Progress on hydrogen sulfide removal: From catalytic oxidation to plasma-assisted treatment
Air pollution is a long-standing environmental challenge as well an important economic subject. Hydrogen sulfide is one the major pollutants in the industrial releases. This review focuses on the thermochemical treatment of hydrogen sulfide based on the most recent works to date regarding its remova...
Saved in:
Published in | Chemosphere (Oxford) Vol. 364; p. 143174 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.09.2024
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0045-6535 1879-1298 1879-1298 |
DOI | 10.1016/j.chemosphere.2024.143174 |
Cover
Loading…
Abstract | Air pollution is a long-standing environmental challenge as well an important economic subject. Hydrogen sulfide is one the major pollutants in the industrial releases. This review focuses on the thermochemical treatment of hydrogen sulfide based on the most recent works to date regarding its removal. By analyzing fundamental steps in chemical reaction engineering, some useful factors are emphasized since they are often neglected in scientific studies, catalysts design and process scale-up. From processing side, the fluid flow conditions including velocity, H2S concentration, relative humidity, temperature and pressure strongly influence the kinetic behavior and so the catalytic performance of the H2S removal reactor. From material side, the catalyst properties including nature, porosity, pore types, size, sites distribution and layer structuration largely influence the removal performance via among others the accessibility to catalytic sites, pores connection and mass transfer resistance. Plasma-assisted catalytic removal of H2S combines many novelties in comparison with a classical thermo-catalytic process. From patents review, we can see that main concerns are about electrodes mounting, reactor lifetime and modular design to solve the problems in the industrial practice. We attempt to provide for scientists, engineers and industrialists a guidance on the design of catalysts and processes for H2S removal which could be applied in laboratorial studies and industrial processes as well.
[Display omitted]
•Thermo-catalytic oxidation of H2S and their latest progress.•The influence of fluid's flow on kinetic behaviour and catalytic performance.•Porous characteristics and layer structure largely influence H2S removal.•Plasma technologies became attractive for high-efficient H2S abatement.•Modular design and electrodes mounting are the keys to industrial problems. |
---|---|
AbstractList | Air pollution is a long-standing environmental challenge as well an important economic subject. Hydrogen sulfide is one the major pollutants in the industrial releases. This review focuses on the thermochemical treatment of hydrogen sulfide based on the most recent works to date regarding its removal. By analyzing fundamental steps in chemical reaction engineering, some useful factors are emphasized since they are often neglected in scientific studies, catalysts design and process scale-up. From processing side, the fluid flow conditions including velocity, H
S concentration, relative humidity, temperature and pressure strongly influence the kinetic behavior and so the catalytic performance of the H
S removal reactor. From material side, the catalyst properties including nature, porosity, pore types, size, sites distribution and layer structuration largely influence the removal performance via among others the accessibility to catalytic sites, pores connection and mass transfer resistance. Plasma-assisted catalytic removal of H
S combines many novelties in comparison with a classical thermo-catalytic process. From patents review, we can see that main concerns are about electrodes mounting, reactor lifetime and modular design to solve the problems in the industrial practice. We attempt to provide for scientists, engineers and industrialists a guidance on the design of catalysts and processes for H
S removal which could be applied in laboratorial studies and industrial processes as well. Air pollution is a long-standing environmental challenge as well an important economic subject. Hydrogen sulfide is one the major pollutants in the industrial releases. This review focuses on the thermochemical treatment of hydrogen sulfide based on the most recent works to date regarding its removal. By analyzing fundamental steps in chemical reaction engineering, some useful factors are emphasized since they are often neglected in scientific studies, catalysts design and process scale-up. From processing side, the fluid flow conditions including velocity, H2S concentration, relative humidity, temperature and pressure strongly influence the kinetic behavior and so the catalytic performance of the H2S removal reactor. From material side, the catalyst properties including nature, porosity, pore types, size, sites distribution and layer structuration largely influence the removal performance via among others the accessibility to catalytic sites, pores connection and mass transfer resistance. Plasma-assisted catalytic removal of H2S combines many novelties in comparison with a classical thermo-catalytic process. From patents review, we can see that main concerns are about electrodes mounting, reactor lifetime and modular design to solve the problems in the industrial practice. We attempt to provide for scientists, engineers and industrialists a guidance on the design of catalysts and processes for H2S removal which could be applied in laboratorial studies and industrial processes as well. Air pollution is a long-standing environmental challenge as well an important economic subject. Hydrogen sulfide is one the major pollutants in the industrial releases. This review focuses on the thermochemical treatment of hydrogen sulfide based on the most recent works to date regarding its removal. By analyzing fundamental steps in chemical reaction engineering, some useful factors are emphasized since they are often neglected in scientific studies, catalysts design and process scale-up. From processing side, the fluid flow conditions including velocity, H2S concentration, relative humidity, temperature and pressure strongly influence the kinetic behavior and so the catalytic performance of the H2S removal reactor. From material side, the catalyst properties including nature, porosity, pore types, size, sites distribution and layer structuration largely influence the removal performance via among others the accessibility to catalytic sites, pores connection and mass transfer resistance. Plasma-assisted catalytic removal of H2S combines many novelties in comparison with a classical thermo-catalytic process. From patents review, we can see that main concerns are about electrodes mounting, reactor lifetime and modular design to solve the problems in the industrial practice. We attempt to provide for scientists, engineers and industrialists a guidance on the design of catalysts and processes for H2S removal which could be applied in laboratorial studies and industrial processes as well.Air pollution is a long-standing environmental challenge as well an important economic subject. Hydrogen sulfide is one the major pollutants in the industrial releases. This review focuses on the thermochemical treatment of hydrogen sulfide based on the most recent works to date regarding its removal. By analyzing fundamental steps in chemical reaction engineering, some useful factors are emphasized since they are often neglected in scientific studies, catalysts design and process scale-up. From processing side, the fluid flow conditions including velocity, H2S concentration, relative humidity, temperature and pressure strongly influence the kinetic behavior and so the catalytic performance of the H2S removal reactor. From material side, the catalyst properties including nature, porosity, pore types, size, sites distribution and layer structuration largely influence the removal performance via among others the accessibility to catalytic sites, pores connection and mass transfer resistance. Plasma-assisted catalytic removal of H2S combines many novelties in comparison with a classical thermo-catalytic process. From patents review, we can see that main concerns are about electrodes mounting, reactor lifetime and modular design to solve the problems in the industrial practice. We attempt to provide for scientists, engineers and industrialists a guidance on the design of catalysts and processes for H2S removal which could be applied in laboratorial studies and industrial processes as well. Air pollution is a long-standing environmental challenge as well an important economic subject. Hydrogen sulfide is one the major pollutants in the industrial releases. This review focuses on the thermochemical treatment of hydrogen sulfide based on the most recent works to date regarding its removal. By analyzing fundamental steps in chemical reaction engineering, some useful factors are emphasized since they are often neglected in scientific studies, catalysts design and process scale-up. From processing side, the fluid flow conditions including velocity, H₂S concentration, relative humidity, temperature and pressure strongly influence the kinetic behavior and so the catalytic performance of the H₂S removal reactor. From material side, the catalyst properties including nature, porosity, pore types, size, sites distribution and layer structuration largely influence the removal performance via among others the accessibility to catalytic sites, pores connection and mass transfer resistance. Plasma-assisted catalytic removal of H₂S combines many novelties in comparison with a classical thermo-catalytic process. From patents review, we can see that main concerns are about electrodes mounting, reactor lifetime and modular design to solve the problems in the industrial practice. We attempt to provide for scientists, engineers and industrialists a guidance on the design of catalysts and processes for H₂S removal which could be applied in laboratorial studies and industrial processes as well. Air pollution is a long-standing environmental challenge as well an important economic subject. Hydrogen sulfide is one the major pollutants in the industrial releases. This review focuses on the thermochemical treatment of hydrogen sulfide based on the most recent works to date regarding its removal. By analyzing fundamental steps in chemical reaction engineering, some useful factors are emphasized since they are often neglected in scientific studies, catalysts design and process scale-up. From processing side, the fluid flow conditions including velocity, H2S concentration, relative humidity, temperature and pressure strongly influence the kinetic behavior and so the catalytic performance of the H2S removal reactor. From material side, the catalyst properties including nature, porosity, pore types, size, sites distribution and layer structuration largely influence the removal performance via among others the accessibility to catalytic sites, pores connection and mass transfer resistance. Plasma-assisted catalytic removal of H2S combines many novelties in comparison with a classical thermo-catalytic process. From patents review, we can see that main concerns are about electrodes mounting, reactor lifetime and modular design to solve the problems in the industrial practice. We attempt to provide for scientists, engineers and industrialists a guidance on the design of catalysts and processes for H2S removal which could be applied in laboratorial studies and industrial processes as well. [Display omitted] •Thermo-catalytic oxidation of H2S and their latest progress.