Elucidating the Copper–Hägg Iron Carbide Synergistic Interactions for Selective CO Hydrogenation to Higher Alcohols

CO hydrogenation to higher alcohols (C(2+)OH) provides a promising route to convert coal, natural gas, shale gas, and biomass feedstocks into value-added chemicals and transportation fuels. However, the development of nonprecious metal catalysts with satisfactory activity and well-defined selectivit...

Full description

Saved in:
Bibliographic Details
Published inACS catalysis Vol. 7; no. 8; pp. 5500 - 5512
Main Authors Lu, Yongwu, Zhang, Riguang, Cao, Baobao, Ge, Binghui, Tao, Franklin Feng, Shan, Junjun, Nguyen, Luan, Bao, Zhenghong, Wu, Tianpin, Pote, Jonathan W., Wang, Baojun, Yu, Fei
Format Journal Article
LanguageEnglish
Published United States American Chemical Society (ACS) 04.08.2017
Subjects
Online AccessGet full text
ISSN2155-5435
2155-5435
DOI10.1021/acscatal.7b01469

Cover

Abstract CO hydrogenation to higher alcohols (C(2+)OH) provides a promising route to convert coal, natural gas, shale gas, and biomass feedstocks into value-added chemicals and transportation fuels. However, the development of nonprecious metal catalysts with satisfactory activity and well-defined selectivity toward C(2+)OH remains challenging and impedes the commercialization of this process. Here, we show that the synergistic geometric and electronic interactions dictate the activity of Cu(0)–χ-F(e)5C(2) binary catalysts for selective CO hydrogenation to C(2+)OH, outperforming silica-supported precious Rh-based catalysts, by using a combination of experimental evidence from bulk, surface-sensitive, and imaging techniques collected on real and high-performance Cu–Fe binary catalytic systems coupled with density functional theory calculations. The closer is the d-band center to the Fermi level of Cu(0)–χ-Fe(5)C(2)(510) surface than those of χ-Fe(5)C(2)(510) and Rh(111) surface, and the electron-rich interface of Cu0–χ-Fe(5)C(2)(510) due to the delocalized electron transfer from Cu0 atoms, facilitates CO activation and CO insertion into alkyl species to C2-oxygenates at the interface of Cu(0)–χ-Fe(5)C(2)(510) and thus enhances C(2)H(5)OH selectivity. Starting from the CHCO intermediate, the proposed reaction pathway for CO hydrogenation to C(2)H(5)OH on Cu0–χ-Fe(5)C(2)(510) is CHCO + (H) → CH(2)CO + (H) → CH(3)CO + (H) → CH(3)CHO + (H) → CH(3)CH2O + (H) → C(2)H(5)OH. This study may guide the rational design of high-performance binary catalysts made from earth-abundant metals with synergistic interactions for tuning selectivity.
AbstractList CO hydrogenation to higher alcohols (C(2+)OH) provides a promising route to convert coal, natural gas, shale gas, and biomass feedstocks into value-added chemicals and transportation fuels. However, the development of nonprecious metal catalysts with satisfactory activity and well-defined selectivity toward C(2+)OH remains challenging and impedes the commercialization of this process. Here, we show that the synergistic geometric and electronic interactions dictate the activity of Cu(0)–χ-F(e)5C(2) binary catalysts for selective CO hydrogenation to C(2+)OH, outperforming silica-supported precious Rh-based catalysts, by using a combination of experimental evidence from bulk, surface-sensitive, and imaging techniques collected on real and high-performance Cu–Fe binary catalytic systems coupled with density functional theory calculations. The closer is the d-band center to the Fermi level of Cu(0)–χ-Fe(5)C(2)(510) surface than those of χ-Fe(5)C(2)(510) and Rh(111) surface, and the electron-rich interface of Cu0–χ-Fe(5)C(2)(510) due to the delocalized electron transfer from Cu0 atoms, facilitates CO activation and CO insertion into alkyl species to C2-oxygenates at the interface of Cu(0)–χ-Fe(5)C(2)(510) and thus enhances C(2)H(5)OH selectivity. Starting from the CHCO intermediate, the proposed reaction pathway for CO hydrogenation to C(2)H(5)OH on Cu0–χ-Fe(5)C(2)(510) is CHCO + (H) → CH(2)CO + (H) → CH(3)CO + (H) → CH(3)CHO + (H) → CH(3)CH2O + (H) → C(2)H(5)OH. This study may guide the rational design of high-performance binary catalysts made from earth-abundant metals with synergistic interactions for tuning selectivity.
