Fitted fractional reproducing kernel algorithm for the numerical solutions of ABC – Fractional Volterra integro-differential equations

•In this analysis, by developed the reproducing kernel algorithm within the Atangana–Baleanu fractional operator, the numerical solutions of Volterra integro-differential equations are discussed with respect to initial conditions of necessity.•The solution methodology involves the use of couple Hilb...

Full description

Saved in:
Bibliographic Details
Published inChaos, solitons and fractals Vol. 126; pp. 394 - 402
Main Authors Arqub, Omar Abu, Maayah, Banan
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.09.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •In this analysis, by developed the reproducing kernel algorithm within the Atangana–Baleanu fractional operator, the numerical solutions of Volterra integro-differential equations are discussed with respect to initial conditions of necessity.•The solution methodology involves the use of couple Hilbert spaces for both range and domain space.•Numerical algorithm and procedure of solution are assembled compatibility with the optimal formulation of the problem.•The optimal profiles show the performance of the numerical solutions and the effect of the Atangana–Baleanu fractional operator in the obtained results.•In this approach, computational simulations are introduced to delineate the suitability, straightforwardness, and relevance of the calculations created. This paper focuses on providing a novel high-order algorithm for the numerical solutions of fractional order Volterra integro-differential equations using Atangana–Baleanu approach by employing the reproducing kernel approximation. For this purpose, we investigate couples of Hilbert spaces and kernel functions, as well as, the regularity properties of Atangana–Baleanu derivative, and utilize that the representation theorem of its solution. To remove the singularity in the kernel function, using new Atangana–Baleanu approach the main operator posses smoothing solution with a better regularity properties and the reproducing kernel algorithm is designed for the required equation. The convergence properties of the proposed algorithm are also studied which proves that the new strategy exhibits a high-order of convergence with decreasing error bound. Some numerical examples of single and system formulation illustrate the performance of the approach. Summary and some notes are also provided in the case of conclusion and highlight.
AbstractList •In this analysis, by developed the reproducing kernel algorithm within the Atangana–Baleanu fractional operator, the numerical solutions of Volterra integro-differential equations are discussed with respect to initial conditions of necessity.•The solution methodology involves the use of couple Hilbert spaces for both range and domain space.•Numerical algorithm and procedure of solution are assembled compatibility with the optimal formulation of the problem.•The optimal profiles show the performance of the numerical solutions and the effect of the Atangana–Baleanu fractional operator in the obtained results.•In this approach, computational simulations are introduced to delineate the suitability, straightforwardness, and relevance of the calculations created. This paper focuses on providing a novel high-order algorithm for the numerical solutions of fractional order Volterra integro-differential equations using Atangana–Baleanu approach by employing the reproducing kernel approximation. For this purpose, we investigate couples of Hilbert spaces and kernel functions, as well as, the regularity properties of Atangana–Baleanu derivative, and utilize that the representation theorem of its solution. To remove the singularity in the kernel function, using new Atangana–Baleanu approach the main operator posses smoothing solution with a better regularity properties and the reproducing kernel algorithm is designed for the required equation. The convergence properties of the proposed algorithm are also studied which proves that the new strategy exhibits a high-order of convergence with decreasing error bound. Some numerical examples of single and system formulation illustrate the performance of the approach. Summary and some notes are also provided in the case of conclusion and highlight.
Author Maayah, Banan
Arqub, Omar Abu
Author_xml – sequence: 1
  givenname: Omar Abu
  orcidid: 0000-0001-9526-6095
  surname: Arqub
  fullname: Arqub, Omar Abu
  email: o.abuarqub@ju.edu.jo
– sequence: 2
  givenname: Banan
  surname: Maayah
  fullname: Maayah, Banan
BookMark eNqFkL9uFDEQhy2USFz-PEEav8Au493b9bqgCCeOIEWiAVrLa4_vfOzZYexDoktJzxvyJNm7ICFRQDXFb76fZr4LdhZTRMZuBNQCRP9qV9utSbluQKgaZA1N-4ItxCDbqhkGecYWoHqoQEr1kl3kvAMAAX2zYD_WoRR03JOxJaRoJk74QMkdbIgb_gUp4sTNtEkUynbPfSJetsjjYY8U7Lye03Q4kpknz2_frPivx598_afuc5oKEhkeYsENpcoF75EwljCn-PVgTvQVO_dmynj9e16yT-u3H1d31f2Hd-9Xt_eVbaEtlemUNNa2jfCd6gffgVejsoPtRrccmyX6HttReSsARycBBwQnO4nLrm9s59pLpp57LaWcCb22oZxOKGTCpAXoo1K90yel-qhUg9Sz0plt_2IfKOwNff8P9fqZwvmtbwFJZxswWnSB0BbtUvgn_wSl2pkc
CitedBy_id crossref_primary_10_1142_S0218348X20400101
crossref_primary_10_1155_2023_7210126
crossref_primary_10_1142_S1793962321500045
crossref_primary_10_1007_s40808_020_00970_z
crossref_primary_10_1016_j_aej_2020_04_037
crossref_primary_10_1007_s11071_020_06152_x
crossref_primary_10_1016_j_aej_2020_11_009
crossref_primary_10_1142_S0218348X20400071
