Fitted fractional reproducing kernel algorithm for the numerical solutions of ABC – Fractional Volterra integro-differential equations
•In this analysis, by developed the reproducing kernel algorithm within the Atangana–Baleanu fractional operator, the numerical solutions of Volterra integro-differential equations are discussed with respect to initial conditions of necessity.•The solution methodology involves the use of couple Hilb...
Saved in:
Published in | Chaos, solitons and fractals Vol. 126; pp. 394 - 402 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.09.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •In this analysis, by developed the reproducing kernel algorithm within the Atangana–Baleanu fractional operator, the numerical solutions of Volterra integro-differential equations are discussed with respect to initial conditions of necessity.•The solution methodology involves the use of couple Hilbert spaces for both range and domain space.•Numerical algorithm and procedure of solution are assembled compatibility with the optimal formulation of the problem.•The optimal profiles show the performance of the numerical solutions and the effect of the Atangana–Baleanu fractional operator in the obtained results.•In this approach, computational simulations are introduced to delineate the suitability, straightforwardness, and relevance of the calculations created.
This paper focuses on providing a novel high-order algorithm for the numerical solutions of fractional order Volterra integro-differential equations using Atangana–Baleanu approach by employing the reproducing kernel approximation. For this purpose, we investigate couples of Hilbert spaces and kernel functions, as well as, the regularity properties of Atangana–Baleanu derivative, and utilize that the representation theorem of its solution. To remove the singularity in the kernel function, using new Atangana–Baleanu approach the main operator posses smoothing solution with a better regularity properties and the reproducing kernel algorithm is designed for the required equation. The convergence properties of the proposed algorithm are also studied which proves that the new strategy exhibits a high-order of convergence with decreasing error bound. Some numerical examples of single and system formulation illustrate the performance of the approach. Summary and some notes are also provided in the case of conclusion and highlight. |
---|---|
AbstractList | •In this analysis, by developed the reproducing kernel algorithm within the Atangana–Baleanu fractional operator, the numerical solutions of Volterra integro-differential equations are discussed with respect to initial conditions of necessity.•The solution methodology involves the use of couple Hilbert spaces for both range and domain space.•Numerical algorithm and procedure of solution are assembled compatibility with the optimal formulation of the problem.•The optimal profiles show the performance of the numerical solutions and the effect of the Atangana–Baleanu fractional operator in the obtained results.•In this approach, computational simulations are introduced to delineate the suitability, straightforwardness, and relevance of the calculations created.
This paper focuses on providing a novel high-order algorithm for the numerical solutions of fractional order Volterra integro-differential equations using Atangana–Baleanu approach by employing the reproducing kernel approximation. For this purpose, we investigate couples of Hilbert spaces and kernel functions, as well as, the regularity properties of Atangana–Baleanu derivative, and utilize that the representation theorem of its solution. To remove the singularity in the kernel function, using new Atangana–Baleanu approach the main operator posses smoothing solution with a better regularity properties and the reproducing kernel algorithm is designed for the required equation. The convergence properties of the proposed algorithm are also studied which proves that the new strategy exhibits a high-order of convergence with decreasing error bound. Some numerical examples of single and system formulation illustrate the performance of the approach. Summary and some notes are also provided in the case of conclusion and highlight. |
Author | Maayah, Banan Arqub, Omar Abu |
Author_xml | – sequence: 1 givenname: Omar Abu orcidid: 0000-0001-9526-6095 surname: Arqub fullname: Arqub, Omar Abu email: o.abuarqub@ju.edu.jo – sequence: 2 givenname: Banan surname: Maayah fullname: Maayah, Banan |
BookMark | eNqFkL9uFDEQhy2USFz-PEEav8Au493b9bqgCCeOIEWiAVrLa4_vfOzZYexDoktJzxvyJNm7ICFRQDXFb76fZr4LdhZTRMZuBNQCRP9qV9utSbluQKgaZA1N-4ItxCDbqhkGecYWoHqoQEr1kl3kvAMAAX2zYD_WoRR03JOxJaRoJk74QMkdbIgb_gUp4sTNtEkUynbPfSJetsjjYY8U7Lye03Q4kpknz2_frPivx598_afuc5oKEhkeYsENpcoF75EwljCn-PVgTvQVO_dmynj9e16yT-u3H1d31f2Hd-9Xt_eVbaEtlemUNNa2jfCd6gffgVejsoPtRrccmyX6HttReSsARycBBwQnO4nLrm9s59pLpp57LaWcCb22oZxOKGTCpAXoo1K90yel-qhUg9Sz0plt_2IfKOwNff8P9fqZwvmtbwFJZxswWnSB0BbtUvgn_wSl2pkc |