•The influence of fluid's flow on kinetic behaviour and catalytic performance.•Porous characteristics and layer structure largely influence H2S removal.•Plasma technologies became attractive for high-efficient H2S abatement.•Modular design and electrodes mounting are the keys to industrial problems. |
ArticleNumber | 143174 |
Author | Fulcheri, Laurent Rohani, Vandad Leroux, Patrick Nastasi, Valerie Wang, Shengfei Gracian, Catherine |
Author_xml | – sequence: 1 givenname: Shengfei surname: Wang fullname: Wang, Shengfei email: shengfei.wang@minesparis.psl.eu organization: Mines Paris, Université PSL, Centre Procédés Energies Renouvelables et Systèmes Energétiques (PERSEE), 06904, Sophia Antipolis, France – sequence: 2 givenname: Vandad surname: Rohani fullname: Rohani, Vandad email: vandad-julien.rohani@minesparis.psl.eu organization: Mines Paris, Université PSL, Centre Procédés Energies Renouvelables et Systèmes Energétiques (PERSEE), 06904, Sophia Antipolis, France – sequence: 3 givenname: Patrick surname: Leroux fullname: Leroux, Patrick email: patrick.leroux@minesparis.psl.eu organization: Mines Paris, Université PSL, Centre Procédés Energies Renouvelables et Systèmes Energétiques (PERSEE), 06904, Sophia Antipolis, France – sequence: 4 givenname: Catherine surname: Gracian fullname: Gracian, Catherine email: catherine.gracian@suez.com organization: Suez International, Tour CB21, 16 Place de l’Iris, 92040, Paris La Défense, France – sequence: 5 givenname: Valerie surname: Nastasi fullname: Nastasi, Valerie email: valerie.nastasi@suez.com organization: Suez International, Tour CB21, 16 Place de l’Iris, 92040, Paris La Défense, France – sequence: 6 givenname: Laurent surname: Fulcheri fullname: Fulcheri, Laurent email: laurent.fulcheri@minesparis.psl.eu organization: Mines Paris, Université PSL, Centre Procédés Energies Renouvelables et Systèmes Energétiques (PERSEE), 06904, Sophia Antipolis, France |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39181465$$D View this record in MEDLINE/PubMed https://minesparis-psl.hal.science/hal-04871338$$DView record in HAL |
BookMark | eNqNkc1uEzEUhS1URNPCKyCzg8UEO_bM2OyqiFKkSLCAFQvrjn2HOJoZB9uJmrfH0bRVd7CyrvWd-3POFbmYwoSEvONsyRlvPu6WdotjSPstRlyu2EouuRS8lS_IgqtWV3yl1QVZMCbrqqlFfUmuUtoxVsS1fkUuheaKy6ZekF_fY_gdMSUaJro9uVLhRNNh6L1DGsuUIwyf6G0MI7WQYThlb2m49w6yL5Ic6H6ANEIFKfmU0dEcEfKIU35NXvYwJHzz8F6Tn7eff6zvqs23L1_XN5vKCiZyBUr3iHUtWqfbXsqutxxEo9C1jZMI0MlOMc0l60CoTnS63MrLCdqiPOuuyYe57xYGs49-hHgyAby5u9mY8x-TquVCqCMv7PuZ3cfw54Apm9Eni8MAE4ZDMqI4pBqpmPo3ynTL62J-U9C3D-ihG9E9LfHocwH0DNgYUorYPyGcmXOmZmeeZWrOmZo506Jdz1osHh49RpOsx8mi8xFtNi74_-jyFxapr38 |
Cites_doi | 10.1016/j.catcom.2008.12.052 10.1016/j.ijhydene.2023.07.241 10.1016/j.cej.2014.09.070 10.1016/j.apcatb.2019.04.014 10.1016/j.cej.2015.02.026 10.1021/acsomega.0c06157 10.1021/acs.chemrev.8b00408 10.1016/j.jhazmat.2021.125180 10.1016/j.jece.2019.103058 10.1007/s11356-023-25136-z 10.1016/j.matchemphys.2023.127768 10.1016/j.apcatb.2020.119444 10.1016/j.ces.2006.12.052 10.1016/j.apcatb.2022.121763 10.1016/j.jece.2020.104351 10.1021/acs.chemrev.5b00362 10.1016/j.physleta.2020.126533 10.1016/j.fuel.2022.127385 10.1088/1009-0630/17/1/11 10.1021/acsami.6b13597 10.1016/j.jssc.2019.07.027 10.1016/j.apsusc.2022.154011 10.1023/A:1018812326380 10.1016/j.cej.2023.144573 10.1016/j.jece.2023.110113 10.1016/S1383-5866(01)00186-1 10.1016/S0926-860X(00)00866-8 10.1016/j.chemphys.2023.112017 10.1179/174602206X90904 10.1016/j.chemosphere.2012.02.075 10.1021/acs.iecr.9b03800 10.1016/j.jhazmat.2007.01.018 10.1088/0022-3727/47/22/224010 10.1023/A:1012055203010 10.1016/S0926-860X(02)00573-2 10.1016/j.cep.2016.10.001 10.1016/j.cattod.2008.11.014 10.1016/j.cej.2023.144795 10.1016/S0043-1354(00)00313-4 10.1039/D2TA03805F 10.1016/j.chemosphere.2022.134579 10.1016/j.fuproc.2019.03.020 10.1016/j.cej.2005.12.021 10.1063/1.4935102 10.1021/acsanm.2c04959 10.1016/j.apcata.2023.119315 10.1039/D0NJ05809B 10.1016/j.fuel.2022.127183 10.1021/acs.iecr.8b00028 10.1021/ie049277o 10.1016/j.cej.2013.05.058 10.1016/j.seppur.2021.119686 10.1016/j.cherd.2021.10.030 10.1039/C6CS00066E 10.1016/j.cattod.2020.07.065 10.1016/j.wasman.2005.07.006 10.1021/acs.iecr.0c00498 10.1016/j.micromeso.2023.112763 10.1016/j.cattod.2021.11.027 10.1016/j.apsusc.2021.152189 10.1051/epjap:2000144 10.1016/j.jece.2021.106195 10.1016/j.watres.2022.118742 10.1088/1755-1315/237/2/022052 10.1021/acsomega.1c05243 10.1016/j.cherd.2015.12.025 10.1016/j.apsusc.2019.143815 10.1021/acsami.2c05863 10.1016/j.fuproc.2022.107495 10.1016/j.egypro.2012.01.137 10.1016/j.catcom.2016.08.038 10.1016/j.apcata.2019.117365 10.1021/acs.est.4c00612 10.1016/j.ijhydene.2011.10.048 10.1016/j.cej.2016.10.068 10.1134/S0012501614050017 10.1016/j.ijhydene.2016.12.001 10.1016/j.seppur.2022.122539 10.1109/TPS.2023.3234271 10.1021/acscatal.9b05486 10.1016/j.ijhydene.2014.06.040 10.1016/j.fuproc.2023.107744 10.1016/j.jhazmat.2022.129751 10.1007/s11356-014-3244-6 10.1016/j.ces.2008.02.025 10.1002/cjce.5450760507 10.1016/j.jhazmat.2013.06.075 10.1016/j.envres.2022.114354 10.1016/j.scitotenv.2020.144452 10.1016/j.cej.2021.134097 10.1021/acs.chemrev.7b00095 10.1016/j.jece.2018.01.045 10.1016/j.cep.2022.108984 10.1016/j.cej.2015.03.132 10.1016/j.energy.2018.05.057 10.1134/S2070050419040020 10.1016/j.cej.2022.138815 10.1016/j.jhazmat.2021.127648 10.1016/j.fuel.2022.123774 10.1016/j.apcatb.2020.118674 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Ltd Copyright © 2024 Elsevier Ltd. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2024 Elsevier Ltd – notice: Copyright © 2024 Elsevier Ltd. All rights reserved. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 1XC |
DOI | 10.1016/j.chemosphere.2024.143174 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Ecology |
EISSN | 1879-1298 |
ExternalDocumentID | oai_HAL_hal_04871338v1 39181465 10_1016_j_chemosphere_2024_143174 S004565352402071X |
Genre | Journal Article Review |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO ABEFU ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABWVN ABXDB ACDAQ ACGFO ACGFS ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO AEBSH AEFWE AEGFY AEIPS AEKER AENEX AFFNX AFJKZ AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HMC HVGLF HZ~ H~9 IHE J1W K-O KCYFY KOM LY3 LY9 M41 MO0 MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCC SCU SDF SDG SDP SEN SEP SES SEW SPCBC SSJ SSZ T5K TWZ WH7 WUQ XPP Y6R ZCG ZMT ZXP ~02 ~G- ~KM AATTM AAYWO AAYXX ACVFH ADCNI ADXHL AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP BNPGV CITATION SSH AFKWA AJOXV AMFUW NPM 7X8 EFKBS EFLBG 7S9 L.6 1XC UMC |
ID | FETCH-LOGICAL-c303t-a89fee5537d97f44bfc1a368ed76d4eaab4b809140ba38b3b943113919ce4e553 |
IEDL.DBID | AIKHN |
ISSN | 0045-6535 1879-1298 |
IngestDate | Fri May 09 12:18:38 EDT 2025 Fri Sep 05 17:24:43 EDT 2025 Fri Sep 05 12:13:28 EDT 2025 Wed Feb 19 02:10:20 EST 2025 Sun Jul 06 05:04:04 EDT 2025 Sat Mar 22 15:54:03 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | H2S Industrial practice Catalytic oxidation Non-thermal plasma Mass transfer Scale-up HS |
Language | English |
License | Copyright © 2024 Elsevier Ltd. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c303t-a89fee5537d97f44bfc1a368ed76d4eaab4b809140ba38b3b943113919ce4e553 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-3843-431X |
PMID | 39181465 |
PQID | 3097150246 |
PQPubID | 23479 |
ParticipantIDs | hal_primary_oai_HAL_hal_04871338v1 proquest_miscellaneous_3165864808 proquest_miscellaneous_3097150246 pubmed_primary_39181465 crossref_primary_10_1016_j_chemosphere_2024_143174 elsevier_sciencedirect_doi_10_1016_j_chemosphere_2024_143174 |
PublicationCentury | 2000 |
PublicationDate | 2024-09-01 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Chemosphere (Oxford) |
PublicationTitleAlternate | Chemosphere |