crossref_primary_10_1007_s12190_020_01353_4
crossref_primary_10_1016_j_aej_2019_12_012
crossref_primary_10_1088_1402_4896_abb420
crossref_primary_10_1002_mma_7552
crossref_primary_10_1016_j_apnum_2020_01_004
crossref_primary_10_1016_j_rinp_2022_105912
crossref_primary_10_1007_s40435_021_00772_w
crossref_primary_10_1007_s40435_023_01294_3
crossref_primary_10_1016_j_joes_2021_09_005
crossref_primary_10_1016_j_chaos_2020_109754
crossref_primary_10_1016_j_chaos_2019_109478
crossref_primary_10_1016_j_chaos_2021_111602
crossref_primary_10_1109_TCSII_2020_3024147
crossref_primary_10_1016_j_aej_2020_04_029
crossref_primary_10_1016_j_chaos_2020_109630
crossref_primary_10_1016_j_chaos_2020_109991
crossref_primary_10_1016_j_physa_2019_123257
crossref_primary_10_1007_s12190_020_01381_0
crossref_primary_10_1088_1402_4896_ab96e0
crossref_primary_10_1016_j_padiff_2021_100164
crossref_primary_10_1007_s00366_020_01132_6
crossref_primary_10_3934_math_2023011
crossref_primary_10_1002_mma_7305
crossref_primary_10_1016_j_chaos_2020_109720
crossref_primary_10_1007_s40819_022_01334_0
crossref_primary_10_1016_j_aej_2020_02_003
crossref_primary_10_1016_j_joes_2021_03_002
crossref_primary_10_1007_s11042_020_08968_6
crossref_primary_10_1080_00207160_2021_1924367
crossref_primary_10_1016_j_aej_2020_01_054
crossref_primary_10_1016_j_aej_2019_12_034
crossref_primary_10_1016_j_cam_2020_113318
crossref_primary_10_3390_math8060923
crossref_primary_10_3934_math_2020151
crossref_primary_10_1142_S1793962321410038
crossref_primary_10_1016_j_aej_2020_02_010
crossref_primary_10_1002_num_22578
crossref_primary_10_1016_j_joes_2020_01_004
crossref_primary_10_1155_2020_8875792
crossref_primary_10_1016_j_aml_2024_109073
crossref_primary_10_1007_s40819_022_01397_z
crossref_primary_10_1016_j_ins_2020_05_055
crossref_primary_10_1007_s12190_021_01573_2
crossref_primary_10_1016_j_aej_2019_11_020
crossref_primary_10_1007_s41066_023_00364_3
crossref_primary_10_1016_j_amc_2021_126237
crossref_primary_10_1002_mma_6316
crossref_primary_10_1016_j_rinp_2021_104210
crossref_primary_10_1155_2021_9702569
crossref_primary_10_1007_s40435_019_00607_9
crossref_primary_10_1007_s40819_022_01316_2
crossref_primary_10_1155_2022_9240772
crossref_primary_10_1016_j_chaos_2021_111127
crossref_primary_10_1007_s11071_020_06150_z
crossref_primary_10_18034_ei_v9i2_560
crossref_primary_10_1016_j_aej_2020_01_037
crossref_primary_10_52866_ijcsm_2019_01_01_001
crossref_primary_10_1186_s13661_022_01684_0
crossref_primary_10_1088_1402_4896_ac0867
crossref_primary_10_1002_num_22915
crossref_primary_10_2174_2212797614666210426083837
crossref_primary_10_1088_1572_9494_ab8a29
crossref_primary_10_1515_nleng_2022_0019
crossref_primary_10_1007_s12190_024_02343_6
crossref_primary_10_1016_j_asej_2024_102830
crossref_primary_10_1016_j_chaos_2019_109552
crossref_primary_10_1007_s12591_020_00516_w
crossref_primary_10_1016_j_rico_2024_100450
crossref_primary_10_1080_16583655_2020_1737357
crossref_primary_10_32604_cmc_2021_014674
crossref_primary_10_3934_math_2020066
crossref_primary_10_1002_mma_7228
crossref_primary_10_1038_s41598_022_23182_0
crossref_primary_10_1016_j_chaos_2021_110891
crossref_primary_10_3846_mma_2021_11436
crossref_primary_10_1007_s12190_020_01477_7
crossref_primary_10_2298_TSCI23S1211M
crossref_primary_10_1007_s11766_021_3761_2
crossref_primary_10_1016_j_aej_2021_09_007
crossref_primary_10_1016_j_aej_2021_12_044
crossref_primary_10_1016_j_padiff_2024_100874
crossref_primary_10_1007_s12668_021_00857_y
crossref_primary_10_1016_j_aej_2021_04_068
crossref_primary_10_3390_fractalfract6090492
crossref_primary_10_1007_s00500_020_04687_0
crossref_primary_10_1007_s40096_021_00409_1
crossref_primary_10_1007_s12190_020_01333_8
crossref_primary_10_1016_j_joes_2022_04_023
crossref_primary_10_1007_s12190_020_01431_7
crossref_primary_10_1016_j_apnum_2021_09_005
Cites_doi 10.1002/num.21809
10.1016/j.cam.2018.07.023
10.1016/j.chaos.2018.07.033
10.1016/j.jcp.2014.08.004
10.1007/s12043-017-1374-3
10.1016/j.apm.2015.01.021
10.22436/jnsa.009.05.46
10.1007/s00521-015-2110-x
10.1016/j.ijleo.2018.03.006
10.1016/j.jcp.2014.09.034
10.1016/j.aml.2005.10.010
10.1016/j.chaos.2016.03.026
10.1051/mmnp/201712302
10.1002/num.22209
10.1615/JPorMedia.2019028970
10.1016/j.chaos.2018.10.013
10.1016/j.aml.2011.10.025
10.1007/s00500-015-1707-4
10.1016/j.cam.2009.01.012
10.2298/TSCI160111018A
10.1016/S0006-3495(72)86068-5
10.3233/FI-2016-1384
10.1108/HFF-07-2016-0278
10.1002/mma.5530
10.1016/j.chaos.2019.05.025
10.1002/num.22236
10.1002/mma.3884
10.1016/j.chaos.2018.07.032
10.1016/j.aml.2013.05.006
10.1007/BF00288786
10.1016/j.cam.2013.04.040
10.1016/j.chaos.2018.10.007
10.1007/s13226-014-0047-x
10.1140/epjp/i2018-12021-3
10.3233/FI-2019-1796
10.3390/e18080402
10.1007/s00500-016-2262-3
10.1016/j.cjph.2018.06.009
10.1016/j.camwa.2016.11.032
10.1007/s11071-018-4459-8
10.1007/s10092-018-0274-3
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright_xml – notice: 2019 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.chaos.2019.07.023
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1873-2887
EndPage 402
ExternalDocumentID 10_1016_j_chaos_2019_07_023
S0960077919302759
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABMAC
ABNEU
ABTAH
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLZ
HMV
HVGLF
HZ~
IHE
J1W
KOM
LG9
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SPG
SSQ
SSZ
T5K
WUQ
XPP
