Progress on hydrogen sulfide removal: From catalytic oxidation to plasma-assisted treatment

Air pollution is a long-standing environmental challenge as well an important economic subject. Hydrogen sulfide is one the major pollutants in the industrial releases. This review focuses on the thermochemical treatment of hydrogen sulfide based on the most recent works to date regarding its remova...

Full description

Saved in:
Bibliographic Details
Published inChemosphere (Oxford) Vol. 364; p. 143174
Main Authors Wang, Shengfei, Rohani, Vandad, Leroux, Patrick, Gracian, Catherine, Nastasi, Valerie, Fulcheri, Laurent
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.09.2024
Elsevier
Subjects
Online AccessGet full text
ISSN0045-6535
1879-1298
1879-1298
DOI10.1016/j.chemosphere.2024.143174

Cover

Loading…
Abstract Air pollution is a long-standing environmental challenge as well an important economic subject. Hydrogen sulfide is one the major pollutants in the industrial releases. This review focuses on the thermochemical treatment of hydrogen sulfide based on the most recent works to date regarding its removal. By analyzing fundamental steps in chemical reaction engineering, some useful factors are emphasized since they are often neglected in scientific studies, catalysts design and process scale-up. From processing side, the fluid flow conditions including velocity, H2S concentration, relative humidity, temperature and pressure strongly influence the kinetic behavior and so the catalytic performance of the H2S removal reactor. From material side, the catalyst properties including nature, porosity, pore types, size, sites distribution and layer structuration largely influence the removal performance via among others the accessibility to catalytic sites, pores connection and mass transfer resistance. Plasma-assisted catalytic removal of H2S combines many novelties in comparison with a classical thermo-catalytic process. From patents review, we can see that main concerns are about electrodes mounting, reactor lifetime and modular design to solve the problems in the industrial practice. We attempt to provide for scientists, engineers and industrialists a guidance on the design of catalysts and processes for H2S removal which could be applied in laboratorial studies and industrial processes as well. [Display omitted] •Thermo-catalytic oxidation of H2S and their latest progress.•The influence of fluid's flow on kinetic behaviour and catalytic performance.•Porous characteristics and layer structure largely influence H2S removal.•Plasma technologies became attractive for high-efficient H2S abatement.•Modular design and electrodes mounting are the keys to industrial problems.
AbstractList Air pollution is a long-standing environmental challenge as well an important economic subject. Hydrogen sulfide is one the major pollutants in the industrial releases. This review focuses on the thermochemical treatment of hydrogen sulfide based on the most recent works to date regarding its removal. By analyzing fundamental steps in chemical reaction engineering, some useful factors are emphasized since they are often neglected in scientific studies, catalysts design and process scale-up. From processing side, the fluid flow conditions including velocity, H S concentration, relative humidity, temperature and pressure strongly influence the kinetic behavior and so the catalytic performance of the H S removal reactor. From material side, the catalyst properties including nature, porosity, pore types, size, sites distribution and layer structuration largely influence the removal performance via among others the accessibility to catalytic sites, pores connection and mass transfer resistance. Plasma-assisted catalytic removal of H S combines many novelties in comparison with a classical thermo-catalytic process. From patents review, we can see that main concerns are about electrodes mounting, reactor lifetime and modular design to solve the problems in the industrial practice. We attempt to provide for scientists, engineers and industrialists a guidance on the design of catalysts and processes for H S removal which could be applied in laboratorial studies and industrial processes as well.
Air pollution is a long-standing environmental challenge as well an important economic subject. Hydrogen sulfide is one the major pollutants in the industrial releases. This review focuses on the thermochemical treatment of hydrogen sulfide based on the most recent works to date regarding its removal. By analyzing fundamental steps in chemical reaction engineering, some useful factors are emphasized since they are often neglected in scientific studies, catalysts design and process scale-up. From processing side, the fluid flow conditions including velocity, H2S concentration, relative humidity, temperature and pressure strongly influence the kinetic behavior and so the catalytic performance of the H2S removal reactor. From material side, the catalyst properties including nature, porosity, pore types, size, sites distribution and layer structuration largely influence the removal performance via among others the accessibility to catalytic sites, pores connection and mass transfer resistance. Plasma-assisted catalytic removal of H2S combines many novelties in comparison with a classical thermo-catalytic process. From patents review, we can see that main concerns are about electrodes mounting, reactor lifetime and modular design to solve the problems in the industrial practice. We attempt to provide for scientists, engineers and industrialists a guidance on the design of catalysts and processes for H2S removal which could be applied in laboratorial studies and industrial processes as well.
Air pollution is a long-standing environmental challenge as well an important economic subject. Hydrogen sulfide is one the major pollutants in the industrial releases. This review focuses on the thermochemical treatment of hydrogen sulfide based on the most recent works to date regarding its removal. By analyzing fundamental steps in chemical reaction engineering, some useful factors are emphasized since they are often neglected in scientific studies, catalysts design and process scale-up. From processing side, the fluid flow conditions including velocity, H2S concentration, relative humidity, temperature and pressure strongly influence the kinetic behavior and so the catalytic performance of the H2S removal reactor. From material side, the catalyst properties including nature, porosity, pore types, size, sites distribution and layer structuration largely influence the removal performance via among others the accessibility to catalytic sites, pores connection and mass transfer resistance. Plasma-assisted catalytic removal of H2S combines many novelties in comparison with a classical thermo-catalytic process. From patents review, we can see that main concerns are about electrodes mounting, reactor lifetime and modular design to solve the problems in the industrial practice. We attempt to provide for scientists, engineers and industrialists a guidance on the design of catalysts and processes for H2S removal which could be applied in laboratorial studies and industrial processes as well.Air pollution is a long-standing environmental challenge as well an important economic subject. Hydrogen sulfide is one the major pollutants in the industrial releases. This review focuses on the thermochemical treatment of hydrogen sulfide based on the most recent works to date regarding its removal. By analyzing fundamental steps in chemical reaction engineering, some useful factors are emphasized since they are often neglected in scientific studies, catalysts design and process scale-up. From processing side, the fluid flow conditions including velocity, H2S concentration, relative humidity, temperature and pressure strongly influence the kinetic behavior and so the catalytic performance of the H2S removal reactor. From material side, the catalyst properties including nature, porosity, pore types, size, sites distribution and layer structuration largely influence the removal performance via among others the accessibility to catalytic sites, pores connection and mass transfer resistance. Plasma-assisted catalytic removal of H2S combines many novelties in comparison with a classical thermo-catalytic process. From patents review, we can see that main concerns are about electrodes mounting, reactor lifetime and modular design to solve the problems in the industrial practice. We attempt to provide for scientists, engineers and industrialists a guidance on the design of catalysts and processes for H2S removal which could be applied in laboratorial studies and industrial processes as well.
Air pollution is a long-standing environmental challenge as well an important economic subject. Hydrogen sulfide is one the major pollutants in the industrial releases. This review focuses on the thermochemical treatment of hydrogen sulfide based on the most recent works to date regarding its removal. By analyzing fundamental steps in chemical reaction engineering, some useful factors are emphasized since they are often neglected in scientific studies, catalysts design and process scale-up. From processing side, the fluid flow conditions including velocity, H₂S concentration, relative humidity, temperature and pressure strongly influence the kinetic behavior and so the catalytic performance of the H₂S removal reactor. From material side, the catalyst properties including nature, porosity, pore types, size, sites distribution and layer structuration largely influence the removal performance via among others the accessibility to catalytic sites, pores connection and mass transfer resistance. Plasma-assisted catalytic removal of H₂S combines many novelties in comparison with a classical thermo-catalytic process. From patents review, we can see that main concerns are about electrodes mounting, reactor lifetime and modular design to solve the problems in the industrial practice. We attempt to provide for scientists, engineers and industrialists a guidance on the design of catalysts and processes for H₂S removal which could be applied in laboratorial studies and industrial processes as well.
Air pollution is a long-standing environmental challenge as well an important economic subject. Hydrogen sulfide is one the major pollutants in the industrial releases. This review focuses on the thermochemical treatment of hydrogen sulfide based on the most recent works to date regarding its removal. By analyzing fundamental steps in chemical reaction engineering, some useful factors are emphasized since they are often neglected in scientific studies, catalysts design and process scale-up. From processing side, the fluid flow conditions including velocity, H2S concentration, relative humidity, temperature and pressure strongly influence the kinetic behavior and so the catalytic performance of the H2S removal reactor. From material side, the catalyst properties including nature, porosity, pore types, size, sites distribution and layer structuration largely influence the removal performance via among others the accessibility to catalytic sites, pores connection and mass transfer resistance. Plasma-assisted catalytic removal of H2S combines many novelties in comparison with a classical thermo-catalytic process. From patents review, we can see that main concerns are about electrodes mounting, reactor lifetime and modular design to solve the problems in the industrial practice. We attempt to provide for scientists, engineers and industrialists a guidance on the design of catalysts and processes for H2S removal which could be applied in laboratorial studies and industrial processes as well. [Display omitted] •Thermo-catalytic oxidation of H2S and their latest progress.•The influence of fluid's flow on kinetic behaviour and catalytic performance.•Porous characteristics and layer structure largely influence H2S removal.•Plasma technologies became attractive for high-efficient H2S abatement.•Modular design and electrodes mounting are the keys to industrial problems.
