Learning discriminative update adaptive spatial-temporal regularized correlation filter for RGB-T tracking

•An adaptive spatial-temporal regularized correlation filter model is proposed to achieve robust tracking.•A relative peak discriminative method for model updating is proposed to avoid tracker drifting.•An adaptive weighting ensemble scheme is utilized to obtain the complementary benefits of the RGB...

Full description

Saved in:
Bibliographic Details
Published inJournal of visual communication and image representation Vol. 72; p. 102881
Main Authors Feng, Mingzheng, Song, Kechen, Wang, Yanyan, Liu, Jie, Yan, Yunhui
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.10.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •An adaptive spatial-temporal regularized correlation filter model is proposed to achieve robust tracking.•A relative peak discriminative method for model updating is proposed to avoid tracker drifting.•An adaptive weighting ensemble scheme is utilized to obtain the complementary benefits of the RGB and thermal modes.•An effective ADMM algorithm is designed to optimize the RGB-T correlation filter model.•Experimental results demonstrate the effectiveness of the proposed tracker against other state-of-the-art RGB-T trackers. The RGB-T trackers based on correlation filter framework have been extensively investigated for that they can track targets more accurately in most complex scenes. However, the performance of these trackers is limited when facing some specific challenging scenarios, such as occlusion and background clutter. For different tracking targets, most of these trackers utilize fixed regularization constraint to build the filter model, which is obviously unreasonable to effectively present the appearance changes and characteristics of a specific target. In addition, they adopt a simple model update mechanism based on linear interpolation, which can easily lead to model degradation in challenging scenarios, resulting in tracker drift. To solve the above problems, we propose a novel adaptive spatial-temporal regularized correlation filter model to learn an appropriate regularization for achieving robust tracking and a relative peak discriminative method for model updating to avoid the model degradation. Besides, to make better integrate the unique advantages of the two modes and adapt the changing appearance of the target, an adaptive weighting ensemble scheme and a multi-scale search mechanism are adopted, respectively. To optimize the proposed model, we designed an efficient ADMM algorithm, which greatly improved the efficiency. Extensive experiments have been carried out on two available datasets, RGBT234 and RGBT210, and the experimental results indicate that the tracker proposed by us performs favorably in both accuracy and robustness against the state-of-the-art RGB-T trackers.
AbstractList •An adaptive spatial-temporal regularized correlation filter model is proposed to achieve robust tracking.•A relative peak discriminative method for model updating is proposed to avoid tracker drifting.•An adaptive weighting ensemble scheme is utilized to obtain the complementary benefits of the RGB and thermal modes.•An effective ADMM algorithm is designed to optimize the RGB-T correlation filter model.•Experimental results demonstrate the effectiveness of the proposed tracker against other state-of-the-art RGB-T trackers. The RGB-T trackers based on correlation filter framework have been extensively investigated for that they can track targets more accurately in most complex scenes. However, the performance of these trackers is limited when facing some specific challenging scenarios, such as occlusion and background clutter. For different tracking targets, most of these trackers utilize fixed regularization constraint to build the filter model, which is obviously unreasonable to effectively present the appearance changes and characteristics of a specific target. In addition, they adopt a simple model update mechanism based on linear interpolation, which can easily lead to model degradation in challenging scenarios, resulting in tracker drift. To solve the above problems, we propose a novel adaptive spatial-temporal regularized correlation filter model to learn an appropriate regularization for achieving robust tracking and a relative peak discriminative method for model updating to avoid the model degradation. Besides, to make better integrate the unique advantages of the two modes and adapt the changing appearance of the target, an adaptive weighting ensemble scheme and a multi-scale search mechanism are adopted, respectively. To optimize the proposed model, we designed an efficient ADMM algorithm, which greatly improved the efficiency. Extensive experiments have been carried out on two available datasets, RGBT234 and RGBT210, and the experimental results indicate that the tracker proposed by us performs favorably in both accuracy and robustness against the state-of-the-art RGB-T trackers.