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c303t-a597acc321f5968f50f9b9c8c5bd4b24ef6e3b9fc10ebd70e8e0d757e4562c5d3
IEDL.DBID .~1
ISSN 0960-0779
IngestDate Tue Jul 01 02:00:43 EDT 2025
Thu Apr 24 22:53:13 EDT 2025
Fri Feb 23 02:18:26 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Atangana–Baleanu fractional approach
Volterra integro-differential equation
Reproducing kernel algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c303t-a597acc321f5968f50f9b9c8c5bd4b24ef6e3b9fc10ebd70e8e0d757e4562c5d3
ORCID 0000-0001-9526-6095
PageCount 9
ParticipantIDs crossref_citationtrail_10_1016_j_chaos_2019_07_023
crossref_primary_10_1016_j_chaos_2019_07_023
elsevier_sciencedirect_doi_10_1016_j_chaos_2019_07_023
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2019
2019-09-00
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: September 2019
PublicationDecade 2010
PublicationTitle Chaos, solitons and fractals
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Yépez-Martínez, Gómez-Aguilar, Sosa, Reyes, Torres-Jiménez (bib0008) 2016; 62
Zaslavsky (bib0006) 2005
Wilson, Cowan (bib0003) 1972; 12
Abu Arqub (bib0030) 2018; 28
Abu Arqub (bib0037) 2017; 28
Akgül (bib0052) 2018; 114
Abu Arqub (bib0031) 2016; 39
El-Ajou, Abu Arqub, Al-Smadi (bib0017) 2015; 256
Jiang, Chen (bib0045) 2014; 30
Atangana, Baleanu (bib0018) 2016; 20
Berlinet, Agnan (bib0026) 2004
Abu Arqub, Al-Smadi (bib0039) 2018; 34
Geng, Qian, Li (bib0046) 2014; 255
Abu Arqub (bib0038) 2016; 146
Weinert (bib0028) 1982
Atangana, Gómez-Aguilar (bib0019) 2018; 133
Geng, Qian (bib0044) 2013; 26
Geng, Cui (bib0047) 2012; 25
Geng, Qian (bib0049) 2015; 39
Jiang, Chen (bib0048) 2013; 219
Zhoua, Cui, Lin (bib0051) 2009; 230
Abu Arqub (bib0029) 2017; 73
El-Ajou, Abu Arqub, Momani, Baleanu, Alsaedi (bib0015) 2015; 257
Abu Arqub, Maayah (bib0054) 2019; 125
Rezazadeh, Osman, Eslami, Ekici, Sonmezoglu, Asma, Othman, Wong, Mirzazadeh, Zhou, Biswas, Belic (bib0010) 2018; 164
Abu Arqub, Al-Smadi, Momani, Hayat (bib0036) 2017; 21
Gómez-Aguilar, Morales-Delgado, Taneco-Hernández, Baleanu, Escobar-Jiménez, Al Qurashi (bib0001) 2016; 18
Abu Arqub (bib0053) 2019; 166
Mainardi (bib0005) 2010
Algahtani (bib0024) 2016; 89
Abu Arqub, Maayah (bib0058) 2018; 117
Djida, Atangana, Area (bib0020) 2017; 12
Atangana (bib0022) 2016; 273
Yépez-Martínez, Gómez-Aguilar (bib0009) 2019; 346
Lin, Cui, Yang (bib0050) 2006; 19
Osman (bib0012) 2017; 88
Kilbas, Srivastava, Trujillo (bib0007) 2006
Abu Arqub, El-Ajou, Momani (bib0014) 2015; 293
Atangana, Koca (bib0023) 2016; 9
Abu Arqub (bib0040) 2018; 34
Cui, Lin (bib0025) 2009
Atangana, Nieto (bib0002) 2015; 7
El-Ajou, Abu Arqub, Momani (bib0016) 2015; 293
Daniel (bib0027) 2003
Abu Arqub, Shawagfeh (bib0056) 2019; 22
Abdel-Gawad, Osman (bib0013) 2014; 45
Momani, Abu Arqub, Hayat, Al-Sulami (bib0034) 2014; 240
Abu Arqub, Al-Smadi, Shawagfeh (bib0032) 2013; 219
Abu Arqub, Al-Smadi, Momani, Hayat (bib0035) 2016; 20
Osman, Korkmaz, Rezazadeh, Mirzazadeh, Eslami, Zhou (bib0011) 2018; 56
Atangana, Gómez-Aguilar (bib0021) 2018; 114
Abu Arqub, Al-Smadi (bib0033) 2014; 243
Abu Arqub, Al-Smadi (bib0057) 2018; 117
Abu Arqub, Shawagfeh (bib0055) 2019
Al-Smadi, Abu Arqub (bib0043) 2019; 342
Wilson, Cowan (bib0004) 1973; 13
Abu Arqub (bib0041) 2018; 55
Abu Arqub, Odibat, Al-Smadi (bib0042) 2018; 94
Abu Arqub (10.1016/j.chaos.2019.07.023_bib0029) 2017; 73
Abu Arqub (10.1016/j.chaos.2019.07.023_bib0036) 2017; 21
Abu Arqub (10.1016/j.chaos.2019.07.023_bib0054) 2019; 125
Abu Arqub (10.1016/j.chaos.2019.07.023_bib0057) 2018; 117
Atangana (10.1016/j.chaos.2019.07.023_bib0018) 2016; 20
El-Ajou (10.1016/j.chaos.2019.07.023_bib0015) 2015; 257
Osman (10.1016/j.chaos.2019.07.023_bib0012) 2017; 88
Abu Arqub (10.1016/j.chaos.2019.07.023_bib0014) 2015; 293
Al-Smadi (10.1016/j.chaos.2019.07.023_bib0043) 2019; 342
Geng (10.1016/j.chaos.2019.07.023_bib0047) 2012; 25
Jiang (10.1016/j.chaos.2019.07.023_bib0048) 2013; 219
Abu Arqub (10.1016/j.chaos.2019.07.023_bib0040) 2018; 34
Yépez-Martínez (10.1016/j.chaos.2019.07.023_bib0008) 2016; 62
Rezazadeh (10.1016/j.chaos.2019.07.023_bib0010) 2018; 164
Abu Arqub (10.1016/j.chaos.2019.07.023_bib0042) 2018; 94
Kilbas (10.1016/j.chaos.2019.07.023_bib0007) 2006
Abu Arqub (10.1016/j.chaos.2019.07.023_bib0037) 2017; 28
Atangana (10.1016/j.chaos.2019.07.023_bib0022) 2016; 273
Zaslavsky (10.1016/j.chaos.2019.07.023_bib0006) 2005
Wilson (10.1016/j.chaos.2019.07.023_bib0003) 1972; 12
Abu Arqub (10.1016/j.chaos.2019.07.023_bib0031) 2016; 39
Jiang (10.1016/j.chaos.2019.07.023_bib0045) 2014; 30
Daniel (10.1016/j.chaos.2019.07.023_bib0027) 2003
Abu Arqub (10.1016/j.chaos.2019.07.023_bib0041) 2018; 55
Atangana (10.1016/j.chaos.2019.07.023_bib0021) 2018; 114
Abu Arqub (10.1016/j.chaos.2019.07.023_bib0058) 2018; 117
Abu Arqub (10.1016/j.chaos.2019.07.023_bib0035) 2016; 20
Djida (10.1016/j.chaos.2019.07.023_bib0020) 2017; 12
Berlinet (10.1016/j.chaos.2019.07.023_bib0026) 2004
Abu Arqub (10.1016/j.chaos.2019.07.023_bib0038) 2016; 146
Geng (10.1016/j.chaos.2019.07.023_bib0046) 2014; 255
Abu Arqub (10.1016/j.chaos.2019.07.023_bib0033) 2014; 243
Abu Arqub (10.1016/j.chaos.2019.07.023_bib0056) 2019; 22
Abdel-Gawad (10.1016/j.chaos.2019.07.023_bib0013) 2014; 45
El-Ajou (10.1016/j.chaos.2019.07.023_bib0016) 2015; 293
Lin (10.1016/j.chaos.2019.07.023_bib0050) 2006; 19
Yépez-Martínez (10.1016/j.chaos.2019.07.023_bib0009) 2019; 346
Abu Arqub (10.1016/j.chaos.2019.07.023_bib0030) 2018; 28
Osman (10.1016/j.chaos.2019.07.023_bib0011) 2018; 56