PublicationYear | 2024 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Rohani, Affonso Nobrega, Zadeh, Cauneau, Fulcheri (bib70) 2017; 309 Kersen, Keiski (bib43) 2009; 10 Zheng, Zhang, Yao, Zheng, Shen, Liu, Cao, Liang, Xiao, Jiang (bib112) 2021; 411 Neyts, Ostrikov, Ken, Sunkara, Bogaerts (bib61) 2015; 115 Gostelow, Parsons, Stuetz (bib27) 2001; 35 Bagreev, Bandosz (bib3) 2005; 44 Fu, Liu, He, Li, Li, Du, Wang, Long, Wang (bib25) 2022; 221 Brethes-Dupouey, Peyrous, Held (bib7) 2000; 11 Li, Wang, Wang, Ning, Ma, Zhong, Wu, Yuan (bib48) 2022; 579 Xianju (bib95) 2016 Lloyd (bib54) 2011 Min, Park, Bhatti, Jang, Baek, Nam (bib59) 2023; 362 Spivak, Ismagilova (bib77) 2014; 455 Ko, Chu, Liou (bib47) 2007; 147 Rickett, Dupont, Twigg (bib69) 2006; 79 Zhang, Kan, Zheng, Cao, Liang, Xiao, Liu, Jiang (bib104) 2021; 45 Yang, Wang, Fan, de Falco, Yang, Shangguan, Bandosz (bib98) 2020; 266 Keras (bib42) 2012 Son, Kim (bib76) 2015; 262 Promtongkaew, Márquez, Prasertcharoensuk, Kerdsamai, Praserthdam, Praserthdam (bib66) 2022; 215 Sun, Wang, Li, Zhao, Qiu (bib79) 2022; 317 Neyts, Bogaerts (bib60) 2014; 47 Zadeh, Rohani, Cauneau, Fabry, Fulcheri (bib103) 2015; 17 He, Cheng, Zhang, Douthwaite, Pattisson, Hao (bib33) 2019; 119 Zheng, Li, Zheng, Shen, Xiao, Cao, Zhang, Au, Jiang (bib111) 2020; 10 Hyunik, Junghoon (bib37) 2021 Pongthawornsakun, Phatyenchuen, Panpranot, Praserthdam (bib64) 2018; 6 Sun, Wang, Pan, Liu, Li, Zhao, Qiu (bib80) 2019; 191 Zheng, Zhang, Li, Pi, Du, Li, Shi, Hu, Jin, Zhu, Yuan, Lu, Chen (bib113) 2023; 51 Ko, Kim, Cho, Kim, Lee (bib46) 2023; 305 Daraee, Ghasemy, Rashidi (bib16) 2020; 8 Klenov, Pokrovskaya, Chumakova, Pavlova, Sadykov, Noskov (bib45) 2009; 144 Quan, Jiang, Wang, Song (bib68) 2021; 371 Jameh, Mohammadi, Bakhtiari, Mahdyarfar (bib39) 2019; 7 Dochun (bib19) 2021 Chen, Xie (bib9) 2013; 261 Prasertcharoensuk, Promtongkaew, Tawatchai, Marquez, Jongsomjit, Tahir, Praserthdam, Praserthdam (bib65) 2022; 301 Gupta, Bae, Kim (bib30) 2021; 9 Chen, Yuan, Li, Jiang, Ma, Cen, Jiang (bib10) 2021; 768 Wu, Chen, Chen, Jiang (bib93) 2022; 424 Zhang, Jiang, Long, Wang, Qiao, Ling (bib107) 2017; 9 Shin, Nam, Park, Chung (bib74) 2001; 211 Schlegelmilch, Streese, Stegmann (bib72) 2005; 25 Su, Duan, Wang, Fan, Tian, Chen, Yang, Shangguan (bib78) 2023; 2 Zheng, Li, Zhang, Shen, Xiao, Zhang, Au, Jiang (bib110) 2019; 252 Qamaruz-Zaman, Yaacof, Kamarzaman (bib67) 2020 Xia, Shen, Zhou, Liu (bib94) 2023; 30 Barelli, Bidini, Micoli, Sisani, Turco (bib5) 2018; 160 Wang, Rohani, Dupont, Pagnon, Fulcheri (bib89) 2023; 574 Lopatin, Mikenin, Pisarev, Baranov, Zazhigalov, Zagoruiko (bib55) 2015; 282 Ma, Chen, Ruan (bib56) 2001; 21 Chen, Guo, Zhang, Guo, Liang (bib11) 2022; 431 Yuan, Huang, Zhang, Ouyang, Yuan (bib102) 2021; 279 Li, Wang, Yuan, Wang, Ma, Wu, Xie, Cao, Xiong, Ning (bib49) 2023; 471 Cepollaro, Caputo, Gargiulo, Deorsola, Cimino, Lisi (bib8) 2022; 390–391 Yuan, Huang, Yılmaz, Zhang, Wang, Yuan (bib101) 2023; 339 Zhao, John, Zhang, Hamann, Muknahallipatna, Legowski, Ackerman, Argyle (bib108) 2007; 62 Kanca, Alpsoy, Ata (bib41) 2023 Pan, Chen, Su, Wu, Zhang, Long (bib63) 2021; 280 Wang, Wang, Ning, Cheng, Ma, Zhang (bib88) 2018; 57 Duan, Wu, Feng, Li, Mi (bib21) 2023; 337 Wang, Teo, Li (bib85) 2002; 27 Feng, Jia, Wang, Sun, Ning, Wang, Li, Li (bib23) 2023; 451 Balaev, Konshenko, Spivak, Ismagilov, Dzhemilev (bib4) 2001; 376 Fu, Li, Liu, Ma, Xu, Wang, Liu, Wang (bib24) 2024; 58 Huang, Xia, Ge, Jing, Dong, Hou (bib36) 2012; 88 Gu, Shen, Liang, Zhou (bib28) 2022; 176 Xu, Pan, Hu, Niu, Zhang, Long (bib96) 2022; 10 Li, Liu, Sun, Deng, Li, Tan, Ma, Zhang (bib50) 2023; 245 (bib83) 2024 Dang, Huang, Kang, Wu, Zhang (bib15) 2012; 16 Khabazipour, Anbia (bib44) 2019; 58 Zhao, Liu (bib109) 2022; 238 Liu, Jiang, Xie, Duan, Yuan, Zhang, Zhao, Cao, Dong, Tai (bib53) 2023; 471 Sungho (bib81) 2009 Snoeckx, Bogaerts (bib75) 2017; 46 Georgiadis, Charisiou, Gaber, Polychronopoulou, Yentekakis, Goula (bib26) 2021; 6 von Rickenbach, Lucci, Narayanan, Dimopoulos Eggenschwiler, Poulikakos (bib84) 2015; 276 Nunnally, Gutsol, Rabinovich, Fridman, Gutsol (bib62) 2014; 39 Chen, Zhang, Li, Ma, Wang, Jiang (bib12) 2020; 59 Xu, Liao, Zheng, Zhou (bib97) 2020; 384 Hyunkoo (bib38) 2007 Zhang, Zheng, Zhang, Zheng, Xiao, Jiang (bib106) 2023; 6 Assadi, Bouzaza, Soutrel, Petit, Medimagh, Wolbert (bib1) 2017; 111 Dalai, Tollefson (bib14) 1998; 76 Wang, Huang, Zhong, Hu, Xie, Zhao, Qiao (bib91) 2022; 319 Yang, Cahela, Tatarchuk (bib99) 2008; 63 Huang, Xia, Dong, Hou (bib35) 2013; 228 Lin, Chen, Wei, Zhang, Zhu, Zhang, Wang (bib51) 2023; 11 Dong (bib20) 2015 He, Feng, Fu, Wang, Zhang (bib34) 2019; 237 Youngil (bib100) 2013 Daraee, Saeedirad, Rashidi (bib17) 2019; 278 Wang, Cao, Wang, Yuan (bib87) 2006; 118 Jiao, Han, Zhang, Guo, Cheng, Zhang (bib40) 2022; 177 Davydov, Marshneva, Shepotko (bib18) 2003; 244 Eom, Jang, Choi, Lee, Kim (bib22) 2020; 590 Sangbock, Jaekwang, Jungja (bib71) 2016 Zhang, Yang, Geng, Fan, Wang, Wu, Tian (bib105) 2019; 497 Assadi, Bouzaza, Wolbert (bib2) 2016; 106 Wang, Rohani, Ye, Dupont, Pagnon, Sennour, Fulcheri (bib90) 2023; 663 Wei, Tao, Xinrui, Huan (bib92) 2022; 440 Gutsol, Robinson, Rabinovich, Gutsol, Fridman (bib32) 2017; 42 Dahle (bib13) 2015; 5 Wang, Xu, Wu, Liang, Du (bib86) 2022; 7 Liu, Duan, Yuan, Zhang, Zhao, Xie, Jiang, Li, Tai (bib52) 2022; 14 Mikenin, Zazhigalov, Elyshev, Lopatin, Larina, Cherepanova, Pisarev, Baranov, Zagoruiko (bib58) 2016; 87 Tong, Wei, Wang, Li, Yang, Zhang, Wang, Lin (bib82) 2022; 600 Guo, Liu, Duan, Yuan, Jiang, Tai (bib29) 2023; 302 Barkovskii, Lysikov, Veselovskaya, Maltseva, Okunev (bib6) 2019; 11 Shah, Tsapatsis, Siepmann (bib73) 2017; 117 Gutsol, Nunnally, Rabinovich, Fridman, Starikovskiy, Gutsol, Kemoun (bib31) 2012; 37 Maxime, Aymen Amine, Abdelkrim, Dominique (bib57) 2014; 21 Barelli (10.1016/j.chemosphere.2024.143174_bib5) 2018; 160 Hyunkoo (10.1016/j.chemosphere.2024.143174_bib38) 2007 Promtongkaew (10.1016/j.chemosphere.2024.143174_bib66) 2022; 215 Prasertcharoensuk (10.1016/j.chemosphere.2024.143174_bib65) 2022; 301 Assadi (10.1016/j.chemosphere.2024.143174_bib1) 2017; 111 Wu (10.1016/j.chemosphere.2024.143174_bib93) 2022; 424 Lin (10.1016/j.chemosphere.2024.143174_bib51) 2023; 11 Gostelow (10.1016/j.chemosphere.2024.143174_bib27) 2001; 35 Wang (10.1016/j.chemosphere.2024.143174_bib90) 2023; 663 Huang (10.1016/j.chemosphere.2024.143174_bib35) 2013; 228 Eom (10.1016/j.chemosphere.2024.143174_bib22) 2020; 590 Daraee (10.1016/j.chemosphere.2024.143174_bib17) 2019; 278 Lloyd (10.1016/j.chemosphere.2024.143174_bib54) 2011 Khabazipour (10.1016/j.chemosphere.2024.143174_bib44) 2019; 58 Sun (10.1016/j.chemosphere.2024.143174_bib80) 2019; 191 Yang (10.1016/j.chemosphere.2024.143174_bib98) 2020; 266 Sangbock (10.1016/j.chemosphere.2024.143174_bib71) 2016 Lopatin (10.1016/j.chemosphere.2024.143174_bib55) 2015; 282 Pongthawornsakun (10.1016/j.chemosphere.2024.143174_bib64) 2018; 6 Sungho (10.1016/j.chemosphere.2024.143174_bib81) 2009 Liu (10.1016/j.chemosphere.2024.143174_bib52) 2022; 14 Zhao (10.1016/j.chemosphere.2024.143174_bib109) 2022; 238 Zhang (10.1016/j.chemosphere.2024.143174_bib104) 2021; 45 Gupta (10.1016/j.chemosphere.2024.143174_bib30) 2021; 9 Zheng (10.1016/j.chemosphere.2024.143174_bib111) 2020; 10 Duan (10.1016/j.chemosphere.2024.143174_bib21) 2023; 337 Jiao (10.1016/j.chemosphere.2024.143174_bib40) 2022; 177 Wang (10.1016/j.chemosphere.2024.143174_bib86) 2022; 7 Zheng (10.1016/j.chemosphere.2024.143174_bib113) 2023; 51 Cepollaro (10.1016/j.chemosphere.2024.143174_bib8) 2022; 390–391 Ko (10.1016/j.chemosphere.2024.143174_bib46) 2023; 305 Fu (10.1016/j.chemosphere.2024.143174_bib25) 2022; 221 Zhang (10.1016/j.chemosphere.2024.143174_bib106) 2023; 6 Li (10.1016/j.chemosphere.2024.143174_bib49) 2023; 471 Yuan (10.1016/j.chemosphere.2024.143174_bib101) 2023; 339 Keras (10.1016/j.chemosphere.2024.143174_bib42) 2012 Dang (10.1016/j.chemosphere.2024.143174_bib15) 2012; 16 Maxime (10.1016/j.chemosphere.2024.143174_bib57) 2014; 21 Youngil (10.1016/j.chemosphere.2024.143174_bib100) 2013 Daraee (10.1016/j.chemosphere.2024.143174_bib16) 2020; 8 Shah (10.1016/j.chemosphere.2024.143174_bib73) 2017; 117 Yang (10.1016/j.chemosphere.2024.143174_bib99) 2008; 63 Zheng (10.1016/j.chemosphere.2024.143174_bib112) 2021; 411 Dahle (10.1016/j.chemosphere.2024.143174_bib13) 2015; 5 Rickett (10.1016/j.chemosphere.2024.143174_bib69) 2006; 79 Snoeckx (10.1016/j.chemosphere.2024.143174_bib75) 2017; 46 Wang (10.1016/j.chemosphere.2024.143174_bib87) 2006; 118 Liu (10.1016/j.chemosphere.2024.143174_bib53) 2023; 471 Davydov (10.1016/j.chemosphere.2024.143174_bib18) 2003; 244 Ko (10.1016/j.chemosphere.2024.143174_bib47) 2007; 147 Tong (10.1016/j.chemosphere.2024.143174_bib82) 2022; 600 Wang (10.1016/j.chemosphere.2024.143174_bib89) 2023; 574 Xianju (10.1016/j.chemosphere.2024.143174_bib95) 2016 Gutsol (10.1016/j.chemosphere.2024.143174_bib31) 2012; 37 Min (10.1016/j.chemosphere.2024.143174_bib59) 2023; 362 Xu (10.1016/j.chemosphere.2024.143174_bib97) 2020; 384 Wei (10.1016/j.chemosphere.2024.143174_bib92) 2022; 440 Xia (10.1016/j.chemosphere.2024.143174_bib94) 2023; 30 Bagreev (10.1016/j.chemosphere.2024.143174_bib3) 2005; 44 Shin (10.1016/j.chemosphere.2024.143174_bib74) 2001; 211 Neyts (10.1016/j.chemosphere.2024.143174_bib61) 2015; 115 Neyts (10.1016/j.chemosphere.2024.143174_bib60) 2014; 47 Wang (10.1016/j.chemosphere.2024.143174_bib91) 2022; 319 Chen (10.1016/j.chemosphere.2024.143174_bib9) 2013; 261 Guo (10.1016/j.chemosphere.2024.143174_bib29) 2023; 302 Huang (10.1016/j.chemosphere.2024.143174_bib36) 2012; 88 Xu (10.1016/j.chemosphere.2024.143174_bib96) 2022; 10 Chen (10.1016/j.chemosphere.2024.143174_bib10) 2021; 768 Dalai (10.1016/j.chemosphere.2024.143174_bib14) 1998; 76 Fu (10.1016/j.chemosphere.2024.143174_bib24) 2024; 58 Sun (10.1016/j.chemosphere.2024.143174_bib79) 2022; 317 Barkovskii (10.1016/j.chemosphere.2024.143174_bib6) 2019; 11 Pan (10.1016/j.chemosphere.2024.143174_bib63) 2021; 280 Zheng (10.1016/j.chemosphere.2024.143174_bib110) 2019; 252 Chen (10.1016/j.chemosphere.2024.143174_bib11) 2022; 431 Klenov (10.1016/j.chemosphere.2024.143174_bib45) 2009; 144 Dong (10.1016/j.chemosphere.2024.143174_bib20) 2015 Jameh (10.1016/j.chemosphere.2024.143174_bib39) 2019; 7 Chen (10.1016/j.chemosphere.2024.143174_bib12) 2020; 59 Su (10.1016/j.chemosphere.2024.143174_bib78) 2023; 2 Balaev (10.1016/j.chemosphere.2024.143174_bib4) 2001; 376 Zhang (10.1016/j.chemosphere.2024.143174_bib107) 2017; 9 Schlegelmilch (10.1016/j.chemosphere.2024.143174_bib72) 2005; 25 Mikenin (10.1016/j.chemosphere.2024.143174_bib58) 2016; 87 Yuan (10.1016/j.chemosphere.2024.143174_bib102) 2021; 279 Nunnally (10.1016/j.chemosphere.2024.143174_bib62) 2014; 39 He (10.1016/j.chemosphere.2024.143174_bib34) 2019; 237 Rohani (10.1016/j.chemosphere.2024.143174_bib70) 2017; 309 Hyunik (10.1016/j.chemosphere.2024.143174_bib37) 2021 von Rickenbach (10.1016/j.chemosphere.2024.143174_bib84) 2015; 276 Li (10.1016/j.chemosphere.2024.143174_bib50) 2023; 245 Zhao (10.1016/j.chemosphere.2024.143174_bib108) 2007; 62 Assadi (10.1016/j.chemosphere.2024.143174_bib2) 2016; 106 He (10.1016/j.chemosphere.2024.143174_bib33) 2019; 119 Zhang (10.1016/j.chemosphere.2024.143174_bib105) 2019; 497 Brethes-Dupouey (10.1016/j.chemosphere.2024.143174_bib7) 2000; 11 Quan (10.1016/j.chemosphere.2024.143174_bib68) 2021; 371 Feng (10.1016/j.chemosphere.2024.143174_bib23) 2023; 451 Kanca (10.1016/j.chemosphere.2024.143174_bib41) 2023 Ma (10.1016/j.chemosphere.2024.143174_bib56) 2001; 21 Son (10.1016/j.chemosphere.2024.143174_bib76) 2015; 262 Spivak (10.1016/j.chemosphere.2024.143174_bib77) 2014; 455 Gu (10.1016/j.chemosphere.2024.143174_bib28) 2022; 176 Georgiadis (10.1016/j.chemosphere.2024.143174_bib26) 2021; 6 Kersen (10.1016/j.chemosphere.2024.143174_bib43) 2009; 10 Li (10.1016/j.chemosphere.2024.143174_bib48) 2022; 579 Zadeh (10.1016/j.chemosphere.2024.143174_bib103) 2015; 17 Qamaruz-Zaman (10.1016/j.chemosphere.2024.143174_bib67) 2020 Wang (10.1016/j.chemosphere.2024.143174_bib85) 2002; 27 Gutsol (10.1016/j.chemosphere.2024.143174_bib32) 2017; 42 Wang (10.1016/j.chemosphere.2024.143174_bib88) 2018; 57 Dochun (10.1016/j.chemosphere.2024.143174_bib19) 2021 |