ArticleNumber 102881
Author Liu, Jie
Yan, Yunhui
Feng, Mingzheng
Wang, Yanyan
Song, Kechen
Author_xml – sequence: 1
  givenname: Mingzheng
  surname: Feng
  fullname: Feng, Mingzheng
– sequence: 2
  givenname: Kechen
  surname: Song
  fullname: Song, Kechen
  email: songkc@me.neu.edu.cn
– sequence: 3
  givenname: Yanyan
  surname: Wang
  fullname: Wang, Yanyan
– sequence: 4
  givenname: Jie
  surname: Liu
  fullname: Liu, Jie
– sequence: 5
  givenname: Yunhui
  surname: Yan
  fullname: Yan, Yunhui
  email: yanyh@mail.neu.edu.cn
BookMark eNqFkE1OwzAQRi1UJErhBGx8gZSJnSbxggVUUJAqIaGytvwzrhzSJHLSSnB6nJYVC1h5PJrn-fwuyaRpGyTkJoV5Cml-W82rg_FhzoCNHVaW6RmZpiAWiYAin4x1ViScAb8gl31fAQAXPJuSao0qNL7ZUut7E_zON2rwB6T7zqoBqbKqO977LvZVnQy469qgahpwu69V8F9oqWlDwDoOtA11vh4wUNcG-rZ6SDZ0CMp8xA1X5Nypusfrn3NG3p8eN8vnZP26elnerxPDgQ-J0iCsyHO2EIw70BmzBi3wssgLnS40lJq5ouCgLTJweeaYLbXR1lohsEA-I-L0rglt3wd00vjhmC0m8bVMQY7SZCWP0uQoTZ6kRZb_YrvoRIXPf6i7E4XxWwePQfbGYxNj-4BmkLb1f_LfwZCMag
CitedBy_id crossref_primary_10_1142_S0218126622500414
crossref_primary_10_3390_s23146612
crossref_primary_10_1016_j_jvcir_2023_103882
crossref_primary_10_1016_j_jvcir_2024_104179
crossref_primary_10_1007_s11042_023_16418_2
crossref_primary_10_1016_j_inffus_2023_101881
crossref_primary_10_1109_TCSVT_2024_3391802
crossref_primary_10_1109_TIM_2024_3436098
crossref_primary_10_1109_TPAMI_2024_3521416
crossref_primary_10_1016_j_jvcir_2023_103946
crossref_primary_10_1145_3630100
crossref_primary_10_1016_j_inffus_2024_102492
crossref_primary_10_1109_TMM_2023_3310295
crossref_primary_10_1016_j_engappai_2023_105919
crossref_primary_10_2139_ssrn_4137009
crossref_primary_10_1109_TIP_2021_3125504
crossref_primary_10_1016_j_imavis_2022_104547
crossref_primary_10_1016_j_knosys_2022_108945
crossref_primary_10_1109_TCSVT_2024_3425455
crossref_primary_10_1145_3678176
crossref_primary_10_1038_s41598_023_39978_7
crossref_primary_10_1016_j_jvcir_2021_103306
crossref_primary_10_1016_j_engappai_2023_107273
crossref_primary_10_1007_s11227_024_06443_9
crossref_primary_10_1109_TIM_2024_3365162
Cites_doi 10.1155/2019/2437521
10.1007/978-3-642-33765-9_50
10.1109/ICInfA.2017.8078941
10.1016/j.knosys.2018.12.011
10.1016/j.jvcir.2018.01.008
10.1109/CVPR.2018.00515
10.1049/iet-cvi.2017.0271
10.1007/s11432-011-4536-9
10.1016/j.neucom.2019.01.022
10.1109/TPAMI.2014.2345390
10.1109/CVPR.2017.531
10.1016/j.image.2017.09.001
10.1109/TIP.2016.2614135
10.1109/ICCV.2015.490
10.1109/ICCVW.2019.00278
10.1016/j.knosys.2017.07.032
10.1016/j.jvcir.2019.102603
10.1016/j.jvcir.2015.01.008
10.1109/ICCV.2015.345
10.1016/j.image.2018.05.013
10.1155/2017/1605959
10.1016/j.patcog.2019.106977
10.1109/ACCESS.2020.2975224
10.1016/j.image.2018.06.019
10.5244/C.28.65
10.1109/CVPR.2017.733
10.1109/CVPR.2019.00480
10.1016/j.infrared.2019.04.017
10.1016/j.neucom.2019.05.033
10.1016/j.image.2018.08.004
10.1109/CVPR.2010.5539960
ContentType Journal Article
Copyright 2020 Elsevier Inc.
Copyright_xml – notice: 2020 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.jvcir.2020.102881
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Journalism & Communications
Engineering
EISSN 1095-9076
ExternalDocumentID 10_1016_j_jvcir_2020_102881
S1047320320301279
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29L
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADJOM
ADMHC
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG5
LX9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
WH7
WUQ
XPP
YQT
ZMT
ZU3
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c303t-ab09d96625923f0b42dced038767b15b08b2f7730bde20f64f2d8bcbddd99e7e3
IEDL.DBID .~1
ISSN 1047-3203
IngestDate Thu Apr 24 23:02:00 EDT 2025
Tue Jul 01 03:09:47 EDT 2025
Fri Feb 23 02:47:15 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Adaptive spatial-temporal regularization
Object tracking
ADMM
Correlation filters
Model updating
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c303t-ab09d96625923f0b42dced038767b15b08b2f7730bde20f64f2d8bcbddd99e7e3
ParticipantIDs crossref_citationtrail_10_1016_j_jvcir_2020_102881
crossref_primary_10_1016_j_jvcir_2020_102881
elsevier_sciencedirect_doi_10_1016_j_jvcir_2020_102881
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2020
2020-10-00
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: October 2020
PublicationDecade 2020
PublicationTitle Journal of visual communication and image representation
PublicationYear 2020
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References M. Danelljan, A. Robinson, F.S. Khan, M. Felsberg, Beyond correlation filters: learning continuous convolution operators for visual tracking, Computer Vision - Eccv 2016, Pt V, vol. 9909, pp. 472-488, 2016.