Atangana (10.1016/j.chaos.2019.07.023_bib0002) 2015; 7
Abu Arqub (10.1016/j.chaos.2019.07.023_bib0053) 2019; 166
Zhoua (10.1016/j.chaos.2019.07.023_bib0051) 2009; 230
El-Ajou (10.1016/j.chaos.2019.07.023_bib0017) 2015; 256
Weinert (10.1016/j.chaos.2019.07.023_bib0028) 1982
Wilson (10.1016/j.chaos.2019.07.023_bib0004) 1973; 13
Atangana (10.1016/j.chaos.2019.07.023_bib0023) 2016; 9
Cui (10.1016/j.chaos.2019.07.023_bib0025) 2009
Abu Arqub (10.1016/j.chaos.2019.07.023_bib0039) 2018; 34
Algahtani (10.1016/j.chaos.2019.07.023_bib0024) 2016; 89
Geng (10.1016/j.chaos.2019.07.023_bib0049) 2015; 39
Mainardi (10.1016/j.chaos.2019.07.023_bib0005) 2010
Geng (10.1016/j.chaos.2019.07.023_bib0044) 2013; 26
Akgül (10.1016/j.chaos.2019.07.023_bib0052) 2018; 114
Abu Arqub (10.1016/j.chaos.2019.07.023_bib0055) 2019
Gómez-Aguilar (10.1016/j.chaos.2019.07.023_bib0001) 2016; 18
Momani (10.1016/j.chaos.2019.07.023_bib0034) 2014; 240
Abu Arqub (10.1016/j.chaos.2019.07.023_bib0032) 2013; 219
Atangana (10.1016/j.chaos.2019.07.023_bib0019) 2018; 133
References_xml – year: 2010
  ident: bib0005
  article-title: Fractional calculus and waves in linear viscoelasticity
– volume: 30
  start-page: 289
  year: 2014
  end-page: 300
  ident: bib0045
  article-title: A collocation method based on reproducing kernel for a modified anomalous subdiffusion equation
  publication-title: Numer Methods Partial Differ Equ
– volume: 117
  start-page: 161
  year: 2018
  end-page: 167
  ident: bib0057
  article-title: Atangana–Baleanu fractional approach to the solutions of Bagley–Torvik and Painlevé equations in Hilbert space
  publication-title: Chaos Solitons Fractals
– volume: 56
  start-page: 2500
  year: 2018
  end-page: 2506
  ident: bib0011
  article-title: The unified method for conformable time fractional Schrödinger equation with perturbation terms
  publication-title: Chin J Phys
– volume: 342
  start-page: 280
  year: 2019
  end-page: 294
  ident: bib0043
  article-title: Computational algorithm for solving fredholm time-fractional partial integrodifferential equations of dirichlet functions type with error estimates
  publication-title: Appl Math Comput
– volume: 19
  start-page: 808
  year: 2006
  end-page: 813
  ident: bib0050
  article-title: Representation of the exact solution for a kind of nonlinear partial differential equations
  publication-title: Appl Math Lett
– volume: 293
  start-page: 81
  year: 2015
  end-page: 95
  ident: bib0016
  article-title: Approximate analytical solution of the nonlinear fractional KdV-Burgers equation: a new iterative algorithm
  publication-title: J Comput Phys
– volume: 25
  start-page: 818
  year: 2012
  end-page: 823
  ident: bib0047
  article-title: A reproducing kernel method for solving nonlocal fractional boundary value problems
  publication-title: Appl Math Lett
– volume: 34
  start-page: 1759
  year: 2018
  end-page: 1780
  ident: bib0040
  article-title: Solutions of time-fractional Tricomi and Keldysh equations of Dirichlet functions types in Hilbert space
  publication-title: Numer Methods Partial Differ Equ
– volume: 88
  start-page: 67
  year: 2017
  ident: bib0012
  article-title: Multiwave solutions of time-fractional (2+1)-dimensional Nizhnik–Novikov–Veselov equations
  publication-title: Pramana
– volume: 256
  start-page: 851
  year: 2015
  end-page: 859
  ident: bib0017
  article-title: A general form of the generalized Taylor's formula with some applications
  publication-title: Appl Math Comput
– volume: 28
  start-page: 1591
  year: 2017
  end-page: 1610
  ident: bib0037
  article-title: Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm–Volterra integrodifferential equations
  publication-title: Neural Comput Appl
– volume: 73
  start-page: 1243
  year: 2017
  end-page: 1261
  ident: bib0029
  article-title: Fitted reproducing kernel Hilbert space method for the solutions of some certain classes of time-fractional partial differential equations subject to initial and Neumann boundary conditions
  publication-title: Comput Math Appl
– volume: 9
  start-page: 2467
  year: 2016
  end-page: 2480
  ident: bib0023
  article-title: On the new fractional derivative and application to Nonlinear Baggs and Freedman model
  publication-title: J Nonlinear Sci Appl
– volume: 114
  start-page: 478
  year: 2018
  end-page: 482
  ident: bib0052
  article-title: A novel method for a fractional derivative with non-local and non-singular kernel
  publication-title: Chaos Solitons Fractals
– volume: 166
  start-page: 111
  year: 2019
  end-page: 137
  ident: bib0053
  article-title: Numerical algorithm for the solutions of fractional order systems of Dirichlet function types with comparative analysis
  publication-title: Fundam Inform
– volume: 28
  start-page: 828
  year: 2018
  end-page: 856
  ident: bib0030
  article-title: Numerical solutions for the Robin time-fractional partial differential equations of heat and fluid flows based on the reproducing kernel algorithm
  publication-title: Int J Numer Methods Heat Fluid Flow
– volume: 12
  start-page: 4
  year: 2017
  end-page: 13
  ident: bib0020
  article-title: Numerical computation of a fractional derivative with non-local and non-singular kernel
  publication-title: Math Model Nat Phenom
– volume: 21
  start-page: 7191
  year: 2017
  end-page: 7206
  ident: bib0036
  article-title: Application of reproducing kernel algorithm for solving second-order, two-point fuzzy boundary value problems
