Revealing the mechanism of pack ceiling failure induced by thermal runaway in NCM batteries: A coupled multiphase fluid-structure interaction model for electric vehicles
Structure failure of lithium-ion battery (LIB) pack ceiling leads to the unintended release of combustible and poisonous substances during thermal runaway (TR), resulting in personnel injuries and financial losses. However, limited research has been conducted on the mechanism behind pack ceiling fai...
Saved in:
Published in | eTransportation (Amsterdam) Vol. 20; p. 100335 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.05.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Structure failure of lithium-ion battery (LIB) pack ceiling leads to the unintended release of combustible and poisonous substances during thermal runaway (TR), resulting in personnel injuries and financial losses. However, limited research has been conducted on the mechanism behind pack ceiling failures. In this study, we developed a coupled multiphase fluid-structure interaction (FSI) model to simulate the evolution of up-cover baffle under the TR impact of a 52 Ah NCM battery. Our findings reveal several important insights:1) the maximum force and temperature on the baffle are 13.01 N and 598.5 °C in experiment; 2) the simulation shows that particles exert higher temperature and greater force on the baffle compared to the gas phase; 3) the overall equivalent stress in the stainless-steel baffle surpasses the tensile strength that incurs crack on the baffles. According to the validated model, we find that the baffle structure failure is caused by the thermal stress from particle-structure heat conduction. Furthermore, this observation is applicable to the structure failure problems associated to the thermal runaway of high-density battery that involves enormous particles. In addition, the insulation layer is found to be more effective than the gap distance in protecting the pack ceiling. These findings offer a valuable insight into the structure design of LIB pack, and provide the guidance toward future battery integration technologies.
•The pack ceiling failure is induced by particle-structure heat transfer.•Particles exert more impact on up-cover baffle than thermal runaway gas.•A coupled model of multi-phase fluid-structure-interaction is established.•The modeling approach saves the cost of internal TR sub-models. |
---|---|
AbstractList | Structure failure of lithium-ion battery (LIB) pack ceiling leads to the unintended release of combustible and poisonous substances during thermal runaway (TR), resulting in personnel injuries and financial losses. However, limited research has been conducted on the mechanism behind pack ceiling failures. In this study, we developed a coupled multiphase fluid-structure interaction (FSI) model to simulate the evolution of up-cover baffle under the TR impact of a 52 Ah NCM battery. Our findings reveal several important insights:1) the maximum force and temperature on the baffle are 13.01 N and 598.5 °C in experiment; 2) the simulation shows that particles exert higher temperature and greater force on the baffle compared to the gas phase; 3) the overall equivalent stress in the stainless-steel baffle surpasses the tensile strength that incurs crack on the baffles. According to the validated model, we find that the baffle structure failure is caused by the thermal stress from particle-structure heat conduction. Furthermore, this observation is applicable to the structure failure problems associated to the thermal runaway of high-density battery that involves enormous particles. In addition, the insulation layer is found to be more effective than the gap distance in protecting the pack ceiling. These findings offer a valuable insight into the structure design of LIB pack, and provide the guidance toward future battery integration technologies.
•The pack ceiling failure is induced by particle-structure heat transfer.•Particles exert more impact on up-cover baffle than thermal runaway gas.•A coupled model of multi-phase fluid-structure-interaction is established.•The modeling approach saves the cost of internal TR sub-models. |
ArticleNumber | 100335 |
Author | Tong, Bang Cheng, Zhixiang Wang, Qingsong Li, Junyuan Cao, Mingwei Qin, Peng Gao, Peng Mei, Wenxin Sun, Jinhua |