References_xml | – volume: 278 year: 2019 ident: bib17 article-title: Adsorption of hydrogen sulfide over a novel metal organic framework –metal oxide nanocomposite: TOUO-x (TiO publication-title: J. Solid State Chem. – volume: 362 year: 2023 ident: bib59 article-title: Hydrogen sulfide removal from low concentration gas streams using metal supported mesoporous silica SBA-15 adsorbent publication-title: Microporous Mesoporous Mater. – volume: 115 start-page: 13408 year: 2015 end-page: 13446 ident: bib61 article-title: Plasma catalysis: synergistic effects at the nanoscale publication-title: Chem. Rev. – volume: 16 start-page: 856 year: 2012 end-page: 862 ident: bib15 article-title: Research on decomposition of hydrogen sulfide using nonthermal plasma with metal oxide catalysis publication-title: Energy Proc. – volume: 58 start-page: 8043 year: 2024 end-page: 8052 ident: bib24 article-title: The impact of bisphenol a on the anaerobic sulfur transformation: promoting sulfur flow and toxic H publication-title: Environ. Sci. Technol. – volume: 215 year: 2022 ident: bib66 article-title: Controlling the Fe publication-title: Environ. Res. – year: 2013 ident: bib100 article-title: KR200468971Y1 – volume: 574 year: 2023 ident: bib89 article-title: A chemical kinetics simulation of plasma-catalytic dry reforming publication-title: Chem. Phys. – volume: 497 year: 2019 ident: bib105 article-title: Adsorption of hydrogen sulfide by amine-functionalized metal organic framework (MOF-199): an experimental and simulation study publication-title: Appl. Surf. Sci. – volume: 11 start-page: 335 year: 2019 end-page: 341 ident: bib6 article-title: Alkaline-modified activated carbons for removing hydrogen sulfide from air via sorption and catalytic oxidation: studying the effect of thermal treatment on the properties of materials publication-title: Catalogue Index – volume: 390–391 start-page: 221 year: 2022 end-page: 229 ident: bib8 article-title: H publication-title: Catal. Today – volume: 76 start-page: 902 year: 1998 end-page: 914 ident: bib14 article-title: Kinetics and reaction mechanism of catalytic oxidation of low concentrations of hydrogen sulfide in natural gas over activated carbon publication-title: Can. J. Chem. Eng. – year: 2021 ident: bib37 article-title: KR102260282B1 – volume: 371 start-page: 221 year: 2021 end-page: 230 ident: bib68 article-title: Hydrogen sulfide removal from biogas on ZIF-derived nitrogen-doped carbons publication-title: Catal. Today – volume: 768 year: 2021 ident: bib10 article-title: A regenerable N-rich hierarchical porous carbon synthesized from waste biomass for H publication-title: Sci. Total Environ. – volume: 21 start-page: 611 year: 2001 end-page: 624 ident: bib56 article-title: H publication-title: Plasma Chem. Plasma Process. – volume: 228 start-page: 1066 year: 2013 end-page: 1073 ident: bib35 article-title: Energy efficiency in hydrogen sulfide removal by non-thermal plasma photolysis technique at atmospheric pressure publication-title: Chem. Eng. J. – volume: 10 start-page: 3968 year: 2020 end-page: 3983 ident: bib111 article-title: Highly efficient porous Fe publication-title: ACS Catal. – volume: 280 year: 2021 ident: bib63 article-title: Two-dimensional CaO/carbon heterostructures with unprecedented catalytic performance in room-temperature H publication-title: Appl. Catal. B Environ. – volume: 451 year: 2023 ident: bib23 article-title: Urea-modified Cu-based materials: highly efficient and support-free adsorbents for removal of H publication-title: Chem. Eng. J. – year: 2016 ident: bib95 article-title: CN105833675A – year: 2024 ident: bib83 article-title: Hydrog. Sulfide - hazards – volume: 57 start-page: 6568 year: 2018 end-page: 6575 ident: bib88 article-title: Simultaneous removal of COS, H publication-title: Ind. Eng. Chem. Res. – volume: 276 start-page: 388 year: 2015 end-page: 397 ident: bib84 article-title: Effect of washcoat diffusion resistance in foam based catalytic reactors publication-title: Chem. Eng. J. – volume: 51 start-page: 414 year: 2023 end-page: 420 ident: bib113 article-title: Simultaneous treatment of various malodorous substances in gas by non-thermal plasma publication-title: IEEE Trans. Plasma Sci. – volume: 42 start-page: 68 year: 2017 end-page: 75 ident: bib32 article-title: High conversion of hydrogen sulfide in gliding arc plasmatron publication-title: Int. J. Hydrogen Energy – volume: 11 start-page: 43 year: 2000 end-page: 58 ident: bib7 article-title: Removal of H publication-title: Eur. Phys. J. Appl. Phys. – volume: 663 year: 2023 ident: bib90 article-title: Effect of K-promoter use in iron-based plasma-catalytic conversion of CO publication-title: Appl. Catal. Gen. – volume: 266 year: 2020 ident: bib98 article-title: Bifunctional ZnO-MgO/activated carbon adsorbents boost H publication-title: Appl. Catal. B Environ. – volume: 279 year: 2021 ident: bib102 article-title: One-step synthesis of ZnFe2O4-loaded biochar derived from leftover rice for high-performance H publication-title: Sep. Purif. Technol. – volume: 262 start-page: 217 year: 2015 end-page: 223 ident: bib76 article-title: Decomposition of sulfur compounds by radiolysis: I. influential factors publication-title: Chem. Eng. J. – volume: 10 start-page: 18308 year: 2022 end-page: 18321 ident: bib96 article-title: Anti-corrosion MgO nanoparticle-equipped graphene oxide nanosheet for efficient room-temperature H publication-title: J. Mater. Chem. A – volume: 590 year: 2020 ident: bib22 article-title: Application and regeneration of honeycomb-type catalysts for the selective catalytic oxidation of H publication-title: Appl. Catal. Gen. – volume: 431 year: 2022 ident: bib11 article-title: CuFe publication-title: Chem. Eng. J. – volume: 411 year: 2021 ident: bib112 article-title: Engineering of crystal phase over porous MnO publication-title: J. Hazard Mater. – volume: 9 start-page: 2477 year: 2017 end-page: 2484 ident: bib107 article-title: A general silica-templating synthesis of alkaline mesoporous carbon catalysts for highly efficient H publication-title: ACS Appl. Mater. Interfaces – volume: 87 start-page: 36 year: 2016 end-page: 40 ident: bib58 article-title: Iron oxide catalyst at the modified glass fiber support for selective oxidation of H publication-title: Catal. Commun. – volume: 455 start-page: 53 year: 2014 end-page: 55 ident: bib77 article-title: Decomposition of complex mechanisms of chemical reactions into independent routes publication-title: Dokl. Phys. Chem. – volume: 45 start-page: 3535 year: 2021 end-page: 3545 ident: bib104 article-title: A solid thermal and fast synthesis of MgAl-hydrotalcite nanosheets and their applications in the catalytic elimination of carbonyl sulfide and hydrogen sulfide publication-title: New J. Chem. – volume: 440 year: 2022 ident: bib92 article-title: Degradation of mixed typical odour gases via non-thermal plasma catalysis publication-title: J. Hazard Mater. – volume: 7 start-page: 2718 year: 2022 end-page: 2724 ident: bib86 article-title: Kinetic study on high-temperature h publication-title: ACS Omega – volume: 111 start-page: 1 year: 2017 end-page: 6 ident: bib1 article-title: A study of pollution removal in exhaust gases from animal quartering centers by combining photocatalysis with surface discharge plasma: from pilot to industrial scale publication-title: Chem. Eng. Process – volume: 301 year: 2022 ident: bib65 article-title: A review on sensitivity of operating parameters on biogas catalysts for selective oxidation of Hydrogen Sulfide to elemental sulfur publication-title: Chemosphere – volume: 119 start-page: 4471 year: 2019 end-page: 4568 ident: bib33 article-title: Recent advances in the catalytic oxidation of volatile organic compounds: a review based on pollutant sorts and sources publication-title: Chem. Rev. – volume: 244 start-page: 93 year: 2003 end-page: 100 ident: bib18 article-title: Metal oxides in hydrogen sulfide oxidation by oxygen and sulfur dioxide: I. The comparison study of the catalytic activity. Mechanism of the interactions between H publication-title: Appl. Catal. Gen. – volume: 317 year: 2022 ident: bib79 article-title: Selective catalytic oxidation of pollutant H publication-title: Appl. Catal. B Environ. – volume: 147 start-page: 334 year: 2007 end-page: 341 ident: bib47 article-title: A study of Zn–Mn based sorbent for the high-temperature removal of H publication-title: J. Hazard Mater. – volume: 46 start-page: 5805 year: 2017 end-page: 5863 ident: bib75 article-title: Plasma technology – a novel solution for CO publication-title: Chem. Soc. Rev. – volume: 62 start-page: 2216 year: 2007 end-page: 2227 ident: bib108 article-title: Production of hydrogen and sulfur from hydrogen sulfide in a nonthermal-plasma pulsed corona discharge reactor publication-title: Chem. Eng. Sci. – volume: 252 start-page: 98 year: 2019 end-page: 110 ident: bib110 article-title: Insight into the effect of morphology on catalytic performance of porous CeO publication-title: Appl. Catal. B Environ. – volume: 44 start-page: 530 year: 2005 end-page: 538 ident: bib3 article-title: On the mechanism of hydrogen sulfide removal from moist air on catalytic carbonaceous adsorbents publication-title: Ind. Eng. Chem. Res. – volume: 384 year: 2020 ident: bib97 article-title: Adsorption and diffusion