  publication-title: Soft comput
– volume: 293
  start-page: 385
  year: 2015
  end-page: 399
  ident: bib0014
  article-title: Constructing and predicting solitary pattern solutions for nonlinear time-fractional dispersive partial differential equations
  publication-title: J Comput Phys
– volume: 164
  start-page: 84
  year: 2018
  end-page: 92
  ident: bib0010
  article-title: Mitigating Internet bottleneck with fractional temporal evolution of optical solitons having quadratic–cubic nonlinearity
  publication-title: Optik
– year: 2009
  ident: bib0025
  article-title: Nonlinear numerical analysis in the reproducing kernel space
– volume: 230
  start-page: 770
  year: 2009
  end-page: 780
  ident: bib0051
  article-title: Numerical algorithm for parabolic problems with non-classical conditions
  publication-title: J Comput Appl Math
– volume: 255
  start-page: 97
  year: 2014
  end-page: 105
  ident: bib0046
  article-title: A numerical method for singularly perturbed turning point problems with an interior layer
  publication-title: J Comput Appl Math
– year: 2003
  ident: bib0027
  article-title: Reproducing kernel spaces and applications
– volume: 240
  start-page: 229
  year: 2014
  end-page: 239
  ident: bib0034
  article-title: A computational method for solving periodic boundary value problems for integro-differential equations of Fredholm–Voltera type
  publication-title: Appl Math Comput
– year: 2004
  ident: bib0026
  article-title: Reproducing kernel Hilbert space in probability and statistics
– year: 2005
  ident: bib0006
  article-title: Hamiltonian chaos and fractional dynamics
– volume: 114
  start-page: 516
  year: 2018
  end-page: 535
  ident: bib0021
  article-title: Fractional derivatives with no-index law property: application to chaos and statistics
  publication-title: Chaos Solitons Fractals
– volume: 257
  start-page: 119
  year: 2015
  end-page: 133
  ident: bib0015
  article-title: A novel expansion iterative method for solving linear partial differential equations of fractional order
  publication-title: Appl Math Comput
– volume: 34
  start-page: 1577
  year: 2018
  end-page: 1597
  ident: bib0039
  article-title: Numerical algorithm for solving time-fractional partial integrodifferential equations subject to initial and Dirichlet boundary conditions
  publication-title: Numer Methods Partial Differ Equ
– volume: 219
  start-page: 10225
  year: 2013
  end-page: 10230
  ident: bib0048
  article-title: Solving a system of linear Volterra integral equations using the new reproducing kernel method
  publication-title: Appl Math Comput
– volume: 39
  start-page: 5592
  year: 2015
  end-page: 5597
  ident: bib0049
  article-title: Modified reproducing kernel method for singularly perturbed boundary value problems with a delay
  publication-title: Appl Math Model
– volume: 13
  start-page: 55
  year: 1973
  end-page: 80
  ident: bib0004
  article-title: A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue
  publication-title: Kybernetik
– volume: 117
  start-page: 117
  year: 2018
  end-page: 124
  ident: bib0058
  article-title: Numerical solutions of integrodifferential equations of fredholm operator type in the sense of the Atangana–Baleanu fractional operator, chaos
  publication-title: Solitons Fractals
– volume: 18
  start-page: 402
  year: 2016
  ident: bib0001
  article-title: Analytical solutions of the electrical RLC circuit via Liouville–Caputo operators with local and non-local kernels
  publication-title: Entropy
– volume: 26
  start-page: 998
  year: 2013
  end-page: 1004
  ident: bib0044
  article-title: Reproducing kernel method for singularly perturbed turning point problems having twin boundary layers
  publication-title: Appl Math Lett
– volume: 346
  start-page: 247
  year: 2019
  end-page: 260
  ident: bib0009
  article-title: A new modified definition of Caputo–Fabrizio fractional-order derivative and their applications to the Multi Step Homotopy Analysis Method (MHAM)
  publication-title: J Comput Appl Math
– volume: 39
  start-page: 4549
  year: 2016
  end-page: 4562
  ident: bib0031
  article-title: The reproducing kernel algorithm for handling differential algebraic systems of ordinary differential equations
  publication-title: Math Methods Appl Sci
– volume: 22
  start-page: 411
  year: 2019
  end-page: 434
  ident: bib0056
  article-title: Application of reproducing kernel algorithm for solving Dirichlet time-fractional diffusion-Gordon types equations in porous media
  publication-title: J Porous Media
– volume: 20
  start-page: 763
  year: 2016
  end-page: 769
  ident: bib0018
  article-title: New fractional derivatives with non-local and non-singular kernel: theory and application to heat transfer model
  publication-title: Therm Sci
– volume: 94
  start-page: 1819
  year: 2018
  end-page: 1834
  ident: bib0042
  article-title: Numerical solutions of time-fractional partial integrodifferential equations of Robin functions types in Hilbert space with error bounds and error estimates
  publication-title: Nonlinear Dyn
– volume: 125
  start-page: 163
  year: 2019
  end-page: 170
  ident: bib0054
  article-title: Modulation of reproducing kernel Hilbert space method for numerical solutions of Riccati and Bernoulli equations in the Atangana–Baleanu fractional sense
  publication-title: Chaos, Solitons & Fractals
– volume: 89
  start-page: 552