Author_xml | – sequence: 1 givenname: Junyuan orcidid: 0000-0001-7394-0296 surname: Li fullname: Li, Junyuan organization: State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, 230026, China – sequence: 2 givenname: Peng surname: Gao fullname: Gao, Peng organization: State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, 230026, China – sequence: 3 givenname: Bang surname: Tong fullname: Tong, Bang organization: State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, 230026, China – sequence: 4 givenname: Zhixiang surname: Cheng fullname: Cheng, Zhixiang organization: State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, 230026, China – sequence: 5 givenname: Mingwei surname: Cao fullname: Cao, Mingwei organization: State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, 230026, China – sequence: 6 givenname: Wenxin surname: Mei fullname: Mei, Wenxin organization: State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, 230026, China – sequence: 7 givenname: Qingsong surname: Wang fullname: Wang, Qingsong organization: State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, 230026, China – sequence: 8 givenname: Jinhua surname: Sun fullname: Sun, Jinhua email: sunjh@ustc.edu.cn organization: State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, 230026, China – sequence: 9 givenname: Peng surname: Qin fullname: Qin, Peng email: pengqin@ustc.edu.cn organization: State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, 230026, China |
BookMark | eNp9kMFu2zAMhoWhBdZ1eYJe-ALOZMmW7QE7FMG6DWg7YGjPAiNTjVJZDiQ5RR5pbzmn2aGnnkjw_3-C_D6xszAGYuyq5MuSl-rLdkk5YlgKLqp5wqWsP7ALUXe8KEvVnr3pP7JFSlvOueiUbNv6gv39Q3tC78IT5A3BQGaDwaUBRgs7NM9gyL2qFp2fIoEL_WSoh_XhGIgDeohTwBc8zBLcr-5gjTlTdJS-wjWYcdr52T5MPrvdBhOB9ZPri5TjZPJp42xHk90YYBh78mDHCOTJ5OgM7GnjjKf0mZ1b9IkW_-sle7z5_rD6Wdz-_vFrdX1bGMllLrBFVQtqSiKyVlku-tpIq4h3XdUJoRpjuLKiUpWqCSWV2MsW-8o2VdOIVl4yedpr4phSJKt30Q0YD7rk-ghcb_UrcH0Erk_A59S3U4rm0_aOok7GUZhJuTg_ovvRvZv_B_kDkFQ |
CitedBy_id | crossref_primary_10_1016_j_psep_2024_07_015 |
Cites_doi | 10.1016/j.applthermaleng.2020.115745 10.1149/2.0531816jes 10.1016/j.jpowsour.2021.230340 10.1016/j.apenergy.2022.118767 10.1016/j.jhazmat.2020.123169 10.1016/j.fuel.2023.128782 10.1016/j.est.2023.108324 10.1039/D3EE00084B 10.1016/j.apenergy.2020.114972 10.3390/batteries8110248 10.1016/j.ijheatmasstransfer.2021.122381 10.1016/j.jpowsour.2015.12.088 10.1016/j.etran.2019.100005 10.1016/j.joule.2022.02.007 10.1016/j.etran.2019.100031 10.1016/j.psep.2021.12.056 10.1016/j.psep.2020.03.037 10.1016/j.jpowsour.2023.233357 10.1016/j.etran.2023.100237 10.1016/j.ijheatmasstransfer.2022.123516 10.1016/j.apenergy.2023.120660 10.1016/j.jlp.2016.12.002 10.1149/2.0631709jes 10.1016/0010-2180(75)90133-9 10.1149/1945-7111/ac91a7 10.1016/j.jpowsour.2018.07.044 10.1016/j.jpowsour.2021.229496 10.1016/j.rser.2020.110048 10.1016/j.rser.2021.110717 10.1016/j.psep.2023.05.047 10.1016/S0082-0784(71)80067-X 10.1016/j.joule.2022.02.015 10.1016/j.est.2022.105283 10.1016/j.jpowsour.2023.233905 10.1016/j.enconman.2021.114663 10.1016/j.jpowsour.2020.228001 10.1016/j.jpowsour.2022.231531 10.1016/0009-2509(71)86083-9 10.1016/j.etran.2022.100157 |
ContentType | Journal Article |
Copyright | 2024 |
Copyright_xml | – notice: 2024 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.etran.2024.100335 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2590-1168 |
ExternalDocumentID | 10_1016_j_etran_2024_100335 S2590116824000250 |
GroupedDBID | AABXZ AAEDW AAHCO AAIAV AAKOC AALRI AAQFI AAXUO ACDAQ ACRLP AEBSH AEZYN AFKWA AFRZQ AHJVU AIEXJ AIKHN AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AXJTR BELTK BJAXD BKOJK EBS EFJIC EJD FDB FYGXN KOM M41 M~E ROL SPC SPCBC SSM SSR SST T5K ~G- AAXKI AAYXX AFJKZ CITATION |
ID | FETCH-LOGICAL-c303t-a8a652e71eeeff6f02d5c3f6e099492267cc06f246465ea3e1ad38ad4f7477283 |
IEDL.DBID | AIKHN |
ISSN | 2590-1168 |
IngestDate | Thu Sep 26 19:46:51 EDT 2024 Sat May 11 15:33:29 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Keywords | Pack ceiling failure Multi-phase ejection Fluid-structure interaction Lithium-ion battery safety Thermal runaway |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c303t-a8a652e71eeeff6f02d5c3f6e099492267cc06f246465ea3e1ad38ad4f7477283 |
ORCID | 0000-0001-7394-0296 |
ParticipantIDs | crossref_primary_10_1016_j_etran_2024_100335 elsevier_sciencedirect_doi_10_1016_j_etran_2024_100335 |
PublicationCentury | 2000 |
PublicationDate | May 2024 2024-05-00 |
PublicationDateYYYYMMDD | 2024-05-01 |
PublicationDate_xml | – month: 05 year: 2024 text: May 2024 |
PublicationDecade | 2020 |
