Controllable molecular doping in organic single crystals toward high-efficiency light-emitting devices
Organic single-crystalline semiconductors have drawn significant attention in the area of organic electronic and optoelectronic devices due to their superiorities of highly ordered structure, high carrier mobility and low impurity content. Molecular doping technique has made great progress in improv...
Saved in:
Published in | Organic electronics Vol. 91; p. 106089 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.04.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Organic single-crystalline semiconductors have drawn significant attention in the area of organic electronic and optoelectronic devices due to their superiorities of highly ordered structure, high carrier mobility and low impurity content. Molecular doping technique has made great progress in improving device performance via optimizing the optical and electrical properties of organic semiconductors. In particular, this technique has been attempted by taking fluorescent dye-molecules as the emissive dopants to tune emission color and improve device performance of organic single crystals. Up to now, there are few reports about the use of molecular doping in organic single crystals to optimize their intrinsic electrical properties. Here, we have introduced the controllable molecular doping as a feasible approach toward manipulating charge carrier transport properties of organic single crystals. Upon optimization of doping concentration, balanced carrier transport can be realized in 5,5′-bis(4-trifluoromethyl phenyl) [2,2’] bithiophene (P2TCF3)-doped 1,4-bis(4-methylstyryl) benzene (BSB–Me) crystals. Organic light-emitting devices (OLEDs) based on these doped crystals achieve a maximum luminance of 423 cd/m2 and current efficiency of 0.48 cd/A. It demonstrates that high-efficiency crystal-based OLEDs are of great significance for the development of organic electronics, especially for display and lighting applications.
[Display omitted]
•The n-type P2TCF3 has been introduced as dopant into a p-type BSB-Me host crystal.•Molecular doping is employed for realizing balanced carrier transport.•The comparable hole and electron mobilities can be obtained in doped crystals.•The luminance of doped crystal-based OLEDs is 3.5 times that of undoped crystal.•The current efficiency is correspondingly increased by 3.2 times. |
---|---|
AbstractList | Organic single-crystalline semiconductors have drawn significant attention in the area of organic electronic and optoelectronic devices due to their superiorities of highly ordered structure, high carrier mobility and low impurity content. Molecular doping technique has made great progress in improving device performance via optimizing the optical and electrical properties of organic semiconductors. In particular, this technique has been attempted by taking fluorescent dye-molecules as the emissive dopants to tune emission color and improve device performance of organic single crystals. Up to now, there are few reports about the use of molecular doping in organic single crystals to optimize their intrinsic electrical properties. Here, we have introduced the controllable molecular doping as a feasible approach toward manipulating charge carrier transport properties of organic single crystals. Upon optimization of doping concentration, balanced carrier transport can be realized in 5,5′-bis(4-trifluoromethyl phenyl) [2,2’] bithiophene (P2TCF3)-doped 1,4-bis(4-methylstyryl) benzene (BSB–Me) crystals. Organic light-emitting devices (OLEDs) based on these doped crystals achieve a maximum luminance of 423 cd/m2 and current efficiency of 0.48 cd/A. It demonstrates that high-efficiency crystal-based OLEDs are of great significance for the development of organic electronics, especially for display and lighting applications.
[Display omitted]
•The n-type P2TCF3 has been introduced as dopant into a p-type BSB-Me host crystal.•Molecular doping is employed for realizing balanced carrier transport.•The comparable hole and electron mobilities can be obtained in doped crystals.•The luminance of doped crystal-based OLEDs is 3.5 times that of undoped crystal.•The current efficiency is correspondingly increased by 3.2 times. |
ArticleNumber | 106089 |
Author | Ye, Gao-Da Xu, Bin Wang, Wei Feng, Jing Sun, Hong-Bo Ding, Ran Wang, Ya-Nan An, Ming-Hui Zhu, Qin-Cheng Xu, Mei-Li Wang, Xue-Peng |