CO hydrogenation to higher alcohols (C2+OH) provides a promising route to convert coal, natural gas, shale gas, and biomass feedstocks into value-added chemicals and transportation fuels. However, the development of nonprecious metal catalysts with satisfactory activity and well-defined selectivity toward C2+OH remains challenging and impedes the commercialization of this process. Here, we show that the synergistic geometric and electronic interactions dictate the activity of Cu-0-chi-Fe5C2 binary catalysts for selective CO hydrogenation to C2+OH, outperforming silica-supported precious Rh-based catalysts, by using a combination of experimental evidence from bulk, surface-sensitive, and imaging techniques collected on real and high-performance Cu-Fe binary catalytic systems coupled with density functional theory calculations. The closer is the d-band center to the Fermi level of Cu-0-chi-Fe5C2(510) surface than those of chi-Fe5C2(510) and Rh(111) surface, and the electron-rich interface of Cu-0-chi-Fe5C2(510) due to the delocalized electron transfer from Cu-0 atoms, facilitates CO activation and CO insertion into alkyl species to C-2-oxygenates at the interface of Cu-0-chi-Fe5C2(510) and thus enhances C2H5OH selectivity. Starting from the CHCO intermediate, the proposed reaction pathway for CO hydrogenation to C2H5OH on Cu-0-chi-Fe5C2(510) is CHCO + (H) -> CH2CO + (H) -> CH3CO + (H) -> CH3CHO + (H) -> CH3CH2O + (H) -> C2H5OH. This study may guide the rational design of high-performance binary catalysts made from earth-abundant metals with synergistic interactions for tuning selectivity.
Author Tao, Franklin Feng
Lu, Yongwu
Shan, Junjun
Wu, Tianpin
Cao, Baobao
Pote, Jonathan W.
Yu, Fei
Bao, Zhenghong
Ge, Binghui
Zhang, Riguang
Nguyen, Luan
Wang, Baojun
Author_xml – sequence: 1
  givenname: Yongwu
  orcidid: 0000-0003-0858-8315
  surname: Lu
  fullname: Lu, Yongwu
  organization: Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, Mississippi 39762, United States
– sequence: 2
  givenname: Riguang
  surname: Zhang
  fullname: Zhang, Riguang
  organization: Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan, Shanxi 030024, People’s Republic of China
– sequence: 3
  givenname: Baobao
  surname: Cao
  fullname: Cao, Baobao
  organization: School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, People’s Republic of China
– sequence: 4
  givenname: Binghui
  surname: Ge
  fullname: Ge, Binghui
  organization: Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing 100190, People’s Republic of China
– sequence: 5
  givenname: Franklin Feng
  orcidid: 0000-0002-4916-6509
  surname: Tao
  fullname: Tao, Franklin Feng
  organization: Department of Chemical and Petroleum Engineering and Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
– sequence: 6
  givenname: Junjun
  surname: Shan
  fullname: Shan, Junjun
  organization: Department of Chemical and Petroleum Engineering and Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
– sequence: 7
  givenname: Luan
  surname: Nguyen
  fullname: Nguyen, Luan
  organization: Department of Chemical and Petroleum Engineering and Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
– sequence: 8
  givenname: Zhenghong
  surname: Bao
  fullname: Bao, Zhenghong
  organization: Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, Mississippi 39762, United States
– sequence: 9
  givenname: Tianpin
  surname: Wu
  fullname: Wu, Tianpin
  organization: X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
– sequence: 10
  givenname: Jonathan W.
  surname: Pote
  fullname: Pote, Jonathan W.