PublicationTitle | eTransportation (Amsterdam) |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Zhang, Kong, Ping, Zhao, Dai, Chen (bib18) 2022; 54 Huang, Wang, Li, Ping, Sun (bib26) 2015; 5 Wang, Wang, Jin, Xu, Zhao, Li, Zhong, Feng (bib9) 2023; 458 Li, Tong, Gao, Cheng, Cao, Mei, Qin, Sun, Wang (bib43) 2024; 592 Zhang, Wang, Li, Li (bib11) 2019; 2 Bates, Preger, Torres-Castro, Harrison, Harris, Hewson (bib6) 2022; 6 Gongquan (bib23) 2023 Coman, Mátéfi-Tempfli, Veje, White (bib35) 2017; 164 Wang, Huang, Ping, Du, Li, Sun (bib29) 2017; 49 Mao, Chen, Jiang, Zhao, Sun, Wang (bib5) 2020; 139 Weng, Ouyang, Liu, Chen, Li, Huang, Wang (bib12) 2021; 509 Mishra, Zhao, Jain (bib13) 2022; 169 Kong, Wang, Ping, Wen (bib31) 2022; 12 Lai, Yao, Jin, Feng, Wang, Xu, Zheng (bib1) 2022; 8 Xiong, Pan, Shen, Li, Sun (bib3) 2020; 131 Yeardley, Bugryniec, Milton, Brown (bib36) 2020; 456 García, Monsalve-Serrano, Lago Sari, Martinez-Boggio (bib42) 2021; 246 Zou, Chen, Ding, Gu, Lu (bib27) 2020; 179 Li, Ostanek (bib17) 2023; 200 Kim, Mallarapu, Finegan, Santhanagopalan (bib33) 2021; 489 Wang, Ping, Zhang, Zhao, Lv, Gao, Gao, Kong (bib16) 2023; 175 Wang, Du, Han, Zhang, Liu, Hao (bib30) 2018; 165 Huang, Lu, Xu, Zhang, Jiang, Zhang, Wang, Han, Cui, Chen (bib8) 2022; 6 Ostanek, Li, Mukherjee, Crompton, Hacker (bib21) 2020; 268 Chen, Wang, Yan (bib10) 2020; 400 Liu, Sun, Qiao, Sun, Wang, Jin, Mao, Wang (bib28) 2022; 158 Han, Lu, Zheng, Feng, Li, Li, Ouyang (bib2) 2019; 1 Mao, Liu, Yang, Li, Liu, Zhang, Meng, Gao, Duan, Wang, Sun (bib14) 2021; 139 Spalding (bib38) 1971; 26 Ping, Kong, Zhang, Wen, Wen (bib32) 2018; 398 Coman, Rayman, White (bib34) 2016; 307 Wang, Kong, Ping, Wen, He, Zhao, He, Peng, Zhang, Dai (bib15) 2023; 16 Peng, Ping, Wang, He, Kong, Gao (bib24) 2023; 351 Spalding (bib39) 1971 Wang, Kong, Ping, He, Lv, Zhao, Hong (bib22) 2023; 334 Qin, Jia, Wu, Jin, Duan, Jiang, Sun, Ding, Shi, Wang (bib4) 2022; 313 Peng, Wang, Jin, Huang, Zhang, Li, Ju, Xu, Feng, Ouyang (bib25) 2023; 72 Wang, Ping, Kong, Peng, He, Zhang, Dai, Wen (bib20) 2024 Rui, Ren, Liu, Wang, Wang, Lu, Li, Wang, Zhu, Mao, Feng, Lu, Wang, Ouyang (bib7) 2023; 16 Zhang, Lu, Yang, Chen, Huang (bib19) 2023; 580 Parhizi, Jain, Kilaz, Ostanek (bib37) 2022; 538 Lockwood (bib40) 1975; 24 García, Monsalve-Serrano, Sari, Martinez-Boggio (bib41) 2022; 184 Bates (10.1016/j.etran.2024.100335_bib6) 2022; 6 Peng (10.1016/j.etran.2024.100335_bib24) 2023; 351 Coman (10.1016/j.etran.2024.100335_bib34) 2016; 307 Ostanek (10.1016/j.etran.2024.100335_bib21) 2020; 268 Huang (10.1016/j.etran.2024.100335_bib8) 2022; 6 Wang (10.1016/j.etran.2024.100335_bib29) 2017; 49 Mao (10.1016/j.etran.2024.100335_bib14) 2021; 139 Wang (10.1016/j.etran.2024.100335_bib22) 2023; 334 Liu (10.1016/j.etran.2024.100335_bib28) 2022; 158 García (10.1016/j.etran.2024.100335_bib42) 2021; 246 Li (10.1016/j.etran.2024.100335_bib17) 2023; 200 Weng (10.1016/j.etran.2024.100335_bib12) 2021; 509 Spalding (10.1016/j.etran.2024.100335_bib38) 1971; 26 Wang (10.1016/j.etran.2024.100335_bib20) 2024 García (10.1016/j.etran.2024.100335_bib41) 2022; 184 Yeardley (10.1016/j.etran.2024.100335_bib36) 2020; 456 Zou (10.1016/j.etran.2024.100335_bib27) 2020; 179 Peng (10.1016/j.etran.2024.100335_bib25) 2023; 72 Wang (10.1016/j.etran.2024.100335_bib30) 2018; 165 Gongquan (10.1016/j.etran.2024.100335_bib23) 2023 Coman (10.1016/j.etran.2024.100335_bib35) 2017; 164 Mao (10.1016/j.etran.2024.100335_bib5) 2020; 139 Wang (10.1016/j.etran.2024.100335_bib16) 2023; 175 Rui (10.1016/j.etran.2024.100335_bib7) 2023; 16 Lockwood (10.1016/j.etran.2024.100335_bib40) 1975; 24 Qin (10.1016/j.etran.2024.100335_bib4) 2022; 313 Parhizi (10.1016/j.etran.2024.100335_bib37) 2022; 538 Xiong (10.1016/j.etran.2024.100335_bib3) 2020; 131 Chen (10.1016/j.etran.2024.100335_bib10) 2020; 400 Wang (10.1016/j.etran.2024.100335_bib15) 2023; 16 Lai (10.1016/j.etran.2024.100335_bib1) 2022; 8 Zhang (10.1016/j.etran.2024.100335_bib18) 2022; 54 Kim (10.1016/j.etran.2024.100335_bib33) 2021; 489 Huang (10.1016/j.etran.2024.100335_bib26) 2015; 5 Spalding (10.1016/j.etran.2024.100335_bib39) 1971 Zhang (10.1016/j.etran.2024.100335_bib11) 2019; 2 Mishra (10.1016/j.etran.2024.100335_bib13) 2022; 169 Kong (10.1016/j.etran.2024.100335_bib31) 2022; 12 Han (10.1016/j.etran.2024.100335_bib2) 2019; 1 Wang (10.1016/j.etran.2024.100335_bib9) 2023; 458 Li (10.1016/j.etran.2024.100335_bib43) 2024; 592 Zhang (10.1016/j.etran.2024.100335_bib19) 2023; 580 Ping (10.1016/j.etran.2024.100335_bib32) 2018; 398 |