Author_xml | – sequence: 1 givenname: Ming-Hui surname: An fullname: An, Ming-Hui organization: State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, People's Republic of China – sequence: 2 givenname: Ran surname: Ding fullname: Ding, Ran email: dingranhf2006@gmail.com organization: State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, People's Republic of China – sequence: 3 givenname: Gao-Da surname: Ye fullname: Ye, Gao-Da organization: State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, People's Republic of China – sequence: 4 givenname: Qin-Cheng surname: Zhu fullname: Zhu, Qin-Cheng organization: State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, People's Republic of China – sequence: 5 givenname: Ya-Nan surname: Wang fullname: Wang, Ya-Nan organization: State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, People's Republic of China – sequence: 6 givenname: Bin surname: Xu fullname: Xu, Bin organization: State Key Laboratory of Supermolecular Structures and Materials, Jilin University, 2699 Qianjin Street, Changchun, 130012, People's Republic of China – sequence: 7 givenname: Mei-Li surname: Xu fullname: Xu, Mei-Li organization: State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, People's Republic of China – sequence: 8 givenname: Xue-Peng surname: Wang fullname: Wang, Xue-Peng organization: State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, People's Republic of China – sequence: 9 givenname: Wei orcidid: 0000-0002-4441-8914 surname: Wang fullname: Wang, Wei organization: State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, People's Republic of China – sequence: 10 givenname: Jing orcidid: 0000-0002-4814-8907 surname: Feng fullname: Feng, Jing email: jingfeng@jlu.edu.cn organization: State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, People's Republic of China – sequence: 11 givenname: Hong-Bo surname: Sun fullname: Sun, Hong-Bo organization: State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, People's Republic of China |
BookMark | eNqFkMtKAzEUhoNUsK0-gZu8wNRcOpcsXEjxBgU3ug6ZzEmbkk5KEivz9mZaVy50dS6c74fzzdCk9z0gdEvJghJa3e0WPmzALRhhNG8q0ogLNKVN3RRlyckk92VVFZQKcYVmMe5IppaUTZFZ-T4F75xqHeC9d6A_nQq48wfbb7DtcU5WvdU45jmf6DDEpFzEyX-p0OGt3WwLMMZqC70esMtzKmBvUxoDOjhaDfEaXZoMwc1PnaOPp8f31Uuxfnt-XT2sC80JT4USjNem1QSWpBR104qS05qwijWqpqpq1FJQUxOAOndQUcYFM0JRTYlqG8PniJ9zdfAxBjDyEOxehUFSIkdVcidPquSoSp5VZUr8orRNKtlRjbLuH_b-zEJ-62ghyHgyAZ0NoJPsvP2T_wZMiYnd |
CitedBy_id | crossref_primary_10_1039_D1CE01674A crossref_primary_10_1039_D1MH01574E crossref_primary_10_1021_acs_chemmater_2c00281 crossref_primary_10_1016_j_orgel_2022_106670 crossref_primary_10_1002_adom_202403209 crossref_primary_10_1016_j_molstruc_2023_135501 crossref_primary_10_1002_smll_202208174 crossref_primary_10_1016_j_jcrysgro_2023_127483 |
Cites_doi | 10.1039/C7CS00490G 10.1186/s43074-020-00012-y 10.1002/adfm.201807606 10.1002/adma.201302514 10.1002/pssa.201228310 10.1038/s41377-019-0232-0 10.1002/adfm.201100783 10.1002/marc.201500026 10.1016/j.orgel.2012.10.028 10.1021/ar980031n 10.1002/lpor.201300222 10.1002/adma.201801078 10.1186/s43074-020-00010-0 10.1002/adfm.200902339 10.1002/lpor.201900009 10.1002/adma.201703063 10.1021/cg9007125 10.1002/adfm.201604659 10.1039/C3TC31998A 10.1002/adfm.201800116 10.1021/cr100380z 10.1002/adma.200803588 10.1038/s41377-020-00395-4 10.1039/c3cp43800g 10.1143/JJAP.44.L1367 10.1038/s41377-020-00391-8 10.1007/s40843-019-1277-3 10.1002/adfm.202002422 10.1007/s40843-019-9461-8 10.1002/adma.201304280 10.1038/s41377-020-00402-8 10.1002/adom.201200066 10.1002/adfm.201470292 10.1007/s40843-020-1374-7 10.1063/1.3298558 10.1002/adma.202001998 10.1021/acs.accounts.5b00438 10.1021/ja055686f 10.1063/1.2736208 |
ContentType | Journal Article |
Copyright | 2021 |
Copyright_xml | – notice: 2021 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.orgel.2021.106089 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1878-5530 |
ExternalDocumentID | 10_1016_j_orgel_2021_106089 S156611992100029X |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 5VS 7-5 71M 8P~ AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABXDB ABXRA ABYKQ ACDAQ ACFVG ACGFO ACGFS ACNNM ACRLP ADBBV ADECG ADEZE ADMUD AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM KZ1 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCB SCC SDF SDG SES SEW SPC SPCBC SPD SSK SSM SSQ SSZ T5K UNMZH XFK XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c303t-a9237fbc0e405978b9531702628a71a68a491f70ee7a49e612392f9a1c10ab8f3 |
IEDL.DBID | .~1 |
ISSN | 1566-1199 |
