Learning discriminative update adaptive spatial-temporal regularized correlation filter for RGB-T tracking
•An adaptive spatial-temporal regularized correlation filter model is proposed to achieve robust tracking.•A relative peak discriminative method for model updating is proposed to avoid tracker drifting.•An adaptive weighting ensemble scheme is utilized to obtain the complementary benefits of the RGB...
Saved in:
Published in | Journal of visual communication and image representation Vol. 72; p. 102881 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.10.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •An adaptive spatial-temporal regularized correlation filter model is proposed to achieve robust tracking.•A relative peak discriminative method for model updating is proposed to avoid tracker drifting.•An adaptive weighting ensemble scheme is utilized to obtain the complementary benefits of the RGB and thermal modes.•An effective ADMM algorithm is designed to optimize the RGB-T correlation filter model.•Experimental results demonstrate the effectiveness of the proposed tracker against other state-of-the-art RGB-T trackers.
The RGB-T trackers based on correlation filter framework have been extensively investigated for that they can track targets more accurately in most complex scenes. However, the performance of these trackers is limited when facing some specific challenging scenarios, such as occlusion and background clutter. For different tracking targets, most of these trackers utilize fixed regularization constraint to build the filter model, which is obviously unreasonable to effectively present the appearance changes and characteristics of a specific target. In addition, they adopt a simple model update mechanism based on linear interpolation, which can easily lead to model degradation in challenging scenarios, resulting in tracker drift. To solve the above problems, we propose a novel adaptive spatial-temporal regularized correlation filter model to learn an appropriate regularization for achieving robust tracking and a relative peak discriminative method for model updating to avoid the model degradation. Besides, to make better integrate the unique advantages of the two modes and adapt the changing appearance of the target, an adaptive weighting ensemble scheme and a multi-scale search mechanism are adopted, respectively. To optimize the proposed model, we designed an efficient ADMM algorithm, which greatly improved the efficiency. Extensive experiments have been carried out on two available datasets, RGBT234 and RGBT210, and the experimental results indicate that the tracker proposed by us performs favorably in both accuracy and robustness against the state-of-the-art RGB-T trackers. |
---|---|
AbstractList | •An adaptive spatial-temporal regularized correlation filter model is proposed to achieve robust tracking.•A relative peak discriminative method for model updating is proposed to avoid tracker drifting.•An adaptive weighting ensemble scheme is utilized to obtain the complementary benefits of the RGB and thermal modes.•An effective ADMM algorithm is designed to optimize the RGB-T correlation filter model.•Experimental results demonstrate the effectiveness of the proposed tracker against other state-of-the-art RGB-T trackers.
The RGB-T trackers based on correlation filter framework have been extensively investigated for that they can track targets more accurately in most complex scenes. However, the performance of these trackers is limited when facing some specific challenging scenarios, such as occlusion and background clutter. For different tracking targets, most of these trackers utilize fixed regularization constraint to build the filter model, which is obviously unreasonable to effectively present the appearance changes and characteristics of a specific target. In addition, they adopt a simple model update mechanism based on linear interpolation, which can easily lead to model degradation in challenging scenarios, resulting in