L. Zhang, M. Danelljan, A. Gonzalez-Garcia, J. van de Weijer, F. Shahbaz Khan, Multi-modal fusion for end-to-end rgb-t tracking, in: Proceedings of the IEEE International Conference on Computer Vision Workshops, 2019, pp. 0-0.
Du, Liu, Zhao, Tang (b0005) 2018; 67
Liu, Sun (b0110) Mar 2012; 55
J.F. Henriques, R. Caseiro, P. Martins, J. Batista, Exploiting the circulant structure of tracking-by-detection with kernels, in: European conference on computer vision, Springer, 2012, pp. 702–715.
Zhai, Shao, Liang, Wang (b0085) 2019; 334
M. Danelljan, G. Hager, F.S. Khan, M. Felsberg, Learning spatially regularized correlation filters for visual tracking, in: 2015 Ieee International Conference on Computer Vision (Iccv), 2015, pp. 4310–4318.
Pan, Chen, Kang, Hou (b0015) 2019; 358
B.C. Yan, et al., An adaptive template matching-based single object tracking algorithm with parallel acceleration, J. Visual Commun. Image Represent. 64, Oct 2019.
Ding, Yao, Wei, Cao (b0020) 2018; 68
Luo, Sun, Yang, Lu, Yeh (b0130) Jun 2019; 99
X. Yun, Y.J. Sun, X.X. Yang, N.N. Lu, Discriminative fusion correlation learning for visible and infrared tracking, in: Mathematical Problems In Engineering, 2019.
Liu, Lu, He, Zhang, Chen (b0045) 2017; 134
Li, Zhu, Zheng, Luo, Tang (b0065) Oct 2018; 68
C. Long Li, A. Lu, A. Hua Zheng, Z. Tu, J. Tang, Multi-adapter RGBT tracking, in: Proceedings of the IEEE International Conference on Computer Vision Workshops, 2019, pp. 0-0.
Kuai, Wen, Li (b0025) Feb 2018; 51
J. Valmadre, L. Bertinetto, J. Henriques, A. Vedaldi, P.H.S. Torr, End-to-end representation learning for Correlation Filter based tracking, in: 30th Ieee Conference on Computer Vision And Pattern Recognition (Cvpr 2017), 2017, pp. 5000–5008.
M. Danelljan, G. Bhat, F.S. Khan, M. Felsberg, ECO: Efficient Convolution Operators for Tracking, in: 30th Ieee Conference on Computer Vision And Pattern Recognition (Cvpr 2017), 2017, pp. 6931–6939.
Ding, Wei, Cao, Wang, Cao (b0105) 2017; 12
Li, Cheng, Hu, Liu, Tang, Lin (b0080) Dec 2016; 25
Petersen, Pedersen (b0170) 2008; 7
Li, Liang, Lu, Zhao, Tang (b0100) Dec 2019; 96
Zhang, Ye, Peng, Liu, Gong, Xiao (b0070) 2019; 7
Y. Wu, E. Blasch, G. Chen, L. Bai, H. Ling, Multiple source data fusion via sparse representation for robust visual tracking, in: 14th International Conference on Information Fusion, 2011.
Henriques, Caseiro, Martins, Batista (b0145) Mar 2015; 37
T.X. Zhou, M. Zhu, D. Zeng, H. Yang, Scale adaptive kernelized correlation filter tracker with feature fusion, Mathematical Problems In Engineering, 2017.
M. Danelljan, G. Häger, F. Khan, M. Felsberg, Accurate scale estimation for robust visual tracking, in: British Machine Vision Conference, Nottingham, September 1-5, 2014, 2014: BMVA Press.
C.L. Li, N. Zhao, Y.J. Lu, C.L. Zhu, J. Tang, Weighted sparse representation regularized graph learning for RGB-T object tracking, in: Proceedings Of the 2017 Acm Multimedia Conference (Mm'17), 2017, pp. 1856–1864.
Li, Liu, Fan, He, Wang (b0050) 2019; 166
D.S. Bolme, J.R. Beveridge, B.A. Draper, Y.M. Lui, Visual object tracking using adaptive correlation filters, in: 2010 Ieee Conference on Computer Vision And Pattern Recognition (Cvpr), 2010, pp. 2544–2550.