IngestDate | Tue Jul 01 01:56:41 EDT 2025 Thu Apr 24 23:11:51 EDT 2025 Fri Feb 23 02:46:04 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Organic single crystals Organic light-emitting devices Balanced carrier transport Molecular doping |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c303t-a9237fbc0e405978b9531702628a71a68a491f70ee7a49e612392f9a1c10ab8f3 |
ORCID | 0000-0002-4814-8907 0000-0002-4441-8914 |
ParticipantIDs | crossref_primary_10_1016_j_orgel_2021_106089 crossref_citationtrail_10_1016_j_orgel_2021_106089 elsevier_sciencedirect_doi_10_1016_j_orgel_2021_106089 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2021 2021-04-00 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: April 2021 |
PublicationDecade | 2020 |
PublicationTitle | Organic electronics |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Hotta, Yamao, Bisri, Takenobu, Iwasa (bib1) 2014; 2 Kabe, Nakanotani, Sakanoue, Yahiro, Adachi (bib36) 2009; 21 Wang, Zhao, Zhan, Fang, Yang, Huang, Zhang, Jiang, Duan, Liu, Bian, Lu, Huang (bib41) 2020; 9 Fang, Yang, Feng, Yamao, Hotta, Sun (bib6) 2014; 8 Nakamura, Ichikawa, Fushiki, Kamikawa, Inoue, Koyama, Taniguchi (bib9) 2005; 44 Ding, An, Feng, Sun (bib5) 2019; 13 Lussem, Riede, Leo (bib17) 2010; 210 Ding, Wang, Feng, Li, Dong, Tian, Du, Fang, Wang, Yamao, Hotta, Sun (bib31) 2018; 30 Parashchuk, Mannanov, Konstantinov, Dominskiy, Surin, Borshchev, Ponomarenko, Pshenichnikov, Paraschuk (bib29) 2018; 28 Yoo, Kim (bib23) 2015; 36 An, Ding, Zhu, Ye, Wang, Du, Chen, Liu, Xu, Xu, Wang, Feng, Sun (bib16) 2020; 30 Yamagishi, Takeya, Tominari, Nakazawa, Kuroda, Ikehata, Uno, Nishikawa, Kawase (bib14) 2007; 90 S. X. Li, Y. S. Xu, C. L. Li, Q. Guo, G. Wang, H. Xia, H. H. Fang, L. Shen, H. B. Sun, Perovskite single-crystal microwire-array photodetectors with performance stability beyond 1 year, Adv. Mater.2020, 2001998. Wang, Li, Gao, Xie, Liu, Wang, Hu, Shen, Xu, Shang, Chen, Ma, Sun (bib24) 2009; 9 Cho, Kim, Kim, Jo, Ryu, Hong, Lee, Cha, Nam, Lee, Noh, Kim, Kwak, Im (bib7) 2020; 9 Wang, Dong, Jiang, Hu (bib4) 2018; 47 Lin, Chen, Wei, Lin, Lin, Chen, Cheng (bib20) 2020; 63 Liu, Xiong, Deng, Jiao, Song, Matic, Song (bib22) 2020; 63 Liu, Bard (bib10) 1999; 32 Nakanotani, Kabe, Yahiro, Takenobu, Iwasa, Adachi (bib34) 2008; 1 Fang, Lu, Wang, Ding, Wang, Feng, Chen, Sun (bib26) 2013; 14 Ding, Dong, An, Wang, Wang, Li, Feng, Sun (bib32) 2019; 29 Ding, Feng, Zhang, Zhou, Fang, Liu, Chen, Wang, Sun (bib37) 2014; 24 Zhan, Xiong, Zou, Wu (bib12) 2020; 1 Nakanotani, Adachi (bib42) 2010; 96 Jacobs, Moulé (bib18) 2017; 29 Ando, Murakami, Nishida, Tada, Inoue, Tokito, Yamashita (bib33) 2005; 127 Shan, Wei, Jiang, Song, Zou, Xu, Fang, Wang, Dong, Liu, Han, Zhang, Chen, Wang, Zeng (bib40) 2020; 9 Ding, Feng, Dong, Zhou, Liu, Zhang, Wang, Fang, Xu, Bin Li, Wang, Hotta, Sun (bib30) 2017; 27 Wang, Dong, Hu, Liu, Zhu (bib8) 2012; 112 Yu, Huang, Guo, Zhao, Tang (bib13) 2020; 1 Ren, Teng, Cai, Pan, Liu, Zhao, Liu (bib19) 2020; 62 Kim, Jang, Lee (bib39) 2007; 91 Pope, Kallmann, Magnante, Wang, Li, Ravia, Gao, Li, Medvedev, Sun, Tessler, Ma (bib15) 2011; 21 Baek, Lee, Lee, Choi, Seo, Kang, Yu, Kim (bib38) 2019; 8 Wang, Liu, Ikeda, Kumashiro, Nouch, Xu, Shang, Ma, Tanigaki (bib35) 2010; 97 Bisri, Piliego, Gao, Loi (bib3) 2014; 26 Wang, Yue, Xie, Gao, Xu, Liu, Sun, Ma (bib25) 2013; 15 Nakanotani, Adachi (bib28) 2013; 1 Salzmann, Heimel, Oehzelt, Winkler, Koch (bib21) 2016; 49 Dong, Fu, Liu, Wang, Hu (bib2) 2013; 25 Nakanotani, Saito, Nakamura, Adachi (bib27) 2010; 20 Ding (10.1016/j.orgel.2021.106089_bib30) 2017; 27 Nakanotani (10.1016/j.orgel.2021.106089_bib27) 2010; 20 Wang (10.1016/j.orgel.2021.106089_bib35) 2010; 97 An (10.1016/j.orgel.2021.106089_bib16) 2020; 30 Shan (10.1016/j.orgel.2021.106089_bib40) 2020; 9 Liu (10.1016/j.orgel.2021.106089_bib22) 2020; 63 Fang (10.1016/j.orgel.2021.106089_bib6) 2014; 8 Wang (10.1016/j.orgel.2021.106089_bib24) 2009; 9 Ding (10.1016/j.orgel.2021.106089_bib5) 2019; 13 10.1016/j.orgel.2021.106089_bib11 Dong (10.1016/j.orgel.2021.106089_bib2) 2013; 25 Bisri (10.1016/j.orgel.2021.106089_bib3) 2014; 26 Liu (10.1016/j.orgel.2021.106089_bib10) 1999; 32 Ding (10.1016/j.orgel.2021.106089_bib37) 2014; 24 Hotta (10.1016/j.orgel.2021.106089_bib1) 2014; 2 Jacobs (10.1016/j.orgel.2021.106089_bib18) 2017; 29 Yamagishi (10.1016/j.orgel.2021.106089_bib14) 2007; 90 Parashchuk (10.1016/j.orgel.2021.106089_bib29) 2018; 28 Baek (10.1016/j.orgel.2021.106089_bib38) 2019; 8 Nakanotani (10.1016/j.orgel.2021.106089_bib28) 