behaviors of H publication-title: Phys. Lett. – volume: 376 start-page: 34 year: 2001 end-page: 37 ident: bib4 article-title: Modeling of partial oxidation of hydrogen sulfide over metal oxide catalysts publication-title: Dokl. Chem. – volume: 176 year: 2022 ident: bib28 article-title: Research on the removal of H publication-title: Chem. Eng. Process – year: 2021 ident: bib19 article-title: KR102329679B1 – year: 2011 ident: bib54 article-title: Handbook of Industrial Catalysts – volume: 37 start-page: 1335 year: 2012 end-page: 1347 ident: bib31 article-title: Plasma assisted dissociation of hydrogen sulfide publication-title: Int. J. Hydrogen Energy – volume: 6 start-page: 14774 year: 2021 end-page: 14787 ident: bib26 article-title: Adsorption of hydrogen sulfide at low temperatures using an industrial molecular sieve: an experimental and theoretical study publication-title: ACS Omega – volume: 9 year: 2021 ident: bib30 article-title: Iron-organic frameworks-derived iron oxide adsorbents for hydrogen sulfide removal at room temperature publication-title: J. Environ. Chem. Eng. – year: 2007 ident: bib38 article-title: KR100684924B1 – volume: 47 year: 2014 ident: bib60 article-title: Understanding plasma catalysis through modelling and simulation—a review publication-title: J. Phys. Appl. Phys. – volume: 27 start-page: 33 year: 2002 end-page: 40 ident: bib85 article-title: Removal of H publication-title: Sep. Purif. Technol. – volume: 600 year: 2022 ident: bib82 article-title: Microscopic functionality of FeN publication-title: Appl. Surf. Sci. – year: 2012 ident: bib42 article-title: WO2012018944A2 – volume: 261 start-page: 38 year: 2013 end-page: 43 ident: bib9 article-title: Removal of H publication-title: J. Hazard Mater. – volume: 63 start-page: 2707 year: 2008 end-page: 2716 ident: bib99 article-title: A study of kinetic effects due to using microfibrous entrapped zinc oxide sorbents for hydrogen sulfide removal publication-title: Chem. Eng. Sci. – volume: 106 start-page: 308 year: 2016 end-page: 314 ident: bib2 article-title: Comparative study between laboratory and large pilot scales for VOC's removal from gas streams in continuous flow surface discharge plasma publication-title: Chem. Eng. Res. Des. – volume: 59 start-page: 7447 year: 2020 end-page: 7456 ident: bib12 article-title: Preparation of nitrogen-doped porous carbon from waste polyurethane foam by hydrothermal carbonization for H publication-title: Ind. Eng. Chem. Res. – volume: 302 year: 2023 ident: bib29 article-title: Batch fabrication of H publication-title: Mater. Chem. Phys. – volume: 14 start-page: 27203 year: 2022 end-page: 27213 ident: bib52 article-title: Designing Cu publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 2585 year: 2023 end-page: 2595 ident: bib106 article-title: Ce–Mn oxide nanocomposites for catalytic removal of H publication-title: ACS Appl. Nano Mater. – volume: 339 year: 2023 ident: bib101 article-title: MgFe publication-title: Fuel – volume: 10 start-page: 1039 year: 2009 end-page: 1042 ident: bib43 article-title: Preliminary study on the selective oxidation of H publication-title: Catal. Commun. – volume: 25 start-page: 928 year: 2005 end-page: 939 ident: bib72 article-title: Odour management and treatment technologies: an overview publication-title: Waste Manag. – volume: 118 start-page: 133 year: 2006 end-page: 139 ident: bib87 article-title: H publication-title: Chem. Eng. J. – volume: 117 start-page: 9755 year: 2017 end-page: 9803 ident: bib73 article-title: Hydrogen sulfide capture: from absorption in polar liquids to oxide, zeolite, and metal–organic framework adsorbents and membranes publication-title: Chem. Rev. – volume: 471 year: 2023 ident: bib53 article-title: Lever-inspired triboelectric respiration sensor for respiratory behavioral assessment and exhaled hydrogen sulfide detection publication-title: Chem. Eng. J. – volume: 17 start-page: 56 year: 2015 end-page: 63 ident: bib103 article-title: Toward the design of multi asymmetric surface dielectric barrier discharge (ASDBD) actuators publication-title: Plasma Sci. Technol. – year: 2015 ident: bib20 article-title: CN104383812A – volume: 221 year: 2022 ident: bib25 article-title: Rhamnolipid increases H publication-title: Water Res. – volume: 238 year: 2022 ident: bib109 article-title: Preparation of hydrogen sulfide adsorbent derived from spent Fenton-like reagent modified biochar and its removal characteristics for hydrogen sulfide publication-title: Fuel Process. Technol. – volume: 7 year: 2019 ident: bib39 article-title: Synthesis and modification of zeolitic imidazolate framework (ZIF-8) nanoparticles as highly efficient adsorbent for H publication-title: J. Environ. Chem. Eng. – volume: 35 start-page: 579 year: 2001 end-page: 597 ident: bib27 article-title: Odour measurements for sewage treatment works publication-title: Water Res. – volume: 11 year: 2023 ident: bib51 article-title: Enriched oxygen vacancies of copper(I) oxide particles for enhanced removal of hydrogen sulfide at room temperature publication-title: J. Environ. Chem. Eng. – year: 2016 ident: bib71 article-title: KR101595335B1 – volume: 305 year: 2023 ident: bib46 article-title: Desulfurization of ultra-low-concentration H publication-title: Sep. Purif. Technol. – volume: 6 start-page: 1414 year: 2018 end-page: 1423 ident: bib64 article-title: The low temperature selective oxidation of H publication-title: J. Environ. Chem. Eng. – volume: 309 start-page: 471 year: 2017 end-page: 479 ident: bib70 article-title: Combination of VOC degradation and electro-hydrodynamic pumping actions in a surface dielectric barrier discharge reactor publication-title: Chem. Eng. J. – volume: 471 year: 2023 ident: bib49 article-title: COS and H publication-title: Chem. Eng. J. – volume: 2 start-page: 143 year: 2023 end-page: 150 ident: bib78 article-title: In-situ preparation of Cu-BTC modified with organic amines for H publication-title: Resour. Chem. Mater. – volume: 245 year: 2023 ident: bib50 article-title: Well-dispersed CuFe doping nanoparticles with mixed valence in carbon aerogel as effective adsorbent for H publication-title: Fuel Process. Technol. – volume: 88 start-page: 229 year: 2012 end-page: 234 ident: bib36 article-title: Removal of H publication-title: Chemosphere – volume: 5 year: 2015 ident: bib13 article-title: Efficient new process for the desulfurization of mixtures of air and hydrogen sulfide via a dielectric barrier discharge plasma publication-title: AIP Adv. – volume: 337 year: 2023 ident: bib21 article-title: A strategy of KIT-6-carrier modification towards enhancement of desulfurization properties of mesoporous Zn-based sorbents for H publication-title: Fuel – volume: 211 start-page: 213 year: 2001 end-page: 225 ident: bib74 article-title: Selective oxidation of H publication-title: Appl. Catal. Gen. – volume: 144 start-page: 258 year: 2009 end-page: 264 ident: bib45 article-title: Effect of mass transfer on the reaction rate in a monolithic catalyst with porous walls publication-title: Catal. Today – volume: 160 start-page: 44 year: 2018 end-page: 53 ident: bib5 article-title: 13X Ex-Cu zeolite performance characterization towards H publication-title: Energy – start-page: 281 year: 2020 end-page: 313 ident: bib67 article-title: Control of Odors in the Food Industry, Galanakis, C., the Interaction of Food Industry and Environment – volume: 21 start-page: 13127 year: 2014 end-page: 13137 ident: bib57 article-title: Removal of gas-phase ammonia and hydrogen sulfide using photocatalysis, nonthermal plasma, and combined plasma and photocatalysis at pilot scale publication-title: Environ. Sci. Pollut. Res. – volume: 424 year: 2022 ident: bib93 article-title: Super-high N-doping promoted formation of sulfur radicals for continuous catalytic oxidation of H publication-title: J. Hazard Mater. – volume: 30 start-page: 40895 year: 2023 end-page: 40910 ident: bib94 article-title: Wire-tube DBD reactor for H publication-title: Environ. Sci. Pollut. Res. – year: 2009 ident: bib81 article-title: KR100906561B1 – volume: 237 year: 2019 ident: bib34 article-title: Dielectric barrier discharge for hydrogen sulphide waste gas decomposition publication-title: IOP Conf. Ser. Earth Environ. Sci. – volume: 579 year: 2022 ident: bib48 article-title: Efficient removal of carbonyl sulfur and hydrogen sulfide from blast furnace gas by one-step catalytic process with modified activated carbon publication-title: Appl. Surf. Sci. – volume: 282 start-page: 58 year: 2015 end-page: 65 ident: bib55 article-title: Pressure drop and mass transfer in the structured cartridges with fiber-glass catalyst publication-title: Chem. Eng. J. – volume: 58 start-page: 22133 year: 2019 end-page: 22164 ident: bib44 article-title: Removal of hydrogen sulfide from gas streams using porous materials: a review publication-title: Ind. Eng. Chem. Res. – volume: 319 year: 2022 ident: bib91 article-title: Copper supported on activated carbon from hydrochar of pomelo peel for efficient H publication-title: Fuel – volume: 8 year: 2020 ident: bib16 article-title: Synthesis of novel and engineered UiO-66/graphene oxide nanocomposite with enhanced H publication-title: J. Environ. Chem. Eng. – volume: 39 start-page: 12480 year: 2014 end-page: 12489 ident: bib62 article-title: Plasma dissociation of H publication-title: Int. J. Hydrogen Energy – volume: 191 start-page: 121 year: 2019 end-page: 128 ident: bib80 article-title: Nitrogen-rich hierarchical porous carbon nanofibers for selective oxidation of hydrogen sulfide publication-title: Fuel Process. Technol. – year: 2023 ident: bib41 article-title: Sulfidation performance of unsupported and SBA 15-supported Ca-based mixed metal oxides publication-title: Int. J. Hydrogen Energy – volume: 177 start-page: 174 year: 2022 end-page: 183 ident: bib40 article-title: Self-assembled CuO-bearing aerogel-like hollow Al publication-title: Chem. Eng. Res. Des. – volume: 79 start-page: 12 year: 2006 end-page: 18 ident: bib69 article-title: Kinetics of CH publication-title: J. Energy Inst. – volume: 10 start-page: 1039 year: 2009 ident: 10.1016/j.chemosphere.2024.143174_bib43 article-title: Preliminary study on the selective oxidation of H2S over LaVO4 and Fe2(MoO4)3 