References_xml | – volume: 351 year: 2023 ident: bib24 article-title: Numerical investigation on explosion hazards of lithium-ion battery vented gases and deflagration venting design in containerized energy storage system publication-title: Fuel contributor: fullname: Gao – volume: 16 start-page: 3552 year: 2023 ident: bib7 article-title: Distinct thermal runaway mechanisms of sulfide-based all-solid-state batteries publication-title: Energy Environ Sci contributor: fullname: Ouyang – volume: 179 year: 2020 ident: bib27 article-title: Jet behavior of prismatic lithium-ion batteries during thermal runaway publication-title: Appl Therm Eng contributor: fullname: Lu – volume: 458 year: 2023 ident: bib9 article-title: Detailed characterization of particle emissions due to thermal failure of batteries with different cathodes publication-title: J Hazard Mater contributor: fullname: Feng – volume: 1 year: 2019 ident: bib2 article-title: A review on the key issues of the lithium ion battery degradation among the whole life cycle publication-title: eTransportation contributor: fullname: Ouyang – volume: 175 year: 2023 ident: bib16 article-title: Modeling thermal runaway propagation of lithium-ion batteries under impacts of ceiling jet fire publication-title: Process Saf. Environ. Prot. contributor: fullname: Kong – volume: 139 start-page: 133 year: 2020 ident: bib5 article-title: Refined study on lithium ion battery combustion in open space and a combustion chamber publication-title: Process Saf. Environ. Prot. contributor: fullname: Wang – volume: 509 year: 2021 ident: bib12 article-title: Alleviation on battery thermal runaway propagation: effects of oxygen level and dilution gas publication-title: J Power Sources contributor: fullname: Wang – volume: 580 year: 2023 ident: bib19 article-title: A 3D simulation model of thermal runaway in Li-ion batteries coupled particles ejection and jet flow publication-title: J Power Sources contributor: fullname: Huang – volume: 8 start-page: 248 year: 2022 ident: bib1 article-title: A review of lithium-ion battery failure hazards: test standards, accident analysis, and safety Suggestions publication-title: Batteries contributor: fullname: Zheng – volume: 6 start-page: 742 year: 2022 ident: bib6 article-title: Are solid-state batteries safer than lithium-ion batteries? publication-title: Joule contributor: fullname: Hewson – volume: 54 year: 2022 ident: bib18 article-title: Effect of a plate obstacle on fire behavior of 18650 lithium ion battery: an experimental study publication-title: J Energy Storage contributor: fullname: Chen – year: 2023 ident: bib23 article-title: Modeling thermal runaway propagation of lithiumion batteries under impacts of ceiling jet fire publication-title: PSEP contributor: fullname: Gongquan – volume: 307 start-page: 56 year: 2016 ident: bib34 article-title: A lumped model of venting during thermal runaway in a cylindrical Lithium Cobalt Oxide lithium-ion cell publication-title: J Power Sources contributor: fullname: White – start-page: 649 year: 1971 end-page: 657 ident: bib39 article-title: Mixing and chemical reaction in steady confined turbulent flames publication-title: Symposium (International) on Combustion contributor: fullname: Spalding – volume: 200 year: 2023 ident: bib17 article-title: Heat transfer experiments and correlations for vent gases emerging from a Li-ion battery and impinging on a flat surface publication-title: Int. J. Heat Mass Transfer contributor: fullname: Ostanek – volume: 5 year: 2015 ident: bib26 article-title: The combustion behavior of large scale lithium titanate battery publication-title: Sci Rep contributor: fullname: Sun – volume: 2 year: 2019 ident: bib11 article-title: Quantitative identification of emissions from abused prismatic Ni-rich lithium-ion batteries publication-title: eTransportation contributor: fullname: Li – volume: 6 start-page: 906 year: 2022 ident: bib8 article-title: Thermal runaway routes of large-format lithium-sulfur pouch cell batteries publication-title: Joule contributor: fullname: Chen – volume: 184 year: 2022 ident: bib41 article-title: Influence of environmental conditions in the battery thermal runaway process of different chemistries: thermodynamic and optical assessment publication-title: Int. J. Heat Mass Transfer contributor: fullname: Martinez-Boggio – volume: 26 year: 1971 ident: bib38 article-title: Concentration fluctuations in a round turbulent free jet publication-title: Chem Eng Sci contributor: fullname: Spalding – volume: 49 start-page: 961 year: 2017 ident: bib29 article-title: Combustion behavior of lithium iron phosphate battery induced by external heat radiation publication-title: J Loss Prev Process Ind contributor: fullname: Sun – volume: 164 year: 2017 ident: bib35 article-title: Modeling vaporization, gas generation and venting in Li-ion battery cells with a dimethyl carbonate electrolyte publication-title: J Electrochem Soc contributor: fullname: White – volume: 313 year: 2022 ident: bib4 article-title: The thermal runaway analysis on LiFePO4 electrical energy storage packs with different venting areas and void volumes publication-title: Appl Energy contributor: fullname: Wang – volume: 165 year: 2018 ident: bib30 article-title: Study of the temperature and flame characteristics of two capacity LiFePO4 batteries in thermal runaway