ArticleNumber 143174
Author Fulcheri, Laurent
Rohani, Vandad
Leroux, Patrick
Nastasi, Valerie
Wang, Shengfei
Gracian, Catherine
Author_xml – sequence: 1
  givenname: Shengfei
  surname: Wang
  fullname: Wang, Shengfei
  email: shengfei.wang@minesparis.psl.eu
  organization: Mines Paris, Université PSL, Centre Procédés Energies Renouvelables et Systèmes Energétiques (PERSEE), 06904, Sophia Antipolis, France
– sequence: 2
  givenname: Vandad
  surname: Rohani
  fullname: Rohani, Vandad
  email: vandad-julien.rohani@minesparis.psl.eu
  organization: Mines Paris, Université PSL, Centre Procédés Energies Renouvelables et Systèmes Energétiques (PERSEE), 06904, Sophia Antipolis, France
– sequence: 3
  givenname: Patrick
  surname: Leroux
  fullname: Leroux, Patrick
  email: patrick.leroux@minesparis.psl.eu
  organization: Mines Paris, Université PSL, Centre Procédés Energies Renouvelables et Systèmes Energétiques (PERSEE), 06904, Sophia Antipolis, France
– sequence: 4
  givenname: Catherine
  surname: Gracian
  fullname: Gracian, Catherine
  email: catherine.gracian@suez.com
  organization: Suez International, Tour CB21, 16 Place de l’Iris, 92040, Paris La Défense, France
– sequence: 5
  givenname: Valerie
  surname: Nastasi
  fullname: Nastasi, Valerie
  email: valerie.nastasi@suez.com
  organization: Suez International, Tour CB21, 16 Place de l’Iris, 92040, Paris La Défense, France
– sequence: 6
  givenname: Laurent
  surname: Fulcheri
  fullname: Fulcheri, Laurent
  email: laurent.fulcheri@minesparis.psl.eu
  organization: Mines Paris, Université PSL, Centre Procédés Energies Renouvelables et Systèmes Energétiques (PERSEE), 06904, Sophia Antipolis, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39181465$$D View this record in MEDLINE/PubMed
https://minesparis-psl.hal.science/hal-04871338$$DView record in HAL
BookMark eNqNkc1uEzEUhS1URNPCKyCzg8UEO_bM2OyqiFKkSLCAFQvrjn2HOJoZB9uJmrfH0bRVd7CyrvWd-3POFbmYwoSEvONsyRlvPu6WdotjSPstRlyu2EouuRS8lS_IgqtWV3yl1QVZMCbrqqlFfUmuUtoxVsS1fkUuheaKy6ZekF_fY_gdMSUaJro9uVLhRNNh6L1DGsuUIwyf6G0MI7WQYThlb2m49w6yL5Ic6H6ANEIFKfmU0dEcEfKIU35NXvYwJHzz8F6Tn7eff6zvqs23L1_XN5vKCiZyBUr3iHUtWqfbXsqutxxEo9C1jZMI0MlOMc0l60CoTnS63MrLCdqiPOuuyYe57xYGs49-hHgyAby5u9mY8x-TquVCqCMv7PuZ3cfw54Apm9Eni8MAE4ZDMqI4pBqpmPo3ynTL62J-U9C3D-ihG9E9LfHocwH0DNgYUorYPyGcmXOmZmeeZWrOmZo506Jdz1osHh49RpOsx8mi8xFtNi74_-jyFxapr38
Cites_doi 10.1016/j.catcom.2008.12.052
10.1016/j.ijhydene.2023.07.241
10.1016/j.cej.2014.09.070
10.1016/j.apcatb.2019.04.014
10.1016/j.cej.2015.02.026
10.1021/acsomega.0c06157
10.1021/acs.chemrev.8b00408
10.1016/j.jhazmat.2021.125180
10.1016/j.jece.2019.103058
10.1007/s11356-023-25136-z
10.1016/j.matchemphys.2023.127768
10.1016/j.apcatb.2020.119444
10.1016/j.ces.2006.12.052
10.1016/j.apcatb.2022.121763
10.1016/j.jece.2020.104351
10.1021/acs.chemrev.5b00362
10.1016/j.physleta.2020.126533
10.1016/j.fuel.2022.127385
10.1088/1009-0630/17/1/11
10.1021/acsami.6b13597
10.1016/j.jssc.2019.07.027
10.1016/j.apsusc.2022.154011
10.1023/A:1018812326380
10.1016/j.cej.2023.144573
10.1016/j.jece.2023.110113
10.1016/S1383-5866(01)00186-1
10.1016/S0926-860X(00)00866-8
10.1016/j.chemphys.2023.112017
10.1179/174602206X90904
10.1016/j.chemosphere.2012.02.075
10.1021/acs.iecr.9b03800
10.1016/j.jhazmat.2007.01.018
10.1088/0022-3727/47/22/224010
10.1023/A:1012055203010
10.1016/S0926-860X(02)00573-2
10.1016/j.cep.2016.10.001
10.1016/j.cattod.2008.11.014
10.1016/j.cej.2023.144795
10.1016/S0043-1354(00)00313-4
10.1039/D2TA03805F
10.1016/j.chemosphere.2022.134579
10.1016/j.fuproc.2019.03.020
10.1016/j.cej.2005.12.021
10.1063/1.4935102
10.1021/acsanm.2c04959
10.1016/j.apcata.2023.119315
10.1039/D0NJ05809B
10.1016/j.fuel.2022.127183
10.1021/acs.iecr.8b00028
10.1021/ie049277o
10.1016/j.cej.2013.05.058
10.1016/j.seppur.2021.119686
10.1016/j.cherd.2021.10.030
10.1039/C6CS00066E
10.1016/j.cattod.2020.07.065
10.1016/j.wasman.2005.07.006
10.1021/acs.iecr.0c00498
10.1016/j.micromeso.2023.112763
10.1016/j.cattod.2021.11.027
10.1016/j.apsusc.2021.152189
10.1051/epjap:2000144
10.1016/j.jece.2021.106195
10.1016/j.watres.2022.118742
10.1088/1755-1315/237/2/022052
10.1021/acsomega.1c05243
10.1016/j.cherd.2015.12.025
10.1016/j.apsusc.2019.143815
10.1021/acsami.2c05863
10.1016/j.fuproc.2022.107495
10.1016/j.egypro.2012.01.137
10.1016/j.catcom.2016.08.038
10.1016/j.apcata.2019.117365
10.1021/acs.est.4c00612
10.1016/j.ijhydene.2011.10.048
10.1016/j.cej.2016.10.068
10.1134/S0012501614050017
10.1016/j.ijhydene.2016.12.001
10.1016/j.seppur.2022.122539
10.1109/TPS.2023.3234271
10.1021/acscatal.9b05486
10.1016/j.ijhydene.2014.06.040
10.1016/j.fuproc.2023.107744
10.1016/j.jhazmat.2022.129751
10.1007/s11356-014-3244-6
10.1016/j.ces.2008.02.025
10.1002/cjce.5450760507
10.1016/j.jhazmat.2013.06.075
10.1016/j.envres.2022.114354
10.1016/j.scitotenv.2020.144452
10.1016/j.cej.2021.134097
10.1021/acs.chemrev.7b00095
10.1016/j.jece.2018.01.045
10.1016/j.cep.2022.108984
10.1016/j.cej.2015.03.132
10.1016/j.energy.2018.05.057
10.1134/S2070050419040020
10.1016/j.cej.2022.138815
10.1016/j.jhazmat.2021.127648
10.1016/j.fuel.2022.123774
10.1016/j.apcatb.2020.118674
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright © 2024 Elsevier Ltd. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2024 Elsevier Ltd
– notice: Copyright © 2024 Elsevier Ltd. All rights reserved.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
1XC
DOI 10.1016/j.chemosphere.2024.143174
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Ecology
EISSN 1879-1298
ExternalDocumentID oai_HAL_hal_04871338v1
39181465
10_1016_j_chemosphere_2024_143174
S004565352402071X
Genre Journal Article
Review
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
ABEFU
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
AEBSH
AEFWE
AEGFY
AEIPS
AEKER
AENEX
AFFNX
AFJKZ
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HMC
HVGLF
HZ~
H~9
IHE
J1W
K-O
KCYFY
KOM
LY3
LY9
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCC
SCU
SDF
SDG
SDP
SEN
SEP
SES
SEW
SPCBC
SSJ
SSZ
T5K
TWZ
WH7
WUQ
XPP
Y6R
ZCG
ZMT
ZXP
~02
~G-
~KM
AATTM
AAYWO
AAYXX
ACVFH
ADCNI
ADXHL
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
BNPGV
CITATION
SSH
AFKWA
AJOXV
AMFUW
NPM
7X8
EFKBS
EFLBG
7S9
L.6
1XC
UMC
ID FETCH-LOGICAL-c303t-a89fee5537d97f44bfc1a368ed76d4eaab4b809140ba38b3b943113919ce4e553
IEDL.DBID AIKHN
ISSN 0045-6535
1879-1298
IngestDate Fri May 09 12:18:38 EDT 2025
Fri Sep 05 17:24:43 EDT 2025
Fri Sep 05 12:13:28 EDT 2025
Wed Feb 19 02:10:20 EST 2025
Sun Jul 06 05:04:04 EDT 2025
Sat Mar 22 15:54:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords H2S
Industrial practice
Catalytic oxidation
Non-thermal plasma
Mass transfer
Scale-up
HS
Language English
License Copyright © 2024 Elsevier Ltd. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c303t-a89fee5537d97f44bfc1a368ed76d4eaab4b809140ba38b3b943113919ce4e553
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-3843-431X
PMID 39181465
PQID 3097150246
PQPubID 23479
ParticipantIDs hal_primary_oai_HAL_hal_04871338v1
proquest_miscellaneous_3165864808
proquest_miscellaneous_3097150246
pubmed_primary_39181465
crossref_primary_10_1016_j_chemosphere_2024_143174
elsevier_sciencedirect_doi_10_1016_j_chemosphere_2024_143174
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Chemosphere (Oxford)
PublicationTitleAlternate Chemosphere
PublicationYear 2024
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Rohani, Affonso Nobrega, Zadeh, Cauneau, Fulcheri (bib70) 2017; 309
Kersen, Keiski (bib43) 2009; 10
Zheng, Zhang, Yao, Zheng, Shen, Liu, Cao, Liang, Xiao, Jiang (bib112) 2021; 411
Neyts, Ostrikov, Ken, Sunkara, Bogaerts (bib61) 2015; 115
Gostelow, Parsons, Stuetz (bib27) 2001; 35
Bagreev, Bandosz (bib3) 2005; 44
Fu, Liu, He, Li, Li, Du, Wang, Long, Wang (bib25) 2022; 221
Brethes-Dupouey, Peyrous, Held (bib7) 2000; 11
Li, Wang, Wang, Ning, Ma, Zhong, Wu, Yuan (bib48) 2022; 579
Xianju (bib95) 2016
Lloyd (bib54) 2011
Min, Park, Bhatti, Jang, Baek, Nam (bib59) 2023; 362
Spivak, Ismagilova (bib77) 2014; 455
Ko, Chu, Liou (bib47) 2007; 147
Rickett, Dupont, Twigg (bib69) 2006; 79
Zhang, Kan, Zheng, Cao, Liang, Xiao, Liu, Jiang (bib104) 2021; 45
Yang, Wang, Fan, de Falco, Yang, Shangguan, Bandosz (bib98) 2020; 266
Keras (bib42) 2012
Son, Kim (bib76) 2015; 262
Promtongkaew, Márquez, Prasertcharoensuk, Kerdsamai, Praserthdam, Praserthdam (bib66) 2022; 215
Sun, Wang, Li, Zhao, Qiu (bib79) 2022; 317
Neyts, Bogaerts (bib60) 2014; 47
Zadeh, Rohani, Cauneau, Fabry, Fulcheri (bib103) 2015; 17
He, Cheng, Zhang, Douthwaite, Pattisson, Hao (bib33) 2019; 119
Zheng, Li, Zheng, Shen, Xiao, Cao, Zhang, Au, Jiang (bib111) 2020; 10
Hyunik, Junghoon (bib37) 2021
Pongthawornsakun, Phatyenchuen, Panpranot, Praserthdam (bib64) 2018; 6
Sun, Wang, Pan, Liu, Li, Zhao, Qiu (bib80) 2019; 191
Zheng, Zhang, Li, Pi, Du, Li, Shi, Hu, Jin, Zhu, Yuan, Lu, Chen (bib113) 2023; 51
Ko, Kim, Cho, Kim, Lee (bib46) 2023; 305
Daraee, Ghasemy, Rashidi (bib16) 2020; 8
Klenov, Pokrovskaya, Chumakova, Pavlova, Sadykov, Noskov (bib45) 2009; 144