  year: 2016
  end-page: 559
  ident: bib0024
  article-title: Comparing the Atangana–Baleanu and Caputo–Fabrizio derivative with fractional order: Allen Cahn model
  publication-title: Chaos Solitons Fractals
– volume: 20
  start-page: 3283
  year: 2016
  end-page: 3302
  ident: bib0035
  article-title: Numerical solutions of fuzzy differential equations using reproducing kernel Hilbert space method
  publication-title: Soft Comput
– volume: 55
  start-page: 1
  year: 2018
  end-page: 28
  ident: bib0041
  article-title: Numerical solutions of systems of first-order, two-point BVPs based on the reproducing kernel algorithm
  publication-title: Calcolo
– year: 2006
  ident: bib0007
  article-title: Theory and applications of fractional differential equations
– volume: 146
  start-page: 231
  year: 2016
  end-page: 254
  ident: bib0038
  article-title: Approximate solutions of DASs with nonclassical boundary conditions using novel reproducing kernel algorithm
  publication-title: Fundam Inform
– year: 1982
  ident: bib0028
  article-title: Reproducing kernel Hilbert spaces: applications in statistical signal processing
– volume: 12
  start-page: 1
  year: 1972
  end-page: 24
  ident: bib0003
  article-title: Excitatory and inhibitory interactions in localized populations of model neurons
  publication-title: Biophys J
– volume: 62
  start-page: 310
  year: 2016
  end-page: 316
  ident: bib0008
  article-title: The Feng's first integral method applied to the nonlinear mKdV space-time fractional partial differential equation
  publication-title: Rev Mex Fís
– volume: 243
  start-page: 911
  year: 2014
  end-page: 922
  ident: bib0033
  article-title: Numerical algorithm for solving two-point, second-order periodic boundary value problems for mixed integro-differential equations
  publication-title: Appl Math Comput
– volume: 7
  start-page: 1
  year: 2015
  end-page: 7
  ident: bib0002
  article-title: Numerical solution for the model of RLC circuit via the fractional derivative without singular kernel
  publication-title: Adv Mech Eng
– volume: 133
  start-page: 1
  year: 2018
  end-page: 22
  ident: bib0019
  article-title: Decolonisation of fractional calculus rules: breaking commutativity and associativity to capture more natural phenomena
  publication-title: Eur Phys J Plus
– volume: 273
  start-page: 948
  year: 2016
  end-page: 956
  ident: bib0022
  article-title: On the new fractional derivative and application to nonlinear Fisher's reaction-diffusion equation
  publication-title: Appl Math Comput
– volume: 219
  start-page: 8938
  year: 2013
  end-page: 8948
  ident: bib0032
  article-title: Solving Fredholm integro-differential equations using reproducing kernel Hilbert space method
  publication-title: Appl Math Comput
– year: 2019
  ident: bib0055
  article-title: Solving optimal control problems of Fredholm constraint optimality via the reproducing kernel Hilbert space method with error estimates and convergence analysis
  publication-title: Math Methods Appl Sci
– volume: 45
  start-page: 1
  year: 2014
  end-page: 12
  ident: bib0013
  article-title: Exact solutions of the Korteweg-De Vries equation with space and time dependent coefficients by the extended unified method
  publication-title: Indian J Pure Appl Math
– volume: 30
  start-page: 289
  year: 2014
  ident: 10.1016/j.chaos.2019.07.023_bib0045
  article-title: A collocation method based on reproducing kernel for a modified anomalous subdiffusion equation
  publication-title: Numer Methods Partial Differ Equ
  doi: 10.1002/num.21809
– year: 2004
  ident: 10.1016/j.chaos.2019.07.023_bib0026
– volume: 346
  start-page: 247
  year: 2019
  ident: 10.1016/j.chaos.2019.07.023_bib0009
  article-title: A new modified definition of Caputo–Fabrizio fractional-order derivative and their applications to the Multi Step Homotopy Analysis Method (MHAM)
  publication-title: J Comput Appl Math
  doi: 10.1016/j.cam.2018.07.023
– volume: 114
  start-page: 516
  year: 2018
  ident: 10.1016/j.chaos.2019.07.023_bib0021
  article-title: Fractional derivatives with no-index law property: application to chaos and statistics
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2018.07.033
– volume: 62
  start-page: 310
  year: 2016
  ident: 10.1016/j.chaos.2019.07.023_bib0008
  article-title: The Feng's first integral method applied to the nonlinear mKdV space-time fractional partial differential equation
  publication-title: Rev Mex Fís
– volume: 293
  start-page: 81
  year: 2015
  ident: 10.1016/j.chaos.2019.07.023_bib0016
  article-title: Approximate analytical solution of the nonlinear fractional KdV-Burgers equation: a new iterative algorithm
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2014.08.004
– volume: 88
  start-page: 67
  year: 2017
  ident: 10.1016/j.chaos.2019.07.023_bib0012
  article-title: Multiwave solutions of time-fractional (2+1)-dimensional Nizhnik–Novikov–Veselov equations
  publication-title: Pramana
  doi: 10.1007/s12043-017-1374-3
– volume: 243
  start-page: 911
  year: 2014
  ident: 10.1016/j.chaos.2019.07.023_bib0033
  article-title: Numerical algorithm for solving two-point, second-order periodic boundary value problems for mixed integro-differential equations
  publication-title: Appl Math Comput
– volume: 39
  start-page: 5592
  year: 2015
  ident: 10.1016/j.chaos.2019.07.023_bib0049
  article-title: Modified reproducing kernel method for singularly perturbed boundary value problems with a delay