  organization: Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, Mississippi 39762, United States
– sequence: 11
  givenname: Baojun
  surname: Wang
  fullname: Wang, Baojun
  organization: Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan, Shanxi 030024, People’s Republic of China
– sequence: 12
  givenname: Fei
  orcidid: 0000-0001-5595-6147
  surname: Yu
  fullname: Yu, Fei
  organization: Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, Mississippi 39762, United States
BackLink https://www.osti.gov/biblio/1481734$$D View this record in Osti.gov
BookMark eNp1kc9qlDEUxUNpobV232Vw5WZq_udzWYbqDBS6qK5D5n53vomkyZhkCrPzHfoKvolv4pOYOhVEMJvkkt85HO55RY5TTkjIJWdXnAn-zkMF33y8sivGlXl_RM4E13qmldTHf71PyUWtX1g_SpvBsjPyeBN3EEbfQppo2yCd5-0Wy89vT4sf36eJLktOdO7LKoxI7_cJyxRqC0CXqWHx0EJOla5zofcYsY-P3eKOLvZjyRMm__xPW6aLMG2w0OsIeZNjfU1O1j5WvHi5z8nnDzef5ovZ7d3H5fz6dgaSyTbzng8SB9BMGGFWiIJbKyUKGIw1XK01iHEEq_04KIFWqw5zg3bwcrQI8py8OfjmHtpVCA1hAzmlHtVxNXArVYfeHqBtyV93WJt7CBUwRp8w76oTRho1KKtsR9kBhZJrLbh22xIefNk7ztxzFe5PFe6lii4x_0h6it97acWH-H_hL1-5lVg
CitedBy_id crossref_primary_10_1021_acsami_2c07029
crossref_primary_10_1021_acscatal_8b02714
crossref_primary_10_1021_acscatal_8b03924
crossref_primary_10_1016_j_ijhydene_2024_07_240
crossref_primary_10_1016_j_jechem_2022_02_039
crossref_primary_10_1038_s41467_019_13691_4
crossref_primary_10_1016_j_mcat_2019_110610
crossref_primary_10_1021_acscatal_3c00363
crossref_primary_10_1021_acscatal_8b02235
crossref_primary_10_1007_s10562_018_2329_0
crossref_primary_10_1016_j_apcata_2024_120081
crossref_primary_10_1016_j_apcata_2020_117945
crossref_primary_10_1016_j_fuproc_2018_04_006
crossref_primary_10_1039_C7CY02555F
crossref_primary_10_1016_j_mcat_2024_113947
crossref_primary_10_1039_D4CC05510A
crossref_primary_10_1016_j_electacta_2021_138445
crossref_primary_10_1016_j_jcat_2024_115873
crossref_primary_10_1039_D4GC01584C
crossref_primary_10_1016_j_apcata_2022_118552
crossref_primary_10_1016_j_cej_2024_149181
crossref_primary_10_1016_j_apcatb_2023_123477
crossref_primary_10_1021_acscatal_0c01184
crossref_primary_10_1021_acs_jpcc_1c01006
crossref_primary_10_1016_j_trechm_2023_03_006
crossref_primary_10_1021_acscatal_2c01078
crossref_primary_10_1039_D2SC03107H
crossref_primary_10_1063_5_0186088
crossref_primary_10_1016_j_fuproc_2023_107728
crossref_primary_10_1016_j_apcata_2018_01_010
crossref_primary_10_1002_slct_202001132
crossref_primary_10_1021_acscatal_7b02837
crossref_primary_10_1002_ente_202000205
crossref_primary_10_1016_j_apcatb_2023_122949
crossref_primary_10_2139_ssrn_4048810
crossref_primary_10_1021_acscatal_9b00352
crossref_primary_10_1021_acssuschemeng_2c05450
crossref_primary_10_1016_j_apcatb_2019_02_060
crossref_primary_10_1002_cite_201700154
crossref_primary_10_1039_D1CY01179K
crossref_primary_10_1016_j_jcat_2023_03_014
crossref_primary_10_1002_aenm_202201783
crossref_primary_10_1016_j_apcatb_2024_123748
crossref_primary_10_1016_j_cej_2024_155624
crossref_primary_10_1002_aic_18784
crossref_primary_10_1016_j_cej_2024_157608
crossref_primary_10_1021_acsami_2c07252
crossref_primary_10_1016_j_jechem_2018_09_008
crossref_primary_10_1021_acs_iecr_8b03304
crossref_primary_10_1039_D1CY02186A
crossref_primary_10_1016_j_mcat_2023_112990
crossref_primary_10_1039_C8CY01074A
crossref_primary_10_1016_j_carbon_2020_06_076