CitedBy_id | crossref_primary_10_1142_S0218348X20400101 crossref_primary_10_1155_2023_7210126 crossref_primary_10_1142_S1793962321500045 crossref_primary_10_1007_s40808_020_00970_z crossref_primary_10_1016_j_aej_2020_04_037 crossref_primary_10_1007_s11071_020_06152_x crossref_primary_10_1016_j_aej_2020_11_009 crossref_primary_10_1142_S0218348X20400071 crossref_primary_10_1007_s12190_020_01353_4 crossref_primary_10_1016_j_aej_2019_12_012 crossref_primary_10_1088_1402_4896_abb420 crossref_primary_10_1002_mma_7552 crossref_primary_10_1016_j_apnum_2020_01_004 crossref_primary_10_1016_j_rinp_2022_105912 crossref_primary_10_1007_s40435_021_00772_w crossref_primary_10_1007_s40435_023_01294_3 crossref_primary_10_1016_j_joes_2021_09_005 crossref_primary_10_1016_j_chaos_2020_109754 crossref_primary_10_1016_j_chaos_2019_109478 crossref_primary_10_1016_j_chaos_2021_111602 crossref_primary_10_1109_TCSII_2020_3024147 crossref_primary_10_1016_j_aej_2020_04_029 crossref_primary_10_1016_j_chaos_2020_109630 crossref_primary_10_1016_j_chaos_2020_109991 crossref_primary_10_1016_j_physa_2019_123257 crossref_primary_10_1007_s12190_020_01381_0 crossref_primary_10_1088_1402_4896_ab96e0 crossref_primary_10_1016_j_padiff_2021_100164 crossref_primary_10_1007_s00366_020_01132_6 crossref_primary_10_3934_math_2023011 crossref_primary_10_1002_mma_7305 crossref_primary_10_1016_j_chaos_2020_109720 crossref_primary_10_1007_s40819_022_01334_0 crossref_primary_10_1016_j_aej_2020_02_003 crossref_primary_10_1016_j_joes_2021_03_002 crossref_primary_10_1007_s11042_020_08968_6 crossref_primary_10_1080_00207160_2021_1924367 crossref_primary_10_1016_j_aej_2020_01_054 crossref_primary_10_1016_j_aej_2019_12_034 crossref_primary_10_1016_j_cam_2020_113318 crossref_primary_10_3390_math8060923 crossref_primary_10_3934_math_2020151 crossref_primary_10_1142_S1793962321410038 crossref_primary_10_1016_j_aej_2020_02_010 crossref_primary_10_1002_num_22578 crossref_primary_10_1016_j_joes_2020_01_004 crossref_primary_10_1155_2020_8875792 crossref_primary_10_1016_j_aml_2024_109073 crossref_primary_10_1007_s40819_022_01397_z crossref_primary_10_1016_j_ins_2020_05_055 crossref_primary_10_1007_s12190_021_01573_2 crossref_primary_10_1016_j_aej_2019_11_020 crossref_primary_10_1007_s41066_023_00364_3 crossref_primary_10_1016_j_amc_2021_126237 crossref_primary_10_1002_mma_6316 crossref_primary_10_1016_j_rinp_2021_104210 crossref_primary_10_1155_2021_9702569 crossref_primary_10_1007_s40435_019_00607_9 crossref_primary_10_1007_s40819_022_01316_2 crossref_primary_10_1155_2022_9240772 crossref_primary_10_1016_j_chaos_2021_111127 crossref_primary_10_1007_s11071_020_06150_z crossref_primary_10_18034_ei_v9i2_560 crossref_primary_10_1016_j_aej_2020_01_037 crossref_primary_10_52866_ijcsm_2019_01_01_001 crossref_primary_10_1186_s13661_022_01684_0 crossref_primary_10_1088_1402_4896_ac0867 crossref_primary_10_1002_num_22915 crossref_primary_10_2174_2212797614666210426083837 crossref_primary_10_1088_1572_9494_ab8a29 crossref_primary_10_1515_nleng_2022_0019 crossref_primary_10_1007_s12190_024_02343_6 crossref_primary_10_1016_j_asej_2024_102830 crossref_primary_10_1016_j_chaos_2019_109552 crossref_primary_10_1007_s12591_020_00516_w crossref_primary_10_1016_j_rico_2024_100450 crossref_primary_10_1080_16583655_2020_1737357 crossref_primary_10_32604_cmc_2021_014674 crossref_primary_10_3934_math_2020066 crossref_primary_10_1002_mma_7228 crossref_primary_10_1038_s41598_022_23182_0 crossref_primary_10_1016_j_chaos_2021_110891 crossref_primary_10_3846_mma_2021_11436 crossref_primary_10_1007_s12190_020_01477_7 crossref_primary_10_2298_TSCI23S1211M crossref_primary_10_1007_s11766_021_3761_2 crossref_primary_10_1016_j_aej_2021_09_007 crossref_primary_10_1016_j_aej_2021_12_044 crossref_primary_10_1016_j_padiff_2024_100874 crossref_primary_10_1007_s12668_021_00857_y crossref_primary_10_1016_j_aej_2021_04_068 crossref_primary_10_3390_fractalfract6090492 crossref_primary_10_1007_s00500_020_04687_0 crossref_primary_10_1007_s40096_021_00409_1 crossref_primary_10_1007_s12190_020_01333_8 crossref_primary_10_1016_j_joes_2022_04_023 crossref_primary_10_1007_s12190_020_01431_7 crossref_primary_10_1016_j_apnum_2021_09_005 |
Cites_doi | 10.1002/num.21809 10.1016/j.cam.2018.07.023 10.1016/j.chaos.2018.07.033 10.1016/j.jcp.2014.08.004 10.1007/s12043-017-1374-3 10.1016/j.apm.2015.01.021 10.22436/jnsa.009.05.46 10.1007/s00521-015-2110-x 10.1016/j.ijleo.2018.03.006 10.1016/j.jcp.2014.09.034 10.1016/j.aml.2005.10.010 10.1016/j.chaos.2016.03.026 10.1051/mmnp/201712302 10.1002/num.22209 10.1615/JPorMedia.2019028970 10.1016/j.chaos.2018.10.013 10.1016/j.aml.2011.10.025 10.1007/s00500-015-1707-4 10.1016/j.cam.2009.01.012 10.2298/TSCI160111018A 10.1016/S0006-3495(72)86068-5 10.3233/FI-2016-1384 10.1108/HFF-07-2016-0278 10.1002/mma.5530 10.1016/j.chaos.2019.05.025 10.1002/num.22236 10.1002/mma.3884 10.1016/j.chaos.2018.07.032 10.1016/j.aml.2013.05.006 10.1007/BF00288786 10.1016/j.cam.2013.04.040 10.1016/j.chaos.2018.10.007 10.1007/s13226-014-0047-x 10.1140/epjp/i2018-12021-3 10.3233/FI-2019-1796 10.3390/e18080402 10.1007/s00500-016-2262-3 10.1016/j.cjph.2018.06.009 10.1016/j.camwa.2016.11.032 10.1007/s11071-018-4459-8 10.1007/s10092-018-0274-3 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd |
Copyright_xml | – notice: 2019 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.chaos.2019.07.023 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Mathematics |
EISSN | 1873-2887 |
EndPage | 402 |
ExternalDocumentID | 10_1016_j_chaos_2019_07_023 S0960077919302759 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABMAC ABNEU ABTAH ABXDB ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HLZ HMV HVGLF HZ~ IHE J1W KOM LG9 M38 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SPD SPG SSQ SSZ T5K WUQ XPP ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c303t-a597acc321f5968f50f9b9c8c5bd4b24ef6e3b9fc10ebd70e8e0d757e4562c5d3 |
IEDL.DBID | .~1 |
ISSN | 0960-0779 |
IngestDate | Tue Jul 01 02:00:43 EDT 2025 Thu Apr 24 22:53:13 EDT 2025 Fri Feb 23 02:18:26 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Atangana–Baleanu fractional approach Volterra integro-differential equation Reproducing kernel algorithm |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c303t-a597acc321f5968f50f9b9c8c5bd4b24ef6e3b9fc10ebd70e8e0d757e4562c5d3 |
ORCID | 0000-0001-9526-6095 |
PageCount | 9 |
ParticipantIDs | crossref_citationtrail_10_1016_j_chaos_2019_07_023 crossref_primary_10_1016_j_chaos_2019_07_023 elsevier_sciencedirect_doi_10_1016_j_chaos_2019_07_023 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2019 2019-09-00 |
PublicationDateYYYYMMDD | 2019-09-01 |