Quan, Jiang, Wang, Song (bib68) 2021; 371
Jameh, Mohammadi, Bakhtiari, Mahdyarfar (bib39) 2019; 7
Dochun (bib19) 2021
Chen, Xie (bib9) 2013; 261
Prasertcharoensuk, Promtongkaew, Tawatchai, Marquez, Jongsomjit, Tahir, Praserthdam, Praserthdam (bib65) 2022; 301
Gupta, Bae, Kim (bib30) 2021; 9
Chen, Yuan, Li, Jiang, Ma, Cen, Jiang (bib10) 2021; 768
Wu, Chen, Chen, Jiang (bib93) 2022; 424
Zhang, Jiang, Long, Wang, Qiao, Ling (bib107) 2017; 9
Shin, Nam, Park, Chung (bib74) 2001; 211
Schlegelmilch, Streese, Stegmann (bib72) 2005; 25
Su, Duan, Wang, Fan, Tian, Chen, Yang, Shangguan (bib78) 2023; 2
Zheng, Li, Zhang, Shen, Xiao, Zhang, Au, Jiang (bib110) 2019; 252
Qamaruz-Zaman, Yaacof, Kamarzaman (bib67) 2020
Xia, Shen, Zhou, Liu (bib94) 2023; 30
Barelli, Bidini, Micoli, Sisani, Turco (bib5) 2018; 160
Wang, Rohani, Dupont, Pagnon, Fulcheri (bib89) 2023; 574
Lopatin, Mikenin, Pisarev, Baranov, Zazhigalov, Zagoruiko (bib55) 2015; 282
Ma, Chen, Ruan (bib56) 2001; 21
Chen, Guo, Zhang, Guo, Liang (bib11) 2022; 431
Yuan, Huang, Zhang, Ouyang, Yuan (bib102) 2021; 279
Li, Wang, Yuan, Wang, Ma, Wu, Xie, Cao, Xiong, Ning (bib49) 2023; 471
Cepollaro, Caputo, Gargiulo, Deorsola, Cimino, Lisi (bib8) 2022; 390–391
Yuan, Huang, Yılmaz, Zhang, Wang, Yuan (bib101) 2023; 339
Zhao, John, Zhang, Hamann, Muknahallipatna, Legowski, Ackerman, Argyle (bib108) 2007; 62
Kanca, Alpsoy, Ata (bib41) 2023
Pan, Chen, Su, Wu, Zhang, Long (bib63) 2021; 280
Wang, Wang, Ning, Cheng, Ma, Zhang (bib88) 2018; 57
Duan, Wu, Feng, Li, Mi (bib21) 2023; 337
Wang, Teo, Li (bib85) 2002; 27
Feng, Jia, Wang, Sun, Ning, Wang, Li, Li (bib23) 2023; 451
Balaev, Konshenko, Spivak, Ismagilov, Dzhemilev (bib4) 2001; 376
Fu, Li, Liu, Ma, Xu, Wang, Liu, Wang (bib24) 2024; 58
Huang, Xia, Ge, Jing, Dong, Hou (bib36) 2012; 88
Gu, Shen, Liang, Zhou (bib28) 2022; 176
Xu, Pan, Hu, Niu, Zhang, Long (bib96) 2022; 10
Li, Liu, Sun, Deng, Li, Tan, Ma, Zhang (bib50) 2023; 245
(bib83) 2024
Dang, Huang, Kang, Wu, Zhang (bib15) 2012; 16
Khabazipour, Anbia (bib44) 2019; 58
Zhao, Liu (bib109) 2022; 238
Liu, Jiang, Xie, Duan, Yuan, Zhang, Zhao, Cao, Dong, Tai (bib53) 2023; 471
Sungho (bib81) 2009
Snoeckx, Bogaerts (bib75) 2017; 46
Georgiadis, Charisiou, Gaber, Polychronopoulou, Yentekakis, Goula (bib26) 2021; 6
von Rickenbach, Lucci, Narayanan, Dimopoulos Eggenschwiler, Poulikakos (bib84) 2015; 276
Nunnally, Gutsol, Rabinovich, Fridman, Gutsol (bib62) 2014; 39
Chen, Zhang, Li, Ma, Wang, Jiang (bib12) 2020; 59
Xu, Liao, Zheng, Zhou (bib97) 2020; 384
Hyunkoo (bib38) 2007
Zhang, Zheng, Zhang, Zheng, Xiao, Jiang (bib106) 2023; 6
Assadi, Bouzaza, Soutrel, Petit, Medimagh, Wolbert (bib1) 2017; 111
Dalai, Tollefson (bib14) 1998; 76
Wang, Huang, Zhong, Hu, Xie, Zhao, Qiao (bib91) 2022; 319
Yang, Cahela, Tatarchuk (bib99) 2008; 63
Huang, Xia, Dong, Hou (bib35) 2013; 228
Lin, Chen, Wei, Zhang, Zhu, Zhang, Wang (bib51) 2023; 11
Dong (bib20) 2015
He, Feng, Fu, Wang, Zhang (bib34) 2019; 237
Youngil (bib100) 2013
Daraee, Saeedirad, Rashidi (bib17) 2019; 278
Wang, Cao, Wang, Yuan (bib87) 2006; 118
Jiao, Han, Zhang, Guo, Cheng, Zhang (bib40) 2022; 177
Davydov, Marshneva, Shepotko (bib18) 2003; 244
Eom, Jang, Choi, Lee, Kim (bib22) 2020; 590
Sangbock, Jaekwang, Jungja (bib71) 2016
Zhang, Yang, Geng, Fan, Wang, Wu, Tian (bib105) 2019; 497
Assadi, Bouzaza, Wolbert (bib2) 2016; 106
Wang, Rohani, Ye, Dupont, Pagnon, Sennour, Fulcheri (bib90) 2023; 663
Wei, Tao, Xinrui, Huan (bib92) 2022; 440
Gutsol, Robinson, Rabinovich, Gutsol, Fridman (bib32) 2017; 42
Dahle (bib13) 2015; 5
Wang, Xu, Wu, Liang, Du (bib86) 2022; 7
Liu, Duan, Yuan, Zhang, Zhao, Xie, Jiang, Li, Tai (bib52) 2022; 14
Mikenin, Zazhigalov, Elyshev, Lopatin, Larina, Cherepanova, Pisarev, Baranov, Zagoruiko (bib58) 2016; 87
Tong, Wei, Wang, Li, Yang, Zhang, Wang, Lin (bib82) 2022; 600
Guo, Liu, Duan, Yuan, Jiang, Tai (bib29) 2023; 302
Barkovskii, Lysikov, Veselovskaya, Maltseva, Okunev (bib6) 2019; 11
Shah, Tsapatsis, Siepmann (bib73) 2017; 117
Gutsol, Nunnally, Rabinovich, Fridman, Starikovskiy, Gutsol, Kemoun (bib31) 2012; 37
Maxime, Aymen Amine, Abdelkrim, Dominique (bib57) 2014; 21
Barelli (10.1016/j.chemosphere.2024.143174_bib5) 2018; 160
Hyunkoo (10.1016/j.chemosphere.2024.143174_bib38) 2007
Promtongkaew (10.1016/j.chemosphere.2024.143174_bib66) 2022; 215
Prasertcharoensuk (10.1016/j.chemosphere.2024.143174_bib65) 2022; 301
Assadi (10.1016/j.chemosphere.2024.143174_bib1) 2017; 111
Wu (10.1016/j.chemosphere.2024.143174_bib93) 2022; 424
Lin (10.1016/j.chemosphere.2024.143174_bib51) 2023; 11
Gostelow (10.1016/j.chemosphere.2024.143174_bib27) 2001; 35
Wang (10.1016/j.chemosphere.2024.143174_bib90) 2023; 663
Huang (10.1016/j.chemosphere.2024.143174_bib35) 2013; 228
Eom (10.1016/j.chemosphere.2024.143174_bib22) 2020; 590
Daraee (10.1016/j.chemosphere.2024.143174_bib17) 2019; 278
Lloyd (10.1016/j.chemosphere.2024.143174_bib54) 2011
Khabazipour (10.1016/j.chemosphere.2024.143174_bib44) 2019; 58
Sun (10.1016/j.chemosphere.2024.143174_bib80) 2019; 191
Yang (10.1016/j.chemosphere.2024.143174_bib98) 2020; 266
Sangbock (10.1016/j.chemosphere.2024.143174_bib71) 2016
Lopatin (10.1016/j.chemosphere.2024.143174_bib55) 2015; 282
Pongthawornsakun (10.1016/j.chemosphere.2024.143174_bib64) 2018; 6
Sungho (10.1016/j.chemosphere.2024.143174_bib81) 2009
Liu (10.1016/j.chemosphere.2024.143174_bib52) 2022; 14
Zhao (10.1016/j.chemosphere.2024.143174_bib109) 2022; 238
Zhang (10.1016/j.chemosphere.2024.143174_bib104) 2021; 45
Gupta (10.1016/j.chemosphere.2024.143174_bib30) 2021; 9
Zheng (10.1016/j.chemosphere.2024.143174_bib111) 2020; 10
Duan (10.1016/j.chemosphere.2024.143174_bib21) 2023; 337
Jiao (10.1016/j.chemosphere.2024.143174_bib40) 2022; 177
Wang (10.1016/j.chemosphere.2024.143174_bib86) 2022; 7
Zheng (10.1016/j.chemosphere.2024.143174_bib113) 2023; 51
Cepollaro (10.1016/j.chemosphere.2024.143174_bib8) 2022; 390–391
Ko (10.1016/j.chemosphere.2024.143174_bib46) 2023; 305
Fu (10.1016/j.chemosphere.2024.143174_bib25) 2022; 221
Zhang (10.1016/j.chemosphere.2024.143174_bib106) 2023; 6
Li (10.1016/j.chemosphere.2024.143174_bib49) 2023; 471
Yuan (10.1016/j.chemosphere.2024.143174_bib101) 2023; 339
Keras (10.1016/j.chemosphere.2024.143174_bib42) 2012
Dang (10.1016/j.chemosphere.2024.143174_bib15) 2012; 16
Maxime (10.1016/j.chemosphere.2024.143174_bib57) 2014; 21
Youngil (10.1016/j.chemosphere.2024.143174_bib100) 2013
Daraee (10.1016/j.chemosphere.2024.143174_bib16) 2020; 8
Shah (10.1016/j.chemosphere.2024.143174_bib73) 2017; 117
Yang (10.1016/j.chemosphere.2024.143174_bib99) 2008; 63
Zheng (10.1016/j.chemosphere.2024.143174_bib112) 2021; 411
Dahle (10.1016/j.chemosphere.2024.143174_bib13) 2015; 5
Rickett (10.1016/j.chemosphere.2024.143174_bib69) 2006; 79
Snoeckx (10.1016/j.chemosphere.2024.143174_bib75) 2017; 46
Wang (10.1016/j.chemosphere.2024.143174_bib87) 2006; 118
Liu (10.1016/j.chemosphere.2024.143174_bib53) 2023; 471
Davydov (10.1016/j.chemosphere.2024.143174_bib18) 2003; 244
Ko (10.1016/j.chemosphere.2024.143174_bib47) 2007; 147
Tong (10.1016/j.chemosphere.2024.143174_bib82) 2022; 600
Wang (10.1016/j.chemosphere.2024.143174_bib89) 2023; 574
Xianju (10.1016/j.chemosphere.2024.143174_bib95) 2016
Gutsol (10.1016/j.chemosphere.2024.143174_bib31) 2012; 37
Min (10.1016/j.chemosphere.2024.143174_bib59) 2023; 362
Xu (10.1016/j.chemosphere.2024.143174_bib97) 2020; 384
Wei (10.1016/j.chemosphere.2024.143174_bib92) 2022; 440
Xia (10.1016/j.chemosphere.2024.143174_bib94) 2023; 30
Bagreev (10.1016/j.chemosphere.2024.143174_bib3) 2005; 44
Shin (10.1016/j.chemosphere.2024.143174_bib74) 2001; 211
Neyts (10.1016/j.chemosphere.2024.143174_bib61) 2015; 115
Neyts (10.1016/j.chemosphere.2024.143174_bib60) 2014; 47
Wang (10.1016/j.chemosphere.2024.143174_bib91) 2022; 319
Chen (10.1016/j.chemosphere.2024.143174_bib9) 2013; 261
Guo (10.1016/j.chemosphere.2024.143174_bib29) 2023; 302
Huang (10.1016/j.chemosphere.2024.143174_bib36) 2012; 88
Xu (10.1016/j.chemosphere.2024.143174_bib96) 2022; 10
Chen (10.1016/j.chemosphere.2024.143174_bib10) 2021; 768
Dalai (10.1016/j.chemosphere.2024.143174_bib14) 1998; 76
Fu (10.1016/j.chemosphere.2024.143174_bib24) 2024; 58
Sun (10.1016/j.chemosphere.2024.143174_bib79) 2022; 317
Barkovskii (10.1016/j.chemosphere.2024.143174_bib6) 2019; 11
Pan (10.1016/j.chemosphere.2024.143174_bib63) 2021; 280
Zheng (10.1016/j.chemosphere.2024.143174_bib110) 2019; 252
Chen (10.1016/j.chemosphere.2024.143174_bib11) 2022; 431
Klenov (10.1016/j.chemosphere.2024.143174_bib45) 2009; 144
Dong (10.1016/j.chemosphere.2024.143174_bib20) 2015
Jameh (10.1016/j.chemosphere.2024.143174_bib39) 2019; 7
Chen (10.1016/j.chemosphere.2024.143174_bib12) 2020; 59
Su (10.1016/j.chemosphere.2024.143174_bib78) 2023; 2
Balaev (10.1016/j.chemosphere.2024.143174_bib4) 2001; 376
Zhang (10.1016/j.chemosphere.2024.143174_bib107) 2017; 9
Schlegelmilch (10.1016/j.chemosphere.2024.143174_bib72) 2005; 25
Mikenin (10.1016/j.chemosphere.2024.143174_bib58) 2016; 87