2013; 1 Ding (10.1016/j.orgel.2021.106089_bib32) 2019; 29 Wang (10.1016/j.orgel.2021.106089_bib8) 2012; 112 Kabe (10.1016/j.orgel.2021.106089_bib36) 2009; 21 Yoo (10.1016/j.orgel.2021.106089_bib23) 2015; 36 Wang (10.1016/j.orgel.2021.106089_bib4) 2018; 47 Yu (10.1016/j.orgel.2021.106089_bib13) 2020; 1 Ando (10.1016/j.orgel.2021.106089_bib33) 2005; 127 Zhan (10.1016/j.orgel.2021.106089_bib12) 2020; 1 Cho (10.1016/j.orgel.2021.106089_bib7) 2020; 9 Salzmann (10.1016/j.orgel.2021.106089_bib21) 2016; 49 Wang (10.1016/j.orgel.2021.106089_bib25) 2013; 15 Ding (10.1016/j.orgel.2021.106089_bib31) 2018; 30 Ren (10.1016/j.orgel.2021.106089_bib19) 2020; 62 Nakanotani (10.1016/j.orgel.2021.106089_bib42) 2010; 96 Nakanotani (10.1016/j.orgel.2021.106089_bib34) 2008; 1 Fang (10.1016/j.orgel.2021.106089_bib26) 2013; 14 Kim (10.1016/j.orgel.2021.106089_bib39) 2007; 91 Lussem (10.1016/j.orgel.2021.106089_bib17) 2010; 210 Pope (10.1016/j.orgel.2021.106089_bib15) 2011; 21 Wang (10.1016/j.orgel.2021.106089_bib41) 2020; 9 Lin (10.1016/j.orgel.2021.106089_bib20) 2020; 63 Nakamura (10.1016/j.orgel.2021.106089_bib9) 2005; 44 |
References_xml | – volume: 15 start-page: 3527 year: 2013 ident: bib25 article-title: Controlled transition dipole alignment of energy donor and energy acceptor molecules in doped organic crystals, and the effect on intermolecular Forster energy transfer publication-title: Phys. Chem. Chem. Phys. – volume: 90 year: 2007 ident: bib14 article-title: High-mobility double-gate organic single-crystal transistors with organic crystal gate insulators publication-title: Appl. Phys. Lett. – volume: 63 start-page: 1526 year: 2020 ident: bib20 article-title: Continuous-flow synthesis of doped all-inorganic perovskite nanocrystals enabled by a microfluidic reactor for light-emitting diode application publication-title: Sci. China Mater. – volume: 112 start-page: 2208 year: 2012 ident: bib8 article-title: Semiconducting π-conjugated systems in field-effect transistors:A material odyssey of organic electronics publication-title: Chem. Rev. – volume: 96 start-page: 94 year: 2010 ident: bib42 article-title: Organic light-emitting diodes containing multilayers of organic single crystals publication-title: Appl. Phys. Lett. – volume: 9 start-page: 156 year: 2020 ident: bib7 article-title: Hybridisation of perovskite nanocrystals with organic molecules for highly efficient liquid scintillators publication-title: Light Sci. Appl. – volume: 14 start-page: 389 year: 2013 ident: bib26 article-title: Preparation and time-resolved fluorescence study of RGB organic crystals publication-title: Org. Electron. – volume: 210 start-page: 9 year: 2010 ident: bib17 article-title: Doping of organic semiconductors publication-title: Phys. Status Solidi – volume: 91 year: 2007 ident: bib39 article-title: Relationship between host energy levels and device performances of phosphorescent organic light-emitting diodes with triplet mixed host emitting structure publication-title: Appl. Phys. Lett. – volume: 24 start-page: 7085 year: 2014 ident: bib37 article-title: Fabrication and characterization of organic single crystal-based light-emitting devices with improved contact between the metallic electrodes and crystal publication-title: Adv. Funct. Mater. – volume: 20 start-page: 1610 year: 2010 ident: bib27 article-title: Emission color tuning in ambipolar organic single crystal field-effect transistors by dye-doping publication-title: Adv. Funct. Mater. – volume: 32 start-page: 235 year: 1999 ident: bib10 article-title: Optoelectronic properties and memories based on organic single-crystal thin films publication-title: Acc. Chem. Res. – volume: 49 start-page: 370 year: 2016 ident: bib21 article-title: Molecular electrical doping of organic semiconductors: fundamental mechanisms and emerging dopant design rules publication-title: Acc. Chem. Res. – volume: 47 start-page: 422 year: 2018 ident: bib4 article-title: Organic semiconductor crystals publication-title: Chem. Soc. Rev. – volume: 1 year: 2008 ident: bib34 article-title: Blue-light-emitting ambipolar field-effect transistors using an organic single crystal of 1,4-Bis(4-methylstyryl)benzene publication-title: APEX – volume: 30 start-page: 2002422 year: 2020 ident: bib16 article-title: Well-balanced ambipolar organic single crystals toward highly efficient light-emitting devices publication-title: Adv. Funct. Mater. – volume: 1 start-page: 422 year: 2013 ident: bib28 article-title: Amplified spontaneous