PublicationDate_xml | – month: 09 year: 2019 text: September 2019 |
PublicationDecade | 2010 |
PublicationTitle | Chaos, solitons and fractals |
PublicationYear | 2019 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Yépez-Martínez, Gómez-Aguilar, Sosa, Reyes, Torres-Jiménez (bib0008) 2016; 62 Zaslavsky (bib0006) 2005 Wilson, Cowan (bib0003) 1972; 12 Abu Arqub (bib0030) 2018; 28 Abu Arqub (bib0037) 2017; 28 Akgül (bib0052) 2018; 114 Abu Arqub (bib0031) 2016; 39 El-Ajou, Abu Arqub, Al-Smadi (bib0017) 2015; 256 Jiang, Chen (bib0045) 2014; 30 Atangana, Baleanu (bib0018) 2016; 20 Berlinet, Agnan (bib0026) 2004 Abu Arqub, Al-Smadi (bib0039) 2018; 34 Geng, Qian, Li (bib0046) 2014; 255 Abu Arqub (bib0038) 2016; 146 Weinert (bib0028) 1982 Atangana, Gómez-Aguilar (bib0019) 2018; 133 Geng, Qian (bib0044) 2013; 26 Geng, Cui (bib0047) 2012; 25 Geng, Qian (bib0049) 2015; 39 Jiang, Chen (bib0048) 2013; 219 Zhoua, Cui, Lin (bib0051) 2009; 230 Abu Arqub (bib0029) 2017; 73 El-Ajou, Abu Arqub, Momani, Baleanu, Alsaedi (bib0015) 2015; 257 Abu Arqub, Maayah (bib0054) 2019; 125 Rezazadeh, Osman, Eslami, Ekici, Sonmezoglu, Asma, Othman, Wong, Mirzazadeh, Zhou, Biswas, Belic (bib0010) 2018; 164 Abu Arqub, Al-Smadi, Momani, Hayat (bib0036) 2017; 21 Gómez-Aguilar, Morales-Delgado, Taneco-Hernández, Baleanu, Escobar-Jiménez, Al Qurashi (bib0001) 2016; 18 Abu Arqub (bib0053) 2019; 166 Mainardi (bib0005) 2010 Algahtani (bib0024) 2016; 89 Abu Arqub, Maayah (bib0058) 2018; 117 Djida, Atangana, Area (bib0020) 2017; 12 Atangana (bib0022) 2016; 273 Yépez-Martínez, Gómez-Aguilar (bib0009) 2019; 346 Lin, Cui, Yang (bib0050) 2006; 19 Osman (bib0012) 2017; 88 Kilbas, Srivastava, Trujillo (bib0007) 2006 Abu Arqub, El-Ajou, Momani (bib0014) 2015; 293 Atangana, Koca (bib0023) 2016; 9 Abu Arqub (bib0040) 2018; 34 Cui, Lin (bib0025) 2009 Atangana, Nieto (bib0002) 2015; 7 El-Ajou, Abu Arqub, Momani (bib0016) 2015; 293 Daniel (bib0027) 2003 Abu Arqub, Shawagfeh (bib0056) 2019; 22 Abdel-Gawad, Osman (bib0013) 2014; 45 Momani, Abu Arqub, Hayat, Al-Sulami (bib0034) 2014; 240 Abu Arqub, Al-Smadi, Shawagfeh (bib0032) 2013; 219 Abu Arqub, Al-Smadi, Momani, Hayat (bib0035) 2016; 20 Osman, Korkmaz, Rezazadeh, Mirzazadeh, Eslami, Zhou (bib0011) 2018; 56 Atangana, Gómez-Aguilar (bib0021) 2018; 114 Abu Arqub, Al-Smadi (bib0033) 2014; 243 Abu Arqub, Al-Smadi (bib0057) 2018; 117 Abu Arqub, Shawagfeh (bib0055) 2019 Al-Smadi, Abu Arqub (bib0043) 2019; 342 Wilson, Cowan (bib0004) 1973; 13 Abu Arqub (bib0041) 2018; 55 Abu Arqub, Odibat, Al-Smadi (bib0042) 2018; 94 Abu Arqub (10.1016/j.chaos.2019.07.023_bib0029) 2017; 73 Abu Arqub (10.1016/j.chaos.2019.07.023_bib0036) 2017; 21 Abu Arqub (10.1016/j.chaos.2019.07.023_bib0054) 2019; 125 Abu Arqub (10.1016/j.chaos.2019.07.023_bib0057) 2018; 117 Atangana (10.1016/j.chaos.2019.07.023_bib0018) 2016; 20 El-Ajou (10.1016/j.chaos.2019.07.023_bib0015) 2015; 257 Osman (10.1016/j.chaos.2019.07.023_bib0012) 2017; 88 Abu Arqub (10.1016/j.chaos.2019.07.023_bib0014) 2015; 293 Al-Smadi (10.1016/j.chaos.2019.07.023_bib0043) 2019; 342 Geng (10.1016/j.chaos.2019.07.023_bib0047) 2012; 25 Jiang (10.1016/j.chaos.2019.07.023_bib0048) 2013; 219 Abu Arqub (10.1016/j.chaos.2019.07.023_bib0040) 2018; 34 Yépez-Martínez (10.1016/j.chaos.2019.07.023_bib0008) 2016; 62 Rezazadeh (10.1016/j.chaos.2019.07.023_bib0010) 2018; 164 Abu Arqub (10.1016/j.chaos.2019.07.023_bib0042) 2018; 94 Kilbas (10.1016/j.chaos.2019.07.023_bib0007) 2006 Abu Arqub (10.1016/j.chaos.2019.07.023_bib0037) 2017; 28 Atangana (10.1016/j.chaos.2019.07.023_bib0022) 2016; 273 Zaslavsky (10.1016/j.chaos.2019.07.023_bib0006) 2005 Wilson (10.1016/j.chaos.2019.07.023_bib0003) 1972; 12 Abu Arqub (10.1016/j.chaos.2019.07.023_bib0031) 2016; 39 Jiang (10.1016/j.chaos.2019.07.023_bib0045) 2014; 30 Daniel (10.1016/j.chaos.2019.07.023_bib0027) 2003 Abu Arqub (10.1016/j.chaos.2019.07.023_bib0041) 2018; 55 Atangana (10.1016/j.chaos.2019.07.023_bib0021) 2018; 114 Abu Arqub (10.1016/j.chaos.2019.07.023_bib0058) 2018; 117 Abu Arqub (10.1016/j.chaos.2019.07.023_bib0035) 2016; 20 Djida (10.1016/j.chaos.2019.07.023_bib0020) 2017; 12 Berlinet (10.1016/j.chaos.2019.07.023_bib0026) 2004 Abu Arqub (10.1016/j.chaos.2019.07.023_bib0038) 2016; 146 Geng (10.1016/j.chaos.2019.07.023_bib0046) 2014; 255 Abu Arqub (10.1016/j.chaos.2019.07.023_bib0033) 2014; 243 Abu Arqub (10.1016/j.chaos.2019.07.023_bib0056) 2019; 22 Abdel-Gawad (10.1016/j.chaos.2019.07.023_bib0013) 2014; 45 El-Ajou (10.1016/j.chaos.2019.07.023_bib0016) 2015; 293 Lin (10.1016/j.chaos.2019.07.023_bib0050) 2006; 19 Yépez-Martínez (10.1016/j.chaos.2019.07.023_bib0009) 2019; 346 Abu Arqub (10.1016/j.chaos.2019.07.023_bib0030) 2018; 28 Osman (10.1016/j.chaos.2019.07.023_bib0011) 2018; 56 Atangana (10.1016/j.chaos.2019.07.023_bib0002) 2015; 7 Abu Arqub (10.1016/j.chaos.2019.07.023_bib0053) 2019; 166 Zhoua (10.1016/j.chaos.2019.07.023_bib0051) 2009; 230 El-Ajou (10.1016/j.chaos.2019.07.023_bib0017) 2015; 256 Weinert (10.1016/j.chaos.2019.07.023_bib0028) 1982 Wilson (10.1016/j.chaos.2019.07.023_bib0004) 1973; 13 Atangana (10.1016/j.chaos.2019.07.023_bib0023) 2016; 9 Cui (10.1016/j.chaos.2019.07.023_bib0025) 2009 Abu Arqub (10.1016/j.chaos.2019.07.023_bib0039) 2018; 34 Algahtani (10.1016/j.chaos.2019.07.023_bib0024) 2016; 89 Geng (10.1016/j.chaos.2019.07.023_bib0049) 2015; 39 Mainardi (10.1016/j.chaos.2019.07.023_bib0005) 2010 Geng (10.1016/j.chaos.2019.07.023_bib0044) 2013; 26 Akgül (10.1016/j.chaos.2019.07.023_bib0052) 2018; 114 Abu Arqub (10.1016/j.chaos.2019.07.023_bib0055) 2019 Gómez-Aguilar (10.1016/j.chaos.2019.07.023_bib0001) 2016; 18 Momani (10.1016/j.chaos.2019.07.023_bib0034) 2014; 240 Abu Arqub (10.1016/j.chaos.2019.07.023_bib0032) 2013; 219 Atangana (10.1016/j.chaos.2019.07.023_bib0019) 2018; 133 |