Ding, Chen, Wei, Cao, Zhang (b0150) 2020; 8
Q. Liu, X. Li, Z. He, N. Fan, D. Yuan, H. Wang, Learning deep multi-level similarity for thermal infrared object tracking, arXiv preprint arXiv:1906.03568, 2019.
K. Dai, D. Wang, H. Lu, C. Sun, J. Li, Visual tracking via adaptive spatially-regularized correlation filters, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 4670–4679.
F. Li, C. Tian, W. Zuo, L. Zhang, M.-H. Yang, Learning spatial-temporal regularized correlation filters for visual tracking, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 4904–4913.
Boyd, Parikh, Chu, Peleato, Eckstein (b0095) 2011; 3
Y.X. Liu, Y.Z. Zhang, M.Y. Hu, P.J. Si, C.K. Xia, Fast tracking via spatio-temporal context learning based on multi-color attributes and PCA, in: 2017 Ieee International Conference on Information And Automation (Ieee Icia 2017), 2017, pp. 398–403.
Qian, Han, Wang, Ding (b0010) 2018; 60
Ji, Wang (b0035) Apr 2015; 28
H.U. Kim, D.Y. Lee, J.Y. Sim, C.S. Kim, SOWP: Spatially Ordered and Weighted Patch Descriptor for Visual Tracking, in: 2015 Ieee International Conference on Computer Vision (Iccv), 2015, pp. 3011–3019.
10.1016/j.jvcir.2020.102881_b0125
Zhai (10.1016/j.jvcir.2020.102881_b0085) 2019; 334
10.1016/j.jvcir.2020.102881_b0160
10.1016/j.jvcir.2020.102881_b0040
Li (10.1016/j.jvcir.2020.102881_b0080) 2016; 25
10.1016/j.jvcir.2020.102881_b0140
10.1016/j.jvcir.2020.102881_b0185
10.1016/j.jvcir.2020.102881_b0120
10.1016/j.jvcir.2020.102881_b0165
Ding (10.1016/j.jvcir.2020.102881_b0150) 2020; 8
Ji (10.1016/j.jvcir.2020.102881_b0035) 2015; 28
10.1016/j.jvcir.2020.102881_b0090
10.1016/j.jvcir.2020.102881_b0190
Boyd (10.1016/j.jvcir.2020.102881_b0095) 2011; 3
Zhang (10.1016/j.jvcir.2020.102881_b0070) 2019; 7
Pan (10.1016/j.jvcir.2020.102881_b0015) 2019; 358
10.1016/j.jvcir.2020.102881_b0135
10.1016/j.jvcir.2020.102881_b0115
Ding (10.1016/j.jvcir.2020.102881_b0105) 2017; 12
Kuai (10.1016/j.jvcir.2020.102881_b0025) 2018; 51
Li (10.1016/j.jvcir.2020.102881_b0065) 2018; 68
Qian (10.1016/j.jvcir.2020.102881_b0010) 2018; 60
Li (10.1016/j.jvcir.2020.102881_b0050) 2019; 166
10.1016/j.jvcir.2020.102881_b0030
10.1016/j.jvcir.2020.102881_b0195
10.1016/j.jvcir.2020.102881_b0075
10.1016/j.jvcir.2020.102881_b0175
10.1016/j.jvcir.2020.102881_b0055
Henriques (10.1016/j.jvcir.2020.102881_b0145) 2015; 37
Petersen (10.1016/j.jvcir.2020.102881_b0170) 2008; 7
10.1016/j.jvcir.2020.102881_b0155
Du (10.1016/j.jvcir.2020.102881_b0005) 2018; 67
Li (10.1016/j.jvcir.2020.102881_b0100) 2019; 96
10.1016/j.jvcir.2020.102881_b0180
10.1016/j.jvcir.2020.102881_b0060
Ding (10.1016/j.jvcir.2020.102881_b0020) 2018; 68
Luo (10.1016/j.jvcir.2020.102881_b0130) 2019; 99
Liu (10.1016/j.jvcir.2020.102881_b0045) 2017; 134
Liu (10.1016/j.jvcir.2020.102881_b0110) 2012; 55
References_xml – reference: F. Li, C. Tian, W. Zuo, L. Zhang, M.-H. Yang, Learning spatial-temporal regularized correlation filters for visual tracking, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 4904–4913.
– reference: J. Valmadre, L. Bertinetto, J. Henriques, A. Vedaldi, P.H.S. Torr, End-to-end representation learning for Correlation Filter based tracking, in: 30th Ieee Conference on Computer Vision And Pattern Recognition (Cvpr 2017), 2017, pp. 5000–5008.
– volume: 99
  start-page: 265
  year: Jun 2019
  end-page: 276
  ident: b0130
  article-title: Thermal infrared and visible sequences fusion tracking based on a hybrid tracking framework with adaptive weighting scheme
  publication-title: Infrared Phys. Technol.