Yuan (10.1016/j.chemosphere.2024.143174_bib102) 2021; 279
Nunnally (10.1016/j.chemosphere.2024.143174_bib62) 2014; 39
He (10.1016/j.chemosphere.2024.143174_bib34) 2019; 237
Rohani (10.1016/j.chemosphere.2024.143174_bib70) 2017; 309
Hyunik (10.1016/j.chemosphere.2024.143174_bib37) 2021
von Rickenbach (10.1016/j.chemosphere.2024.143174_bib84) 2015; 276
Li (10.1016/j.chemosphere.2024.143174_bib50) 2023; 245
Zhao (10.1016/j.chemosphere.2024.143174_bib108) 2007; 62
Assadi (10.1016/j.chemosphere.2024.143174_bib2) 2016; 106
He (10.1016/j.chemosphere.2024.143174_bib33) 2019; 119
Zhang (10.1016/j.chemosphere.2024.143174_bib105) 2019; 497
Brethes-Dupouey (10.1016/j.chemosphere.2024.143174_bib7) 2000; 11
Quan (10.1016/j.chemosphere.2024.143174_bib68) 2021; 371
Feng (10.1016/j.chemosphere.2024.143174_bib23) 2023; 451
Kanca (10.1016/j.chemosphere.2024.143174_bib41) 2023
Ma (10.1016/j.chemosphere.2024.143174_bib56) 2001; 21
Son (10.1016/j.chemosphere.2024.143174_bib76) 2015; 262
Spivak (10.1016/j.chemosphere.2024.143174_bib77) 2014; 455
Gu (10.1016/j.chemosphere.2024.143174_bib28) 2022; 176
Georgiadis (10.1016/j.chemosphere.2024.143174_bib26) 2021; 6
Kersen (10.1016/j.chemosphere.2024.143174_bib43) 2009; 10
Li (10.1016/j.chemosphere.2024.143174_bib48) 2022; 579
Zadeh (10.1016/j.chemosphere.2024.143174_bib103) 2015; 17
Qamaruz-Zaman (10.1016/j.chemosphere.2024.143174_bib67) 2020
Wang (10.1016/j.chemosphere.2024.143174_bib85) 2002; 27
Gutsol (10.1016/j.chemosphere.2024.143174_bib32) 2017; 42
Wang (10.1016/j.chemosphere.2024.143174_bib88) 2018; 57
Dochun (10.1016/j.chemosphere.2024.143174_bib19) 2021
References_xml – volume: 278
  year: 2019
  ident: bib17
  article-title: Adsorption of hydrogen sulfide over a novel metal organic framework –metal oxide nanocomposite: TOUO-x (TiO
  publication-title: J. Solid State Chem.
– volume: 362
  year: 2023
  ident: bib59
  article-title: Hydrogen sulfide removal from low concentration gas streams using metal supported mesoporous silica SBA-15 adsorbent
  publication-title: Microporous Mesoporous Mater.
– volume: 115
  start-page: 13408
  year: 2015
  end-page: 13446
  ident: bib61
  article-title: Plasma catalysis: synergistic effects at the nanoscale
  publication-title: Chem. Rev.
– volume: 16
  start-page: 856
  year: 2012
  end-page: 862
  ident: bib15
  article-title: Research on decomposition of hydrogen sulfide using nonthermal plasma with metal oxide catalysis
  publication-title: Energy Proc.
– volume: 58
  start-page: 8043
  year: 2024
  end-page: 8052
  ident: bib24
  article-title: The impact of bisphenol a on the anaerobic sulfur transformation: promoting sulfur flow and toxic H
  publication-title: Environ. Sci. Technol.
– volume: 215
  year: 2022
  ident: bib66
  article-title: Controlling the Fe
  publication-title: Environ. Res.
– year: 2013
  ident: bib100
  article-title: KR200468971Y1
– volume: 574
  year: 2023
  ident: bib89
  article-title: A chemical kinetics simulation of plasma-catalytic dry reforming
  publication-title: Chem. Phys.
– volume: 497
  year: 2019
  ident: bib105
  article-title: Adsorption of hydrogen sulfide by amine-functionalized metal organic framework (MOF-199): an experimental and simulation study
  publication-title: Appl. Surf. Sci.
– volume: 11
  start-page: 335
  year: 2019
  end-page: 341
  ident: bib6
  article-title: Alkaline-modified activated carbons for removing hydrogen sulfide from air via sorption and catalytic oxidation: studying the effect of thermal treatment on the properties of materials
  publication-title: Catalogue Index
– volume: 390–391
  start-page: 221
  year: 2022
  end-page: 229
  ident: bib8
  article-title: H
  publication-title: Catal. Today
– volume: 76
  start-page: 902
  year: 1998
  end-page: 914
  ident: bib14
  article-title: Kinetics and reaction mechanism of catalytic oxidation of low concentrations of hydrogen sulfide in natural gas over activated carbon
  publication-title: Can. J. Chem. Eng.
– year: 2021
  ident: bib37
  article-title: KR102260282B1
– volume: 371
  start-page: 221
  year: 2021
  end-page: 230
  ident: bib68
  article-title: Hydrogen sulfide removal from biogas on ZIF-derived nitrogen-doped carbons
  publication-title: Catal. Today
– volume: 768
  year: 2021
  ident: bib10
  article-title: A regenerable N-rich hierarchical porous carbon synthesized from waste biomass for H
  publication-title: Sci. Total Environ.
– volume: 21
  start-page: 611
  year: 2001
  end-page: 624
  ident: bib56
  article-title: H
  publication-title: Plasma Chem. Plasma Process.
– volume: 228
  start-page: 1066
  year: 2013
  end-page: 1073
  ident: bib35
  article-title: Energy efficiency in hydrogen sulfide removal by non-thermal plasma photolysis technique at atmospheric pressure
  publication-title: Chem. Eng. J.
– volume: 10
  start-page: 3968
  year: 2020
  end-page: 3983
  ident: bib111
  article-title: Highly efficient porous Fe
  publication-title: ACS Catal.
– volume: 280
  year: 2021
  ident: bib63
  article-title: Two-dimensional CaO/carbon heterostructures with unprecedented catalytic performance in room-temperature H
  publication-title: Appl. Catal. B Environ.
– volume: 451
  year: 2023
  ident: bib23
  article-title: Urea-modified Cu-based materials: highly efficient and support-free adsorbents for removal of H
  publication-title: Chem. Eng. J.
– year: 2016
  ident: bib95
  article-title: CN105833675A
– year: 2024
  ident: bib83
  article-title: Hydrog. Sulfide - hazards
– volume: 57
  start-page: 6568
  year: 2018
  end-page: 6575
  ident: bib88
  article-title: Simultaneous removal of COS, H
  publication-title: Ind. Eng. Chem. Res.
– volume: 276
  start-page: 388
  year: 2015
  end-page: 397
  ident: bib84
  article-title: Effect of washcoat diffusion resistance in foam based catalytic reactors
  publication-title: Chem. Eng. J.
– volume: 51
  start-page: 414
  year: 2023
  end-page: 420
  ident: bib113
  article-title: Simultaneous treatment of various malodorous substances in gas by non-thermal plasma
  publication-title: IEEE Trans. Plasma Sci.
– volume: 42
  start-page: 68
  year: 2017
  end-page: 75
  ident: bib32
  article-title: High conversion of hydrogen sulfide in gliding arc plasmatron
  publication-title: Int. J. Hydrogen Energy
– volume: 11
  start-page: 43
  year: 2000
  end-page: 58
  ident: bib7
  article-title: Removal of H
  publication-title: Eur. Phys. J. Appl. Phys.
– volume: 663
  year: 2023
  ident: bib90
  article-title: Effect of K-promoter use in iron-based plasma-catalytic conversion of CO
  publication-title: Appl. Catal. Gen.
– volume: 266
  year: 2020
  ident: bib98
  article-title: Bifunctional ZnO-MgO/activated carbon adsorbents boost H
  publication-title: Appl. Catal. B Environ.
– volume: 279
  year: 2021
  ident: bib102
  article-title: One-step synthesis of ZnFe2O4-loaded biochar derived from leftover rice for high-performance H
  publication-title: Sep. Purif. Technol.
– volume: 262
  start-page: 217
  year: 2015
  end-page: 223
  ident: bib76
  article-title: Decomposition of sulfur compounds by radiolysis: I. influential factors
  publication-title: Chem. Eng. J.
– volume: 10
  start-page: 18308
  year: 2022
  end-page: 18321
  ident: bib96
  article-title: Anti-corrosion MgO nanoparticle-equipped graphene oxide nanosheet for efficient room-temperature H
  publication-title: J. Mater. Chem. A
– volume: 590
  year: 2020
  ident: bib22
  article-title: Application and regeneration of honeycomb-type catalysts for the selective catalytic oxidation of H
  publication-title: Appl. Catal. Gen.
– volume: 431
  year: 2022
  ident: bib11
  article-title: CuFe
  publication-title: Chem. Eng. J.
– volume: 411
  year: 2021
  ident: bib112
  article-title: Engineering of crystal phase over porous MnO
  publication-title: J. Hazard Mater.
– volume: 9
  start-page: 2477
  year: 2017
  end-page: 2484
  ident: bib107
  article-title: A general silica-templating synthesis of alkaline mesoporous carbon catalysts for highly efficient H
  publication-title: ACS Appl. Mater. Interfaces
– volume: 87
  start-page: 36
  year: 2016
  end-page: 40
  ident: bib58
  article-title: Iron oxide catalyst at the modified glass fiber support for selective oxidation of H
  publication-title: Catal. Commun.
– volume: 455
  start-page: 53
  year: 2014
  end-page: 55
  ident: bib77
  article-title: Decomposition of complex mechanisms of chemical reactions into independent routes
  publication-title: Dokl. Phys. Chem.
– volume: 45
  start-page: 3535
  year: 2021
  end-page: 3545
  ident: bib104
  article-title: A solid thermal and fast synthesis of MgAl-hydrotalcite nanosheets and their applications in the catalytic elimination of carbonyl sulfide and hydrogen sulfide
  publication-title: New J. Chem.
– volume: 440
  year: 2022
  ident: bib92
  article-title: Degradation of mixed typical odour gases via non-thermal plasma catalysis
  publication-title: J. Hazard Mater.