References_xml | – year: 2010 ident: bib0005 article-title: Fractional calculus and waves in linear viscoelasticity – volume: 30 start-page: 289 year: 2014 end-page: 300 ident: bib0045 article-title: A collocation method based on reproducing kernel for a modified anomalous subdiffusion equation publication-title: Numer Methods Partial Differ Equ – volume: 117 start-page: 161 year: 2018 end-page: 167 ident: bib0057 article-title: Atangana–Baleanu fractional approach to the solutions of Bagley–Torvik and Painlevé equations in Hilbert space publication-title: Chaos Solitons Fractals – volume: 56 start-page: 2500 year: 2018 end-page: 2506 ident: bib0011 article-title: The unified method for conformable time fractional Schrödinger equation with perturbation terms publication-title: Chin J Phys – volume: 342 start-page: 280 year: 2019 end-page: 294 ident: bib0043 article-title: Computational algorithm for solving fredholm time-fractional partial integrodifferential equations of dirichlet functions type with error estimates publication-title: Appl Math Comput – volume: 19 start-page: 808 year: 2006 end-page: 813 ident: bib0050 article-title: Representation of the exact solution for a kind of nonlinear partial differential equations publication-title: Appl Math Lett – volume: 293 start-page: 81 year: 2015 end-page: 95 ident: bib0016 article-title: Approximate analytical solution of the nonlinear fractional KdV-Burgers equation: a new iterative algorithm publication-title: J Comput Phys – volume: 25 start-page: 818 year: 2012 end-page: 823 ident: bib0047 article-title: A reproducing kernel method for solving nonlocal fractional boundary value problems publication-title: Appl Math Lett – volume: 34 start-page: 1759 year: 2018 end-page: 1780 ident: bib0040 article-title: Solutions of time-fractional Tricomi and Keldysh equations of Dirichlet functions types in Hilbert space publication-title: Numer Methods Partial Differ Equ – volume: 88 start-page: 67 year: 2017 ident: bib0012 article-title: Multiwave solutions of time-fractional (2+1)-dimensional Nizhnik–Novikov–Veselov equations publication-title: Pramana – volume: 256 start-page: 851 year: 2015 end-page: 859 ident: bib0017 article-title: A general form of the generalized Taylor's formula with some applications publication-title: Appl Math Comput – volume: 28 start-page: 1591 year: 2017 end-page: 1610 ident: bib0037 article-title: Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm–Volterra integrodifferential equations publication-title: Neural Comput Appl – volume: 73 start-page: 1243 year: 2017 end-page: 1261 ident: bib0029 article-title: Fitted reproducing kernel Hilbert space method for the solutions of some certain classes of time-fractional partial differential equations subject to initial and Neumann boundary conditions publication-title: Comput Math Appl – volume: 9 start-page: 2467 year: 2016 end-page: 2480 ident: bib0023 article-title: On the new fractional derivative and application to Nonlinear Baggs and Freedman model publication-title: J Nonlinear Sci Appl – volume: 114 start-page: 478 year: 2018 end-page: 482 ident: bib0052 article-title: A novel method for a fractional derivative with non-local and non-singular kernel publication-title: Chaos Solitons Fractals – volume: 166 start-page: 111 year: 2019 end-page: 137 ident: bib0053 article-title: Numerical algorithm for the solutions of fractional order systems of Dirichlet function types with comparative analysis publication-title: Fundam Inform – volume: 28 start-page: 828 year: 2018 end-page: 856 ident: bib0030 article-title: Numerical solutions for the Robin time-fractional partial differential equations of heat and fluid flows based on the reproducing kernel algorithm publication-title: Int J Numer Methods Heat Fluid Flow – volume: 12 start-page: 4 year: 2017 end-page: 13 ident: bib0020 article-title: Numerical computation of a fractional derivative with non-local and non-singular kernel publication-title: Math Model Nat Phenom – volume: 21 start-page: 7191 year: 2017 end-page: 7206 ident: bib0036 article-title: Application of reproducing kernel algorithm for solving second-order, two-point fuzzy boundary value problems publication-title: Soft comput – volume: 293 start-page: 385 year: 2015 end-page: 399 ident: bib0014 article-title: Constructing and predicting solitary pattern solutions for nonlinear time-fractional dispersive partial differential equations publication-title: J Comput Phys – volume: 164 start-page: 84 year: 2018 end-page: 92 ident: bib0010 article-title: Mitigating Internet bottleneck with fractional temporal evolution of optical solitons having quadratic–cubic nonlinearity publication-title: Optik – year: 2009 ident: bib0025 article-title: Nonlinear numerical analysis in the reproducing kernel space – volume: 230 start-page: 770 year: 2009 end-page: 780 ident: bib0051 article-title: Numerical algorithm for parabolic problems with non-classical conditions publication-title: J Comput Appl Math – volume: 255 start-page: 97 year: 2014 end-page: 105 ident: bib0046 article-title: A numerical method for singularly perturbed turning point problems with an interior layer publication-title: J Comput Appl Math – year: 2003 ident: bib0027 article-title: Reproducing kernel spaces and applications – volume: 240 start-page: 229 year: 2014 end-page: 239 ident: bib0034 article-title: A computational method for solving periodic boundary value problems for integro-differential equations of Fredholm–Voltera type publication-title: Appl Math Comput – year: 2004 ident: bib0026 article-title: Reproducing kernel Hilbert space in probability and statistics – year: 2005 ident: bib0006 article-title: Hamiltonian chaos and fractional dynamics – volume: 114 start-page: 516 year: 2018 end-page: 535 ident: bib0021 article-title: Fractional derivatives with no-index law property: application to chaos and statistics publication-title: Chaos Solitons Fractals – volume: 257 start-page: 119 year: 2015 end-page: 133 ident: bib0015 article-title: A novel expansion iterative method for solving linear partial differential equations of fractional order publication-title: Appl Math Comput – volume: 34 start-page: 1577 year: 2018 end-page: 1597 ident: bib0039 article-title: Numerical algorithm for solving time-fractional partial integrodifferential equations subject to initial and Dirichlet boundary conditions publication-title: Numer Methods Partial Differ Equ – volume: 219 start-page: 10225 year: 2013 end-page: 10230 ident: bib0048 article-title: Solving a system of linear Volterra integral equations using the new reproducing kernel method publication-title: Appl Math Comput – volume: 39 start-page: 5592 year: 2015 end-page: 5597 ident: bib0049 article-title: Modified reproducing kernel method for singularly perturbed boundary value problems with a delay publication-title: Appl Math Model – volume: 13 start-page: 55 year: 1973 end-page: 80 ident: bib0004 article-title: A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue publication-title: Kybernetik – volume: 117 start-page: 117 year: 2018 end-page: 124 ident: bib0058 article-title: Numerical solutions of integrodifferential equations of fredholm operator type in the sense of the Atangana–Baleanu fractional operator, chaos publication-title: Solitons Fractals – volume: 18 start-page: 402 year: 2016 ident: bib0001 article-title: Analytical solutions of the electrical RLC circuit via Liouville–Caputo operators with local and non-local kernels publication-title: Entropy – volume: 26 start-page: 998 year: 2013 end-page: 1004 ident: bib0044 article-title: Reproducing kernel method for singularly perturbed turning point problems having twin boundary layers publication-title: Appl Math Lett – volume: 346 start-page: 247 year: 2019 end-page: 260 ident: bib0009 article-title: A new modified definition of Caputo–Fabrizio fractional-order derivative and their applications to the Multi Step Homotopy Analysis Method (MHAM) publication-title: J Comput Appl Math – volume: 39 start-page: 4549 year: 2016 end-page: 4562 ident: bib0031 article-title: The reproducing kernel algorithm for handling differential algebraic systems of ordinary differential equations publication-title: Math Methods Appl Sci – volume: 22 start-page: 411 year: 2019 end-page: 434 ident: bib0056 article-title: Application of reproducing kernel algorithm for solving Dirichlet time-fractional diffusion-Gordon types equations in porous media publication-title: J Porous Media – volume: 20 start-page: 763 year: 2016 end-page: 769 ident: bib0018 article-title: New fractional derivatives with non-local and non-singular kernel: theory and application to heat transfer model publication-title: Therm Sci – volume: 94 start-page: 1819 year: 2018 end-page: 1834 ident: bib0042 article-title: Numerical solutions of time-fractional partial integrodifferential equations of Robin functions types in Hilbert space with error bounds and error estimates publication-title: Nonlinear Dyn – volume: 125 start-page: 163 year: 2019 end-page: 170 ident: bib0054 article-title: Modulation of reproducing kernel Hilbert space method for numerical solutions of Riccati and Bernoulli equations in the Atangana–Baleanu fractional sense publication-title: Chaos, Solitons & Fractals – volume: 89 start-page: 552 year: 2016 end-page: 559 ident: bib0024 article-title: Comparing the Atangana–Baleanu and Caputo–Fabrizio derivative with fractional order: Allen Cahn model publication-title: Chaos Solitons Fractals – volume: 20 start-page: 3283 year: 2016 end-page: 3302 ident: bib0035 article-title: Numerical solutions of fuzzy differential equations using reproducing kernel Hilbert space method publication-title: Soft Comput – volume: 55 start-page: 1 year: 2018 end-page: 28 ident: bib0041 article-title: Numerical solutions of systems of first-order, two-point BVPs based on the reproducing kernel algorithm publication-title: Calcolo – year: 2006 ident: bib0007 article-title: Theory and applications of fractional differential equations – volume: 146 start-page: 231 year: 2016 end-page: 254 ident: bib0038 article-title: Approximate solutions of DASs with nonclassical boundary conditions using novel reproducing kernel algorithm publication-title: Fundam Inform – year: 1982 ident: bib0028 article-title: Reproducing kernel Hilbert spaces: applications in statistical signal processing – volume: 12 start-page: 1 year: 1972 end-page: 24 ident: bib0003 article-title: Excitatory and inhibitory interactions in localized populations of model neurons publication-title: Biophys J – volume: 62 start-page: 310 year: 2016 end-page: 316 ident: bib0008 article-title: The Feng's first integral method applied to the nonlinear mKdV space-time fractional partial differential equation publication-title: Rev Mex Fís – volume: 243 start-page: 911 year: 2014 end-page: 922 ident: bib0033 article-title: Numerical algorithm for solving two-point, second-order periodic boundary value problems for mixed integro-differential equations publication-title: Appl Math Comput – volume: 7 start-page: 1 year: 2015 end-page: 7 ident: bib0002 article-title: Numerical solution for the model of RLC circuit via the fractional derivative without singular kernel publication-title: Adv Mech Eng – volume: 133 start-page: 1 year: 2018 end-page: 22 ident: bib0019 article-title: Decolonisation of fractional calculus rules: breaking commutativity and associativity to capture more natural phenomena publication-title: Eur Phys J Plus – volume: 273 start-page: 948 year: 2016 end-page: 956 ident: bib0022 article-title: On the new fractional derivative and application to nonlinear Fisher's reaction-diffusion