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2015.01.021
– volume: 9
  start-page: 2467
  year: 2016
  ident: 10.1016/j.chaos.2019.07.023_bib0023
  article-title: On the new fractional derivative and application to Nonlinear Baggs and Freedman model
  publication-title: J Nonlinear Sci Appl
  doi: 10.22436/jnsa.009.05.46
– volume: 219
  start-page: 10225
  year: 2013
  ident: 10.1016/j.chaos.2019.07.023_bib0048
  article-title: Solving a system of linear Volterra integral equations using the new reproducing kernel method
  publication-title: Appl Math Comput
– volume: 28
  start-page: 1591
  year: 2017
  ident: 10.1016/j.chaos.2019.07.023_bib0037
  article-title: Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm–Volterra integrodifferential equations
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-2110-x
– volume: 219
  start-page: 8938
  year: 2013
  ident: 10.1016/j.chaos.2019.07.023_bib0032
  article-title: Solving Fredholm integro-differential equations using reproducing kernel Hilbert space method
  publication-title: Appl Math Comput
– volume: 164
  start-page: 84
  year: 2018
  ident: 10.1016/j.chaos.2019.07.023_bib0010
  article-title: Mitigating Internet bottleneck with fractional temporal evolution of optical solitons having quadratic–cubic nonlinearity
  publication-title: Optik
  doi: 10.1016/j.ijleo.2018.03.006
– volume: 273
  start-page: 948
  year: 2016
  ident: 10.1016/j.chaos.2019.07.023_bib0022
  article-title: On the new fractional derivative and application to nonlinear Fisher's reaction-diffusion equation
  publication-title: Appl Math Comput
– volume: 293
  start-page: 385
  year: 2015
  ident: 10.1016/j.chaos.2019.07.023_bib0014
  article-title: Constructing and predicting solitary pattern solutions for nonlinear time-fractional dispersive partial differential equations
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2014.09.034
– volume: 19
  start-page: 808
  year: 2006
  ident: 10.1016/j.chaos.2019.07.023_bib0050
  article-title: Representation of the exact solution for a kind of nonlinear partial differential equations
  publication-title: Appl Math Lett
  doi: 10.1016/j.aml.2005.10.010
– year: 2005
  ident: 10.1016/j.chaos.2019.07.023_bib0006
– volume: 89
  start-page: 552
  year: 2016
  ident: 10.1016/j.chaos.2019.07.023_bib0024
  article-title: Comparing the Atangana–Baleanu and Caputo–Fabrizio derivative with fractional order: Allen Cahn model
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2016.03.026
– volume: 12
  start-page: 4
  year: 2017
  ident: 10.1016/j.chaos.2019.07.023_bib0020
  article-title: Numerical computation of a fractional derivative with non-local and non-singular kernel
  publication-title: Math Model Nat Phenom
  doi: 10.1051/mmnp/201712302
– volume: 240
  start-page: 229
  year: 2014
  ident: 10.1016/j.chaos.2019.07.023_bib0034
  article-title: A computational method for solving periodic boundary value problems for integro-differential equations of Fredholm–Voltera type
  publication-title: Appl Math Comput
– volume: 257
  start-page: 119
  year: 2015
  ident: 10.1016/j.chaos.2019.07.023_bib0015
  article-title: A novel expansion iterative method for solving linear partial differential equations of fractional order
  publication-title: Appl Math Comput
– volume: 34
  start-page: 1577
  year: 2018
  ident: 10.1016/j.chaos.2019.07.023_bib0039
  article-title: Numerical algorithm for solving time-fractional partial integrodifferential equations subject to initial and Dirichlet boundary conditions
  publication-title: Numer Methods Partial Differ Equ
  doi: 10.1002/num.22209
– volume: 22
  start-page: 411
  year: 2019
  ident: 10.1016/j.chaos.2019.07.023_bib0056
  article-title: Application of reproducing kernel algorithm for solving Dirichlet time-fractional diffusion-Gordon types equations in porous media
  publication-title: J Porous Media
  doi: 10.1615/JPorMedia.2019028970
– volume: 117
  start-page: 161
  year: 2018
  ident: 10.1016/j.chaos.2019.07.023_bib0057
  article-title: Atangana–Baleanu fractional approach to the solutions of Bagley–Torvik and Painlevé equations in Hilbert space
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2018.10.013
– volume: 25
  start-page: 818
  year: 2012
  ident: 10.1016/j.chaos.2019.07.023_bib0047
  article-title: A reproducing kernel method for solving nonlocal fractional boundary value problems
  publication-title: Appl Math Lett
  doi: 10.1016/j.aml.2011.10.025
– volume: 20
  start-page: 3283
  year: 2016
  ident: 10.1016/j.chaos.2019.07.023_bib0035
  article-title: Numerical solutions of fuzzy differential equations using reproducing kernel Hilbert space method
  publication-title: Soft Comput
  doi: 10.1007/s00500-015-1707-4
– volume: 342
  start-page: 280
  year: 2019
  ident: 10.1016/j.chaos.2019.07.023_bib0043
  article-title: Computational algorithm for solving fredholm time-fractional partial integrodifferential equations of dirichlet functions type with error estimates
  publication-title: Appl Math Comput
– volume: 230
  start-page: 770
  year: 2009
  ident: 10.1016/j.chaos.2019.07.023_bib0051
  article-title: Numerical algorithm for parabolic problems with non-classical conditions
  publication-title: J Comput Appl Math
  doi: 10.1016/j.cam.2009.01.012
– volume: 20
  start-page: 763
  year: 2016
  ident: 10.1016/j.chaos.2019.07.023_bib0018