crossref_primary_10_3390_catal13020237
crossref_primary_10_1021_acssuschemeng_1c04263
crossref_primary_10_1039_C7CP05411D
crossref_primary_10_3390_molecules28186525
crossref_primary_10_1016_j_mcat_2021_111820
crossref_primary_10_1016_j_commatsci_2019_109345
crossref_primary_10_1021_acscatal_9b00485
crossref_primary_10_1016_j_ijhydene_2021_04_009
crossref_primary_10_1016_j_apcatb_2022_121155
crossref_primary_10_1021_acs_jpclett_2c00549
crossref_primary_10_1039_C9CY02428J
crossref_primary_10_1021_acssuschemeng_3c08044
crossref_primary_10_1016_j_jcat_2021_09_034
crossref_primary_10_1016_j_apcatb_2023_123013
crossref_primary_10_1038_s41467_020_14672_8
crossref_primary_10_1021_acs_jpcc_0c10822
crossref_primary_10_1038_s41467_022_29971_5
crossref_primary_10_1039_C8CY01621F
crossref_primary_10_1016_S1872_2067_18_63100_6
crossref_primary_10_1021_acscatal_3c00074
crossref_primary_10_1016_j_seppur_2025_132583
crossref_primary_10_1016_j_fuel_2021_122115
crossref_primary_10_1016_j_fuel_2021_121342
crossref_primary_10_1016_j_fuel_2022_124265
crossref_primary_10_1021_acssensors_3c01669
crossref_primary_10_1021_acscatal_0c03575
crossref_primary_10_1021_acs_jpcc_0c02537
crossref_primary_10_1039_C8EN00507A
crossref_primary_10_1016_j_apsusc_2019_143852
crossref_primary_10_1016_j_apsusc_2020_148301
crossref_primary_10_1007_s11244_020_01336_6
crossref_primary_10_1002_cctc_201801706
crossref_primary_10_1016_j_chempr_2020_10_019
crossref_primary_10_1021_acs_jpcc_9b05963
crossref_primary_10_1002_cctc_202000059
crossref_primary_10_1016_j_compositesb_2021_108608
crossref_primary_10_1016_j_jcou_2017_10_013
crossref_primary_10_1016_j_jcat_2019_01_021
Cites_doi 10.1021/acscatal.5b00791
10.1088/0953-8984/20/6/064238
10.1021/cs300008g
10.1039/c2cc37416a
10.1021/jp210754k
10.1107/S0909049505012719
10.1016/0927-0256(96)00008-0
10.1021/ja903013x
10.1016/0368-2048(74)80012-5
10.1016/0169-4332(88)90076-1
10.1016/j.commatsci.2005.04.010
10.1103/PhysRevLett.77.3865
10.1103/PhysRevB.26.1738
10.1103/PhysRevB.36.5263
10.1021/ja01516a016
10.1016/j.jcat.2014.06.009
10.1038/nchem.623
10.1002/cctc.201300749
10.1039/C4TA02413C
10.1016/j.jcat.2010.02.020
10.1021/acsami.6b01134
10.1016/j.jcat.2006.07.012
10.1063/1.3684549
10.1021/jp502225r
10.1038/ncomms5948
10.1038/nature19786
10.1016/j.jcat.2012.07.003
10.1063/1.451126
10.1107/S0909049500016964
10.1103/PhysRevLett.78.1396
10.1021/acs.jpcc.5b01324
10.1002/anie.201005282
10.1021/ja00200a032
10.1063/1.2841941
10.1021/ja305048p
10.1103/PhysRevB.50.17953
10.1038/nchem.121
10.1016/j.jechem.2016.11.002
10.1126/science.1215614
10.1016/j.jcat.2008.01.009
10.1002/anie.201603556
10.1021/jp403339r
10.1021/jp040366o
10.1103/PhysRevB.59.1758
10.1063/1.480097
10.1021/jp901075e
10.1021/cr300096b
10.1016/j.catcom.2012.06.010
10.1021/jp908482q
10.1039/C6CS00324A
10.1016/j.ces.2015.02.035
10.1016/j.apcata.2012.04.005
10.1021/jacs.5b12087
10.1016/j.susc.2006.02.048
10.1016/j.susc.2012.04.001
10.1103/PhysRevB.54.11169
10.1021/jp802242t
10.1021/ja402512r
10.1016/j.molcata.2012.08.016
10.1021/jp111728h
10.1002/anie.201402680
10.1063/1.1809574
10.1179/2055075814Y.0000000003
10.1016/j.jcat.2016.01.015
10.1002/anie.201100735
10.1021/jp013231g
10.1017/S0885715600010435
10.1021/jp205204e
10.1103/PhysRevB.17.1481
10.1002/cctc.201300479