equation publication-title: Appl Math Comput – volume: 219 start-page: 8938 year: 2013 end-page: 8948 ident: bib0032 article-title: Solving Fredholm integro-differential equations using reproducing kernel Hilbert space method publication-title: Appl Math Comput – year: 2019 ident: bib0055 article-title: Solving optimal control problems of Fredholm constraint optimality via the reproducing kernel Hilbert space method with error estimates and convergence analysis publication-title: Math Methods Appl Sci – volume: 45 start-page: 1 year: 2014 end-page: 12 ident: bib0013 article-title: Exact solutions of the Korteweg-De Vries equation with space and time dependent coefficients by the extended unified method publication-title: Indian J Pure Appl Math – volume: 30 start-page: 289 year: 2014 ident: 10.1016/j.chaos.2019.07.023_bib0045 article-title: A collocation method based on reproducing kernel for a modified anomalous subdiffusion equation publication-title: Numer Methods Partial Differ Equ doi: 10.1002/num.21809 – year: 2004 ident: 10.1016/j.chaos.2019.07.023_bib0026 – volume: 346 start-page: 247 year: 2019 ident: 10.1016/j.chaos.2019.07.023_bib0009 article-title: A new modified definition of Caputo–Fabrizio fractional-order derivative and their applications to the Multi Step Homotopy Analysis Method (MHAM) publication-title: J Comput Appl Math doi: 10.1016/j.cam.2018.07.023 – volume: 114 start-page: 516 year: 2018 ident: 10.1016/j.chaos.2019.07.023_bib0021 article-title: Fractional derivatives with no-index law property: application to chaos and statistics publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2018.07.033 – volume: 62 start-page: 310 year: 2016 ident: 10.1016/j.chaos.2019.07.023_bib0008 article-title: The Feng's first integral method applied to the nonlinear mKdV space-time fractional partial differential equation publication-title: Rev Mex Fís – volume: 293 start-page: 81 year: 2015 ident: 10.1016/j.chaos.2019.07.023_bib0016 article-title: Approximate analytical solution of the nonlinear fractional KdV-Burgers equation: a new iterative algorithm publication-title: J Comput Phys doi: 10.1016/j.jcp.2014.08.004 – volume: 88 start-page: 67 year: 2017 ident: 10.1016/j.chaos.2019.07.023_bib0012 article-title: Multiwave solutions of time-fractional (2+1)-dimensional Nizhnik–Novikov–Veselov equations publication-title: Pramana doi: 10.1007/s12043-017-1374-3 – volume: 243 start-page: 911 year: 2014 ident: 10.1016/j.chaos.2019.07.023_bib0033 article-title: Numerical algorithm for solving two-point, second-order periodic boundary value problems for mixed integro-differential equations publication-title: Appl Math Comput – volume: 39 start-page: 5592 year: 2015 ident: 10.1016/j.chaos.2019.07.023_bib0049 article-title: Modified reproducing kernel method for singularly perturbed boundary value problems with a delay publication-title: Appl Math Model doi: 10.1016/j.apm.2015.01.021 – volume: 9 start-page: 2467 year: 2016 ident: 10.1016/j.chaos.2019.07.023_bib0023 article-title: On the new fractional derivative and application to Nonlinear Baggs and Freedman model publication-title: J Nonlinear Sci Appl doi: 10.22436/jnsa.009.05.46 – volume: 219 start-page: 10225 year: 2013 ident: 10.1016/j.chaos.2019.07.023_bib0048 article-title: Solving a system of linear Volterra integral equations using the new reproducing kernel method publication-title: Appl Math Comput – volume: 28 start-page: 1591 year: 2017 ident: 10.1016/j.chaos.2019.07.023_bib0037 article-title: Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm–Volterra integrodifferential equations publication-title: Neural Comput Appl doi: 10.1007/s00521-015-2110-x – volume: 219 start-page: 8938 year: 2013 ident: 10.1016/j.chaos.2019.07.023_bib0032 article-title: Solving Fredholm integro-differential equations using reproducing kernel Hilbert space method publication-title: Appl Math Comput – volume: 164 start-page: 84 year: 2018 ident: 10.1016/j.chaos.2019.07.023_bib0010 article-title: Mitigating Internet bottleneck with fractional temporal evolution of optical solitons having quadratic–cubic nonlinearity publication-title: Optik doi: 10.1016/j.ijleo.2018.03.006 – volume: 273 start-page: 948 year: 2016 ident: 10.1016/j.chaos.2019.07.023_bib0022 article-title: On the new fractional derivative and application to nonlinear Fisher's reaction-diffusion equation publication-title: Appl Math Comput – volume: 293 start-page: 385 year: 2015 ident: 10.1016/j.chaos.2019.07.023_bib0014 article-title: Constructing and predicting solitary pattern solutions for nonlinear time-fractional dispersive partial differential equations publication-title: J Comput Phys doi: 10.1016/j.jcp.2014.09.034 – volume: 19 start-page: 808 year: 2006 ident: 10.1016/j.chaos.2019.07.023_bib0050 article-title: Representation of the exact solution for a kind of nonlinear partial differential equations publication-title: Appl Math Lett doi: 10.1016/j.aml.2005.10.010 – year: 2005 ident: 10.1016/j.chaos.2019.07.023_bib0006 – volume: 89 start-page: 552 year: 2016 ident: 10.1016/j.chaos.2019.07.023_bib0024 article-title: Comparing the Atangana–Baleanu and Caputo–Fabrizio derivative with fractional order: Allen Cahn model publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2016.03.026 – volume: 12 start-page: 4 year: 2017 ident: 10.1016/j.chaos.2019.07.023_bib0020 article-title: Numerical computation of a fractional derivative with non-local and non-singular kernel publication-title: Math Model Nat Phenom doi: 10.1051/mmnp/201712302 – volume: 240 start-page: 229 year: 2014 ident: 10.1016/j.chaos.2019.07.023_bib0034 article-title: A computational method for solving periodic boundary value problems for integro-differential equations of Fredholm–Voltera type publication-title: Appl Math Comput – volume: 257 start-page: 