tracker drift. To solve the above problems, we propose a novel adaptive spatial-temporal regularized correlation filter model to learn an appropriate regularization for achieving robust tracking and a relative peak discriminative method for model updating to avoid the model degradation. Besides, to make better integrate the unique advantages of the two modes and adapt the changing appearance of the target, an adaptive weighting ensemble scheme and a multi-scale search mechanism are adopted, respectively. To optimize the proposed model, we designed an efficient ADMM algorithm, which greatly improved the efficiency. Extensive experiments have been carried out on two available datasets, RGBT234 and RGBT210, and the experimental results indicate that the tracker proposed by us performs favorably in both accuracy and robustness against the state-of-the-art RGB-T trackers. |
ArticleNumber | 102881 |
Author | Liu, Jie Yan, Yunhui Feng, Mingzheng Wang, Yanyan Song, Kechen |
Author_xml | – sequence: 1 givenname: Mingzheng surname: Feng fullname: Feng, Mingzheng – sequence: 2 givenname: Kechen surname: Song fullname: Song, Kechen email: songkc@me.neu.edu.cn – sequence: 3 givenname: Yanyan surname: Wang fullname: Wang, Yanyan – sequence: 4 givenname: Jie surname: Liu fullname: Liu, Jie – sequence: 5 givenname: Yunhui surname: Yan fullname: Yan, Yunhui email: yanyh@mail.neu.edu.cn |
BookMark | eNqFkE1OwzAQRi1UJErhBGx8gZSJnSbxggVUUJAqIaGytvwzrhzSJHLSSnB6nJYVC1h5PJrn-fwuyaRpGyTkJoV5Cml-W82rg_FhzoCNHVaW6RmZpiAWiYAin4x1ViScAb8gl31fAQAXPJuSao0qNL7ZUut7E_zON2rwB6T7zqoBqbKqO977LvZVnQy469qgahpwu69V8F9oqWlDwDoOtA11vh4wUNcG-rZ6SDZ0CMp8xA1X5Nypusfrn3NG3p8eN8vnZP26elnerxPDgQ-J0iCsyHO2EIw70BmzBi3wssgLnS40lJq5ouCgLTJweeaYLbXR1lohsEA-I-L0rglt3wd00vjhmC0m8bVMQY7SZCWP0uQoTZ6kRZb_YrvoRIXPf6i7E4XxWwePQfbGYxNj-4BmkLb1f_LfwZCMag |
CitedBy_id | crossref_primary_10_1142_S0218126622500414 crossref_primary_10_3390_s23146612 crossref_primary_10_1016_j_jvcir_2023_103882 crossref_primary_10_1016_j_jvcir_2024_104179 crossref_primary_10_1007_s11042_023_16418_2 crossref_primary_10_1016_j_inffus_2023_101881 crossref_primary_10_1109_TCSVT_2024_3391802 crossref_primary_10_1109_TIM_2024_3436098 crossref_primary_10_1109_TPAMI_2024_3521416 crossref_primary_10_1016_j_jvcir_2023_103946 crossref_primary_10_1145_3630100 crossref_primary_10_1016_j_inffus_2024_102492 crossref_primary_10_1109_TMM_2023_3310295 crossref_primary_10_1016_j_engappai_2023_105919 crossref_primary_10_2139_ssrn_4137009 crossref_primary_10_1109_TIP_2021_3125504 crossref_primary_10_1016_j_imavis_2022_104547 crossref_primary_10_1016_j_knosys_2022_108945 crossref_primary_10_1109_TCSVT_2024_3425455 crossref_primary_10_1145_3678176 crossref_primary_10_1038_s41598_023_39978_7 crossref_primary_10_1016_j_jvcir_2021_103306 crossref_primary_10_1016_j_engappai_2023_107273 crossref_primary_10_1007_s11227_024_06443_9 crossref_primary_10_1109_TIM_2024_3365162 |
Cites_doi | 10.1155/2019/2437521 10.1007/978-3-642-33765-9_50 10.1109/ICInfA.2017.8078941 10.1016/j.knosys.2018.12.011 10.1016/j.jvcir.2018.01.008 10.1109/CVPR.2018.00515 10.1049/iet-cvi.2017.0271 10.1007/s11432-011-4536-9 10.1016/j.neucom.2019.01.022 10.1109/TPAMI.2014.2345390 10.1109/CVPR.2017.531 10.1016/j.image.2017.09.001 10.1109/TIP.2016.2614135 10.1109/ICCV.2015.490 10.1109/ICCVW.2019.00278 10.1016/j.knosys.2017.07.032 10.1016/j.jvcir.2019.102603 10.1016/j.jvcir.2015.01.008 10.1109/ICCV.2015.345 10.1016/j.image.2018.05.013 10.1155/2017/1605959 10.1016/j.patcog.2019.106977 10.1109/ACCESS.2020.2975224 10.1016/j.image.2018.06.019 10.5244/C.28.65 10.1109/CVPR.2017.733 10.1109/CVPR.2019.00480 10.1016/j.infrared.2019.04.017 10.1016/j.neucom.2019.05.033 10.1016/j.image.2018.08.004 10.1109/CVPR.2010.5539960 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Inc. |
Copyright_xml | – notice: 2020 Elsevier Inc. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jvcir.2020.102881 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Journalism & Communications Engineering |
EISSN | 1095-9076 |