– volume: 7
  start-page: 2718
  year: 2022
  end-page: 2724
  ident: bib86
  article-title: Kinetic study on high-temperature h
  publication-title: ACS Omega
– volume: 111
  start-page: 1
  year: 2017
  end-page: 6
  ident: bib1
  article-title: A study of pollution removal in exhaust gases from animal quartering centers by combining photocatalysis with surface discharge plasma: from pilot to industrial scale
  publication-title: Chem. Eng. Process
– volume: 301
  year: 2022
  ident: bib65
  article-title: A review on sensitivity of operating parameters on biogas catalysts for selective oxidation of Hydrogen Sulfide to elemental sulfur
  publication-title: Chemosphere
– volume: 119
  start-page: 4471
  year: 2019
  end-page: 4568
  ident: bib33
  article-title: Recent advances in the catalytic oxidation of volatile organic compounds: a review based on pollutant sorts and sources
  publication-title: Chem. Rev.
– volume: 244
  start-page: 93
  year: 2003
  end-page: 100
  ident: bib18
  article-title: Metal oxides in hydrogen sulfide oxidation by oxygen and sulfur dioxide: I. The comparison study of the catalytic activity. Mechanism of the interactions between H
  publication-title: Appl. Catal. Gen.
– volume: 317
  year: 2022
  ident: bib79
  article-title: Selective catalytic oxidation of pollutant H
  publication-title: Appl. Catal. B Environ.
– volume: 147
  start-page: 334
  year: 2007
  end-page: 341
  ident: bib47
  article-title: A study of Zn–Mn based sorbent for the high-temperature removal of H
  publication-title: J. Hazard Mater.
– volume: 46
  start-page: 5805
  year: 2017
  end-page: 5863
  ident: bib75
  article-title: Plasma technology – a novel solution for CO
  publication-title: Chem. Soc. Rev.
– volume: 62
  start-page: 2216
  year: 2007
  end-page: 2227
  ident: bib108
  article-title: Production of hydrogen and sulfur from hydrogen sulfide in a nonthermal-plasma pulsed corona discharge reactor
  publication-title: Chem. Eng. Sci.
– volume: 252
  start-page: 98
  year: 2019
  end-page: 110
  ident: bib110
  article-title: Insight into the effect of morphology on catalytic performance of porous CeO
  publication-title: Appl. Catal. B Environ.
– volume: 44
  start-page: 530
  year: 2005
  end-page: 538
  ident: bib3
  article-title: On the mechanism of hydrogen sulfide removal from moist air on catalytic carbonaceous adsorbents
  publication-title: Ind. Eng. Chem. Res.
– volume: 384
  year: 2020
  ident: bib97
  article-title: Adsorption and diffusion behaviors of H
  publication-title: Phys. Lett.
– volume: 376
  start-page: 34
  year: 2001
  end-page: 37
  ident: bib4
  article-title: Modeling of partial oxidation of hydrogen sulfide over metal oxide catalysts
  publication-title: Dokl. Chem.
– volume: 176
  year: 2022
  ident: bib28
  article-title: Research on the removal of H
  publication-title: Chem. Eng. Process
– year: 2021
  ident: bib19
  article-title: KR102329679B1
– year: 2011
  ident: bib54
  article-title: Handbook of Industrial Catalysts
– volume: 37
  start-page: 1335
  year: 2012
  end-page: 1347
  ident: bib31
  article-title: Plasma assisted dissociation of hydrogen sulfide
  publication-title: Int. J. Hydrogen Energy
– volume: 6
  start-page: 14774
  year: 2021
  end-page: 14787
  ident: bib26
  article-title: Adsorption of hydrogen sulfide at low temperatures using an industrial molecular sieve: an experimental and theoretical study
  publication-title: ACS Omega
– volume: 9
  year: 2021
  ident: bib30
  article-title: Iron-organic frameworks-derived iron oxide adsorbents for hydrogen sulfide removal at room temperature
  publication-title: J. Environ. Chem. Eng.
– year: 2007
  ident: bib38
  article-title: KR100684924B1
– volume: 47
  year: 2014
  ident: bib60
  article-title: Understanding plasma catalysis through modelling and simulation—a review
  publication-title: J. Phys. Appl. Phys.
– volume: 27
  start-page: 33
  year: 2002
  end-page: 40
  ident: bib85
  article-title: Removal of H
  publication-title: Sep. Purif. Technol.
– volume: 600
  year: 2022
  ident: bib82
  article-title: Microscopic functionality of FeN
  publication-title: Appl. Surf. Sci.
– year: 2012
  ident: bib42
  article-title: WO2012018944A2
– volume: 261
  start-page: 38
  year: 2013
  end-page: 43
  ident: bib9
  article-title: Removal of H
  publication-title: J. Hazard Mater.
– volume: 63
  start-page: 2707
  year: 2008
  end-page: 2716
  ident: bib99
  article-title: A study of kinetic effects due to using microfibrous entrapped zinc oxide sorbents for hydrogen sulfide removal
  publication-title: Chem. Eng. Sci.
– volume: 106
  start-page: 308
  year: 2016
  end-page: 314
  ident: bib2
  article-title: Comparative study between laboratory and large pilot scales for VOC's removal from gas streams in continuous flow surface discharge plasma
  publication-title: Chem. Eng. Res. Des.
– volume: 59
  start-page: 7447
  year: 2020
  end-page: 7456
  ident: bib12
  article-title: Preparation of nitrogen-doped porous carbon from waste polyurethane foam by hydrothermal carbonization for H
  publication-title: Ind. Eng. Chem. Res.
– volume: 302
  year: 2023
  ident: bib29
  article-title: Batch fabrication of H
  publication-title: Mater. Chem. Phys.
– volume: 14
  start-page: 27203
  year: 2022
  end-page: 27213
  ident: bib52
  article-title: Designing Cu
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 2585
  year: 2023
  end-page: 2595
  ident: bib106
  article-title: Ce–Mn oxide nanocomposites for catalytic removal of H
  publication-title: ACS Appl. Nano Mater.
– volume: 339
  year: 2023
  ident: bib101
  article-title: MgFe
  publication-title: Fuel
– volume: 10
  start-page: 1039
  year: 2009
  end-page: 1042
  ident: bib43
  article-title: Preliminary study on the selective oxidation of H
  publication-title: Catal. Commun.
– volume: 25
  start-page: 928
  year: 2005
  end-page: 939
  ident: bib72
  article-title: Odour management and treatment technologies: an overview
  publication-title: Waste Manag.
– volume: 118
  start-page: 133
  year: 2006
  end-page: 139
  ident: bib87
  article-title: H
  publication-title: Chem. Eng. J.
– volume: 117
  start-page: 9755
  year: 2017
  end-page: 9803
  ident: bib73
  article-title: Hydrogen sulfide capture: from absorption in polar liquids to oxide, zeolite, and metal–organic framework adsorbents and membranes
  publication-title: Chem. Rev.
– volume: 471
  year: 2023
  ident: bib53
  article-title: Lever-inspired triboelectric respiration sensor for respiratory behavioral assessment and exhaled hydrogen sulfide detection
  publication-title: Chem. Eng. J.
– volume: 17
  start-page: 56
  year: 2015
  end-page: 63
  ident: bib103
  article-title: Toward the design of multi asymmetric surface dielectric barrier discharge (ASDBD) actuators
  publication-title: Plasma Sci. Technol.
– year: 2015
  ident: bib20
  article-title: CN104383812A
– volume: 221
  year: 2022
  ident: bib25
  article-title: Rhamnolipid increases H
  publication-title: Water Res.
– volume: 238
  year: 2022
  ident: bib109
  article-title: Preparation of hydrogen sulfide adsorbent derived from spent Fenton-like reagent modified biochar and its removal characteristics for hydrogen sulfide
  publication-title: Fuel Process. Technol.
– volume: 7
  year: 2019
  ident: bib39
  article-title: Synthesis and modification of zeolitic imidazolate framework (ZIF-8) nanoparticles as highly efficient adsorbent for H
  publication-title: J. Environ. Chem. Eng.
– volume: 35
  start-page: 579
  year: 2001
  end-page: 597
  ident: bib27
  article-title: Odour measurements for sewage treatment works
  publication-title: Water Res.
– volume: 11
  year: 2023
  ident: bib51
  article-title: Enriched oxygen vacancies of copper(I) oxide particles for enhanced removal of hydrogen sulfide at room temperature
  publication-title: J. Environ. Chem. Eng.
– year: 2016
  ident: bib71
  article-title: KR101595335B1
– volume: 305
  year: 2023
  ident: bib46
  article-title: Desulfurization of ultra-low-concentration H
  publication-title: Sep. Purif. Technol.
– volume: 6
  start-page: 1414
  year: 2018
  end-page: 1423
  ident: bib64
  article-title: The low temperature selective oxidation of H
  publication-title: J. Environ. Chem. Eng.
– volume: 309
  start-page: 471
  year: 2017
  end-page: 479
  ident: bib70
  article-title: Combination of VOC degradation and electro-hydrodynamic pumping actions in a surface dielectric barrier discharge reactor
  publication-title: Chem. Eng. J.
– volume: 471
  year: 2023
  ident: bib49
  article-title: COS and H
  publication-title: Chem. Eng. J.
– volume: 2
  start-page: 143
  year: 2023
  end-page: 150
  ident: bib78
  article-title: In-situ preparation of Cu-BTC modified with organic amines for H
  publication-title: Resour. Chem. Mater.
– volume: 245
  year: 2023
  ident: bib50
  article-title: Well-dispersed CuFe doping nanoparticles with mixed valence in carbon aerogel as effective adsorbent for H
  publication-title: Fuel Process. Technol.
– volume: 88
  start-page: 229
  year: 2012
  end-page: 234
  ident: bib36
  article-title: Removal of H
  publication-title: Chemosphere
– volume: 5
  year: 2015
  ident: bib13
  article-title: Efficient new process for the desulfurization of mixtures of air and hydrogen sulfide via a dielectric barrier discharge plasma
  publication-title: AIP Adv.
– volume: 337
  year: 2023
  ident: bib21
  article-title: A strategy of KIT-6-carrier modification towards enhancement of desulfurization properties of mesoporous Zn-based sorbents for H
  publication-title: Fuel
– volume: 211
  start-page: 213
  year: 2001
  end-page: 225
  ident: bib74
  article-title: Selective oxidation of H
  publication-title: Appl. Catal. Gen.
– volume: 144
  start-page: 258
  year: 2009
  end-page: 264
  ident: bib45
  article-title: Effect of mass transfer on the reaction rate in a monolithic catalyst with porous walls
  publication-title: Catal. Today
– volume: 160
  start-page: 44
  year: 2018
  end-page: 53
  ident: bib5
  article-title: 13X Ex-Cu zeolite performance characterization towards H
  publication-title: Energy
– start-page: 281
  year: 2020
  end-page: 313
  ident: bib67
  article-title: Control of Odors in the Food Industry, Galanakis, C., the Interaction of Food Industry and Environment
– volume: 21
  start-page: 13127
  year: 2014
  end-page: 13137
  ident: bib57
  article-title: Removal of gas-phase ammonia and hydrogen sulfide using photocatalysis, nonthermal plasma, and combined plasma and photocatalysis at pilot scale
  publication-title: Environ. Sci. Pollut. Res.
– volume: 424
  year: 2022
  ident: bib93
  article-title: Super-high N-doping promoted formation of sulfur radicals for continuous catalytic oxidation of H
  publication-title: J. Hazard Mater.
– volume: 30
  start-page: 40895
  year: 2023
  end-page: 40910
  ident: bib94
  article-title: Wire-tube DBD reactor for H
  publication-title: Environ. Sci. Pollut. Res.
– year: 2009
  ident: bib81
  article-title: KR100906561B1
– volume: 237
  year: 2019
  ident: bib34
  article-title: Dielectric barrier discharge for hydrogen sulphide waste gas decomposition
  publication-title: IOP Conf. Ser. Earth Environ. Sci.