oxides, produced by a solvothermal method publication-title: Catal. Commun. doi: 10.1016/j.catcom.2008.12.052 – year: 2023 ident: 10.1016/j.chemosphere.2024.143174_bib41 article-title: Sulfidation performance of unsupported and SBA 15-supported Ca-based mixed metal oxides publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2023.07.241 – volume: 262 start-page: 217 year: 2015 ident: 10.1016/j.chemosphere.2024.143174_bib76 article-title: Decomposition of sulfur compounds by radiolysis: I. influential factors publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2014.09.070 – volume: 252 start-page: 98 year: 2019 ident: 10.1016/j.chemosphere.2024.143174_bib110 article-title: Insight into the effect of morphology on catalytic performance of porous CeO2 nanocrystals for H2S selective oxidation publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2019.04.014 – volume: 282 start-page: 58 year: 2015 ident: 10.1016/j.chemosphere.2024.143174_bib55 article-title: Pressure drop and mass transfer in the structured cartridges with fiber-glass catalyst publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.02.026 – volume: 6 start-page: 14774 year: 2021 ident: 10.1016/j.chemosphere.2024.143174_bib26 article-title: Adsorption of hydrogen sulfide at low temperatures using an industrial molecular sieve: an experimental and theoretical study publication-title: ACS Omega doi: 10.1021/acsomega.0c06157 – volume: 119 start-page: 4471 year: 2019 ident: 10.1016/j.chemosphere.2024.143174_bib33 article-title: Recent advances in the catalytic oxidation of volatile organic compounds: a review based on pollutant sorts and sources publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00408 – volume: 411 year: 2021 ident: 10.1016/j.chemosphere.2024.143174_bib112 article-title: Engineering of crystal phase over porous MnO2 with 3D morphology for highly efficient elimination of H2S publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2021.125180 – volume: 7 year: 2019 ident: 10.1016/j.chemosphere.2024.143174_bib39 article-title: Synthesis and modification of zeolitic imidazolate framework (ZIF-8) nanoparticles as highly efficient adsorbent for H2S and CO2 removal from natural gas publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2019.103058 – volume: 30 start-page: 40895 year: 2023 ident: 10.1016/j.chemosphere.2024.143174_bib94 article-title: Wire-tube DBD reactor for H2S treatment: optimization of geometric and electrical parameters publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-023-25136-z – volume: 302 year: 2023 ident: 10.1016/j.chemosphere.2024.143174_bib29 article-title: Batch fabrication of H2S sensors based on evaporated Pd/WO3 film with ppb-level detection limit publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2023.127768 – year: 2021 ident: 10.1016/j.chemosphere.2024.143174_bib37 – year: 2013 ident: 10.1016/j.chemosphere.2024.143174_bib100 – start-page: 281 year: 2020 ident: 10.1016/j.chemosphere.2024.143174_bib67 – volume: 280 year: 2021 ident: 10.1016/j.chemosphere.2024.143174_bib63 article-title: Two-dimensional CaO/carbon heterostructures with unprecedented catalytic performance in room-temperature H2S oxidization publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2020.119444 – volume: 62 start-page: 2216 year: 2007 ident: 10.1016/j.chemosphere.2024.143174_bib108 article-title: Production of hydrogen and sulfur from hydrogen sulfide in a nonthermal-plasma pulsed corona discharge reactor publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2006.12.052 – volume: 317 year: 2022 ident: 10.1016/j.chemosphere.2024.143174_bib79 article-title: Selective catalytic oxidation of pollutant H2S over Co-decorated hollow N-doped carbon nanofibers for high-performance Li-S batteries publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2022.121763 – volume: 8 year: 2020 ident: 10.1016/j.chemosphere.2024.143174_bib16 article-title: Synthesis of novel and engineered UiO-66/graphene oxide nanocomposite with enhanced H2S adsorption capacity publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2020.104351 – volume: 115 start-page: 13408 year: 2015 ident: 10.1016/j.chemosphere.2024.143174_bib61 article-title: Plasma catalysis: synergistic effects at the nanoscale publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00362 – volume: 384 year: 2020 ident: 10.1016/j.chemosphere.2024.143174_bib97 article-title: Adsorption and diffusion behaviors of H2, H2S, NH3, CO and H2O gases molecules on MoO3 monolayer: a DFT study publication-title: Phys. Lett. doi: 10.1016/j.physleta.2020.126533 – volume: 339 year: 2023 ident: 10.1016/j.chemosphere.2024.143174_bib101 article-title: MgFe2O4-loaded N-doped biochar derived from waste cooked rice for efficient low-temperature desulfurization of H2S publication-title: Fuel doi: 10.1016/j.fuel.2022.127385 – year: 2021 ident: 10.1016/j.chemosphere.2024.143174_bib19 – volume: 17 start-page: 56 year: 2015 ident: 10.1016/j.chemosphere.2024.143174_bib103 article-title: Toward the design of multi asymmetric surface dielectric barrier discharge (ASDBD) actuators publication-title: Plasma Sci. Technol. doi: 10.1088/1009-0630/17/1/11 – volume: 9 start-page: 2477 year: 2017 ident: 10.1016/j.chemosphere.2024.143174_bib107 article-title: A general silica-templating synthesis of alkaline mesoporous carbon catalysts for highly efficient H2S oxidation at room temperature publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b13597 – volume: 278 year: 2019 ident: 10.1016/j.chemosphere.2024.143174_bib17 article-title: Adsorption of hydrogen sulfide over a novel metal organic framework –metal oxide nanocomposite: TOUO-x (TiO2/UiO-66) publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2019.07.027 – volume: 600 year: 2022 ident: 10.1016/j.chemosphere.2024.143174_bib82 article-title: Microscopic functionality of FeN4 sites in polymeric carbon nitride for efficient H2S oxidation publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2022.154011 – volume: 376 start-page: 34 year: 2001 ident: 10.1016/j.chemosphere.2024.143174_bib4 article-title: Modeling of partial oxidation of hydrogen sulfide over metal oxide catalysts publication-title: Dokl. Chem. doi: 10.1023/A:1018812326380 – volume: 471 year: 2023 ident: 10.1016/j.chemosphere.2024.143174_bib49 article-title: COS and H2S simultaneous removal from blast furnace gas over a tailored Cu/Zr co-doped K@TiO2 bifunctional catalyst under low temperature publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.144573 – volume: 11 year: 2023 ident: 10.1016/j.chemosphere.2024.143174_bib51 article-title: Enriched oxygen vacancies of copper(I) oxide particles for enhanced removal of hydrogen sulfide at room temperature publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2023.110113 – volume: 27 start-page: 33 year: 2002 ident: 10.1016/j.chemosphere.2024.143174_bib85 article-title: Removal of H2S to ultra-low concentrations using an asymmetric hollow fibre membrane module publication-title: Sep. Purif. Technol. doi: 10.1016/S1383-5866(01)00186-1 – volume: 211 start-page: 213 year: 2001 ident: 10.1016/j.chemosphere.2024.143174_bib74 article-title: Selective oxidation of H2S to elemental sulfur over VOx/SiO2 and V2O5 catalysts publication-title: Appl. Catal. Gen. doi: 10.1016/S0926-860X(00)00866-8 – volume: 574 year: 2023 ident: 10.1016/j.chemosphere.2024.143174_bib89 article-title: A chemical kinetics simulation of plasma-catalytic dry reforming publication-title: Chem. Phys. doi: 10.1016/j.chemphys.2023.112017 – volume: 79 start-page: 12 year: 2006 ident: 10.1016/j.chemosphere.2024.143174_bib69 article-title: Kinetics of CH4, H2S and SO2 oxidation on precious metal catalysts under stagnation point flow conditions publication-title: J. Energy Inst. doi: 10.1179/174602206X90904 – volume: 88 start-page: 229 year: 2012 ident: 10.1016/j.chemosphere.2024.143174_bib36 article-title: Removal of H2S from gas stream using combined plasma photolysis technique at atmospheric pressure publication-title: Chemosphere doi: 10.1016/j.chemosphere.2012.02.075 – volume: 58 start-page: 22133 year: 2019 ident: 10.1016/j.chemosphere.2024.143174_bib44 article-title: Removal of hydrogen sulfide from gas streams using porous materials: a review publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.9b03800 – volume: 147 start-page: 334 year: 2007 ident: 10.1016/j.chemosphere.2024.143174_bib47 article-title: A study of Zn–Mn based sorbent for the high-temperature removal of H2S from coal-derived gas publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2007.01.018 – volume: 47 year: 2014 ident: 10.1016/j.chemosphere.2024.143174_bib60 article-title: Understanding plasma catalysis through modelling and simulation—a review publication-title: J. Phys. Appl. Phys. doi: 10.1088/0022-3727/47/22/224010 – volume: 21 start-page: 611 year: 2001 ident: 10.1016/j.chemosphere.2024.143174_bib56 article-title: H2S and NH3 removal by silent discharge plasma and ozone combo-system publication-title: Plasma Chem. Plasma Process. doi: 10.1023/A:1012055203010 – volume: 244 start-page: 93 year: 2003 ident: 10.1016/j.chemosphere.2024.143174_bib18 article-title: Metal oxides in hydrogen sulfide oxidation by oxygen and sulfur dioxide: I. The comparison study of the catalytic activity. Mechanism of the interactions between H2S and SO2 on some oxides publication-title: Appl. Catal. Gen. doi: 10.1016/S0926-860X(02)00573-2 – volume: 111 start-page: 1 year: 2017 ident: 10.1016/j.chemosphere.2024.143174_bib1 article-title: A study of pollution removal in exhaust gases from animal quartering centers by combining photocatalysis with surface discharge plasma: from pilot to industrial scale publication-title: Chem. Eng. Process doi: 10.1016/j.cep.2016.10.001 – volume: 144 start-page: 258 year: 2009 ident: 10.1016/j.chemosphere.2024.143174_bib45 article-title: Effect of mass transfer on the reaction rate in a monolithic catalyst with porous walls publication-title: Catal. Today doi: 10.1016/j.cattod.2008.11.014 – year: 2016 ident: 10.1016/j.chemosphere.2024.143174_bib71 – year: 2012 ident: 10.1016/j.chemosphere.2024.143174_bib42 – volume: 471 year: 2023 ident: 10.1016/j.chemosphere.2024.143174_bib53 article-title: Lever-inspired triboelectric respiration