ExternalDocumentID | 10_1016_j_jvcir_2020_102881 S1047320320301279 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29L 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADFGL ADJOM ADMHC ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CAG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG5 LX9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SST SSV SSZ T5K WH7 WUQ XPP YQT ZMT ZU3 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c303t-ab09d96625923f0b42dced038767b15b08b2f7730bde20f64f2d8bcbddd99e7e3 |
IEDL.DBID | .~1 |
ISSN | 1047-3203 |
IngestDate | Thu Apr 24 23:02:00 EDT 2025 Tue Jul 01 03:09:47 EDT 2025 Fri Feb 23 02:47:15 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Adaptive spatial-temporal regularization Object tracking ADMM Correlation filters Model updating |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c303t-ab09d96625923f0b42dced038767b15b08b2f7730bde20f64f2d8bcbddd99e7e3 |
ParticipantIDs | crossref_citationtrail_10_1016_j_jvcir_2020_102881 crossref_primary_10_1016_j_jvcir_2020_102881 elsevier_sciencedirect_doi_10_1016_j_jvcir_2020_102881 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2020 2020-10-00 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: October 2020 |
PublicationDecade | 2020 |
PublicationTitle | Journal of visual communication and image representation |
PublicationYear | 2020 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | M. Danelljan, A. Robinson, F.S. Khan, M. Felsberg, Beyond correlation filters: learning continuous convolution operators for visual tracking, Computer Vision - Eccv 2016, Pt V, vol. 9909, pp. 472-488, 2016. L. Zhang, M. Danelljan, A. Gonzalez-Garcia, J. van de Weijer, F. Shahbaz Khan, Multi-modal fusion for end-to-end rgb-t tracking, in: Proceedings of the IEEE International Conference on Computer Vision Workshops, 2019, pp. 0-0. Du, Liu, Zhao, Tang (b0005) 2018; 67 Liu, Sun (b0110) Mar 2012; 55 J.F. Henriques, R. Caseiro, P. Martins, J. Batista, Exploiting the circulant structure of tracking-by-detection with kernels, in: European conference on computer vision, Springer, 2012, pp. 702–715. Zhai, Shao, Liang, Wang (b0085) 2019; 334 M. Danelljan, G. Hager, F.S. Khan, M. Felsberg, Learning spatially regularized correlation filters for visual tracking, in: 2015 Ieee International Conference on Computer Vision (Iccv), 2015, pp. 4310–4318. Pan, Chen, Kang, Hou (b0015) 2019; 358 B.C. Yan, et al., An adaptive template matching-based single object tracking algorithm with parallel acceleration, J. Visual Commun. Image Represent. 64, Oct 2019. Ding, Yao, Wei, Cao (b0020) 2018; 68 Luo, Sun, Yang, Lu, Yeh (b0130) Jun 2019; 99 X. Yun, Y.J. Sun, X.X. Yang, N.N. Lu, Discriminative fusion correlation learning for visible and infrared tracking, in: Mathematical Problems In Engineering, 2019. Liu, Lu, He, Zhang, Chen (b0045) 2017; 134 Li, Zhu, Zheng, Luo, Tang (b0065) Oct 2018; 68 C. Long Li, A. Lu, A. Hua Zheng, Z. Tu, J. Tang, Multi-adapter RGBT tracking, in: Proceedings of the IEEE International Conference on Computer Vision Workshops, 2019, pp. 0-0. Kuai, Wen, Li (b0025) Feb 2018; 51 J. Valmadre, L. Bertinetto, J. Henriques, A. Vedaldi, P.H.S. Torr, End-to-end representation learning for Correlation Filter based tracking, in: 30th Ieee Conference on Computer Vision And Pattern Recognition (Cvpr 2017), 2017, pp. 5000–5008. M. Danelljan, G. Bhat, F.S. Khan, M. Felsberg, ECO: Efficient Convolution Operators for Tracking, in: 30th Ieee Conference on Computer Vision And Pattern Recognition (Cvpr 2017), 2017, pp. 6931–6939. Ding, Wei, Cao, Wang, Cao (b0105) 2017; 12 Li, Cheng, Hu, Liu, Tang, Lin (b0080) Dec 2016; 25 Petersen, Pedersen (b0170) 2008; 7 Li, Liang, Lu, Zhao, Tang (b0100) Dec 2019; 96 Zhang, Ye, Peng, Liu, Gong, Xiao (b0070) 2019; 7 Y. Wu, E. Blasch, G. Chen, L. Bai, H. Ling, Multiple source data fusion via sparse representation for robust visual tracking, in: 14th International Conference on Information Fusion, 2011. Henriques, Caseiro, Martins, Batista (b0145) Mar 