– reference: K. Dai, D. Wang, H. Lu, C. Sun, J. Li, Visual tracking via adaptive spatially-regularized correlation filters, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 4670–4679.
– volume: 7
  start-page: 510
  year: 2008
  ident: b0170
  article-title: The matrix cookbook
  publication-title: Tech. Univ. Denmark
– volume: 3
  start-page: 1
  year: 2011
  end-page: 122
  ident: b0095
  article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers
  publication-title: Foundations Trends® Mach. Learn.
– reference: Y. Wu, E. Blasch, G. Chen, L. Bai, H. Ling, Multiple source data fusion via sparse representation for robust visual tracking, in: 14th International Conference on Information Fusion, 2011.
– reference: H.U. Kim, D.Y. Lee, J.Y. Sim, C.S. Kim, SOWP: Spatially Ordered and Weighted Patch Descriptor for Visual Tracking, in: 2015 Ieee International Conference on Computer Vision (Iccv), 2015, pp. 3011–3019.
– volume: 51
  start-page: 104
  year: Feb 2018
  end-page: 111
  ident: b0025
  article-title: Learning adaptively windowed correlation filters for robust tracking
  publication-title: J. Visual Commun. Image Represent.
– reference: T.X. Zhou, M. Zhu, D. Zeng, H. Yang, Scale adaptive kernelized correlation filter tracker with feature fusion, Mathematical Problems In Engineering, 2017.
– reference: L. Zhang, M. Danelljan, A. Gonzalez-Garcia, J. van de Weijer, F. Shahbaz Khan, Multi-modal fusion for end-to-end rgb-t tracking, in: Proceedings of the IEEE International Conference on Computer Vision Workshops, 2019, pp. 0-0.
– reference: C. Long Li, A. Lu, A. Hua Zheng, Z. Tu, J. Tang, Multi-adapter RGBT tracking, in: Proceedings of the IEEE International Conference on Computer Vision Workshops, 2019, pp. 0-0.
– reference: Y.X. Liu, Y.Z. Zhang, M.Y. Hu, P.J. Si, C.K. Xia, Fast tracking via spatio-temporal context learning based on multi-color attributes and PCA, in: 2017 Ieee International Conference on Information And Automation (Ieee Icia 2017), 2017, pp. 398–403.
– volume: 134
  start-page: 189
  year: 2017
  end-page: 198
  ident: b0045
  article-title: Deep convolutional neural networks for thermal infrared object tracking
  publication-title: Knowl.-Based Syst.
– reference: B.C. Yan, et al., An adaptive template matching-based single object tracking algorithm with parallel acceleration, J. Visual Commun. Image Represent. 64, Oct 2019.
– volume: 37
  start-page: 583
  year: Mar 2015
  end-page: 596
  ident: b0145
  article-title: High-speed tracking with kernelized correlation filters
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 25
  start-page: 5743
  year: Dec 2016
  end-page: 5756
  ident: b0080
  article-title: Learning collaborative sparse representation for grayscale-thermal tracking
  publication-title: IEEE Trans. Image Process.
– volume: 60
  start-page: 183
  year: 2018
  end-page: 192
  ident: b0010
  article-title: Deep learning assisted robust visual tracking with adaptive particle filtering
  publication-title: Signal Process. Image Commun.
– reference: J.F. Henriques, R. Caseiro, P. Martins, J. Batista, Exploiting the circulant structure of tracking-by-detection with kernels, in: European conference on computer vision, Springer, 2012, pp. 702–715.
– reference: X. Yun, Y.J. Sun, X.X. Yang, N.N. Lu, Discriminative fusion correlation learning for visible and infrared tracking, in: Mathematical Problems In Engineering, 2019.
– volume: 68
  start-page: 13
  year: 2018
  end-page: 25
  ident: b0020
  article-title: Visual tracking using locality-constrained linear coding and saliency map for visible light and infrared image sequences
  publication-title: Signal Process. Image Commun.
– reference: C.L. Li, N. Zhao, Y.J. Lu, C.L. Zhu, J. Tang, Weighted sparse representation regularized graph learning for RGB-T object tracking, in: Proceedings Of the 2017 Acm Multimedia Conference (Mm'17), 2017, pp. 1856–1864.
– volume: 8
  start-page: 36948
  year: 2020
  end-page: 36962
  ident: b0150
  article-title: Visual tracking with online assessment and improved sampling strategy
  publication-title: IEEE Access
– volume: 7
  year: 2019
  ident: b0070
  article-title: SiamFT: An RGB-Infrared Fusion Tracking Method via Fully Convolutional Siamese Networks (vol 7, pg 122122, 2019)
  publication-title: Ieee Access
– volume: 28
  start-page: 44
  year: Apr 2015
  end-page: 52
  ident: b0035
  article-title: Object tracking based on local dynamic sparse model (in English)
  publication-title: J. Visual Commun. Image Represent.