publication-title: J Electrochem Soc contributor: fullname: Hao – volume: 268 year: 2020 ident: bib21 article-title: Simulating onset and evolution of thermal runaway in Li-ion cells using a coupled thermal and venting model publication-title: Appl Energy contributor: fullname: Hacker – volume: 72 year: 2023 ident: bib25 article-title: Thermal runaway induced gas hazard for cell-to-pack (CTP) lithium-ion battery pack publication-title: J Energy Storage contributor: fullname: Ouyang – volume: 131 year: 2020 ident: bib3 article-title: Lithium-ion battery aging mechanisms and diagnosis method for automotive applications: recent advances and perspectives publication-title: Renew. Sust. Energ. Rev. contributor: fullname: Sun – volume: 12 year: 2022 ident: bib31 article-title: A coupled conjugate heat transfer and CFD model for the thermal runaway evolution and jet fire of 18650 lithium-ion battery under thermal abuse publication-title: eTransportation contributor: fullname: Wen – volume: 538 year: 2022 ident: bib37 article-title: Accelerating the numerical solution of thermal runaway in Li-ion batteries publication-title: J Power Sources contributor: fullname: Ostanek – volume: 246 year: 2021 ident: bib42 article-title: An optical investigation of thermal runaway phenomenon under thermal abuse conditions publication-title: Energy Convers Manag contributor: fullname: Martinez-Boggio – volume: 489 year: 2021 ident: bib33 article-title: Modeling cell venting and gas-phase reactions in 18650 lithium ion batteries during thermal runaway publication-title: J Power Sources contributor: fullname: Santhanagopalan – year: 2024 ident: bib20 article-title: Advances and challenges in thermal runaway modelling of lithium-ion batteries publication-title: Innovation contributor: fullname: Wen – volume: 16 year: 2023 ident: bib15 article-title: Revealing particle venting of lithium-ion batteries during thermal runaway: a multi-scale model toward multiphase process publication-title: eTransportation contributor: fullname: Dai – volume: 334 year: 2023 ident: bib22 article-title: Modeling venting behavior of lithium-ion batteries during thermal runaway propagation by coupling CFD and thermal resistance network publication-title: Appl Energy contributor: fullname: Hong – volume: 456 year: 2020 ident: bib36 article-title: A study of the thermal runaway of lithium-ion batteries: a Gaussian Process based global sensitivity analysis publication-title: J Power Sources contributor: fullname: Brown – volume: 592 year: 2024 ident: bib43 article-title: A novel method to determine the multi-phase ejection parameters of high-density battery thermal runaway publication-title: J Power Sources contributor: fullname: Wang – volume: 24 year: 1975 ident: bib40 article-title: The prediction of the fluctuations in the properties of free, round-jet, turbulent, diffusion flames publication-title: Combust Flame contributor: fullname: Lockwood – volume: 158 start-page: 711 year: 2022 ident: bib28 article-title: Experimental study on the thermal runaway and fire behavior of LiNi0.8Co0.1Mn0.1O2 battery in open and confined spaces publication-title: Process Saf Environ Protect contributor: fullname: Wang – volume: 398 start-page: 55 year: 2018 ident: bib32 article-title: Characterization of behaviour and hazards of fire and deflagration for high-energy Li-ion cells by over-heating publication-title: J Power Sources contributor: fullname: Wen – volume: 169 year: 2022 ident: bib13 article-title: Thermal runaway propagation in Li-ion battery packs due to combustion of vent gases publication-title: J Electrochem Soc contributor: fullname: Jain – volume: 139 year: 2021 ident: bib14 article-title: Thermal runaway and fire behaviors of a 300 Ah lithium ion battery with LiFePO4 as cathode publication-title: Renew. Sust. Energ. Rev. contributor: fullname: Sun – volume: 400 year: 2020 ident: bib10 article-title: Identification and characteristic analysis of powder ejected from a lithium ion battery during thermal runaway at elevated temperatures publication-title: J Hazard Mater contributor: fullname: Yan – volume: 179 year: 2020 ident: 10.1016/j.etran.2024.100335_bib27 article-title: Jet behavior of prismatic lithium-ion batteries during thermal runaway publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2020.115745 contributor: fullname: Zou – volume: 165 year: 2018 ident: 10.1016/j.etran.2024.100335_bib30 article-title: Study of the temperature and flame characteristics of two capacity LiFePO4 batteries in thermal runaway publication-title: J Electrochem Soc doi: 10.1149/2.0531816jes contributor: fullname: Wang – volume: 509 year: 2021 ident: 10.1016/j.etran.2024.100335_bib12 