10.1021/cs501668g
10.1021/cr3002752
10.1126/science.1219831
10.1021/jp4109706
10.1038/ncomms13058
ContentType Journal Article
CorporateAuthor Argonne National Lab. (ANL), Argonne, IL (United States)
CorporateAuthor_xml – name: Argonne National Lab. (ANL), Argonne, IL (United States)
DBID AAYXX
CITATION
7S9
L.6
OTOTI
DOI 10.1021/acscatal.7b01469
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
OSTI.GOV
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2155-5435
EndPage 5512
ExternalDocumentID 1481734
10_1021_acscatal_7b01469
GroupedDBID .K2
55A
7~N
AABXI
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABMVS
ABQRX
ABUCX
ACGFO
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CITATION
CUPRZ
EBS
ED~
EJD
GGK
GNL
IH9
JG~
RNS
ROL
UI2
VF5
VG9
W1F
7S9
L.6
ABFRP
OTOTI
ID FETCH-LOGICAL-c303t-aa183e8c502626bee217733e2c867614f5c2ddc75ad842e754e8c16e78a3d7ec3
IEDL.DBID ACS
ISSN 2155-5435
IngestDate Thu May 18 18:36:07 EDT 2023
Fri Jul 11 08:24:48 EDT 2025
Thu Apr 24 22:59:52 EDT 2025
Tue Jul 01 01:34:59 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c303t-aa183e8c502626bee217733e2c867614f5c2ddc75ad842e754e8c16e78a3d7ec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Natural Science Foundation of Shanxi Province
AC02-06CH11357
U.S. Department of Agriculture (USDA)
Argonne National Laboratory - Advanced Photon Source
USDOE Office of Science - Office of Basic Energy Sciences - Chemical Sciences, Geosciences, and Biosciences Division
National Natural Science Foundation of China (NNSFC)
ORCID 0000-0002-4916-6509
0000-0001-5595-6147
0000-0003-0858-8315
0000000249166509
0000000155956147
0000000308588315
PQID 2636484747
PQPubID 24069
PageCount 13
ParticipantIDs osti_scitechconnect_1481734
proquest_miscellaneous_2636484747
crossref_primary_10_1021_acscatal_7b01469
crossref_citationtrail_10_1021_acscatal_7b01469
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-08-04
PublicationDateYYYYMMDD 2017-08-04
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-08-04
  day: 04
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS catalysis
PublicationYear 2017
Publisher American Chemical Society (ACS)
Publisher_xml – name: American Chemical Society (ACS)
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref71/cit71
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref74/cit74
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref75/cit75
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref72/cit72
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref73/cit73
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref70/cit70
ref7/cit7
References_xml – ident: ref6/cit6
  doi: 10.1021/acscatal.5b00791
– ident: ref68/cit68
  doi: 10.1088/0953-8984/20/6/064238
– ident: ref25/cit25
  doi: 10.1021/cs300008g
– ident: ref26/cit26
  doi: 10.1039/c2cc37416a
– ident: ref37/cit37
  doi: 10.1021/jp210754k
– ident: ref51/cit51
  doi: 10.1107/S0909049505012719
– ident: ref53/cit53
  doi: 10.1016/0927-0256(96)00008-0
– ident: ref47/cit47
  doi: 10.1021/ja903013x
– ident: ref23/cit23
  doi: 10.1016/0368-2048(74)80012-5
– ident: ref28/cit28
  doi: 10.1016/0169-4332(88)90076-1
– ident: ref65/cit65
  doi: 10.1016/j.commatsci.2005.04.010
– ident: ref56/cit56
  doi: 10.1103/PhysRevLett.77.3865
– ident: ref58/cit58
  doi: 10.1103/PhysRevB.26.1738