emission and electroluminescence from thiophene/phenylene Co-Oligomer-Doped p-bis(pStyrylstyryl)Benzene crystals publication-title: Adv. Opt. Mater. – volume: 63 start-page: 1036 year: 2020 ident: bib22 article-title: Stable Li metal anode by crystallographically oriented plating through in-situ surface doping publication-title: Sci. China Mater. – volume: 1 start-page: 10 year: 2020 ident: bib12 article-title: Multifocal displays: review and prospect publication-title: PhotoniX – volume: 21 start-page: 3770 year: 2011 ident: bib15 article-title: Cyano-substituted oligo(p-phenylene vinylene) single crystals: a promising laser material publication-title: Adv. Funct. Mater. – volume: 30 year: 2018 ident: bib31 article-title: Clarification of the molecular doping mechanism in organic single-crystalline semiconductors and their application in color-tunable light-emitting devices publication-title: Adv. Mater. – volume: 44 start-page: L1367 year: 2005 ident: bib9 article-title: Light emission from organic single-crystal field-effect transistors publication-title: Jpn. J. Appl. Phys. – volume: 27 year: 2017 ident: bib30 article-title: Highly efficient three primary color organic single-crystal light-emitting devices with balanced carrier injection and transport publication-title: Adv. Funct. Mater. – volume: 62 start-page: 1837 year: 2020 ident: bib19 article-title: Controlled one step thinning and doping of two dimensional transition metal dichalcogenides publication-title: Sci. China Mater. – volume: 9 start-page: 4945 year: 2009 ident: bib24 article-title: Doped organic crystals with high efficiency, color-tunable emission toward laser application publication-title: Cryst. Growth Des. – volume: 97 start-page: 14 year: 2010 ident: bib35 article-title: Ambipolar behavior of 2,5-diphenyl-1,4-distyrylbenzene based field effect transistors: an experimental and theoretical study publication-title: Appl. Phys. Lett. – volume: 25 start-page: 6158 year: 2013 ident: bib2 article-title: 25th anniversary article: Key points for high-mobility organic field-effect transistors publication-title: Adv. Mater. – volume: 28 start-page: 1800116 year: 2018 ident: bib29 article-title: Molecular self-doping controls luminescence of pure organic single crystals publication-title: Adv. Funct. Mater. – volume: 29 year: 2017 ident: bib18 article-title: Controlling molecular doping in organic semiconductors publication-title: Adv. Mater. – volume: 127 start-page: 14996 year: 2005 ident: bib33 article-title: High performance n-type organic field-effect transistors based onπ-electronic systems with trifluoromethylphenyl groups publication-title: J. Am. Chem. Soc. – volume: 29 year: 2019 ident: bib32 article-title: High-color-rendering and high-efficiency white organic light-emitting devices based on double-doped organic single crystals publication-title: Adv. Funct. Mater. – volume: 9 start-page: 163 year: 2020 ident: bib40 article-title: Perovskite light-emitting/detecting bifunctional fibres for wearable LiFi communication publication-title: Light Sci. Appl. – volume: 36 start-page: 984 year: 2015 ident: bib23 article-title: Charge transport in electrically doped amorphous organic semiconductors publication-title: Macromol. Rapid Commum. – volume: 9 start-page: 157 year: 2020 ident: bib41 article-title: Deep-blue organic light-emitting diodes based on a doublet d–f transition cerium(III) complex with 100% exciton utilization efficiency publication-title: Light Sci. Appl. – volume: 2 start-page: 965 year: 2014 ident: bib1 article-title: Organic single-crystal light-emitting field-effect transistors publication-title: J. Mater. Chem. C – volume: 8 start-page: 120 year: 2019 ident: bib38 article-title: Simultaneous emission of orthogonal handedness in circular polarization from a single luminophore publication-title: Light Sci. Appl. – reference: S. X. Li, Y. S. Xu, C. L. Li, Q. Guo, G. Wang, H. Xia, H. H. Fang, L. Shen, H. B. Sun, Perovskite single-crystal microwire-array photodetectors with performance stability beyond 1 year, Adv. Mater.2020, 2001998. – volume: 13 year: 2019 ident: bib5 article-title: Organic single-crystalline semiconductors for light-emitting applications: recent advances and developments publication-title: Laser Photon. Rev. – volume: 8 start-page: 687 year: 2014 ident: bib6 article-title: Functional organic single crystals for solid-state laserapplications publication-title: Laser Photon. Rev. – volume: 26 start-page: 1176 year: 