article-title: Alleviation on battery thermal runaway propagation: effects of oxygen level and dilution gas publication-title: J Power Sources doi: 10.1016/j.jpowsour.2021.230340 contributor: fullname: Weng – year: 2023 ident: 10.1016/j.etran.2024.100335_bib23 article-title: Modeling thermal runaway propagation of lithiumion batteries under impacts of ceiling jet fire publication-title: PSEP contributor: fullname: Gongquan – volume: 313 year: 2022 ident: 10.1016/j.etran.2024.100335_bib4 article-title: The thermal runaway analysis on LiFePO4 electrical energy storage packs with different venting areas and void volumes publication-title: Appl Energy doi: 10.1016/j.apenergy.2022.118767 contributor: fullname: Qin – volume: 400 year: 2020 ident: 10.1016/j.etran.2024.100335_bib10 article-title: Identification and characteristic analysis of powder ejected from a lithium ion battery during thermal runaway at elevated temperatures publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2020.123169 contributor: fullname: Chen – volume: 351 year: 2023 ident: 10.1016/j.etran.2024.100335_bib24 article-title: Numerical investigation on explosion hazards of lithium-ion battery vented gases and deflagration venting design in containerized energy storage system publication-title: Fuel doi: 10.1016/j.fuel.2023.128782 contributor: fullname: Peng – volume: 72 year: 2023 ident: 10.1016/j.etran.2024.100335_bib25 article-title: Thermal runaway induced gas hazard for cell-to-pack (CTP) lithium-ion battery pack publication-title: J Energy Storage doi: 10.1016/j.est.2023.108324 contributor: fullname: Peng – volume: 16 start-page: 3552 year: 2023 ident: 10.1016/j.etran.2024.100335_bib7 article-title: Distinct thermal runaway mechanisms of sulfide-based all-solid-state batteries publication-title: Energy Environ Sci doi: 10.1039/D3EE00084B contributor: fullname: Rui – volume: 268 year: 2020 ident: 10.1016/j.etran.2024.100335_bib21 article-title: Simulating onset and evolution of thermal runaway in Li-ion cells using a coupled thermal and venting model publication-title: Appl Energy doi: 10.1016/j.apenergy.2020.114972 contributor: fullname: Ostanek – volume: 458 year: 2023 ident: 10.1016/j.etran.2024.100335_bib9 article-title: Detailed characterization of particle emissions due to thermal failure of batteries with different cathodes publication-title: J Hazard Mater contributor: fullname: Wang – volume: 8 start-page: 248 year: 2022 ident: 10.1016/j.etran.2024.100335_bib1 article-title: A review of lithium-ion battery failure hazards: test standards, accident analysis, and safety Suggestions publication-title: Batteries doi: 10.3390/batteries8110248 contributor: fullname: Lai – volume: 184 year: 2022 ident: 10.1016/j.etran.2024.100335_bib41 article-title: Influence of environmental conditions in the battery thermal runaway process of different chemistries: thermodynamic and optical assessment publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2021.122381 contributor: fullname: García – year: 2024 ident: 10.1016/j.etran.2024.100335_bib20 article-title: Advances and challenges in thermal runaway modelling of lithium-ion batteries publication-title: Innovation contributor: fullname: Wang – volume: 307 start-page: 56 year: 2016 ident: 10.1016/j.etran.2024.100335_bib34 article-title: A lumped model of venting during thermal runaway in a cylindrical Lithium Cobalt Oxide lithium-ion cell publication-title: J Power Sources doi: 10.1016/j.jpowsour.2015.12.088 contributor: fullname: Coman – volume: 1 year: 2019 ident: 10.1016/j.etran.2024.100335_bib2 article-title: A review on the key issues of the lithium ion battery degradation among the whole life cycle publication-title: eTransportation doi: 10.1016/j.etran.2019.100005 contributor: fullname: Han – volume: 6 start-page: 742 year: 2022 ident: 10.1016/j.etran.2024.100335_bib6 article-title: Are solid-state batteries safer than lithium-ion batteries? publication-title: Joule doi: 10.1016/j.joule.2022.02.007 contributor: fullname: Bates – volume: 2 year: 2019 ident: 10.1016/j.etran.2024.100335_bib11 article-title: Quantitative identification of emissions from abused prismatic Ni-rich lithium-ion batteries publication-title: eTransportation doi: 10.1016/j.etran.2019.100031 contributor: fullname: Zhang – volume: 158 start-page: 711 year: 2022 ident: 10.1016/j.etran.2024.100335_bib28 article-title: Experimental study on the thermal runaway and fire behavior of LiNi0.8Co0.1Mn0.1O2 battery in open and confined spaces publication-title: Process Saf Environ Protect doi: 10.1016/j.psep.2021.12.056 contributor: fullname: Liu – volume: 139 start-page: 133 year: 2020 ident: 10.1016/j.etran.2024.100335_bib5 