– ident: ref29/cit29
  doi: 10.1103/PhysRevB.36.5263
– ident: ref70/cit70
  doi: 10.1021/ja01516a016
– ident: ref43/cit43
  doi: 10.1016/j.jcat.2014.06.009
– ident: ref4/cit4
  doi: 10.1038/nchem.623
– ident: ref21/cit21
  doi: 10.1002/cctc.201300749
– ident: ref39/cit39
  doi: 10.1039/C4TA02413C
– ident: ref16/cit16
  doi: 10.1016/j.jcat.2010.02.020
– ident: ref36/cit36
  doi: 10.1021/acsami.6b01134
– ident: ref22/cit22
  doi: 10.1016/j.jcat.2006.07.012
– ident: ref61/cit61
  doi: 10.1063/1.3684549
– ident: ref42/cit42
  doi: 10.1021/jp502225r
– ident: ref44/cit44
  doi: 10.1038/ncomms5948
– ident: ref13/cit13
  doi: 10.1038/nature19786
– ident: ref41/cit41
  doi: 10.1016/j.jcat.2012.07.003
– ident: ref33/cit33
  doi: 10.1063/1.451126
– ident: ref50/cit50
  doi: 10.1107/S0909049500016964
– ident: ref57/cit57
  doi: 10.1103/PhysRevLett.78.1396
– ident: ref49/cit49
  doi: 10.1021/acs.jpcc.5b01324
– ident: ref27/cit27
  doi: 10.1002/anie.201005282
– ident: ref30/cit30
  doi: 10.1021/ja00200a032
– ident: ref62/cit62
  doi: 10.1063/1.2841941
– ident: ref14/cit14
  doi: 10.1021/ja305048p
– ident: ref54/cit54
  doi: 10.1103/PhysRevB.50.17953
– ident: ref3/cit3
  doi: 10.1038/nchem.121
– ident: ref12/cit12
  doi: 10.1016/j.jechem.2016.11.002
– ident: ref8/cit8
  doi: 10.1126/science.1215614
– ident: ref72/cit72
  doi: 10.1016/j.jcat.2008.01.009
– ident: ref40/cit40
  doi: 10.1002/anie.201603556
– ident: ref24/cit24
  doi: 10.1021/jp403339r
– ident: ref34/cit34
  doi: 10.1021/jp040366o
– ident: ref55/cit55
  doi: 10.1103/PhysRevB.59.1758
– ident: ref63/cit63
  doi: 10.1063/1.480097
– ident: ref71/cit71
  doi: 10.1021/jp901075e
– ident: ref2/cit2
  doi: 10.1021/cr300096b
– ident: ref18/cit18
  doi: 10.1016/j.catcom.2012.06.010
– ident: ref73/cit73
  doi: 10.1021/jp908482q
– ident: ref11/cit11
  doi: 10.1039/C6CS00324A
– ident: ref15/cit15
  doi: 10.1016/j.ces.2015.02.035
– ident: ref20/cit20
  doi: 10.1016/j.apcata.2012.04.005
– ident: ref19/cit19
  doi: 10.1021/jacs.5b12087
– ident: ref67/cit67
  doi: 10.1016/j.susc.2006.02.048
– ident: ref66/cit66
  doi: 10.1016/j.susc.2012.04.001
– ident: ref52/cit52
  doi: 10.1103/PhysRevB.54.11169
– ident: ref75/cit75
  doi: 10.1021/jp802242t
– ident: ref10/cit10
  doi: 10.1021/ja402512r
– ident: ref46/cit46
  doi: 10.1016/j.molcata.2012.08.016
– ident: ref38/cit38
  doi: 10.1021/jp111728h
– ident: ref5/cit5
  doi: 10.1002/anie.201402680
– ident: ref64/cit64
  doi: 10.1063/1.1809574
– ident: ref48/cit48
  doi: 10.1179/2055075814Y.0000000003
– ident: ref31/cit31
  doi: 10.1016/j.jcat.2016.01.015
– ident: ref45/cit45
  doi: 10.1002/anie.201100735
– ident: ref59/cit59
  doi: 10.1021/jp013231g
– ident: ref69/cit69
  doi: 10.1017/S0885715600010435
– ident: ref35/cit35
  doi: 10.1021/jp205204e
– ident: ref32/cit32
  doi: 10.1103/PhysRevB.17.1481
– ident: ref17/cit17
  doi: 10.1002/cctc.201300479
– ident: ref74/cit74
  doi: 10.1021/cs501668g
– ident: ref1/cit1
  doi: 10.1021/cr3002752
– ident: ref9/cit9
  doi: 10.1126/science.1219831
– ident: ref60/cit60
  doi: 10.1021/jp4109706
– ident: ref7/cit7
  doi: 10.1038/ncomms13058
SSID ssj0000456870
Score 2.4956284
Snippet CO hydrogenation to higher alcohols (C(2+)OH) provides a promising route to convert coal, natural gas, shale gas, and biomass feedstocks into value-added...