2014 ident: bib3 article-title: Outlook and emerging semiconducting materials for ambipolar transistors publication-title: Adv. Mater. – volume: 1 start-page: 11 year: 2020 ident: bib13 article-title: Promising applications of aggregation induced emission luminogens in organic optoelectronic devices publication-title: PhotoniX – volume: 21 start-page: 4034 year: 2009 ident: bib36 article-title: Effect of molecular morphology on amplified spontaneous emission of bis-styrylbenzene derivatives publication-title: Adv. Mater. – volume: 47 start-page: 422 year: 2018 ident: 10.1016/j.orgel.2021.106089_bib4 article-title: Organic semiconductor crystals publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00490G – volume: 1 start-page: 11 year: 2020 ident: 10.1016/j.orgel.2021.106089_bib13 article-title: Promising applications of aggregation induced emission luminogens in organic optoelectronic devices publication-title: PhotoniX doi: 10.1186/s43074-020-00012-y – volume: 29 year: 2019 ident: 10.1016/j.orgel.2021.106089_bib32 article-title: High-color-rendering and high-efficiency white organic light-emitting devices based on double-doped organic single crystals publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201807606 – volume: 25 start-page: 6158 year: 2013 ident: 10.1016/j.orgel.2021.106089_bib2 article-title: 25th anniversary article: Key points for high-mobility organic field-effect transistors publication-title: Adv. Mater. doi: 10.1002/adma.201302514 – volume: 210 start-page: 9 year: 2010 ident: 10.1016/j.orgel.2021.106089_bib17 article-title: Doping of organic semiconductors publication-title: Phys. Status Solidi doi: 10.1002/pssa.201228310 – volume: 8 start-page: 120 year: 2019 ident: 10.1016/j.orgel.2021.106089_bib38 article-title: Simultaneous emission of orthogonal handedness in circular polarization from a single luminophore publication-title: Light Sci. Appl. doi: 10.1038/s41377-019-0232-0 – volume: 21 start-page: 3770 year: 2011 ident: 10.1016/j.orgel.2021.106089_bib15 article-title: Cyano-substituted oligo(p-phenylene vinylene) single crystals: a promising laser material publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201100783 – volume: 36 start-page: 984 year: 2015 ident: 10.1016/j.orgel.2021.106089_bib23 article-title: Charge transport in electrically doped amorphous organic semiconductors publication-title: Macromol. Rapid Commum. doi: 10.1002/marc.201500026 – volume: 14 start-page: 389 year: 2013 ident: 10.1016/j.orgel.2021.106089_bib26 article-title: Preparation and time-resolved fluorescence study of RGB organic crystals publication-title: Org. Electron. doi: 10.1016/j.orgel.2012.10.028 – volume: 32 start-page: 235 year: 1999 ident: 10.1016/j.orgel.2021.106089_bib10 article-title: Optoelectronic properties and memories based on organic single-crystal thin films publication-title: Acc. Chem. Res. doi: 10.1021/ar980031n – volume: 8 start-page: 687 year: 2014 ident: 10.1016/j.orgel.2021.106089_bib6 article-title: Functional organic single crystals for solid-state laserapplications publication-title: Laser Photon. Rev. doi: 10.1002/lpor.201300222 – volume: 30 year: 2018 ident: 10.1016/j.orgel.2021.106089_bib31 article-title: Clarification of the molecular doping mechanism in organic single-crystalline semiconductors and their application in color-tunable light-emitting devices publication-title: Adv. Mater. doi: 10.1002/adma.201801078 – volume: 1 start-page: 10 year: 2020 ident: 10.1016/j.orgel.2021.106089_bib12 article-title: Multifocal displays: review and prospect publication-title: PhotoniX doi: 10.1186/s43074-020-00010-0 – volume: 20 start-page: 1610 year: 2010 ident: 10.1016/j.orgel.2021.106089_bib27 article-title: Emission color tuning in ambipolar organic single crystal field-effect transistors by dye-doping publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200902339 – volume: 13 year: 2019 ident: 10.1016/j.orgel.2021.106089_bib5 article-title: Organic single-crystalline semiconductors for light-emitting applications: recent advances and developments publication-title: Laser Photon. Rev. doi: 10.1002/lpor.201900009 – volume: 1 year: 2008 ident: 10.1016/j.orgel.2021.106089_bib34 article-title: Blue-light-emitting ambipolar field-effect transistors using an organic single crystal of 1,4-Bis(4-methylstyryl)benzene publication-title: APEX – volume: 29 year: 2017 ident: 10.1016/j.orgel.2021.106089_bib18 article-title: Controlling molecular doping in organic semiconductors publication-title: Adv. Mater. doi: 10.1002/adma.201703063 – volume: 97 start-page: 14 year: 2010 ident: 10.1016/j.orgel.2021.106089_bib35 article-title: Ambipolar behavior of 2,5-diphenyl-1,4-distyrylbenzene based field effect transistors: an experimental and theoretical study publication-title: Appl. Phys. Lett. – volume: 9 start-page: 4945 year: 2009 ident: 10.1016/j.orgel.2021.106089_bib24 article-title: Doped organic crystals with high efficiency, color-tunable emission toward laser application publication-title: Cryst. Growth Des. doi: 10.1021/cg9007125 – volume: 27 year: 2017 ident: 10.1016/j.orgel.2021.106089_bib30 article-title: Highly efficient three primary color organic single-crystal light-emitting devices with balanced carrier injection and transport publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201604659 – volume: 2 start-page: 965 year: 2014 ident: 10.1016/j.orgel.2021.106089_bib1 article-title: Organic single-crystal light-emitting field-effect transistors publication-title: J. Mater. Chem. C doi: 10.1039/C3TC31998A – volume: 28 start-page: 1800116 year: 2018 ident: 10.1016/j.orgel.2021.106089_bib29 article-title: Molecular self-doping controls luminescence of pure organic single crystals publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201800116 – volume: 112 start-page: 2208 year: 2012 ident: 10.1016/j.orgel.2021.106089_bib8 article-title: Semiconducting π-conjugated systems in field-effect transistors:A material odyssey of organic electronics publication-title: Chem. Rev. doi: 10.1021/cr100380z – volume: 21 start-page: 4034 year: 2009 ident: 10.1016/j.orgel.2021.106089_bib36 article-title: Effect of molecular morphology on amplified spontaneous emission of bis-styrylbenzene derivatives publication-title: Adv. Mater. doi: 10.1002/adma.200803588 – volume: 9 start-page: 157 year: 2020 ident: 10.1016/j.orgel.2021.106089_bib41 article-title: Deep-blue organic light-emitting diodes based on a doublet d–f transition cerium(III) complex with 100% exciton utilization efficiency publication-title: Light Sci. Appl. doi: 10.1038/s41377-020-00395-4 – volume: 15 start-page: 3527 year: 2013 ident: 10.1016/j.orgel.2021.106089_bib25 article-title: Controlled transition dipole alignment of energy donor and energy acceptor molecules in doped organic crystals, and the effect on intermolecular Forster energy transfer publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp43800g – volume: 91 year: 2007 ident: 10.1016/j.orgel.2021.106089_bib39 article-title: Relationship between host energy levels and device performances of phosphorescent organic light-emitting diodes with triplet mixed host emitting structure publication-title: Appl. Phys. Lett. – volume: 44 start-page: L1367 year: 2005 ident: 10.1016/j.orgel.2021.106089_bib9 article-title: Light emission from organic single-crystal field-effect transistors publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.44.L1367 – volume: 9 start-page: 156 year: 2020 ident: 10.1016/j.orgel.2021.106089_bib7 article-title: Hybridisation of perovskite nanocrystals with organic molecules for highly efficient liquid scintillators publication-title: Light Sci. Appl. doi: 10.1038/s41377-020-00391-8 – volume: 63 start-page: 1036 year: 2020 ident: 10.1016/j.orgel.2021.106089_bib22 article-title: Stable Li metal anode by crystallographically oriented plating through in-situ surface doping publication-title: Sci. China Mater. doi: 10.1007/s40843-019-1277-3 – volume: 30 start-page: 2002422 year: 2020 ident: 10.1016/j.orgel.2021.106089_bib16 article-title: Well-balanced ambipolar organic single crystals toward highly efficient light-emitting devices publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202002422 – volume: 62 start-page: 1837 year: 2020 ident: 10.1016/j.orgel.2021.106089_bib19 article-title: Controlled one step thinning and doping of two dimensional transition metal dichalcogenides publication-title: Sci. China Mater. doi: 10.1007/s40843-019-9461-8 – volume: 26 start-page: 1176 year: 2014 ident: 10.1016/j.orgel.2021.106089_bib3 article-title: Outlook and emerging semiconducting materials for ambipolar transistors publication-title: Adv. Mater. doi: 10.1002/adma.201304280 – volume: 9 start-page: 163 year: 2020 ident: 10.1016/j.orgel.2021.106089_bib40 article-title: Perovskite light-emitting/detecting bifunctional fibres for wearable LiFi communication publication-title: Light Sci. Appl. doi: 10.1038/s41377-020-00402-8 – volume: 1 start-page: 422 year: 2013 ident: 