119 year: 2015 ident: 10.1016/j.chaos.2019.07.023_bib0015 article-title: A novel expansion iterative method for solving linear partial differential equations of fractional order publication-title: Appl Math Comput – volume: 34 start-page: 1577 year: 2018 ident: 10.1016/j.chaos.2019.07.023_bib0039 article-title: Numerical algorithm for solving time-fractional partial integrodifferential equations subject to initial and Dirichlet boundary conditions publication-title: Numer Methods Partial Differ Equ doi: 10.1002/num.22209 – volume: 22 start-page: 411 year: 2019 ident: 10.1016/j.chaos.2019.07.023_bib0056 article-title: Application of reproducing kernel algorithm for solving Dirichlet time-fractional diffusion-Gordon types equations in porous media publication-title: J Porous Media doi: 10.1615/JPorMedia.2019028970 – volume: 117 start-page: 161 year: 2018 ident: 10.1016/j.chaos.2019.07.023_bib0057 article-title: Atangana–Baleanu fractional approach to the solutions of Bagley–Torvik and Painlevé equations in Hilbert space publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2018.10.013 – volume: 25 start-page: 818 year: 2012 ident: 10.1016/j.chaos.2019.07.023_bib0047 article-title: A reproducing kernel method for solving nonlocal fractional boundary value problems publication-title: Appl Math Lett doi: 10.1016/j.aml.2011.10.025 – volume: 20 start-page: 3283 year: 2016 ident: 10.1016/j.chaos.2019.07.023_bib0035 article-title: Numerical solutions of fuzzy differential equations using reproducing kernel Hilbert space method publication-title: Soft Comput doi: 10.1007/s00500-015-1707-4 – volume: 342 start-page: 280 year: 2019 ident: 10.1016/j.chaos.2019.07.023_bib0043 article-title: Computational algorithm for solving fredholm time-fractional partial integrodifferential equations of dirichlet functions type with error estimates publication-title: Appl Math Comput – volume: 230 start-page: 770 year: 2009 ident: 10.1016/j.chaos.2019.07.023_bib0051 article-title: Numerical algorithm for parabolic problems with non-classical conditions publication-title: J Comput Appl Math doi: 10.1016/j.cam.2009.01.012 – volume: 20 start-page: 763 year: 2016 ident: 10.1016/j.chaos.2019.07.023_bib0018 article-title: New fractional derivatives with non-local and non-singular kernel: theory and application to heat transfer model publication-title: Therm Sci doi: 10.2298/TSCI160111018A – volume: 12 start-page: 1 year: 1972 ident: 10.1016/j.chaos.2019.07.023_bib0003 article-title: Excitatory and inhibitory interactions in localized populations of model neurons publication-title: Biophys J doi: 10.1016/S0006-3495(72)86068-5 – volume: 146 start-page: 231 year: 2016 ident: 10.1016/j.chaos.2019.07.023_bib0038 article-title: Approximate solutions of DASs with nonclassical boundary conditions using novel reproducing kernel algorithm publication-title: Fundam Inform doi: 10.3233/FI-2016-1384 – year: 2010 ident: 10.1016/j.chaos.2019.07.023_bib0005 – volume: 28 start-page: 828 year: 2018 ident: 10.1016/j.chaos.2019.07.023_bib0030 article-title: Numerical solutions for the Robin time-fractional partial differential equations of heat and fluid flows based on the reproducing kernel algorithm publication-title: Int J Numer Methods Heat Fluid Flow doi: 10.1108/HFF-07-2016-0278 – year: 2019 ident: 10.1016/j.chaos.2019.07.023_bib0055 article-title: Solving optimal control problems of Fredholm constraint optimality via the reproducing kernel Hilbert space method with error estimates and convergence analysis publication-title: Math Methods Appl Sci doi: 10.1002/mma.5530 – volume: 125 start-page: 163 year: 2019 ident: 10.1016/j.chaos.2019.07.023_bib0054 article-title: Modulation of reproducing kernel Hilbert space method for numerical solutions of Riccati and Bernoulli equations in the Atangana–Baleanu fractional sense publication-title: Chaos, Solitons & Fractals doi: 10.1016/j.chaos.2019.05.025 – volume: 34 start-page: 1759 year: 2018 ident: 10.1016/j.chaos.2019.07.023_bib0040 article-title: Solutions of time-fractional Tricomi and Keldysh equations of Dirichlet functions types in Hilbert space publication-title: Numer Methods Partial Differ Equ doi: 10.1002/num.22236 – volume: 39 start-page: 4549 year: 2016 ident: 10.1016/j.chaos.2019.07.023_bib0031 article-title: The reproducing kernel algorithm for handling differential algebraic systems of ordinary differential equations publication-title: Math Methods Appl Sci doi: 10.1002/mma.3884 – volume: 114 start-page: 478 year: 2018 ident: 10.1016/j.chaos.2019.07.023_bib0052 article-title: A novel method for a fractional derivative with non-local and non-singular kernel publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2018.07.032 – volume: 26 start-page: 998 year: 2013 ident: 10.1016/j.chaos.2019.07.023_bib0044 article-title: Reproducing kernel method for singularly perturbed turning point problems having twin boundary layers publication-title: Appl Math Lett doi: 10.1016/j.aml.2013.05.006 – year: 1982 ident: 10.1016/j.chaos.2019.07.023_bib0028 – year: 2006 ident: 10.1016/j.chaos.2019.07.023_bib0007 – volume: 256 start-page: 851 year: 2015 ident: 10.1016/j.chaos.2019.07.023_bib0017 article-title: A general form of the generalized Taylor's formula with some applications publication-title: Appl Math Comput – volume: 13 start-page: 55 year: 1973 ident: 10.1016/j.chaos.2019.07.023_bib0004 article-title: A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue publication-title: Kybernetik doi: 10.1007/BF00288786 – volume: 255 start-page: 97 year: 2014 ident: 10.1016/j.chaos.2019.07.023_bib0046 article-title: A numerical method for singularly perturbed turning point problems with an interior layer publication-title: J Comput Appl Math doi: 10.1016/j.cam.2013.04.040 – volume: 117 start-page: 117 year: 2018 ident: 