sensor for respiratory behavioral assessment and exhaled hydrogen sulfide detection publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.144795 – volume: 35 start-page: 579 year: 2001 ident: 10.1016/j.chemosphere.2024.143174_bib27 article-title: Odour measurements for sewage treatment works publication-title: Water Res. doi: 10.1016/S0043-1354(00)00313-4 – volume: 10 start-page: 18308 year: 2022 ident: 10.1016/j.chemosphere.2024.143174_bib96 article-title: Anti-corrosion MgO nanoparticle-equipped graphene oxide nanosheet for efficient room-temperature H2S removal publication-title: J. Mater. Chem. A doi: 10.1039/D2TA03805F – volume: 301 year: 2022 ident: 10.1016/j.chemosphere.2024.143174_bib65 article-title: A review on sensitivity of operating parameters on biogas catalysts for selective oxidation of Hydrogen Sulfide to elemental sulfur publication-title: Chemosphere doi: 10.1016/j.chemosphere.2022.134579 – volume: 191 start-page: 121 year: 2019 ident: 10.1016/j.chemosphere.2024.143174_bib80 article-title: Nitrogen-rich hierarchical porous carbon nanofibers for selective oxidation of hydrogen sulfide publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2019.03.020 – volume: 118 start-page: 133 year: 2006 ident: 10.1016/j.chemosphere.2024.143174_bib87 article-title: H2S catalytic oxidation on impregnated activated carbon: experiment and modelling publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2005.12.021 – volume: 5 year: 2015 ident: 10.1016/j.chemosphere.2024.143174_bib13 article-title: Efficient new process for the desulfurization of mixtures of air and hydrogen sulfide via a dielectric barrier discharge plasma publication-title: AIP Adv. doi: 10.1063/1.4935102 – volume: 6 start-page: 2585 year: 2023 ident: 10.1016/j.chemosphere.2024.143174_bib106 article-title: Ce–Mn oxide nanocomposites for catalytic removal of H2S publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.2c04959 – volume: 663 year: 2023 ident: 10.1016/j.chemosphere.2024.143174_bib90 article-title: Effect of K-promoter use in iron-based plasma-catalytic conversion of CO2 and CH4 into higher value products publication-title: Appl. Catal. Gen. doi: 10.1016/j.apcata.2023.119315 – year: 2016 ident: 10.1016/j.chemosphere.2024.143174_bib95 – volume: 45 start-page: 3535 year: 2021 ident: 10.1016/j.chemosphere.2024.143174_bib104 article-title: A solid thermal and fast synthesis of MgAl-hydrotalcite nanosheets and their applications in the catalytic elimination of carbonyl sulfide and hydrogen sulfide publication-title: New J. Chem. doi: 10.1039/D0NJ05809B – volume: 337 year: 2023 ident: 10.1016/j.chemosphere.2024.143174_bib21 article-title: A strategy of KIT-6-carrier modification towards enhancement of desulfurization properties of mesoporous Zn-based sorbents for H2S removal from hot coal gas publication-title: Fuel doi: 10.1016/j.fuel.2022.127183 – volume: 57 start-page: 6568 year: 2018 ident: 10.1016/j.chemosphere.2024.143174_bib88 article-title: Simultaneous removal of COS, H2S, and dust in industrial exhaust gas by DC corona discharge plasma publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.8b00028 – volume: 44 start-page: 530 year: 2005 ident: 10.1016/j.chemosphere.2024.143174_bib3 article-title: On the mechanism of hydrogen sulfide removal from moist air on catalytic carbonaceous adsorbents publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie049277o – year: 2011 ident: 10.1016/j.chemosphere.2024.143174_bib54 – volume: 228 start-page: 1066 year: 2013 ident: 10.1016/j.chemosphere.2024.143174_bib35 article-title: Energy efficiency in hydrogen sulfide removal by non-thermal plasma photolysis technique at atmospheric pressure publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.05.058 – volume: 279 year: 2021 ident: 10.1016/j.chemosphere.2024.143174_bib102 article-title: One-step synthesis of ZnFe2O4-loaded biochar derived from leftover rice for high-performance H2S removal publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2021.119686 – year: 2015 ident: 10.1016/j.chemosphere.2024.143174_bib20 – volume: 177 start-page: 174 year: 2022 ident: 10.1016/j.chemosphere.2024.143174_bib40 article-title: Self-assembled CuO-bearing aerogel-like hollow Al2O3 microspheres for room temperature dry capture of H2S publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2021.10.030 – volume: 46 start-page: 5805 year: 2017 ident: 10.1016/j.chemosphere.2024.143174_bib75 article-title: Plasma technology – a novel solution for CO2 conversion? publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00066E – volume: 2 start-page: 143 year: 2023 ident: 10.1016/j.chemosphere.2024.143174_bib78 article-title: In-situ preparation of Cu-BTC modified with organic amines for H2S removal under ambient conditions publication-title: Resour. Chem. Mater. – volume: 371 start-page: 221 year: 2021 ident: 10.1016/j.chemosphere.2024.143174_bib68 article-title: Hydrogen sulfide removal from biogas on ZIF-derived nitrogen-doped carbons publication-title: Catal. Today doi: 10.1016/j.cattod.2020.07.065 – volume: 25 start-page: 928 year: 2005 ident: 10.1016/j.chemosphere.2024.143174_bib72 article-title: Odour management and treatment technologies: an overview publication-title: Waste Manag. doi: 10.1016/j.wasman.2005.07.006 – volume: 59 start-page: 7447 year: 2020 ident: 10.1016/j.chemosphere.2024.143174_bib12 article-title: Preparation of nitrogen-doped porous carbon from waste polyurethane foam by hydrothermal carbonization for H2S adsorption publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.0c00498 – volume: 362 year: 2023 ident: 10.1016/j.chemosphere.2024.143174_bib59 article-title: Hydrogen sulfide removal from low concentration gas streams using metal supported mesoporous silica SBA-15 adsorbent publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2023.112763 – volume: 390–391 start-page: 221 year: 2022 ident: 10.1016/j.chemosphere.2024.143174_bib8 article-title: H2S catalytic removal at low temperature over Cu- and Mg- activated carbon honeycombs publication-title: Catal. Today doi: 10.1016/j.cattod.2021.11.027 – volume: 579 year: 2022 ident: 10.1016/j.chemosphere.2024.143174_bib48 article-title: Efficient removal of carbonyl sulfur and hydrogen sulfide from blast furnace gas by one-step catalytic process with modified activated carbon publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2021.152189 – year: 2009 ident: 10.1016/j.chemosphere.2024.143174_bib81 – volume: 11 start-page: 43 year: 2000 ident: 10.1016/j.chemosphere.2024.143174_bib7 article-title: Removal of H2S in air by using gliding discharges publication-title: Eur. Phys. J. Appl. Phys. doi: 10.1051/epjap:2000144 – volume: 9 year: 2021 ident: 10.1016/j.chemosphere.2024.143174_bib30 article-title: Iron-organic frameworks-derived iron oxide adsorbents for hydrogen sulfide removal at room temperature publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2021.106195 – volume: 221 year: 2022 ident: 10.1016/j.chemosphere.2024.143174_bib25 article-title: Rhamnolipid increases H2S generation from waste activated sludge anaerobic fermentation: an overlooked concern publication-title: Water Res. doi: 10.1016/j.watres.2022.118742 – volume: 237 year: 2019 ident: 10.1016/j.chemosphere.2024.143174_bib34 article-title: Dielectric barrier discharge for hydrogen sulphide waste gas decomposition publication-title: IOP Conf. Ser. Earth Environ. Sci. doi: 10.1088/1755-1315/237/2/022052 – volume: 7 start-page: 2718 year: 2022 ident: 10.1016/j.chemosphere.2024.143174_bib86 article-title: Kinetic study on high-temperature h2s removal over Mn-based regenerable sorbent using deactivation model publication-title: ACS Omega doi: 10.1021/acsomega.1c05243 – volume: 106 start-page: 308 year: 2016 ident: 10.1016/j.chemosphere.2024.143174_bib2 article-title: Comparative study between laboratory and large pilot scales for VOC's removal from gas streams in continuous flow surface discharge plasma publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2015.12.025 – volume: 497 year: 2019 ident: 10.1016/j.chemosphere.2024.143174_bib105 article-title: Adsorption of hydrogen sulfide by amine-functionalized metal organic framework (MOF-199): an experimental and simulation study publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.143815 – volume: 14 start-page: 27203 year: 2022 ident: 10.1016/j.chemosphere.2024.143174_bib52 article-title: Designing Cu2+ as a partial substitution of protons in polyaniline emeraldine salt: room-temperature-recoverable H2S sensing properties and mechanism study publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.2c05863 – volume: 238 year: 2022 ident: 10.1016/j.chemosphere.2024.143174_bib109 article-title: Preparation of hydrogen sulfide adsorbent derived from spent Fenton-like reagent modified biochar and its removal characteristics for hydrogen sulfide publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2022.107495 – volume: 16 start-page: 856 year: 2012 ident: 10.1016/j.chemosphere.2024.143174_bib15 article-title: Research on decomposition of hydrogen sulfide using nonthermal plasma with metal oxide catalysis publication-title: Energy Proc. doi: 10.1016/j.egypro.2012.01.137 – volume: 87 start-page: 36 year: 2016 ident: 10.1016/j.chemosphere.2024.143174_bib58 article-title: Iron oxide catalyst at the modified glass fiber support for selective oxidation of H2S publication-title: Catal. Commun. doi: 10.1016/j.catcom.2016.08.038 – volume: 590 year: 2020 ident: 10.1016/j.chemosphere.2024.143174_bib22 article-title: Application and regeneration of honeycomb-type catalysts for the selective catalytic oxidation of H2S to sulfur from landfill gas publication-title: Appl. Catal. Gen. doi: 10.1016/j.apcata.2019.117365 – volume: 58 start-page: 8043 year: 2024 ident: 10.1016/j.chemosphere.2024.143174_bib24 article-title: The impact of bisphenol a on the anaerobic sulfur transformation: promoting sulfur flow and toxic H2S production publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.4c00612 – volume: 37 start-page: 1335 year: 2012 ident: 10.1016/j.chemosphere.2024.143174_bib31 article-title: Plasma assisted dissociation of hydrogen sulfide publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2011.10.048 – volume: 309 