– reference: M. Danelljan, G. Hager, F.S. Khan, M. Felsberg, Learning spatially regularized correlation filters for visual tracking, in: 2015 Ieee International Conference on Computer Vision (Iccv), 2015, pp. 4310–4318.
– reference: M. Danelljan, G. Bhat, F.S. Khan, M. Felsberg, ECO: Efficient Convolution Operators for Tracking, in: 30th Ieee Conference on Computer Vision And Pattern Recognition (Cvpr 2017), 2017, pp. 6931–6939.
– volume: 96
  year: Dec 2019
  ident: b0100
  article-title: RGB-T object tracking: Benchmark and baseline
  publication-title: Pattern Recogn.
– reference: D.S. Bolme, J.R. Beveridge, B.A. Draper, Y.M. Lui, Visual object tracking using adaptive correlation filters, in: 2010 Ieee Conference on Computer Vision And Pattern Recognition (Cvpr), 2010, pp. 2544–2550.
– reference: Q. Liu, X. Li, Z. He, N. Fan, D. Yuan, H. Wang, Learning deep multi-level similarity for thermal infrared object tracking, arXiv preprint arXiv:1906.03568, 2019.
– volume: 358
  start-page: 33
  year: 2019
  end-page: 43
  ident: b0015
  article-title: Correlation filter tracker with siamese: A robust and real-time object tracking framework
  publication-title: Neurocomputing
– volume: 68
  start-page: 207
  year: Oct 2018
  end-page: 217
  ident: b0065
  article-title: Two-stage modality-graphs regularized manifold ranking for RGB-T tracking
  publication-title: Signal Process.-Image Commun.
– volume: 12
  start-page: 196
  year: 2017
  end-page: 207
  ident: b0105
  article-title: Visual tracking using locality-constrained linear coding under a particle filtering framework
  publication-title: IET Comput. Vision
– volume: 166
  start-page: 71
  year: 2019
  end-page: 81
  ident: b0050
  article-title: Hierarchical spatial-aware siamese network for thermal infrared object tracking
  publication-title: Knowl.-Based Syst.
– reference: M. Danelljan, G. Häger, F. Khan, M. Felsberg, Accurate scale estimation for robust visual tracking, in: British Machine Vision Conference, Nottingham, September 1-5, 2014, 2014: BMVA Press.
– volume: 55
  start-page: 590
  year: Mar 2012
  end-page: 599
  ident: b0110
  article-title: Fusion tracking in color and infrared images using joint sparse representation
  publication-title: Sci. China-Inform. Sci.
– volume: 334
  start-page: 172
  year: 2019
  end-page: 181
  ident: b0085
  article-title: Fast RGB-T Tracking via Cross-Modal Correlation Filters
  publication-title: Neurocomputing
– reference: M. Danelljan, A. Robinson, F.S. Khan, M. Felsberg, Beyond correlation filters: learning continuous convolution operators for visual tracking, Computer Vision - Eccv 2016, Pt V, vol. 9909, pp. 472-488, 2016.
– volume: 67
  start-page: 58
  year: 2018
  end-page: 70
  ident: b0005
  article-title: Spatial–temporal adaptive feature weighted correlation filter for visual tracking
  publication-title: Signal Process. Image Commun.
– ident: 10.1016/j.jvcir.2020.102881_b0125
  doi: 10.1155/2019/2437521
– ident: 10.1016/j.jvcir.2020.102881_b0140
  doi: 10.1007/978-3-642-33765-9_50
– ident: 10.1016/j.jvcir.2020.102881_b0195
  doi: 10.1109/ICInfA.2017.8078941
– volume: 166
  start-page: 71
  year: 2019
  ident: 10.1016/j.jvcir.2020.102881_b0050
  article-title: Hierarchical spatial-aware siamese network for thermal infrared object tracking
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.12.011
– volume: 51
  start-page: 104
  year: 2018
  ident: 10.1016/j.jvcir.2020.102881_b0025
  article-title: Learning adaptively windowed correlation filters for robust tracking
  publication-title: J. Visual Commun. Image Represent.
  doi: 10.1016/j.jvcir.2018.01.008
– ident: 10.1016/j.jvcir.2020.102881_b0160
  doi: 10.1109/CVPR.2018.00515
– volume: 12
  start-page: 196
  issue: 2
  year: 2017
  ident: 10.1016/j.jvcir.2020.102881_b0105
  article-title: Visual tracking using locality-constrained linear coding under a particle filtering framework
  publication-title: IET Comput. Vision
  doi: 10.1049/iet-cvi.2017.0271
– ident: 10.1016/j.jvcir.2020.102881_b0055
– volume: 55
  start-page: 590
  issue: 3
  year: 2012
  ident: 10.1016/j.jvcir.2020.102881_b0110
  article-title: Fusion tracking in color and infrared images using joint sparse representation
  publication-title: Sci. China-Inform. Sci.