2015; 37 T.X. Zhou, M. Zhu, D. Zeng, H. Yang, Scale adaptive kernelized correlation filter tracker with feature fusion, Mathematical Problems In Engineering, 2017. M. Danelljan, G. Häger, F. Khan, M. Felsberg, Accurate scale estimation for robust visual tracking, in: British Machine Vision Conference, Nottingham, September 1-5, 2014, 2014: BMVA Press. C.L. Li, N. Zhao, Y.J. Lu, C.L. Zhu, J. Tang, Weighted sparse representation regularized graph learning for RGB-T object tracking, in: Proceedings Of the 2017 Acm Multimedia Conference (Mm'17), 2017, pp. 1856–1864. Li, Liu, Fan, He, Wang (b0050) 2019; 166 D.S. Bolme, J.R. Beveridge, B.A. Draper, Y.M. Lui, Visual object tracking using adaptive correlation filters, in: 2010 Ieee Conference on Computer Vision And Pattern Recognition (Cvpr), 2010, pp. 2544–2550. Ding, Chen, Wei, Cao, Zhang (b0150) 2020; 8 Q. Liu, X. Li, Z. He, N. Fan, D. Yuan, H. Wang, Learning deep multi-level similarity for thermal infrared object tracking, arXiv preprint arXiv:1906.03568, 2019. K. Dai, D. Wang, H. Lu, C. Sun, J. Li, Visual tracking via adaptive spatially-regularized correlation filters, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 4670–4679. F. Li, C. Tian, W. Zuo, L. Zhang, M.-H. Yang, Learning spatial-temporal regularized correlation filters for visual tracking, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 4904–4913. Boyd, Parikh, Chu, Peleato, Eckstein (b0095) 2011; 3 Y.X. Liu, Y.Z. Zhang, M.Y. Hu, P.J. Si, C.K. Xia, Fast tracking via spatio-temporal context learning based on multi-color attributes and PCA, in: 2017 Ieee International Conference on Information And Automation (Ieee Icia 2017), 2017, pp. 398–403. Qian, Han, Wang, Ding (b0010) 2018; 60 Ji, Wang (b0035) Apr 2015; 28 H.U. Kim, D.Y. Lee, J.Y. Sim, C.S. Kim, SOWP: Spatially Ordered and Weighted Patch Descriptor for Visual Tracking, in: 2015 Ieee International Conference on Computer Vision (Iccv), 2015, pp. 3011–3019. 10.1016/j.jvcir.2020.102881_b0125 Zhai (10.1016/j.jvcir.2020.102881_b0085) 2019; 334 10.1016/j.jvcir.2020.102881_b0160 10.1016/j.jvcir.2020.102881_b0040 Li (10.1016/j.jvcir.2020.102881_b0080) 2016; 25 10.1016/j.jvcir.2020.102881_b0140 10.1016/j.jvcir.2020.102881_b0185 10.1016/j.jvcir.2020.102881_b0120 10.1016/j.jvcir.2020.102881_b0165 Ding (10.1016/j.jvcir.2020.102881_b0150) 2020; 8 Ji (10.1016/j.jvcir.2020.102881_b0035) 2015; 28 10.1016/j.jvcir.2020.102881_b0090 10.1016/j.jvcir.2020.102881_b0190 Boyd (10.1016/j.jvcir.2020.102881_b0095) 2011; 3 Zhang (10.1016/j.jvcir.2020.102881_b0070) 2019; 7 Pan (10.1016/j.jvcir.2020.102881_b0015) 2019; 358 10.1016/j.jvcir.2020.102881_b0135 10.1016/j.jvcir.2020.102881_b0115 Ding (10.1016/j.jvcir.2020.102881_b0105) 2017; 12 Kuai (10.1016/j.jvcir.2020.102881_b0025) 2018; 51 Li (10.1016/j.jvcir.2020.102881_b0065) 2018; 68 Qian (10.1016/j.jvcir.2020.102881_b0010) 2018; 60 Li (10.1016/j.jvcir.2020.102881_b0050) 2019; 166 10.1016/j.jvcir.2020.102881_b0030 10.1016/j.jvcir.2020.102881_b0195 10.1016/j.jvcir.2020.102881_b0075 10.1016/j.jvcir.2020.102881_b0175 10.1016/j.jvcir.2020.102881_b0055 Henriques (10.1016/j.jvcir.2020.102881_b0145) 2015; 37 Petersen (10.1016/j.jvcir.2020.102881_b0170) 2008; 7 10.1016/j.jvcir.2020.102881_b0155 Du (10.1016/j.jvcir.2020.102881_b0005) 2018; 67 Li (10.1016/j.jvcir.2020.102881_b0100) 2019; 96 10.1016/j.jvcir.2020.102881_b0180 10.1016/j.jvcir.2020.102881_b0060 Ding (10.1016/j.jvcir.2020.102881_b0020) 2018; 68 Luo (10.1016/j.jvcir.2020.102881_b0130) 2019; 99 Liu (10.1016/j.jvcir.2020.102881_b0045) 2017; 134 Liu (10.1016/j.jvcir.2020.102881_b0110) 2012; 55 |