start-page: 471 year: 2017 ident: 10.1016/j.chemosphere.2024.143174_bib70 article-title: Combination of VOC degradation and electro-hydrodynamic pumping actions in a surface dielectric barrier discharge reactor publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.10.068 – volume: 455 start-page: 53 year: 2014 ident: 10.1016/j.chemosphere.2024.143174_bib77 article-title: Decomposition of complex mechanisms of chemical reactions into independent routes publication-title: Dokl. Phys. Chem. doi: 10.1134/S0012501614050017 – volume: 42 start-page: 68 year: 2017 ident: 10.1016/j.chemosphere.2024.143174_bib32 article-title: High conversion of hydrogen sulfide in gliding arc plasmatron publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2016.12.001 – volume: 305 year: 2023 ident: 10.1016/j.chemosphere.2024.143174_bib46 article-title: Desulfurization of ultra-low-concentration H2S in natural gas on Cu-impregnated activated carbon: characteristics and mechanisms publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2022.122539 – volume: 51 start-page: 414 year: 2023 ident: 10.1016/j.chemosphere.2024.143174_bib113 article-title: Simultaneous treatment of various malodorous substances in gas by non-thermal plasma publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/TPS.2023.3234271 – volume: 10 start-page: 3968 year: 2020 ident: 10.1016/j.chemosphere.2024.143174_bib111 article-title: Highly efficient porous FexCe1–xO2−δ with three-dimensional hierarchical nanoflower morphology for H2S-selective oxidation publication-title: ACS Catal. doi: 10.1021/acscatal.9b05486 – volume: 39 start-page: 12480 year: 2014 ident: 10.1016/j.chemosphere.2024.143174_bib62 article-title: Plasma dissociation of H2S with O2 addition publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2014.06.040 – volume: 245 year: 2023 ident: 10.1016/j.chemosphere.2024.143174_bib50 article-title: Well-dispersed CuFe doping nanoparticles with mixed valence in carbon aerogel as effective adsorbent for H2S removal at low temperature publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2023.107744 – volume: 440 year: 2022 ident: 10.1016/j.chemosphere.2024.143174_bib92 article-title: Degradation of mixed typical odour gases via non-thermal plasma catalysis publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2022.129751 – volume: 21 start-page: 13127 year: 2014 ident: 10.1016/j.chemosphere.2024.143174_bib57 article-title: Removal of gas-phase ammonia and hydrogen sulfide using photocatalysis, nonthermal plasma, and combined plasma and photocatalysis at pilot scale publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-014-3244-6 – volume: 63 start-page: 2707 year: 2008 ident: 10.1016/j.chemosphere.2024.143174_bib99 article-title: A study of kinetic effects due to using microfibrous entrapped zinc oxide sorbents for hydrogen sulfide removal publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2008.02.025 – volume: 76 start-page: 902 year: 1998 ident: 10.1016/j.chemosphere.2024.143174_bib14 article-title: Kinetics and reaction mechanism of catalytic oxidation of low concentrations of hydrogen sulfide in natural gas over activated carbon publication-title: Can. J. Chem. Eng. doi: 10.1002/cjce.5450760507 – volume: 261 start-page: 38 year: 2013 ident: 10.1016/j.chemosphere.2024.143174_bib9 article-title: Removal of H2S in a novel dielectric barrier discharge reactor with photocatalytic electrode and activated carbon fiber publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2013.06.075 – volume: 215 year: 2022 ident: 10.1016/j.chemosphere.2024.143174_bib66 article-title: Controlling the Fe2O3–SiO2 interaction: the effect on the H2S selective catalytic oxidation and catalyst deactivation publication-title: Environ. Res. doi: 10.1016/j.envres.2022.114354 – volume: 768 year: 2021 ident: 10.1016/j.chemosphere.2024.143174_bib10 article-title: A regenerable N-rich hierarchical porous carbon synthesized from waste biomass for H2S removal at room temperature publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.144452 – volume: 431 year: 2022 ident: 10.1016/j.chemosphere.2024.143174_bib11 article-title: CuFe2O4/activated carbon adsorbents enhance H2S adsorption and catalytic oxidation from humidified air at room temperature publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.134097 – volume: 117 start-page: 9755 year: 2017 ident: 10.1016/j.chemosphere.2024.143174_bib73 article-title: Hydrogen sulfide capture: from absorption in polar liquids to oxide, zeolite, and metal–organic framework adsorbents and membranes publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00095 – volume: 6 start-page: 1414 year: 2018 ident: 10.1016/j.chemosphere.2024.143174_bib64 article-title: The low temperature selective oxidation of H2S to elemental sulfur on TiO2 supported V2O5 catalysts publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2018.01.045 – volume: 176 year: 2022 ident: 10.1016/j.chemosphere.2024.143174_bib28 article-title: Research on the removal of H2S using dielectric barrier discharge combined with photocatalysis and the fate of sulfur in the reaction publication-title: Chem. Eng. Process doi: 10.1016/j.cep.2022.108984 – volume: 276 start-page: 388 year: 2015 ident: 10.1016/j.chemosphere.2024.143174_bib84 article-title: Effect of washcoat diffusion resistance in foam based catalytic reactors publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.03.132 – volume: 160 start-page: 44 year: 2018 ident: 10.1016/j.chemosphere.2024.143174_bib5 article-title: 13X Ex-Cu zeolite performance characterization towards H2S removal for biogas use in molten carbonate fuel cells publication-title: Energy doi: 10.1016/j.energy.2018.05.057 – volume: 11 start-page: 335 year: 2019 ident: 10.1016/j.chemosphere.2024.143174_bib6 article-title: Alkaline-modified activated carbons for removing hydrogen sulfide from air via sorption and catalytic oxidation: studying the effect of thermal treatment on the properties of materials publication-title: Catalogue Index doi: 10.1134/S2070050419040020 – volume: 451 year: 2023 ident: 10.1016/j.chemosphere.2024.143174_bib23 article-title: Urea-modified Cu-based materials: highly efficient and support-free adsorbents for removal of H2S in an anaerobic and dry environment publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.138815 – volume: 424 year: 2022 ident: 10.1016/j.chemosphere.2024.143174_bib93 article-title: Super-high N-doping promoted formation of sulfur radicals for continuous catalytic oxidation of H2S over biomass derived activated carbon publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2021.127648 – volume: 319 year: 2022 ident: 10.1016/j.chemosphere.2024.143174_bib91 article-title: Copper supported on activated carbon from hydrochar of pomelo peel for efficient H2S removal at room temperature: role of copper valance, humidity and oxygen publication-title: Fuel doi: 10.1016/j.fuel.2022.123774 – year: 2007 ident: 10.1016/j.chemosphere.2024.143174_bib38 – volume: 266 year: 2020 ident: 10.1016/j.chemosphere.2024.143174_bib98 article-title: Bifunctional ZnO-MgO/activated carbon adsorbents boost H2S room temperature adsorption and catalytic oxidation publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2020.118674 |
SSID | ssj0001659 |
Score | 2.4537952 |
SecondaryResourceType | review_article |
Snippet | Air pollution is a long-standing environmental challenge as well an important economic subject. Hydrogen sulfide is one the major pollutants in the industrial... |
SourceID | hal proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 143174 |
SubjectTerms | air pollution catalysts catalytic activity Catalytic oxidation Engineering Sciences H2S hydrogen sulfide Industrial practice Mass transfer Non-thermal plasma oxidation porosity relative humidity Scale-up temperature |
Title | Progress on hydrogen sulfide removal: From catalytic oxidation to plasma-assisted treatment |
URI | https://dx.doi.org/10.1016/j.chemosphere.2024.143174 https://www.ncbi.nlm.nih.gov/pubmed/39181465 https://www.proquest.com/docview/3097150246 https://www.proquest.com/docview/3165864808 https://minesparis-psl.hal.science/hal-04871338 |
Volume | 364 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB41qXhcKloohELlIq5L17u240W9RFGjAG3VA5UicbDsrFdN1exGeSBy4bczs4-UHlohcbS1fn0ezXz2zowBPqLFptdSw4BnYxUIyX2gldAUBWJtlGYuLPMWnF-o4ZX4OpKjLeg3sTDkVlnr_kqnl9q6rjmu0TyeTSYU40tsBAkEHYG6fNSC7ShOlGzDdu_Lt-HFRiFzJSsWLGRADZ7C0Z2bF0IzLRYUwk9JMyOBqgNNqnjITLWuyV_yITJaGqXBC9ip2STrVRPehS2f78GzfvOI2x48OS2zUq9fwo9L8sRCvcaKnF2vUyz5nC1Wt9kk9WyO00OZ-8wG82LKyjudNfbJil-T6tEltizYDJn21AZIt0k2UrZxUn8FV4PT7_1hUL-sEIzRZC0Dq5PMeynjbpp0MyFcNuY2VtqnXZUKb60TTiOTEKGzsXaxSxAU5Io8GXtB7fahnRe5fwNMae3weM0pUZiIwtjGXifS4bGFBlC6A1EDpJlVCTRM41l2Y_5C3xD6pkK_AycN5OaeNBhU9P_S_ANu02Y4yqA97J0ZqkOFVR7Lf_IOHDW7aHBT6D-JzX2xWpiY8mpJ7E498g0KFQl1iAt8XYnAZjzEiS5W5dv_W8UBPKdS5dD2DtrL-cq_Rwa0dIfQ-vSbH9Zy_geV9QQd |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB4BFdALKq82LYUFcTWx493NuuKCIqIAAXEAKRKH1W68FkHEjvKomkt_e2f8CPQAqtSj116v_e1o5hv721mAY4zYtFuq7wVJX3pcBM5TkitaBWJMI06sn9ctuL6RnXt-2RO9JWhVa2FIVln6_sKn5966bKmXaNZHgwGt8SU2ggSCUqBm0FuGD1yETdL1nfx-0XkEUhQcmAuPLl-DwxeRFwIzzCa0gJ9KZjY4Og4MqPytILX8SGrJt6hoHpLan2Cj5JLsrHjcTVhy6Rast6ot3LZg9TyvST3fhodb0mGhV2NZyh7nMR65lE1mz8kgdmyMj4cW94O1x9mQ5V905nhPlv0aFFsusWnGRsizh8ZDsk2WEbOFRH0H7tvnd62OV-6r4PUxYE09o6LEOYFYxVEz4dwm_cCEUrm4KWPujLHcKuQR3LcmVDa0EYKCTDGI-o5Tv11YSbPUfQEmlbKYXAdUJow3_NCETkXCYtJCA0hVg0YFpB4V5TN0pSt70q_Q14S-LtCvwWkFuf7LFjS6-X_pfoTTtBiO6md3zrqa2tBd5Un5z6AGh9UsapwU-ktiUpfNJjqkqloCbyffuQaNikzaxxf8XJjAYjzEiT6riq__9xYHsN65u-7q7sXN1Tf4SGcKadserEzHM_cdudDU7ue2_gfKRgTo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Progress+on+hydrogen+sulfide+removal%3A+From+catalytic+oxidation+to+plasma-assisted+treatment&rft.jtitle=Chemosphere+%28Oxford%29&rft.au=Wang%2C+Shengfei&rft.au=Rohani%2C+Vandad&rft.au=Leroux%2C+Patrick&rft.au=Gracian%2C+Catherine&rft.date=2024-09-01&rft.pub=Elsevier+Ltd&rft.issn=0045-6535&rft.volume=364&rft_id=info:doi/10.1016%2Fj.chemosphere.2024.143174&rft.externalDocID=S004565352402071X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-6535&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-6535&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-6535&client=summon |