– volume: 579
  year: 2022
  ident: bib48
  article-title: Efficient removal of carbonyl sulfur and hydrogen sulfide from blast furnace gas by one-step catalytic process with modified activated carbon
  publication-title: Appl. Surf. Sci.
– volume: 282
  start-page: 58
  year: 2015
  end-page: 65
  ident: bib55
  article-title: Pressure drop and mass transfer in the structured cartridges with fiber-glass catalyst
  publication-title: Chem. Eng. J.
– volume: 58
  start-page: 22133
  year: 2019
  end-page: 22164
  ident: bib44
  article-title: Removal of hydrogen sulfide from gas streams using porous materials: a review
  publication-title: Ind. Eng. Chem. Res.
– volume: 319
  year: 2022
  ident: bib91
  article-title: Copper supported on activated carbon from hydrochar of pomelo peel for efficient H
  publication-title: Fuel
– volume: 8
  year: 2020
  ident: bib16
  article-title: Synthesis of novel and engineered UiO-66/graphene oxide nanocomposite with enhanced H
  publication-title: J. Environ. Chem. Eng.
– volume: 39
  start-page: 12480
  year: 2014
  end-page: 12489
  ident: bib62
  article-title: Plasma dissociation of H
  publication-title: Int. J. Hydrogen Energy
– volume: 191
  start-page: 121
  year: 2019
  end-page: 128
  ident: bib80
  article-title: Nitrogen-rich hierarchical porous carbon nanofibers for selective oxidation of hydrogen sulfide
  publication-title: Fuel Process. Technol.
– year: 2023
  ident: bib41
  article-title: Sulfidation performance of unsupported and SBA 15-supported Ca-based mixed metal oxides
  publication-title: Int. J. Hydrogen Energy
– volume: 177
  start-page: 174
  year: 2022
  end-page: 183
  ident: bib40
  article-title: Self-assembled CuO-bearing aerogel-like hollow Al
  publication-title: Chem. Eng. Res. Des.
– volume: 79
  start-page: 12
  year: 2006
  end-page: 18
  ident: bib69
  article-title: Kinetics of CH
  publication-title: J. Energy Inst.
– volume: 10
  start-page: 1039
  year: 2009
  ident: 10.1016/j.chemosphere.2024.143174_bib43
  article-title: Preliminary study on the selective oxidation of H2S over LaVO4 and Fe2(MoO4)3 oxides, produced by a solvothermal method
  publication-title: Catal. Commun.
  doi: 10.1016/j.catcom.2008.12.052
– year: 2023
  ident: 10.1016/j.chemosphere.2024.143174_bib41
  article-title: Sulfidation performance of unsupported and SBA 15-supported Ca-based mixed metal oxides
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2023.07.241
– volume: 262
  start-page: 217
  year: 2015
  ident: 10.1016/j.chemosphere.2024.143174_bib76
  article-title: Decomposition of sulfur compounds by radiolysis: I. influential factors
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2014.09.070
– volume: 252
  start-page: 98
  year: 2019
  ident: 10.1016/j.chemosphere.2024.143174_bib110
  article-title: Insight into the effect of morphology on catalytic performance of porous CeO2 nanocrystals for H2S selective oxidation
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2019.04.014
– volume: 282
  start-page: 58
  year: 2015
  ident: 10.1016/j.chemosphere.2024.143174_bib55
  article-title: Pressure drop and mass transfer in the structured cartridges with fiber-glass catalyst
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.02.026
– volume: 6
  start-page: 14774
  year: 2021
  ident: 10.1016/j.chemosphere.2024.143174_bib26
  article-title: Adsorption of hydrogen sulfide at low temperatures using an industrial molecular sieve: an experimental and theoretical study
  publication-title: ACS Omega
  doi: 10.1021/acsomega.0c06157
– volume: 119
  start-page: 4471
  year: 2019
  ident: 10.1016/j.chemosphere.2024.143174_bib33
  article-title: Recent advances in the catalytic oxidation of volatile organic compounds: a review based on pollutant sorts and sources
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00408
– volume: 411
  year: 2021
  ident: 10.1016/j.chemosphere.2024.143174_bib112
  article-title: Engineering of crystal phase over porous MnO2 with 3D morphology for highly efficient elimination of H2S
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2021.125180
– volume: 7
  year: 2019
  ident: 10.1016/j.chemosphere.2024.143174_bib39
  article-title: Synthesis and modification of zeolitic imidazolate framework (ZIF-8) nanoparticles as highly efficient adsorbent for H2S and CO2 removal from natural gas
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2019.103058
– volume: 30
  start-page: 40895
  year: 2023
  ident: 10.1016/j.chemosphere.2024.143174_bib94
  article-title: Wire-tube DBD reactor for H2S treatment: optimization of geometric and electrical parameters
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-023-25136-z
– volume: 302
  year: 2023
  ident: 10.1016/j.chemosphere.2024.143174_bib29
  article-title: Batch fabrication of H2S sensors based on evaporated Pd/WO3 film with ppb-level detection limit
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2023.127768
– year: 2021
  ident: 10.1016/j.chemosphere.2024.143174_bib37
– year: 2013
  ident: 10.1016/j.chemosphere.2024.143174_bib100
– start-page: 281
  year: 2020
  ident: 10.1016/j.chemosphere.2024.143174_bib67
– volume: 280
  year: 2021
  ident: 10.1016/j.chemosphere.2024.143174_bib63
  article-title: Two-dimensional CaO/carbon heterostructures with unprecedented catalytic performance in room-temperature H2S oxidization
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2020.119444
– volume: 62
  start-page: 2216
  year: 2007
  ident: 10.1016/j.chemosphere.2024.143174_bib108
  article-title: Production of hydrogen and sulfur from hydrogen sulfide in a nonthermal-plasma pulsed corona discharge reactor
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2006.12.052
– volume: 317
  year: 2022
  ident: 10.1016/j.chemosphere.2024.143174_bib79
  article-title: Selective catalytic oxidation of pollutant H2S over Co-decorated hollow N-doped carbon nanofibers for high-performance Li-S batteries
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2022.121763
– volume: 8
  year: 2020
  ident: 10.1016/j.chemosphere.2024.143174_bib16
  article-title: Synthesis of novel and engineered UiO-66/graphene oxide nanocomposite with enhanced H2S adsorption capacity
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2020.104351
– volume: 115
  start-page: 13408
  year: 2015
  ident: 10.1016/j.chemosphere.2024.143174_bib61
  article-title: Plasma catalysis: synergistic effects at the nanoscale
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00362
– volume: 384
  year: 2020
  ident: 10.1016/j.chemosphere.2024.143174_bib97
  article-title: Adsorption and diffusion behaviors of H2, H2S, NH3, CO and H2O gases molecules on MoO3 monolayer: a DFT study
  publication-title: Phys. Lett.
  doi: 10.1016/j.physleta.2020.126533
– volume: 339
  year: 2023
  ident: 10.1016/j.chemosphere.2024.143174_bib101
  article-title: MgFe2O4-loaded N-doped biochar derived from waste cooked rice for efficient low-temperature desulfurization of H2S
  publication-title: Fuel
  doi: 10.1016/j.fuel.2022.127385
– year: 2021
  ident: 10.1016/j.chemosphere.2024.143174_bib19
– volume: 17
  start-page: 56
  year: 2015
  ident: 10.1016/j.chemosphere.2024.143174_bib103
  article-title: Toward the design of multi asymmetric surface dielectric barrier discharge (ASDBD) actuators
  publication-title: Plasma Sci. Technol.
  doi: 10.1088/1009-0630/17/1/11
– volume: 9
  start-page: 2477
  year: 2017
  ident: 10.1016/j.chemosphere.2024.143174_bib107
  article-title: A general silica-templating synthesis of alkaline mesoporous carbon catalysts for highly efficient H2S oxidation at room temperature
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b13597
– volume: 278
  year: 2019
  ident: 10.1016/j.chemosphere.2024.143174_bib17
  article-title: Adsorption of hydrogen sulfide over a novel metal organic framework –metal oxide nanocomposite: TOUO-x (TiO2/UiO-66)
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2019.07.027
– volume: 600
  year: 2022
  ident: 10.1016/j.chemosphere.2024.143174_bib82
  article-title: Microscopic functionality of FeN4 sites in polymeric carbon nitride for efficient H2S oxidation
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2022.154011
– volume: 376
  start-page: 34
  year: 2001
  ident: 10.1016/j.chemosphere.2024.143174_bib4
  article-title: Modeling of partial oxidation of hydrogen sulfide over metal oxide catalysts
  publication-title: Dokl. Chem.
  doi: 10.1023/A:1018812326380
– volume: 471
  year: 2023
  ident: 10.1016/j.chemosphere.2024.143174_bib49
  article-title: COS and H2S simultaneous removal from blast furnace gas over a tailored Cu/Zr co-doped K@TiO2 bifunctional catalyst under low temperature
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.144573
– volume: 11
  year: 2023
  ident: 10.1016/j.chemosphere.2024.143174_bib51
  article-title: Enriched oxygen vacancies of copper(I) oxide particles for enhanced removal of hydrogen sulfide at room temperature
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2023.110113
– volume: 27
  start-page: 33
  year: 2002
  ident: 10.1016/j.chemosphere.2024.143174_bib85
  article-title: Removal of H2S to ultra-low concentrations using an asymmetric hollow fibre membrane module
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/S1383-5866(01)00186-1
– volume: 211
  start-page: 213
  year: 2001
  ident: 10.1016/j.chemosphere.2024.143174_bib74
  article-title: Selective oxidation of H2S to elemental sulfur over VOx/SiO2 and V2O5 catalysts
  publication-title: Appl. Catal. Gen.
  doi: 10.1016/S0926-860X(00)00866-8
– volume: 574
  year: 2023
  ident: 10.1016/j.chemosphere.2024.143174_bib89
  article-title: A chemical kinetics simulation of plasma-catalytic dry reforming
  publication-title: Chem. Phys.
  doi: 10.1016/j.chemphys.2023.112017
– volume: 79
  start-page: 12
  year: 2006
  ident: 10.1016/j.chemosphere.2024.143174_bib69
  article-title: Kinetics of CH4, H2S and SO2 oxidation on precious metal catalysts under stagnation point flow conditions
  publication-title: J. Energy Inst.
  doi: 10.1179/174602206X90904
– volume: 88
  start-page: 229
  year: 2012
  ident: 10.1016/j.chemosphere.2024.143174_bib36
  article-title: Removal of H2S from gas stream using combined plasma photolysis technique at atmospheric pressure
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2012.02.075
– volume: 58
  start-page: 22133
  year: 2019
  ident: 10.1016/j.chemosphere.2024.143174_bib44
  article-title: Removal of hydrogen sulfide from gas streams using porous materials: a review
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.9b03800
– volume: 147
  start-page: 334
  year: 2007
  ident: 10.1016/j.chemosphere.2024.143174_bib47
  article-title: A study of Zn–Mn based sorbent for the high-temperature removal of H2S from coal-derived gas
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2007.01.018
– volume: 47
  year: 2014
  ident: 10.1016/j.chemosphere.2024.143174_bib60
  article-title: Understanding plasma catalysis through modelling and simulation—a review
  publication-title: J. Phys. Appl. Phys.
  doi: 10.1088/0022-3727/47/22/224010
– volume: 21
  start-page: 611
  year: 2001
  ident: 10.1016/j.chemosphere.2024.143174_bib56
  article-title: H2S and NH3 removal by silent discharge plasma and ozone combo-system
  publication-title: Plasma Chem. Plasma Process.
  doi: 10.1023/A:1012055203010
– volume: 244
  start-page: 93
  year: 2003
  ident: 10.1016/j.chemosphere.2024.143174_bib18
  article-title: Metal oxides in hydrogen sulfide oxidation by oxygen and sulfur dioxide: I. The comparison study of the catalytic activity. Mechanism of the interactions between H2S and SO2 on some oxides
  publication-title: Appl. Catal. Gen.