article-title: Refined study on lithium ion battery combustion in open space and a combustion chamber publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2020.03.037 contributor: fullname: Mao – volume: 580 year: 2023 ident: 10.1016/j.etran.2024.100335_bib19 article-title: A 3D simulation model of thermal runaway in Li-ion batteries coupled particles ejection and jet flow publication-title: J Power Sources doi: 10.1016/j.jpowsour.2023.233357 contributor: fullname: Zhang – volume: 16 year: 2023 ident: 10.1016/j.etran.2024.100335_bib15 article-title: Revealing particle venting of lithium-ion batteries during thermal runaway: a multi-scale model toward multiphase process publication-title: eTransportation doi: 10.1016/j.etran.2023.100237 contributor: fullname: Wang – volume: 200 year: 2023 ident: 10.1016/j.etran.2024.100335_bib17 article-title: Heat transfer experiments and correlations for vent gases emerging from a Li-ion battery and impinging on a flat surface publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2022.123516 contributor: fullname: Li – volume: 334 year: 2023 ident: 10.1016/j.etran.2024.100335_bib22 article-title: Modeling venting behavior of lithium-ion batteries during thermal runaway propagation by coupling CFD and thermal resistance network publication-title: Appl Energy doi: 10.1016/j.apenergy.2023.120660 contributor: fullname: Wang – volume: 49 start-page: 961 year: 2017 ident: 10.1016/j.etran.2024.100335_bib29 article-title: Combustion behavior of lithium iron phosphate battery induced by external heat radiation publication-title: J Loss Prev Process Ind doi: 10.1016/j.jlp.2016.12.002 contributor: fullname: Wang – volume: 164 year: 2017 ident: 10.1016/j.etran.2024.100335_bib35 article-title: Modeling vaporization, gas generation and venting in Li-ion battery cells with a dimethyl carbonate electrolyte publication-title: J Electrochem Soc doi: 10.1149/2.0631709jes contributor: fullname: Coman – volume: 24 year: 1975 ident: 10.1016/j.etran.2024.100335_bib40 article-title: The prediction of the fluctuations in the properties of free, round-jet, turbulent, diffusion flames publication-title: Combust Flame doi: 10.1016/0010-2180(75)90133-9 contributor: fullname: Lockwood – volume: 169 year: 2022 ident: 10.1016/j.etran.2024.100335_bib13 article-title: Thermal runaway propagation in Li-ion battery packs due to combustion of vent gases publication-title: J Electrochem Soc doi: 10.1149/1945-7111/ac91a7 contributor: fullname: Mishra – volume: 398 start-page: 55 year: 2018 ident: 10.1016/j.etran.2024.100335_bib32 article-title: Characterization of behaviour and hazards of fire and deflagration for high-energy Li-ion cells by over-heating publication-title: J Power Sources doi: 10.1016/j.jpowsour.2018.07.044 contributor: fullname: Ping – volume: 489 year: 2021 ident: 10.1016/j.etran.2024.100335_bib33 article-title: Modeling cell venting and gas-phase reactions in 18650 lithium ion batteries during thermal runaway publication-title: J Power Sources doi: 10.1016/j.jpowsour.2021.229496 contributor: fullname: Kim – volume: 131 year: 2020 ident: 10.1016/j.etran.2024.100335_bib3 article-title: Lithium-ion battery aging mechanisms and diagnosis method for automotive applications: recent advances and perspectives publication-title: Renew. Sust. Energ. Rev. doi: 10.1016/j.rser.2020.110048 contributor: fullname: Xiong – volume: 5 year: 2015 ident: 10.1016/j.etran.2024.100335_bib26 article-title: The combustion behavior of large scale lithium titanate battery publication-title: Sci Rep contributor: fullname: Huang – volume: 139 year: 2021 ident: 10.1016/j.etran.2024.100335_bib14 article-title: Thermal runaway and fire behaviors of a 300 Ah lithium ion battery with LiFePO4 as cathode publication-title: Renew. Sust. Energ. Rev. doi: 10.1016/j.rser.2021.110717 contributor: fullname: Mao – volume: 175 year: 2023 ident: 10.1016/j.etran.2024.100335_bib16 article-title: Modeling thermal runaway propagation of lithium-ion batteries under impacts of ceiling jet fire publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2023.05.047 contributor: fullname: Wang – start-page: 649 year: 1971 ident: 10.1016/j.etran.2024.100335_bib39 article-title: Mixing and chemical reaction in steady confined turbulent flames publication-title: Symposium (International) on Combustion doi: 10.1016/S0082-0784(71)80067-X contributor: fullname: Spalding – volume: 6 start-page: 906 year: 2022 ident: 10.1016/j.etran.2024.100335_bib8 article-title: Thermal runaway routes of large-format lithium-sulfur pouch cell batteries publication-title: Joule doi: 10.1016/j.joule.2022.02.015 contributor: fullname: Huang – volume: 54 year: 2022 ident: 