References_xml | – reference: F. Li, C. Tian, W. Zuo, L. Zhang, M.-H. Yang, Learning spatial-temporal regularized correlation filters for visual tracking, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 4904–4913. – reference: J. Valmadre, L. Bertinetto, J. Henriques, A. Vedaldi, P.H.S. Torr, End-to-end representation learning for Correlation Filter based tracking, in: 30th Ieee Conference on Computer Vision And Pattern Recognition (Cvpr 2017), 2017, pp. 5000–5008. – volume: 99 start-page: 265 year: Jun 2019 end-page: 276 ident: b0130 article-title: Thermal infrared and visible sequences fusion tracking based on a hybrid tracking framework with adaptive weighting scheme publication-title: Infrared Phys. Technol. – reference: K. Dai, D. Wang, H. Lu, C. Sun, J. Li, Visual tracking via adaptive spatially-regularized correlation filters, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 4670–4679. – volume: 7 start-page: 510 year: 2008 ident: b0170 article-title: The matrix cookbook publication-title: Tech. Univ. Denmark – volume: 3 start-page: 1 year: 2011 end-page: 122 ident: b0095 article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers publication-title: Foundations Trends® Mach. Learn. – reference: Y. Wu, E. Blasch, G. Chen, L. Bai, H. Ling, Multiple source data fusion via sparse representation for robust visual tracking, in: 14th International Conference on Information Fusion, 2011. – reference: H.U. Kim, D.Y. Lee, J.Y. Sim, C.S. Kim, SOWP: Spatially Ordered and Weighted Patch Descriptor for Visual Tracking, in: 2015 Ieee International Conference on Computer Vision (Iccv), 2015, pp. 3011–3019. – volume: 51 start-page: 104 year: Feb 2018 end-page: 111 ident: b0025 article-title: Learning adaptively windowed correlation filters for robust tracking publication-title: J. Visual Commun. Image Represent. – reference: T.X. Zhou, M. Zhu, D. Zeng, H. Yang, Scale adaptive kernelized correlation filter tracker with feature fusion, Mathematical Problems In Engineering, 2017. – reference: L. Zhang, M. Danelljan, A. Gonzalez-Garcia, J. van de Weijer, F. Shahbaz Khan, Multi-modal fusion for end-to-end rgb-t tracking, in: Proceedings of the IEEE International Conference on Computer Vision Workshops, 2019, pp. 0-0. – reference: C. Long Li, A. Lu, A. Hua Zheng, Z. Tu, J. Tang, Multi-adapter RGBT tracking, in: Proceedings of the IEEE International Conference on Computer Vision Workshops, 2019, pp. 0-0. – reference: Y.X. Liu, Y.Z. Zhang, M.Y. Hu, P.J. Si, C.K. Xia, Fast tracking via spatio-temporal context learning based on multi-color attributes and PCA, in: 2017 Ieee International Conference on Information And Automation (Ieee Icia 2017), 2017, pp. 398–403. – volume: 134 start-page: 189 year: 2017 end-page: 198 ident: b0045 article-title: Deep convolutional neural networks for thermal infrared object tracking publication-title: Knowl.-Based Syst. – reference: B.C. Yan, et al., An adaptive template matching-based single object tracking algorithm with parallel acceleration, J. Visual Commun. Image Represent. 64, Oct 2019. – volume: 37 start-page: 583 year: Mar 2015 end-page: 596 ident: b0145 article-title: High-speed tracking with kernelized correlation filters publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 25 start-page: 5743 year: Dec 2016 end-page: 5756 ident: b0080 article-title: Learning collaborative sparse representation for grayscale-thermal tracking publication-title: IEEE Trans. Image Process. – volume: 60 start-page: 183 year: 2018 end-page: 192 ident: b0010 article-title: Deep learning assisted robust visual tracking with adaptive particle filtering publication-title: Signal Process. Image Commun. – reference: J.F. Henriques, R. Caseiro, P. Martins, J. Batista, Exploiting the circulant structure of tracking-by-detection with kernels, in: European conference on computer vision, Springer, 2012, pp. 702–715. – reference: X. Yun, Y.J. Sun, X.X. Yang, N.N. Lu, Discriminative fusion correlation learning for visible and infrared tracking, in: Mathematical Problems In Engineering, 2019. – volume: 68 start-page: 13 year: 2018 end-page: 25 ident: b0020 article-title: Visual tracking using locality-constrained linear coding and saliency map for visible light and infrared image sequences publication-title: Signal Process. Image Commun. – reference: C.L. Li, N. Zhao, Y.J. Lu, C.L. Zhu, J. Tang, Weighted sparse representation regularized graph learning for RGB-T object