  doi: 10.1007/s11432-011-4536-9
– volume: 334
  start-page: 172
  year: 2019
  ident: 10.1016/j.jvcir.2020.102881_b0085
  article-title: Fast RGB-T Tracking via Cross-Modal Correlation Filters
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.01.022
– volume: 37
  start-page: 583
  issue: 3
  year: 2015
  ident: 10.1016/j.jvcir.2020.102881_b0145
  article-title: High-speed tracking with kernelized correlation filters
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2014.2345390
– ident: 10.1016/j.jvcir.2020.102881_b0175
  doi: 10.1109/CVPR.2017.531
– volume: 60
  start-page: 183
  year: 2018
  ident: 10.1016/j.jvcir.2020.102881_b0010
  article-title: Deep learning assisted robust visual tracking with adaptive particle filtering
  publication-title: Signal Process. Image Commun.
  doi: 10.1016/j.image.2017.09.001
– ident: 10.1016/j.jvcir.2020.102881_b0060
– volume: 25
  start-page: 5743
  issue: 12
  year: 2016
  ident: 10.1016/j.jvcir.2020.102881_b0080
  article-title: Learning collaborative sparse representation for grayscale-thermal tracking
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2016.2614135
– ident: 10.1016/j.jvcir.2020.102881_b0155
  doi: 10.1109/ICCV.2015.490
– ident: 10.1016/j.jvcir.2020.102881_b0115
  doi: 10.1109/ICCVW.2019.00278
– volume: 7
  start-page: 510
  issue: 15
  year: 2008
  ident: 10.1016/j.jvcir.2020.102881_b0170
  article-title: The matrix cookbook
  publication-title: Tech. Univ. Denmark
– volume: 134
  start-page: 189
  year: 2017
  ident: 10.1016/j.jvcir.2020.102881_b0045
  article-title: Deep convolutional neural networks for thermal infrared object tracking
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2017.07.032
– ident: 10.1016/j.jvcir.2020.102881_b0040
  doi: 10.1016/j.jvcir.2019.102603
– volume: 28
  start-page: 44
  year: 2015
  ident: 10.1016/j.jvcir.2020.102881_b0035
  article-title: Object tracking based on local dynamic sparse model (in English)
  publication-title: J. Visual Commun. Image Represent.
  doi: 10.1016/j.jvcir.2015.01.008
– ident: 10.1016/j.jvcir.2020.102881_b0075
– ident: 10.1016/j.jvcir.2020.102881_b0185
  doi: 10.1109/ICCV.2015.345
– volume: 67
  start-page: 58
  year: 2018
  ident: 10.1016/j.jvcir.2020.102881_b0005
  article-title: Spatial–temporal adaptive feature weighted correlation filter for visual tracking
  publication-title: Signal Process. Image Commun.
  doi: 10.1016/j.image.2018.05.013
– ident: 10.1016/j.jvcir.2020.102881_b0030
  doi: 10.1155/2017/1605959
– volume: 96
  year: 2019
  ident: 10.1016/j.jvcir.2020.102881_b0100
  article-title: RGB-T object tracking: Benchmark and baseline
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2019.106977
– volume: 7
  year: 2019
  ident: 10.1016/j.jvcir.2020.102881_b0070
  article-title: SiamFT: An RGB-Infrared Fusion Tracking Method via Fully Convolutional Siamese Networks (vol 7, pg 122122, 2019)
  publication-title: Ieee Access
– ident: 10.1016/j.jvcir.2020.102881_b0090
– volume: 3
  start-page: 1
  issue: 1
  year: 2011
  ident: 10.1016/j.jvcir.2020.102881_b0095
  article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers
  publication-title: Foundations Trends® Mach. Learn.
– volume: 8
  start-page: 36948
  year: 2020
  ident: 10.1016/j.jvcir.2020.102881_b0150
  article-title: Visual tracking with online assessment and improved sampling strategy
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2975224
– volume: 68
  start-page: 13
  year: 2018
  ident: 10.1016/j.jvcir.2020.102881_b0020
  article-title: Visual tracking using locality-constrained linear coding and saliency map for visible light and infrared image sequences
  publication-title: Signal Process. Image Commun.