CO hydrogenation to higher alcohols (C2+OH) provides a promising route to convert coal, natural gas, shale gas, and biomass feedstocks into value-added...
SourceID osti
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 5500
SubjectTerms biomass
catalytic activity
CO hydrogenation
coal
commercialization
copper
density functional theory
electron transfer
feedstocks
Hagg iron carbide
higher alcohols
hydrogenation
natural gas
reaction mechanism
shale gas
synergistic effect
value added
Title Elucidating the Copper–Hägg Iron Carbide Synergistic Interactions for Selective CO Hydrogenation to Higher Alcohols
URI https://www.proquest.com/docview/2636484747
https://www.osti.gov/biblio/1481734
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTtwwELaqvcClpdCqCxQZiQuHLIp_kyOKQAsScFiQuEWOPbtCRckqySLBiXfoK_RNeJM-ScdOFlSoqvbu_Mhj-_vGM_MNIXs6jcFJk0ZKg45EKnSUMogjrwamOHDlwNc7n52r8ZU4vZbXLzI5ryP4LD4wtgk3GSNdeKGTUKuH_pxnQdnk-TrFM5MktIZDDJORRBbQByX_9I7fQGhQ4WZ6cxQHfDn-0DUqaoIsoU8r-TZatMXIPrwVbfyHX18j73uaSQ-7dfGRvINynaxky-5uG-Tu6HZhb3xtQzmjSAJpVs3nUP98_D5--jGb0ZO6Kmlm6uLGAZ3c-wrBIOlMwxViVw3RUGS8dBI66eChSbMLOr53dYVrMtibthXt8kjoYdeJt_lEro6PLrNx1PdgiCyCWxsZg3seEivRV2OqAEAXRnMOzCZKI7RPpWXOWS2NSwQDLQUOjhXoxHCnwfLPZFBWJXwhNNZOqlROTerQKS9YMY2N1Bw0Uhw7FXZIDpZGyW0vUO77ZNzmIVDO4nw5n3k_n0Oy__zEvBPn-MvYLW_nHImFV8e1Po3Ituj5JLHmYkh2l-bP0RA-aGJKqBZNzhRXAiFc6M3_-NoWWWUe_31uidgmg7ZewFdkL22xE9btL8rC7qc
linkProvider American Chemical Society
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Elucidating+the+Copper%E2%80%93H%C3%A4gg+Iron+Carbide+Synergistic+Interactions+for+Selective+CO+Hydrogenation+to+Higher+Alcohols&rft.jtitle=ACS+catalysis&rft.au=Lu%2C+Yongwu&rft.au=Zhang%2C+Riguang&rft.au=Cao%2C+Baobao&rft.au=Ge%2C+Binghui&rft.date=2017-08-04&rft.pub=American+Chemical+Society+%28ACS%29&rft.issn=2155-5435&rft.eissn=2155-5435&rft.volume=7&rft.issue=8&rft_id=info:doi/10.1021%2Facscatal.7b01469&rft.externalDocID=1481734
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2155-5435&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2155-5435&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2155-5435&client=summon