tracking, in: Proceedings Of the 2017 Acm Multimedia Conference (Mm'17), 2017, pp. 1856–1864. – volume: 8 start-page: 36948 year: 2020 end-page: 36962 ident: b0150 article-title: Visual tracking with online assessment and improved sampling strategy publication-title: IEEE Access – volume: 7 year: 2019 ident: b0070 article-title: SiamFT: An RGB-Infrared Fusion Tracking Method via Fully Convolutional Siamese Networks (vol 7, pg 122122, 2019) publication-title: Ieee Access – volume: 28 start-page: 44 year: Apr 2015 end-page: 52 ident: b0035 article-title: Object tracking based on local dynamic sparse model (in English) publication-title: J. Visual Commun. Image Represent. – reference: M. Danelljan, G. Hager, F.S. Khan, M. Felsberg, Learning spatially regularized correlation filters for visual tracking, in: 2015 Ieee International Conference on Computer Vision (Iccv), 2015, pp. 4310–4318. – reference: M. Danelljan, G. Bhat, F.S. Khan, M. Felsberg, ECO: Efficient Convolution Operators for Tracking, in: 30th Ieee Conference on Computer Vision And Pattern Recognition (Cvpr 2017), 2017, pp. 6931–6939. – volume: 96 year: Dec 2019 ident: b0100 article-title: RGB-T object tracking: Benchmark and baseline publication-title: Pattern Recogn. – reference: D.S. Bolme, J.R. Beveridge, B.A. Draper, Y.M. Lui, Visual object tracking using adaptive correlation filters, in: 2010 Ieee Conference on Computer Vision And Pattern Recognition (Cvpr), 2010, pp. 2544–2550. – reference: Q. Liu, X. Li, Z. He, N. Fan, D. Yuan, H. Wang, Learning deep multi-level similarity for thermal infrared object tracking, arXiv preprint arXiv:1906.03568, 2019. – volume: 358 start-page: 33 year: 2019 end-page: 43 ident: b0015 article-title: Correlation filter tracker with siamese: A robust and real-time object tracking framework publication-title: Neurocomputing – volume: 68 start-page: 207 year: Oct 2018 end-page: 217 ident: b0065 article-title: Two-stage modality-graphs regularized manifold ranking for RGB-T tracking publication-title: Signal Process.-Image Commun. – volume: 12 start-page: 196 year: 2017 end-page: 207 ident: b0105 article-title: Visual tracking using locality-constrained linear coding under a particle filtering framework publication-title: IET Comput. Vision – volume: 166 start-page: 71 year: 2019 end-page: 81 ident: b0050 article-title: Hierarchical spatial-aware siamese network for thermal infrared object tracking publication-title: Knowl.-Based Syst. – reference: M. Danelljan, G. Häger, F. Khan, M. Felsberg, Accurate scale estimation for robust visual tracking, in: British Machine Vision Conference, Nottingham, September 1-5, 2014, 2014: BMVA Press. – volume: 55 start-page: 590 year: Mar 2012 end-page: 599 ident: b0110 article-title: Fusion tracking in color and infrared images using joint sparse representation publication-title: Sci. China-Inform. Sci. – volume: 334 start-page: 172 year: 2019 end-page: 181 ident: b0085 article-title: Fast RGB-T Tracking via Cross-Modal Correlation Filters publication-title: Neurocomputing – reference: M. Danelljan, A. Robinson, F.S. Khan, M. Felsberg, Beyond correlation filters: learning continuous convolution operators for visual tracking, Computer Vision - Eccv 2016, Pt V, vol. 9909, pp. 472-488, 2016. – volume: 67 start-page: 58 year: 2018 end-page: 70 ident: b0005 article-title: Spatial–temporal adaptive feature weighted correlation filter for visual tracking publication-title: Signal Process. Image Commun. – ident: 10.1016/j.jvcir.2020.102881_b0125 doi: 10.1155/2019/2437521 – ident: 10.1016/j.jvcir.2020.102881_b0140 doi: 10.1007/978-3-642-33765-9_50 – ident: 10.1016/j.jvcir.2020.102881_b0195 doi: 10.1109/ICInfA.2017.8078941 – volume: 166 start-page: 71 year: 2019 ident: 10.1016/j.jvcir.2020.102881_b0050 article-title: Hierarchical spatial-aware siamese network for thermal infrared object tracking publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2018.12.011 – volume: 51 start-page: 104 year: 2018 ident: 10.1016/j.jvcir.2020.102881_b0025 