 doi: 10.1103/PhysRev.73.1349 |
SSID | ssj0002891341 |
Score | 2.3224602 |
Snippet | The introduction of magnetism into a solid material might significantly modulate its electronic transport behavior, thereby serving as a means to tune the... Abstract The introduction of magnetism into a solid material might significantly modulate its electronic transport behavior, thereby serving as a means to tune... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
SubjectTerms | Anisotropy anomalous Nernst effect Electricity Electron spin Electron transport Electrons Entropy Heat conductivity Magnetic fields Magnetic materials Magnetic properties Magnetism magneto‐thermoelectrics Nanoparticles Nernst effect Nernst-Ettingshausen effect Seebeck effect Semiconductors Thermal energy Thermoelectric materials thermoelectrics topological materials Transport phenomena Transport properties |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwGA2ykxdRVJxOyUHwVNb8bLLbFMcQ5snBbiU_ZbJ1Y5ug_71J042JiBcvPbQfbfq9tu-lSd4HwK0kXBChcaa0kRm1CmWCSR02WHNsvE0LaUfPfDimTxM22Sv1FeeEJXvglLiuoDTXSNjAMzmlXmpupCHWIcSF0KR2Ag2ct9eZekvDZ9GpbOvSmOOuWn5E-8-guKNM-MZCtVn_j29xTTCDY3DUKEPYTy06AQeuOgW9ACNMEwNn6hMuPByp18ptpus5VJWF4fBqvki1bKYmKOoe7MP0v_8MjAePLw_DrCl3kJnAI5tMF4EZCu45s54WXklsqZE65AuZIKy8L4yPzk058QXlzDOkiLNIMhtXw-KcnINWtajcBYAEC8Gs4gUNp2JGCBfCtEXO5Uo7b9sg295-aRov8FiSYlYmF2NcxnSVu3S1wd0ufplcMH6NvI_Z3EVF9-p6R8C0bDAt_8K0DTpbLMrmlVqXJKAcR4mEvPyPa1yBw9joNF2sA1qb1bu7Dvpio2_qR-kLaEzK1Q priority: 102 providerName: Directory of Open Access Journals |
Title | The Interplay of Magnetism and Thermoelectricity: A Review |
URI | https://www.proquest.com/docview/3091657589 https://doaj.org/article/8440b18d152044f9b6c9c3de11688b34 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZ5XHoJLW3ppsmiQyEnEetpKZeSlN2EwIYSGsjN6BkCib3d3UB66W_PyNZuKaW56GANxh5JM59mpG8Q-mK40lw7RqzzhohgKdHSOGiYU8ynMFyknV2pixtxeStvS8BtWY5Vrm1ib6hD53OM_JiDY8tJAm2-zn-SXDUqZ1dLCY1ttAsmWMPma_dscvX9ehNlYTkL15evZLWkhMKcWDM3VuzYzp8zJSig8Awd_vJMPYH_P_a5dzrTt2ivoEV8OgzvO7QV2_foBIYWD4cFH-wv3CU8s3dtXN0vH7FtA4buxWM31Le594CyT_ApHnIAH9DNdPLj2wUpJRCIB9-yIq4Gb1GrpGRIok7WsCC8caBD6gFspVT7lNmcKp5qoWSS1PIYqJEh35BlFf-IdtqujZ8Q5kxrGayqBbxKeq0jiLlAY6ysiymMEFn_fuMLP3guU_HQDMzGrMnqajbqGqGjjfx8YMb4r-RZ1uZGKjNa9w-6xV1TFkijhagc1QHwRCVEMk5543mIlCqtHRcjdLAei6Yss2XzZ1Lsv979Gb3JnzMcDjtAO6vFUzwENLFyY7Stp-fjMnHG_Z4c2tnvyQu3Csmy |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTxQxFG8QD3oxGjUuIvSg8dQw_ZyWxBBA10VYTpBwq_0kJDCz7q5R_in_RtrpzBpj9MZlDtOXpvP663tv-trfA-CtokJSaQky1inEvMFIcmXTg1hBXPTlIu30VEzO2ZcLfrEGfg13YfKxysEmdobaty7vke_Q5NhykkCqvdk3lKtG5ezqUEKjwOI43P5Iv2yLD0cf0_y-I2T86exwgvqqAsglc71Etk4GuBZRcB9ZHY0injll07CwS_FLjLWLmSCporFmgkeODQ0eK-7zpVNS0dTvA_CQUaryipLjz6s9HZJzfl2xTFJzjHBC4MATWZEdM_uZCUhTzJ8DlT_8YFcu4C9v0Lm48VPwpI9N4X4B0zOwFprnYDcBCZajidfmFrYRTs1lE5ZXixtoGg9T8_ymLdV0rlyK6XfhPiwZhxfg_F5U8xKsN20TXgFIiZTcG1Gz1BV3UoYkZj0OoTI2RD8CaPh87Xo28lwU41oXHmWis7r0Sl0j8H4lPys8HP-UPMjaXEll_uzuRTu_1P1y1JKxymLpU_RSMRaVFU456gPGQkpL2QhsDnOh-0W90L8huPH_5m3waHI2PdEnR6fHr8HjPLRyLG0TrC_n38ObFMcs7VYHHgi-3jda7wBG1AG9 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Interplay+of+Magnetism+and+Thermoelectricity%3A+A+Review&rft.jtitle=Advanced+Physics+Research&rft.au=Liu%2C+Shuo&rft.au=Chen%2C+Mengzhao&rft.au=Fu%2C+Chenguang&rft.au=Zhu%2C+Tiejun&rft.date=2023-09-01&rft.issn=2751-1200&rft.eissn=2751-1200&rft.volume=2&rft.issue=9&rft_id=info:doi/10.1002%2Fapxr.202300015&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_apxr_202300015 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2751-1200&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2751-1200&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2751-1200&client=summon |