10.1016/j.chaos.2019.07.023_bib0058 article-title: Numerical solutions of integrodifferential equations of fredholm operator type in the sense of the Atangana–Baleanu fractional operator, chaos publication-title: Solitons Fractals doi: 10.1016/j.chaos.2018.10.007 – volume: 45 start-page: 1 year: 2014 ident: 10.1016/j.chaos.2019.07.023_bib0013 article-title: Exact solutions of the Korteweg-De Vries equation with space and time dependent coefficients by the extended unified method publication-title: Indian J Pure Appl Math doi: 10.1007/s13226-014-0047-x – volume: 133 start-page: 1 year: 2018 ident: 10.1016/j.chaos.2019.07.023_bib0019 article-title: Decolonisation of fractional calculus rules: breaking commutativity and associativity to capture more natural phenomena publication-title: Eur Phys J Plus doi: 10.1140/epjp/i2018-12021-3 – volume: 166 start-page: 111 issue: 2 year: 2019 ident: 10.1016/j.chaos.2019.07.023_bib0053 article-title: Numerical algorithm for the solutions of fractional order systems of Dirichlet function types with comparative analysis publication-title: Fundam Inform doi: 10.3233/FI-2019-1796 – volume: 18 start-page: 402 year: 2016 ident: 10.1016/j.chaos.2019.07.023_bib0001 article-title: Analytical solutions of the electrical RLC circuit via Liouville–Caputo operators with local and non-local kernels publication-title: Entropy doi: 10.3390/e18080402 – year: 2003 ident: 10.1016/j.chaos.2019.07.023_bib0027 – volume: 21 start-page: 7191 year: 2017 ident: 10.1016/j.chaos.2019.07.023_bib0036 article-title: Application of reproducing kernel algorithm for solving second-order, two-point fuzzy boundary value problems publication-title: Soft comput doi: 10.1007/s00500-016-2262-3 – volume: 56 start-page: 2500 year: 2018 ident: 10.1016/j.chaos.2019.07.023_bib0011 article-title: The unified method for conformable time fractional Schrödinger equation with perturbation terms publication-title: Chin J Phys doi: 10.1016/j.cjph.2018.06.009 – volume: 73 start-page: 1243 year: 2017 ident: 10.1016/j.chaos.2019.07.023_bib0029 article-title: Fitted reproducing kernel Hilbert space method for the solutions of some certain classes of time-fractional partial differential equations subject to initial and Neumann boundary conditions publication-title: Comput Math Appl doi: 10.1016/j.camwa.2016.11.032 – volume: 94 start-page: 1819 year: 2018 ident: 10.1016/j.chaos.2019.07.023_bib0042 article-title: Numerical solutions of time-fractional partial integrodifferential equations of Robin functions types in Hilbert space with error bounds and error estimates publication-title: Nonlinear Dyn doi: 10.1007/s11071-018-4459-8 – volume: 7 start-page: 1 issue: 2015 year: 2015 ident: 10.1016/j.chaos.2019.07.023_bib0002 article-title: Numerical solution for the model of RLC circuit via the fractional derivative without singular kernel publication-title: Adv Mech Eng – volume: 55 start-page: 1 year: 2018 ident: 10.1016/j.chaos.2019.07.023_bib0041 article-title: Numerical solutions of systems of first-order, two-point BVPs based on the reproducing kernel algorithm publication-title: Calcolo doi: 10.1007/s10092-018-0274-3 – year: 2009 ident: 10.1016/j.chaos.2019.07.023_bib0025 |
SSID | ssj0001062 |
Score | 2.5646613 |
Snippet | •In this analysis, by developed the reproducing kernel algorithm within the Atangana–Baleanu fractional operator, the numerical solutions of Volterra... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 394 |
SubjectTerms | Atangana–Baleanu fractional approach Reproducing kernel algorithm Volterra integro-differential equation |
Title | Fitted fractional reproducing kernel algorithm for the numerical solutions of ABC – Fractional Volterra integro-differential equations |
URI | https://dx.doi.org/10.1016/j.chaos.2019.07.023 |
Volume | 126 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQLDAgKCDe8sAAEqFu49TxWCqqAioLD7FFsWNDISSQhhUxsvMP-SXc5VFAQgyMsWwr8p3vvtPdfSZkB9TG85nFixS5DrcydMANozHkTDPjdnyLvcPDs87gkp9ce9dTpFf3wmBZZWX7S5teWOtqpFmdZvNxNGqeI_hmQkiAIJh7wyY-zgVq-cHLV5kHhDxFJgEmOzi7Zh4qarz0bZgiZ3dLFgyebfd37_TN4_QXyHwFFWm3_JtFMmWSBpkbTnhWxw2yWF3NMd2t-KP3lshbf5QDjqQ2K5sWYA-krkRmV_BT9N5kiYlpGN-k2Si_faAAWynsSZPnMnsT04k-0tTS7mGPfry-0_7Xdlcp5tizkJZkE6lTP7MC5iKm5qmkDx8vk8v-0UVv4FQPLjgaPFnuhBBdhFq77Zb1JEjJY1YqqX3tqYirNje2Y1wlrW4xoyLBjG9YJDxhMIzSXuSukOkkTcwqoQAbtSu1Za72OYQlylMAJoTi0gqAeGqNtOuDDnTFRo6PYsRBXXZ2FxTSCVA6ARMBSGeN7E8WPZZkHH9P79QSDH7oVADu4q-F6_9duEFm8ausQdsk03n2bLYAtORqu9DKbTLTPT4dnH0Ci0Pu_w |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7R5UA5VDxaQQvUBw4gEa13E2_i47JitRR2LzzEzYodm10ICc2GO0fu_Yf9JYwTZ2mlikOvsceKPOOZbzTjzwD7aDYsosYepMT3AsNjD8OwdYYBVVT7vcjYu8PjSW90Ffy4YTdLMGjuwti2Suf7a59eeWv3pe12s_04m7UvLPimYcgRgtjaG_8Ay5adirVguX96NposHDJmPVUxAed7VqAhH6ravNQ0zi1td4dXJJ5d_98B6o-gM1yDTw4tkn79Q-uwpLMNWB0vqFbnG7DuTuecHDgK6cNNeBnOSoSSxBT1vQVcw7JXWnJXDFXkXheZTkmc3ubFrJw-EESuBNck2VNdwEnJwiRJbkj_eEB-P_8iw7flrnNbZi9iUvNN5F7z0gp6jJTonzWD-PwzXA1PLgcjz7254CkMZqUXY4IRK-V3O4ZxVBSjhkuuIsVkEshuoE1P-5Ib1aFaJiHVkaZJyEJtMynFEv8LtLI801tAEDkqnytDfRUFmJlIJhFPhDLgJkSUJ7eh22y0UI6Q3L6LkYqm8-xOVNoRVjuChgK1sw1HC6HHmo_j_em9RoPiL7MSGDHeE_z6v4LfYWV0OT4X56eTs2_w0Y7ULWk70CqLJ72LGKaUe85GXwG0__Gw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fitted+fractional+reproducing+kernel+algorithm+for+the+numerical+solutions+of+ABC+%E2%80%93+Fractional+Volterra+integro-differential+equations&rft.jtitle=Chaos%2C+solitons+and+fractals&rft.au=Arqub%2C+Omar+Abu&rft.au=Maayah%2C+Banan&rft.date=2019-09-01&rft.issn=0960-0779&rft.volume=126&rft.spage=394&rft.epage=402&rft_id=info:doi/10.1016%2Fj.chaos.2019.07.023&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_chaos_2019_07_023 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-0779&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-0779&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-0779&client=summon |