10.1016/j.orgel.2021.106089_bib28 article-title: Amplified spontaneous emission and electroluminescence from thiophene/phenylene Co-Oligomer-Doped p-bis(pStyrylstyryl)Benzene crystals publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201200066 – volume: 24 start-page: 7085 year: 2014 ident: 10.1016/j.orgel.2021.106089_bib37 article-title: Fabrication and characterization of organic single crystal-based light-emitting devices with improved contact between the metallic electrodes and crystal publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201470292 – volume: 63 start-page: 1526 year: 2020 ident: 10.1016/j.orgel.2021.106089_bib20 article-title: Continuous-flow synthesis of doped all-inorganic perovskite nanocrystals enabled by a microfluidic reactor for light-emitting diode application publication-title: Sci. China Mater. doi: 10.1007/s40843-020-1374-7 – volume: 96 start-page: 94 year: 2010 ident: 10.1016/j.orgel.2021.106089_bib42 article-title: Organic light-emitting diodes containing multilayers of organic single crystals publication-title: Appl. Phys. Lett. doi: 10.1063/1.3298558 – ident: 10.1016/j.orgel.2021.106089_bib11 doi: 10.1002/adma.202001998 – volume: 49 start-page: 370 year: 2016 ident: 10.1016/j.orgel.2021.106089_bib21 article-title: Molecular electrical doping of organic semiconductors: fundamental mechanisms and emerging dopant design rules publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.5b00438 – volume: 127 start-page: 14996 year: 2005 ident: 10.1016/j.orgel.2021.106089_bib33 article-title: High performance n-type organic field-effect transistors based onπ-electronic systems with trifluoromethylphenyl groups publication-title: J. Am. Chem. Soc. doi: 10.1021/ja055686f – volume: 90 year: 2007 ident: 10.1016/j.orgel.2021.106089_bib14 article-title: High-mobility double-gate organic single-crystal transistors with organic crystal gate insulators publication-title: Appl. Phys. Lett. doi: 10.1063/1.2736208 |
SSID | ssj0016412 |
Score | 2.3433867 |
Snippet | Organic single-crystalline semiconductors have drawn significant attention in the area of organic electronic and optoelectronic devices due to their... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 106089 |
SubjectTerms | Balanced carrier transport Molecular doping Organic light-emitting devices Organic single crystals |
Title | Controllable molecular doping in organic single crystals toward high-efficiency light-emitting devices |
URI | https://dx.doi.org/10.1016/j.orgel.2021.106089 |
Volume | 91 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqGIABQQFRHpUHRkzjvDNWEVWhogNQ0S1yHFsqKqEqYWDht3NnJ1WRUAemJNZZiS7O-e7y3XeEXEkeSVVonwWxSpgv_YIlYeyxOA4SR4TaD3JM6D-Mw-HEv58G0xZJm1oYhFXWtt_adGOt65Ferc3eYjbrPWHkwRE9iSlqN5liBbsf4Sq_-V7BPCAasH88QZihdMM8ZDBemHXG_w8uh5HQwV7vf-1OazvO4IDs164i7dunOSQtVbbJTtp0aGuTvTUywSOiU4s6n2MxFH1r2t7SwpRE0VlJbQcnSTE9ACJy-QWu4fyDVgY6S5G5mClDKYH1mHRuOEbgbgYaTQtljMoxmQxun9Mhq7soMAnbU8UEuHCRzqWjwDeDmDFP4LOLIPRyYxFxEcbCT7iOHKUiOFNIx5K4OhFcckfksfZOyFb5XqpTQnMuXBFw5eaOB5p2QCiSPASvUBeer50OcRvtZbKmGMdOF_OswZK9ZkblGao8syrvkOvVpIVl2NgsHjavJfu1UDLYAzZNPPvvxHOyi1cWrnNBtqrlp7oET6TKu2apdcl2_240HONx9Pgy-gHj6t9b |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED7xGIAB8RRvPMCGaew6r4EBFVDLawGkbsFxbKmoFARFiIU_xR_kzkkQSIgBqVvk2IlzOZ3v7O--A9gxIja2cIqHiU25MqrgaZQ0eZKEaaAjp8KcNvQvLqP2jTrtht0x-KhzYQhWWdn-0qZ7a121NCppNh57vcYVRR6C0JO0RS3TboWsPLNvrxi3PR90jvAn70p5cnzdavOqtAA3aLOHXKNfE7vcBBYdFgyk8hR1McZ4RCY6FjpKtEqFiwNrY7yyxFGSSpdqYUSg88Q18bnjMKnQXFDZhP33L1wJhh_lESvOjtP0aqojDyqjbW468JACW6KAisv_thx-W-JO5mC28k3ZYfn58zBmBwsw1apLwi3AzDf2wkVwrRLm3qfsK3Zf19llhc_BYr0BK0tGGUb7EdjFPL2hL9p_ZkOP1WVElcyt57CgBFDW96Qm-DaPxWaF9VZsCW5GIttlmBg8DOwKsFxoqUNhZR40VRwF2Ck2IkI31BVN5YJVkLX0MlNxmlNpjX5Wg9fuMi_yjESelSJfhb2vQY8lpcff3aP6t2Q_NDPDReevgWv_HbgNU-3ri_PsvHN5tg7TdKfECm3AxPDpxW6iGzTMt7zaMbgdtZ5_AhggF6k |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Controllable+molecular+doping+in+organic+single+crystals+toward+high-efficiency+light-emitting+devices&rft.jtitle=Organic+electronics&rft.au=An%2C+Ming-Hui&rft.au=Ding%2C+Ran&rft.au=Ye%2C+Gao-Da&rft.au=Zhu%2C+Qin-Cheng&rft.date=2021-04-01&rft.issn=1566-1199&rft.volume=91&rft.spage=106089&rft_id=info:doi/10.1016%2Fj.orgel.2021.106089&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_orgel_2021_106089 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1566-1199&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1566-1199&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1566-1199&client=summon |