  doi: 10.1016/S0926-860X(02)00573-2
– volume: 111
  start-page: 1
  year: 2017
  ident: 10.1016/j.chemosphere.2024.143174_bib1
  article-title: A study of pollution removal in exhaust gases from animal quartering centers by combining photocatalysis with surface discharge plasma: from pilot to industrial scale
  publication-title: Chem. Eng. Process
  doi: 10.1016/j.cep.2016.10.001
– volume: 144
  start-page: 258
  year: 2009
  ident: 10.1016/j.chemosphere.2024.143174_bib45
  article-title: Effect of mass transfer on the reaction rate in a monolithic catalyst with porous walls
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2008.11.014
– year: 2016
  ident: 10.1016/j.chemosphere.2024.143174_bib71
– year: 2012
  ident: 10.1016/j.chemosphere.2024.143174_bib42
– volume: 471
  year: 2023
  ident: 10.1016/j.chemosphere.2024.143174_bib53
  article-title: Lever-inspired triboelectric respiration sensor for respiratory behavioral assessment and exhaled hydrogen sulfide detection
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.144795
– volume: 35
  start-page: 579
  year: 2001
  ident: 10.1016/j.chemosphere.2024.143174_bib27
  article-title: Odour measurements for sewage treatment works
  publication-title: Water Res.
  doi: 10.1016/S0043-1354(00)00313-4
– volume: 10
  start-page: 18308
  year: 2022
  ident: 10.1016/j.chemosphere.2024.143174_bib96
  article-title: Anti-corrosion MgO nanoparticle-equipped graphene oxide nanosheet for efficient room-temperature H2S removal
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D2TA03805F
– volume: 301
  year: 2022
  ident: 10.1016/j.chemosphere.2024.143174_bib65
  article-title: A review on sensitivity of operating parameters on biogas catalysts for selective oxidation of Hydrogen Sulfide to elemental sulfur
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2022.134579
– volume: 191
  start-page: 121
  year: 2019
  ident: 10.1016/j.chemosphere.2024.143174_bib80
  article-title: Nitrogen-rich hierarchical porous carbon nanofibers for selective oxidation of hydrogen sulfide
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2019.03.020
– volume: 118
  start-page: 133
  year: 2006
  ident: 10.1016/j.chemosphere.2024.143174_bib87
  article-title: H2S catalytic oxidation on impregnated activated carbon: experiment and modelling
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2005.12.021
– volume: 5
  year: 2015
  ident: 10.1016/j.chemosphere.2024.143174_bib13
  article-title: Efficient new process for the desulfurization of mixtures of air and hydrogen sulfide via a dielectric barrier discharge plasma
  publication-title: AIP Adv.
  doi: 10.1063/1.4935102
– volume: 6
  start-page: 2585
  year: 2023
  ident: 10.1016/j.chemosphere.2024.143174_bib106
  article-title: Ce–Mn oxide nanocomposites for catalytic removal of H2S
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.2c04959
– volume: 663
  year: 2023
  ident: 10.1016/j.chemosphere.2024.143174_bib90
  article-title: Effect of K-promoter use in iron-based plasma-catalytic conversion of CO2 and CH4 into higher value products
  publication-title: Appl. Catal. Gen.
  doi: 10.1016/j.apcata.2023.119315
– year: 2016
  ident: 10.1016/j.chemosphere.2024.143174_bib95
– volume: 45
  start-page: 3535
  year: 2021
  ident: 10.1016/j.chemosphere.2024.143174_bib104
  article-title: A solid thermal and fast synthesis of MgAl-hydrotalcite nanosheets and their applications in the catalytic elimination of carbonyl sulfide and hydrogen sulfide
  publication-title: New J. Chem.
  doi: 10.1039/D0NJ05809B
– volume: 337
  year: 2023
  ident: 10.1016/j.chemosphere.2024.143174_bib21
  article-title: A strategy of KIT-6-carrier modification towards enhancement of desulfurization properties of mesoporous Zn-based sorbents for H2S removal from hot coal gas
  publication-title: Fuel
  doi: 10.1016/j.fuel.2022.127183
– volume: 57
  start-page: 6568
  year: 2018
  ident: 10.1016/j.chemosphere.2024.143174_bib88
  article-title: Simultaneous removal of COS, H2S, and dust in industrial exhaust gas by DC corona discharge plasma
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.8b00028
– volume: 44
  start-page: 530
  year: 2005
  ident: 10.1016/j.chemosphere.2024.143174_bib3
  article-title: On the mechanism of hydrogen sulfide removal from moist air on catalytic carbonaceous adsorbents
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie049277o
– year: 2011
  ident: 10.1016/j.chemosphere.2024.143174_bib54
– volume: 228
  start-page: 1066
  year: 2013
  ident: 10.1016/j.chemosphere.2024.143174_bib35
  article-title: Energy efficiency in hydrogen sulfide removal by non-thermal plasma photolysis technique at atmospheric pressure
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2013.05.058
– volume: 279
  year: 2021
  ident: 10.1016/j.chemosphere.2024.143174_bib102
  article-title: One-step synthesis of ZnFe2O4-loaded biochar derived from leftover rice for high-performance H2S removal
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2021.119686
– year: 2015
  ident: 10.1016/j.chemosphere.2024.143174_bib20
– volume: 177
  start-page: 174
  year: 2022
  ident: 10.1016/j.chemosphere.2024.143174_bib40
  article-title: Self-assembled CuO-bearing aerogel-like hollow Al2O3 microspheres for room temperature dry capture of H2S
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2021.10.030
– volume: 46
  start-page: 5805
  year: 2017
  ident: 10.1016/j.chemosphere.2024.143174_bib75
  article-title: Plasma technology – a novel solution for CO2 conversion?
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00066E
– volume: 2
  start-page: 143
  year: 2023
  ident: 10.1016/j.chemosphere.2024.143174_bib78
  article-title: In-situ preparation of Cu-BTC modified with organic amines for H2S removal under ambient conditions
  publication-title: Resour. Chem. Mater.
– volume: 371
  start-page: 221
  year: 2021
  ident: 10.1016/j.chemosphere.2024.143174_bib68
  article-title: Hydrogen sulfide removal from biogas on ZIF-derived nitrogen-doped carbons
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2020.07.065
– volume: 25
  start-page: 928
  year: 2005
  ident: 10.1016/j.chemosphere.2024.143174_bib72
  article-title: Odour management and treatment technologies: an overview
  publication-title: Waste Manag.
  doi: 10.1016/j.wasman.2005.07.006
– volume: 59
  start-page: 7447
  year: 2020
  ident: 10.1016/j.chemosphere.2024.143174_bib12
  article-title: Preparation of nitrogen-doped porous carbon from waste polyurethane foam by hydrothermal carbonization for H2S adsorption
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.0c00498
– volume: 362
  year: 2023
  ident: 10.1016/j.chemosphere.2024.143174_bib59
  article-title: Hydrogen sulfide removal from low concentration gas streams using metal supported mesoporous silica SBA-15 adsorbent
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2023.112763
– volume: 390–391
  start-page: 221
  year: 2022
  ident: 10.1016/j.chemosphere.2024.143174_bib8
  article-title: H2S catalytic removal at low temperature over Cu- and Mg- activated carbon honeycombs
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2021.11.027
– volume: 579
  year: 2022
  ident: 10.1016/j.chemosphere.2024.143174_bib48
  article-title: Efficient removal of carbonyl sulfur and hydrogen sulfide from blast furnace gas by one-step catalytic process with modified activated carbon
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2021.152189
– year: 2009
  ident: 10.1016/j.chemosphere.2024.143174_bib81
– volume: 11
  start-page: 43
  year: 2000
  ident: 10.1016/j.chemosphere.2024.143174_bib7
  article-title: Removal of H2S in air by using gliding discharges
  publication-title: Eur. Phys. J. Appl. Phys.
  doi: 10.1051/epjap:2000144
– volume: 9
  year: 2021
  ident: 10.1016/j.chemosphere.2024.143174_bib30
  article-title: Iron-organic frameworks-derived iron oxide adsorbents for hydrogen sulfide removal at room temperature
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2021.106195
– volume: 221
  year: 2022
  ident: 10.1016/j.chemosphere.2024.143174_bib25
  article-title: Rhamnolipid increases H2S generation from waste activated sludge anaerobic fermentation: an overlooked concern
  publication-title: Water Res.
  doi: 10.1016/j.watres.2022.118742
– volume: 237
  year: 2019
  ident: 10.1016/j.chemosphere.2024.143174_bib34
  article-title: Dielectric barrier discharge for hydrogen sulphide waste gas decomposition
  publication-title: IOP Conf. Ser. Earth Environ. Sci.
  doi: 10.1088/1755-1315/237/2/022052
– volume: 7
  start-page: 2718
  year: 2022
  ident: 10.1016/j.chemosphere.2024.143174_bib86
  article-title: Kinetic study on high-temperature h2s removal over Mn-based regenerable sorbent using deactivation model
  publication-title: ACS Omega
  doi: 10.1021/acsomega.1c05243
– volume: 106
  start-page: 308
  year: 2016
  ident: 10.1016/j.chemosphere.2024.143174_bib2
  article-title: Comparative study between laboratory and large pilot scales for VOC's removal from gas streams in continuous flow surface discharge plasma
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2015.12.025
– volume: 497
  year: 2019
  ident: 10.1016/j.chemosphere.2024.143174_bib105
  article-title: Adsorption of hydrogen sulfide by amine-functionalized metal organic framework (MOF-199): an experimental and simulation study
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.143815
– volume: 14
  start-page: 27203
  year: 2022
  ident: 10.1016/j.chemosphere.2024.143174_bib52
  article-title: Designing Cu2+ as a partial substitution of protons in polyaniline emeraldine salt: room-temperature-recoverable H2S sensing properties and mechanism study
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.2c05863
– volume: 238
  year: 2022
  ident: 10.1016/j.chemosphere.2024.143174_bib109
  article-title: Preparation of hydrogen sulfide adsorbent derived from spent Fenton-like reagent modified biochar and its removal characteristics for hydrogen sulfide
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2022.107495
– volume: 16
  start-page: 856
  year: 2012
  ident: 10.1016/j.chemosphere.2024.143174_bib15
  article-title: Research on decomposition of hydrogen sulfide using nonthermal plasma with metal oxide catalysis
  publication-title: Energy Proc.
  doi: 10.1016/j.egypro.2012.01.137
– volume: 87
  start-page: 36
  year: 2016
  ident: 10.1016/j.chemosphere.2024.143174_bib58
  article-title: Iron oxide catalyst at the modified glass fiber support for selective oxidation of H2S
  publication-title: Catal. Commun.
  doi: 10.1016/j.catcom.2016.08.038
– volume: 590
  year: 2020
  ident: 10.1016/j.chemosphere.2024.143174_bib22
  article-title: Application and regeneration of honeycomb-type catalysts for the selective catalytic oxidation of H2S to sulfur from landfill gas
  publication-title: Appl. Catal. Gen.
  doi: 10.1016/j.apcata.2019.117365
– volume: 58
  start-page: 8043
  year: 2024
  ident: 10.1016/j.chemosphere.2024.143174_bib24
  article-title: The impact of bisphenol a on the anaerobic sulfur transformation: promoting sulfur flow and toxic H2S production
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.4c00612
– volume: 37
  start-page: 1335
  year: 2012
  ident: 10.1016/j.chemosphere.2024.143174_bib31
  article-title: Plasma assisted dissociation of hydrogen sulfide
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2011.10.048
– volume: 309
  start-page: 471
  year: 2017
  ident: 10.1016/j.chemosphere.2024.143174_bib70
  article-title: Combination of VOC degradation and electro-hydrodynamic pumping actions in a surface dielectric barrier discharge reactor
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.10.068
– volume: 455
  start-page: 53
  year: 2014
  ident: 10.1016/j.chemosphere.2024.143174_bib77
  article-title: Decomposition of complex mechanisms of chemical reactions into independent routes
  publication-title: Dokl. Phys. Chem.