  doi: 10.1016/j.image.2018.06.019
– ident: 10.1016/j.jvcir.2020.102881_b0180
  doi: 10.5244/C.28.65
– ident: 10.1016/j.jvcir.2020.102881_b0190
  doi: 10.1109/CVPR.2017.733
– ident: 10.1016/j.jvcir.2020.102881_b0165
  doi: 10.1109/CVPR.2019.00480
– ident: 10.1016/j.jvcir.2020.102881_b0120
– volume: 99
  start-page: 265
  year: 2019
  ident: 10.1016/j.jvcir.2020.102881_b0130
  article-title: Thermal infrared and visible sequences fusion tracking based on a hybrid tracking framework with adaptive weighting scheme
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2019.04.017
– volume: 358
  start-page: 33
  year: 2019
  ident: 10.1016/j.jvcir.2020.102881_b0015
  article-title: Correlation filter tracker with siamese: A robust and real-time object tracking framework
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.05.033
– volume: 68
  start-page: 207
  year: 2018
  ident: 10.1016/j.jvcir.2020.102881_b0065
  article-title: Two-stage modality-graphs regularized manifold ranking for RGB-T tracking
  publication-title: Signal Process.-Image Commun.
  doi: 10.1016/j.image.2018.08.004
– ident: 10.1016/j.jvcir.2020.102881_b0135
  doi: 10.1109/CVPR.2010.5539960
SSID ssj0003934
Score 2.422139
Snippet •An adaptive spatial-temporal regularized correlation filter model is proposed to achieve robust tracking.•A relative peak discriminative method for model...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 102881
SubjectTerms Adaptive spatial-temporal regularization
ADMM
Correlation filters
Model updating
Object tracking
Title Learning discriminative update adaptive spatial-temporal regularized correlation filter for RGB-T tracking
URI https://dx.doi.org/10.1016/j.jvcir.2020.102881
Volume 72
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWGBAUEBAofKAmAhNHec1lopSXhUqRWKL4hdKVUrUBwMDvx2f40AroQ5MkSNbinznu3Puu-8QOhVMhJEUykkZDR2qPZyTur5ymr6ihLKmUIaJ6aEXdJ_p7Yv_UkHtshYGYJXW9hc23Vhr-6Zhd7ORZ1njCUgGPNMA3IP8KRTxURqCll98_cI8vLjILAMjAUwtmYcMxmv4wTMgBSWGwiCKmn97pwWP09lGWzZUxK3ia3ZQRY6raHOBQLCKanZSNn3DZ3ip2GO6i4aWPPUVQ-1t0b8LrBue53DPx6lIczOeAqw6HTmWp2qEJ6ZD_ST7lAJz6N9RIOawyiC5jnWgi_vXl84AzyYph5_te-i5czVodx3bW8Hh2mnNtGjcWOirjr79EE-5jBKhdxxy2UHImj5zI0ZUqI8_E5K4KqCKiIhxJoSIYxlKbx-tjd_H8gDhQArqS57GlDPKI8ViGWu3T2IhlNLxyCEi5Z4m3BKPQ_-LUVIizIaJEUQCgkgKQRyi859FecG7sXp6UAorWVKfRHuGVQuP_ruwhjZgVOD6jtHabDKXJzo-mbG6UcA6Wm-1-_eP8Ly56_a-Abqx6fA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8NADLagDMCAoICA8rgBMRE1vVweNxZEKa8OUCS2KPdCqUqp2sLAr-ecXFCRUAfGXGwpsk9-xPZngFMlVJxoZbxMsNhj1sN5mR8arxUaRploKVMgMT30ou4zu30JX5bgspqFwbZKZ_tLm15Ya3fSdNJsjvO8-YQgA0GxADzA-ilfhhVEpwprsNK-uev2fgxywMviMoISIHUFPlS0eQ0-ZY64oLRAMUiS1t8Oas7pdDZhw0WLpF1-0BYs6VEd1ucwBOvQcET59I2ckV_zHtNtGDj81FeC47flCi80cORjjKk-yVQ2Lp6n2FmdDT0HVTUkk2JJ_ST_0opIXOFRNs0Rk2N9ndhYlzxeX3h9MptkEv-378Bz56p_2fXcegVPWr81s9rxubLZjk2AaGB8waiyQsdydhSLVij8RFATWwsglKa-iZihKhFSKKU417EOdqE2eh_pPSCRVizUMuNMCiYTI7jm1vNTrpQxNiTZB1rJNJUOexxXYAzTqslskBaKSFERaamIfTj_YRqX0BuLyaNKWemvG5Ra57CI8eC_jCew2u0_3Kf3N727Bqzhm7LN7xBqs8mHPrLhykwcu-v4DWdV6ww
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+discriminative+update+adaptive+spatial-temporal+regularized+correlation+filter+for+RGB-T+tracking&rft.jtitle=Journal+of+visual+communication+and+image+representation&rft.au=Feng%2C+Mingzheng&rft.au=Song%2C+Kechen&rft.au=Wang%2C+Yanyan&rft.au=Liu%2C+Jie&rft.date=2020-10-01&rft.pub=Elsevier+Inc&rft.issn=1047-3203&rft.eissn=1095-9076&rft.volume=72&rft_id=info:doi/10.1016%2Fj.jvcir.2020.102881&rft.externalDocID=S1047320320301279
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1047-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1047-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1047-3203&client=summon