article-title: Learning adaptively windowed correlation filters for robust tracking publication-title: J. Visual Commun. Image Represent. doi: 10.1016/j.jvcir.2018.01.008 – ident: 10.1016/j.jvcir.2020.102881_b0160 doi: 10.1109/CVPR.2018.00515 – volume: 12 start-page: 196 issue: 2 year: 2017 ident: 10.1016/j.jvcir.2020.102881_b0105 article-title: Visual tracking using locality-constrained linear coding under a particle filtering framework publication-title: IET Comput. Vision doi: 10.1049/iet-cvi.2017.0271 – ident: 10.1016/j.jvcir.2020.102881_b0055 – volume: 55 start-page: 590 issue: 3 year: 2012 ident: 10.1016/j.jvcir.2020.102881_b0110 article-title: Fusion tracking in color and infrared images using joint sparse representation publication-title: Sci. China-Inform. Sci. doi: 10.1007/s11432-011-4536-9 – volume: 334 start-page: 172 year: 2019 ident: 10.1016/j.jvcir.2020.102881_b0085 article-title: Fast RGB-T Tracking via Cross-Modal Correlation Filters publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.01.022 – volume: 37 start-page: 583 issue: 3 year: 2015 ident: 10.1016/j.jvcir.2020.102881_b0145 article-title: High-speed tracking with kernelized correlation filters publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2014.2345390 – ident: 10.1016/j.jvcir.2020.102881_b0175 doi: 10.1109/CVPR.2017.531 – volume: 60 start-page: 183 year: 2018 ident: 10.1016/j.jvcir.2020.102881_b0010 article-title: Deep learning assisted robust visual tracking with adaptive particle filtering publication-title: Signal Process. Image Commun. doi: 10.1016/j.image.2017.09.001 – ident: 10.1016/j.jvcir.2020.102881_b0060 – volume: 25 start-page: 5743 issue: 12 year: 2016 ident: 10.1016/j.jvcir.2020.102881_b0080 article-title: Learning collaborative sparse representation for grayscale-thermal tracking publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2016.2614135 – ident: 10.1016/j.jvcir.2020.102881_b0155 doi: 10.1109/ICCV.2015.490 – ident: 10.1016/j.jvcir.2020.102881_b0115 doi: 10.1109/ICCVW.2019.00278 – volume: 7 start-page: 510 issue: 15 year: 2008 ident: 10.1016/j.jvcir.2020.102881_b0170 article-title: The matrix cookbook publication-title: Tech. Univ. Denmark – volume: 134 start-page: 189 year: 2017 ident: 10.1016/j.jvcir.2020.102881_b0045 article-title: Deep convolutional neural networks for thermal infrared object tracking publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2017.07.032 – ident: 10.1016/j.jvcir.2020.102881_b0040 doi: 10.1016/j.jvcir.2019.102603 – volume: 28 start-page: 44 year: 2015 ident: 10.1016/j.jvcir.2020.102881_b0035 article-title: Object tracking based on local dynamic sparse model (in English) publication-title: J. Visual Commun. Image Represent. doi: 10.1016/j.jvcir.2015.01.008 – ident: 10.1016/j.jvcir.2020.102881_b0075 – ident: 10.1016/j.jvcir.2020.102881_b0185 doi: 10.1109/ICCV.2015.345 – volume: 67 start-page: 58 year: 2018 ident: 10.1016/j.jvcir.2020.102881_b0005 article-title: Spatial–temporal adaptive feature weighted correlation filter for visual tracking publication-title: Signal Process. Image Commun. doi: 10.1016/j.image.2018.05.013 – ident: 10.1016/j.jvcir.2020.102881_b0030 doi: 10.1155/2017/1605959 – volume: 96 year: 2019 ident: 10.1016/j.jvcir.2020.102881_b0100 article-title: RGB-T object tracking: Benchmark and baseline publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2019.106977 – volume: 7 year: 2019 ident: 10.1016/j.jvcir.2020.102881_b0070 article-title: SiamFT: An RGB-Infrared Fusion Tracking Method via Fully Convolutional Siamese Networks (vol 7, pg 122122, 2019) publication-title: Ieee Access – ident: 10.1016/j.jvcir.2020.102881_b0090 – volume: 3 start-page: 1 issue: 1 year: 2011 ident: 10.1016/j.jvcir.2020.102881_b0095 article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers publication-title: Foundations Trends® Mach. Learn. – volume: 8 start-page: 36948 year: 2020 ident: 10.1016/j.jvcir.2020.102881_b0150 article-title: Visual tracking with online assessment and improved sampling strategy publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2975224 – volume: 68 start-page: 13 year: 2018 ident: 10.1016/j.jvcir.2020.102881_b0020 article-title: Visual tracking using locality-constrained linear coding and saliency map for visible light and infrared image sequences publication-title: Signal Process. Image Commun. doi: 10.1016/j.image.2018.06.019 – ident: 10.1016/j.jvcir.2020.102881_b0180 doi: 10.5244/C.28.65 – ident: 10.1016/j.jvcir.2020.102881_b0190 doi: 10.1109/CVPR.2017.733 – ident: 10.1016/j.jvcir.2020.102881_b0165 doi: 10.1109/CVPR.2019.00480 – ident: 10.1016/j.jvcir.2020.102881_b0120 – volume: 99 start-page: 265 year: 2019 ident: 10.1016/j.jvcir.2020.102881_b0130 article-title: Thermal infrared and visible sequences fusion tracking based on a hybrid tracking framework with adaptive weighting scheme publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2019.04.017 – volume: 358 start-page: 33 year: 2019 ident: 10.1016/j.jvcir.2020.102881_b0015 article-title: Correlation filter tracker with siamese: A robust and real-time object tracking framework publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.05.033 – volume: 68 start-page: 207 year: 2018 ident: 10.1016/j.jvcir.2020.102881_b0065 article-title: Two-stage modality-graphs regularized manifold ranking for RGB-T tracking publication-title: Signal Process.-Image Commun. doi: 10.1016/j.image.2018.08.004 – ident: 10.1016/j.jvcir.2020.102881_b0135 doi: 10.1109/CVPR.2010.5539960 |
SSID | ssj0003934 |
Score | 2.422139 |
Snippet | •An adaptive spatial-temporal regularized correlation filter model is proposed to achieve robust tracking.•A relative peak discriminative method for model... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 102881 |
SubjectTerms | Adaptive spatial-temporal regularization ADMM Correlation filters Model updating Object tracking |
Title | Learning discriminative update adaptive spatial-temporal regularized correlation filter for RGB-T tracking |
URI | https://dx.doi.org/10.1016/j.jvcir.2020.102881 |
Volume | 72 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWGBAUEBAofKAmAhNHec1lopSXhUqRWKL4hdKVUrUBwMDvx2f40AroQ5MkSNbinznu3Puu-8QOhVMhJEUykkZDR2qPZyTur5ymr6ihLKmUIaJ6aEXdJ_p7Yv_UkHtshYGYJXW9hc23Vhr-6Zhd7ORZ1njCUgGPNMA3IP8KRTxURqCll98_cI8vLjILAMjAUwtmYcMxmv4wTMgBSWGwiCKmn97pwWP09lGWzZUxK3ia3ZQRY6raHOBQLCKanZSNn3DZ3ip2GO6i4aWPPUVQ-1t0b8LrBue53DPx6lIczOeAqw6HTmWp2qEJ6ZD_ST7lAJz6N9RIOawyiC5jnWgi_vXl84AzyYph5_te-i5czVodx3bW8Hh2mnNtGjcWOirjr79EE-5jBKhdxxy2UHImj5zI0ZUqI8_E5K4KqCKiIhxJoSIYxlKbx-tjd_H8gDhQArqS57GlDPKI8ViGWu3T2IhlNLxyCEi5Z4m3BKPQ_-LUVIizIaJEUQCgkgKQRyi859FecG7sXp6UAorWVKfRHuGVQuP_ruwhjZgVOD6jtHabDKXJzo-mbG6UcA6Wm-1-_eP8Ly56_a-Abqx6fA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8NADLagDMCAoICA8rgBMRE1vVweNxZEKa8OUCS2KPdCqUqp2sLAr-ecXFCRUAfGXGwpsk9-xPZngFMlVJxoZbxMsNhj1sN5mR8arxUaRploKVMgMT30ou4zu30JX5bgspqFwbZKZ_tLm15Ya3fSdNJsjvO8-YQgA0GxADzA-ilfhhVEpwprsNK-uev2fgxywMviMoISIHUFPlS0eQ0-ZY64oLRAMUiS1t8Oas7pdDZhw0WLpF1-0BYs6VEd1ucwBOvQcET59I2ckV_zHtNtGDj81FeC47flCi80cORjjKk-yVQ2Lp6n2FmdDT0HVTUkk2JJ_ST_0opIXOFRNs0Rk2N9ndhYlzxeX3h9MptkEv-378Bz56p_2fXcegVPWr81s9rxubLZjk2AaGB8waiyQsdydhSLVij8RFATWwsglKa-iZihKhFSKKU417EOdqE2eh_pPSCRVizUMuNMCiYTI7jm1vNTrpQxNiTZB1rJNJUOexxXYAzTqslskBaKSFERaamIfTj_YRqX0BuLyaNKWemvG5Ra57CI8eC_jCew2u0_3Kf3N727Bqzhm7LN7xBqs8mHPrLhykwcu-v4DWdV6ww |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+discriminative+update+adaptive+spatial-temporal+regularized+correlation+filter+for+RGB-T+tracking&rft.jtitle=Journal+of+visual+communication+and+image+representation&rft.au=Feng%2C+Mingzheng&rft.au=Song%2C+Kechen&rft.au=Wang%2C+Yanyan&rft.au=Liu%2C+Jie&rft.date=2020-10-01&rft.pub=Elsevier+Inc&rft.issn=1047-3203&rft.eissn=1095-9076&rft.volume=72&rft_id=info:doi/10.1016%2Fj.jvcir.2020.102881&rft.externalDocID=S1047320320301279 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1047-3203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1047-3203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1047-3203&client=summon |