  doi: 10.1134/S0012501614050017
– volume: 42
  start-page: 68
  year: 2017
  ident: 10.1016/j.chemosphere.2024.143174_bib32
  article-title: High conversion of hydrogen sulfide in gliding arc plasmatron
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.12.001
– volume: 305
  year: 2023
  ident: 10.1016/j.chemosphere.2024.143174_bib46
  article-title: Desulfurization of ultra-low-concentration H2S in natural gas on Cu-impregnated activated carbon: characteristics and mechanisms
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2022.122539
– volume: 51
  start-page: 414
  year: 2023
  ident: 10.1016/j.chemosphere.2024.143174_bib113
  article-title: Simultaneous treatment of various malodorous substances in gas by non-thermal plasma
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/TPS.2023.3234271
– volume: 10
  start-page: 3968
  year: 2020
  ident: 10.1016/j.chemosphere.2024.143174_bib111
  article-title: Highly efficient porous FexCe1–xO2−δ with three-dimensional hierarchical nanoflower morphology for H2S-selective oxidation
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b05486
– volume: 39
  start-page: 12480
  year: 2014
  ident: 10.1016/j.chemosphere.2024.143174_bib62
  article-title: Plasma dissociation of H2S with O2 addition
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2014.06.040
– volume: 245
  year: 2023
  ident: 10.1016/j.chemosphere.2024.143174_bib50
  article-title: Well-dispersed CuFe doping nanoparticles with mixed valence in carbon aerogel as effective adsorbent for H2S removal at low temperature
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2023.107744
– volume: 440
  year: 2022
  ident: 10.1016/j.chemosphere.2024.143174_bib92
  article-title: Degradation of mixed typical odour gases via non-thermal plasma catalysis
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2022.129751
– volume: 21
  start-page: 13127
  year: 2014
  ident: 10.1016/j.chemosphere.2024.143174_bib57
  article-title: Removal of gas-phase ammonia and hydrogen sulfide using photocatalysis, nonthermal plasma, and combined plasma and photocatalysis at pilot scale
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-014-3244-6
– volume: 63
  start-page: 2707
  year: 2008
  ident: 10.1016/j.chemosphere.2024.143174_bib99
  article-title: A study of kinetic effects due to using microfibrous entrapped zinc oxide sorbents for hydrogen sulfide removal
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2008.02.025
– volume: 76
  start-page: 902
  year: 1998
  ident: 10.1016/j.chemosphere.2024.143174_bib14
  article-title: Kinetics and reaction mechanism of catalytic oxidation of low concentrations of hydrogen sulfide in natural gas over activated carbon
  publication-title: Can. J. Chem. Eng.
  doi: 10.1002/cjce.5450760507
– volume: 261
  start-page: 38
  year: 2013
  ident: 10.1016/j.chemosphere.2024.143174_bib9
  article-title: Removal of H2S in a novel dielectric barrier discharge reactor with photocatalytic electrode and activated carbon fiber
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2013.06.075
– volume: 215
  year: 2022
  ident: 10.1016/j.chemosphere.2024.143174_bib66
  article-title: Controlling the Fe2O3–SiO2 interaction: the effect on the H2S selective catalytic oxidation and catalyst deactivation
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2022.114354
– volume: 768
  year: 2021
  ident: 10.1016/j.chemosphere.2024.143174_bib10
  article-title: A regenerable N-rich hierarchical porous carbon synthesized from waste biomass for H2S removal at room temperature
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.144452
– volume: 431
  year: 2022
  ident: 10.1016/j.chemosphere.2024.143174_bib11
  article-title: CuFe2O4/activated carbon adsorbents enhance H2S adsorption and catalytic oxidation from humidified air at room temperature
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.134097
– volume: 117
  start-page: 9755
  year: 2017
  ident: 10.1016/j.chemosphere.2024.143174_bib73
  article-title: Hydrogen sulfide capture: from absorption in polar liquids to oxide, zeolite, and metal–organic framework adsorbents and membranes
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00095
– volume: 6
  start-page: 1414
  year: 2018
  ident: 10.1016/j.chemosphere.2024.143174_bib64
  article-title: The low temperature selective oxidation of H2S to elemental sulfur on TiO2 supported V2O5 catalysts
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2018.01.045
– volume: 176
  year: 2022
  ident: 10.1016/j.chemosphere.2024.143174_bib28
  article-title: Research on the removal of H2S using dielectric barrier discharge combined with photocatalysis and the fate of sulfur in the reaction
  publication-title: Chem. Eng. Process
  doi: 10.1016/j.cep.2022.108984
– volume: 276
  start-page: 388
  year: 2015
  ident: 10.1016/j.chemosphere.2024.143174_bib84
  article-title: Effect of washcoat diffusion resistance in foam based catalytic reactors
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.03.132
– volume: 160
  start-page: 44
  year: 2018
  ident: 10.1016/j.chemosphere.2024.143174_bib5
  article-title: 13X Ex-Cu zeolite performance characterization towards H2S removal for biogas use in molten carbonate fuel cells
  publication-title: Energy
  doi: 10.1016/j.energy.2018.05.057
– volume: 11
  start-page: 335
  year: 2019
  ident: 10.1016/j.chemosphere.2024.143174_bib6
  article-title: Alkaline-modified activated carbons for removing hydrogen sulfide from air via sorption and catalytic oxidation: studying the effect of thermal treatment on the properties of materials
  publication-title: Catalogue Index
  doi: 10.1134/S2070050419040020
– volume: 451
  year: 2023
  ident: 10.1016/j.chemosphere.2024.143174_bib23
  article-title: Urea-modified Cu-based materials: highly efficient and support-free adsorbents for removal of H2S in an anaerobic and dry environment
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.138815
– volume: 424
  year: 2022
  ident: 10.1016/j.chemosphere.2024.143174_bib93
  article-title: Super-high N-doping promoted formation of sulfur radicals for continuous catalytic oxidation of H2S over biomass derived activated carbon
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2021.127648
– volume: 319
  year: 2022
  ident: 10.1016/j.chemosphere.2024.143174_bib91
  article-title: Copper supported on activated carbon from hydrochar of pomelo peel for efficient H2S removal at room temperature: role of copper valance, humidity and oxygen
  publication-title: Fuel
  doi: 10.1016/j.fuel.2022.123774
– year: 2007
  ident: 10.1016/j.chemosphere.2024.143174_bib38
– volume: 266
  year: 2020
  ident: 10.1016/j.chemosphere.2024.143174_bib98
  article-title: Bifunctional ZnO-MgO/activated carbon adsorbents boost H2S room temperature adsorption and catalytic oxidation
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2020.118674
SSID ssj0001659
Score 2.4537952
SecondaryResourceType review_article
Snippet Air pollution is a long-standing environmental challenge as well an important economic subject. Hydrogen sulfide is one the major pollutants in the industrial...
SourceID hal
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 143174
SubjectTerms air pollution
catalysts
catalytic activity
Catalytic oxidation
Engineering Sciences
H2S
hydrogen sulfide
Industrial practice
Mass transfer
Non-thermal plasma
oxidation
porosity
relative humidity
Scale-up
temperature
Title Progress on hydrogen sulfide removal: From catalytic oxidation to plasma-assisted treatment
URI https://dx.doi.org/10.1016/j.chemosphere.2024.143174
https://www.ncbi.nlm.nih.gov/pubmed/39181465
https://www.proquest.com/docview/3097150246
https://www.proquest.com/docview/3165864808
https://minesparis-psl.hal.science/hal-04871338
Volume 364
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB41qXhcKloohELlIq5L17u240W9RFGjAG3VA5UicbDsrFdN1exGeSBy4bczs4-UHlohcbS1fn0ezXz2zowBPqLFptdSw4BnYxUIyX2gldAUBWJtlGYuLPMWnF-o4ZX4OpKjLeg3sTDkVlnr_kqnl9q6rjmu0TyeTSYU40tsBAkEHYG6fNSC7ShOlGzDdu_Lt-HFRiFzJSsWLGRADZ7C0Z2bF0IzLRYUwk9JMyOBqgNNqnjITLWuyV_yITJaGqXBC9ip2STrVRPehS2f78GzfvOI2x48OS2zUq9fwo9L8sRCvcaKnF2vUyz5nC1Wt9kk9WyO00OZ-8wG82LKyjudNfbJil-T6tEltizYDJn21AZIt0k2UrZxUn8FV4PT7_1hUL-sEIzRZC0Dq5PMeynjbpp0MyFcNuY2VtqnXZUKb60TTiOTEKGzsXaxSxAU5Io8GXtB7fahnRe5fwNMae3weM0pUZiIwtjGXifS4bGFBlC6A1EDpJlVCTRM41l2Y_5C3xD6pkK_AycN5OaeNBhU9P_S_ANu02Y4yqA97J0ZqkOFVR7Lf_IOHDW7aHBT6D-JzX2xWpiY8mpJ7E498g0KFQl1iAt8XYnAZjzEiS5W5dv_W8UBPKdS5dD2DtrL-cq_Rwa0dIfQ-vSbH9Zy_geV9QQd
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB4BFdALKq82LYUFcTWx493NuuKCIqIAAXEAKRKH1W68FkHEjvKomkt_e2f8CPQAqtSj116v_e1o5hv721mAY4zYtFuq7wVJX3pcBM5TkitaBWJMI06sn9ctuL6RnXt-2RO9JWhVa2FIVln6_sKn5966bKmXaNZHgwGt8SU2ggSCUqBm0FuGD1yETdL1nfx-0XkEUhQcmAuPLl-DwxeRFwIzzCa0gJ9KZjY4Og4MqPytILX8SGrJt6hoHpLan2Cj5JLsrHjcTVhy6Rast6ot3LZg9TyvST3fhodb0mGhV2NZyh7nMR65lE1mz8kgdmyMj4cW94O1x9mQ5V905nhPlv0aFFsusWnGRsizh8ZDsk2WEbOFRH0H7tvnd62OV-6r4PUxYE09o6LEOYFYxVEz4dwm_cCEUrm4KWPujLHcKuQR3LcmVDa0EYKCTDGI-o5Tv11YSbPUfQEmlbKYXAdUJow3_NCETkXCYtJCA0hVg0YFpB4V5TN0pSt70q_Q14S-LtCvwWkFuf7LFjS6-X_pfoTTtBiO6md3zrqa2tBd5Un5z6AGh9UsapwU-ktiUpfNJjqkqloCbyffuQaNikzaxxf8XJjAYjzEiT6riq__9xYHsN65u-7q7sXN1Tf4SGcKadserEzHM_cdudDU7ue2_gfKRgTo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Progress+on+hydrogen+sulfide+removal%3A+From+catalytic+oxidation+to+plasma-assisted+treatment&rft.jtitle=Chemosphere+%28Oxford%29&rft.au=Wang%2C+Shengfei&rft.au=Rohani%2C+Vandad&rft.au=Leroux%2C+Patrick&rft.au=Gracian%2C+Catherine&rft.date=2024-09-01&rft.pub=Elsevier+Ltd&rft.issn=0045-6535&rft.volume=364&rft_id=info:doi/10.1016%2Fj.chemosphere.2024.143174&rft.externalDocID=S004565352402071X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-6535&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-6535&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-6535&client=summon