10.1016/j.etran.2024.100335_bib18 article-title: Effect of a plate obstacle on fire behavior of 18650 lithium ion battery: an experimental study publication-title: J Energy Storage doi: 10.1016/j.est.2022.105283 contributor: fullname: Zhang – volume: 592 year: 2024 ident: 10.1016/j.etran.2024.100335_bib43 article-title: A novel method to determine the multi-phase ejection parameters of high-density battery thermal runaway publication-title: J Power Sources doi: 10.1016/j.jpowsour.2023.233905 contributor: fullname: Li – volume: 246 year: 2021 ident: 10.1016/j.etran.2024.100335_bib42 article-title: An optical investigation of thermal runaway phenomenon under thermal abuse conditions publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2021.114663 contributor: fullname: García – volume: 456 year: 2020 ident: 10.1016/j.etran.2024.100335_bib36 article-title: A study of the thermal runaway of lithium-ion batteries: a Gaussian Process based global sensitivity analysis publication-title: J Power Sources doi: 10.1016/j.jpowsour.2020.228001 contributor: fullname: Yeardley – volume: 538 year: 2022 ident: 10.1016/j.etran.2024.100335_bib37 article-title: Accelerating the numerical solution of thermal runaway in Li-ion batteries publication-title: J Power Sources doi: 10.1016/j.jpowsour.2022.231531 contributor: fullname: Parhizi – volume: 26 year: 1971 ident: 10.1016/j.etran.2024.100335_bib38 article-title: Concentration fluctuations in a round turbulent free jet publication-title: Chem Eng Sci doi: 10.1016/0009-2509(71)86083-9 contributor: fullname: Spalding – volume: 12 year: 2022 ident: 10.1016/j.etran.2024.100335_bib31 article-title: A coupled conjugate heat transfer and CFD model for the thermal runaway evolution and jet fire of 18650 lithium-ion battery under thermal abuse publication-title: eTransportation doi: 10.1016/j.etran.2022.100157 contributor: fullname: Kong |
SSID | ssj0002963885 |
Score | 2.3236806 |
Snippet | Structure failure of lithium-ion battery (LIB) pack ceiling leads to the unintended release of combustible and poisonous substances during thermal runaway... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 100335 |
SubjectTerms | Fluid-structure interaction Lithium-ion battery safety Multi-phase ejection Pack ceiling failure Thermal runaway |
Title | Revealing the mechanism of pack ceiling failure induced by thermal runaway in NCM batteries: A coupled multiphase fluid-structure interaction model for electric vehicles |
URI | https://dx.doi.org/10.1016/j.etran.2024.100335 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NbxMxEB216QUOqHyJQqnmwBEridfrdblFUasASg5Apd5WXnusLqRJBElRL_wf_iVjexcVCXHgtl-zWnmseW9Wb2YAXjEKGGukE6Eog1BSadEw0ojmdNw4K13hfCxOni_07EK9uywv92Da18JEWWUX-3NMT9G6uzLsVnO4advhR5nKJrWJKsiI5PtwwHAkzQAOJm_fzxa_f7XIuMnScM5oIqJN338oKb1oy7DAqaJUUTNQpMlvf8GoO7hzfggPOsKIk_xND2GPVo_g_p02go_h5we6Yb7Hx8h0Dq8pVvO2365xHZBT4i_oqE13g22jCh05D2ePemxuowGH5iV-3a3sd3vLt3AxnWOT2m5yFv0GJ-jWu82SH8_iwyvGPQzLXetFbj6b3xgrmVONBKbhOshkGPOMndbhDV0l-d0TuDg_-zSdiW4Eg3CMbVthjdWlpGpMRCHoMJK-dEXQxMRSnTJ1q5wb6cAuVrokW9DY-sJYrwKnKRVTl6cwWK1X9AzQeK_KyldG-dh3rLKucWM5Krw35EZUHcHrftHrTe60UfcStM918lEdfVRnHx2B7h1T_7FhasaCfxk-_1_DF3AvnmW14zEMeInpJTOSbXPS7bgT2J__OPsF3oPjwQ |
link.rule.ids | 315,783,787,24128,27936,27937,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZ4HAoHREsrHi2dQ49Yu-s4TpbbalW0FHYPLUjcIscei8C-BLsgfhL_krGdVCBVHHpbxZlo5XHm-yb6ZoaxH4QCuc6F4S5JHZdCKl4S0vCy2ymNFiYx1hcnD0dqcCl_XaVXK6zf1MJ4WWUd-2NMD9G6vtKqd7M1r6rWHxHKJlXuVZAeyVfZOrGBLr2d673Ts8Ho76cW4Q9ZGM7pTbi3afoPBaUXLggWKFUU0msGkjD57R8Y9Qp3TrbZVk0YoRf_00e2gtNPbPNVG8Ed9vwbH4jv0W8gOgcT9NW81f0EZg4oJb4Fg1VYdbryKnSgPJw8aqF88gYUmsdwt5zqR_1ESzDqD6EMbTcpiz6GHpjZcj6m26P48JpwD9x4WVkem8_GJ_pK5lAjAWG4DhAZhjhjpzLwgNdBfveZXZ78vOgPeD2CgRvCtgXXuVapwKyDiM4p1xY2NYlTSMRSdom6Zca0lSMXS5WiTrCjbZJrKx2lKRlRly9sbTqb4i6D3FqZZjbLpfV9xzJtStMR7cTaHE0bsz121Gx6MY-dNopGgnZTBB8V3kdF9NEeU41jijcHpiAseM9w_38Nv7MPg4vheXF-Ojo7YBt-JSofv7I12m78RuxkUR7Wp-8FX5vlgg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Revealing+the+mechanism+of+pack+ceiling+failure+induced+by+thermal+runaway+in+NCM+batteries%3A+A+coupled+multiphase+fluid-structure+interaction+model+for+electric+vehicles&rft.jtitle=eTransportation+%28Amsterdam%29&rft.au=Li%2C+Junyuan&rft.au=Gao%2C+Peng&rft.au=Tong%2C+Bang&rft.au=Cheng%2C+Zhixiang&rft.date=2024-05-01&rft.issn=2590-1168&rft.eissn=2590-1168&rft.volume=20&rft.spage=100335&rft_id=info:doi/10.1016%2Fj.etran.2024.100335&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_etran_2024_100335 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-1168&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-1168&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-1168&client=summon |