  article-title: New fractional derivatives with non-local and non-singular kernel: theory and application to heat transfer model
  publication-title: Therm Sci
  doi: 10.2298/TSCI160111018A
– volume: 12
  start-page: 1
  year: 1972
  ident: 10.1016/j.chaos.2019.07.023_bib0003
  article-title: Excitatory and inhibitory interactions in localized populations of model neurons
  publication-title: Biophys J
  doi: 10.1016/S0006-3495(72)86068-5
– volume: 146
  start-page: 231
  year: 2016
  ident: 10.1016/j.chaos.2019.07.023_bib0038
  article-title: Approximate solutions of DASs with nonclassical boundary conditions using novel reproducing kernel algorithm
  publication-title: Fundam Inform
  doi: 10.3233/FI-2016-1384
– year: 2010
  ident: 10.1016/j.chaos.2019.07.023_bib0005
– volume: 28
  start-page: 828
  year: 2018
  ident: 10.1016/j.chaos.2019.07.023_bib0030
  article-title: Numerical solutions for the Robin time-fractional partial differential equations of heat and fluid flows based on the reproducing kernel algorithm
  publication-title: Int J Numer Methods Heat Fluid Flow
  doi: 10.1108/HFF-07-2016-0278
– year: 2019
  ident: 10.1016/j.chaos.2019.07.023_bib0055
  article-title: Solving optimal control problems of Fredholm constraint optimality via the reproducing kernel Hilbert space method with error estimates and convergence analysis
  publication-title: Math Methods Appl Sci
  doi: 10.1002/mma.5530
– volume: 125
  start-page: 163
  year: 2019
  ident: 10.1016/j.chaos.2019.07.023_bib0054
  article-title: Modulation of reproducing kernel Hilbert space method for numerical solutions of Riccati and Bernoulli equations in the Atangana–Baleanu fractional sense
  publication-title: Chaos, Solitons & Fractals
  doi: 10.1016/j.chaos.2019.05.025
– volume: 34
  start-page: 1759
  year: 2018
  ident: 10.1016/j.chaos.2019.07.023_bib0040
  article-title: Solutions of time-fractional Tricomi and Keldysh equations of Dirichlet functions types in Hilbert space
  publication-title: Numer Methods Partial Differ Equ
  doi: 10.1002/num.22236
– volume: 39
  start-page: 4549
  year: 2016
  ident: 10.1016/j.chaos.2019.07.023_bib0031
  article-title: The reproducing kernel algorithm for handling differential algebraic systems of ordinary differential equations
  publication-title: Math Methods Appl Sci
  doi: 10.1002/mma.3884
– volume: 114
  start-page: 478
  year: 2018
  ident: 10.1016/j.chaos.2019.07.023_bib0052
  article-title: A novel method for a fractional derivative with non-local and non-singular kernel
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2018.07.032
– volume: 26
  start-page: 998
  year: 2013
  ident: 10.1016/j.chaos.2019.07.023_bib0044
  article-title: Reproducing kernel method for singularly perturbed turning point problems having twin boundary layers
  publication-title: Appl Math Lett
  doi: 10.1016/j.aml.2013.05.006
– year: 1982
  ident: 10.1016/j.chaos.2019.07.023_bib0028
– year: 2006
  ident: 10.1016/j.chaos.2019.07.023_bib0007
– volume: 256
  start-page: 851
  year: 2015
  ident: 10.1016/j.chaos.2019.07.023_bib0017
  article-title: A general form of the generalized Taylor's formula with some applications
  publication-title: Appl Math Comput
– volume: 13
  start-page: 55
  year: 1973
  ident: 10.1016/j.chaos.2019.07.023_bib0004
  article-title: A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue
  publication-title: Kybernetik
  doi: 10.1007/BF00288786
– volume: 255
  start-page: 97
  year: 2014
  ident: 10.1016/j.chaos.2019.07.023_bib0046
  article-title: A numerical method for singularly perturbed turning point problems with an interior layer
  publication-title: J Comput Appl Math
  doi: 10.1016/j.cam.2013.04.040
– volume: 117
  start-page: 117
  year: 2018
  ident: 10.1016/j.chaos.2019.07.023_bib0058
  article-title: Numerical solutions of integrodifferential equations of fredholm operator type in the sense of the Atangana–Baleanu fractional operator, chaos
  publication-title: Solitons Fractals
  doi: 10.1016/j.chaos.2018.10.007
– volume: 45
  start-page: 1
  year: 2014
  ident: 10.1016/j.chaos.2019.07.023_bib0013
  article-title: Exact solutions of the Korteweg-De Vries equation with space and time dependent coefficients by the extended unified method
  publication-title: Indian J Pure Appl Math
  doi: 10.1007/s13226-014-0047-x
– volume: 133
  start-page: 1
  year: 2018
  ident: 10.1016/j.chaos.2019.07.023_bib0019
  article-title: Decolonisation of fractional calculus rules: breaking commutativity and associativity to capture more natural phenomena
  publication-title: Eur Phys J Plus
  doi: 10.1140/epjp/i2018-12021-3
– volume: 166
  start-page: 111
  issue: 2
  year: 2019
  ident: 10.1016/j.chaos.2019.07.023_bib0053
  article-title: Numerical algorithm for the solutions of fractional order systems of Dirichlet function types with comparative analysis
  publication-title: Fundam Inform
  doi: 10.3233/FI-2019-1796
– volume: 18
  start-page: 402
  year: 2016
  ident: 10.1016/j.chaos.2019.07.023_bib0001
  article-title: Analytical solutions of the electrical RLC circuit via Liouville–Caputo operators with local and non-local kernels
  publication-title: Entropy
  doi: 10.3390/e18080402
– year: 2003
  ident: 10.1016/j.chaos.2019.07.023_bib0027
– volume: 21
  start-page: 7191
  year: 2017
  ident: 10.1016/j.chaos.2019.07.023_bib0036
  article-title: Application of reproducing kernel algorithm for solving second-order, two-point fuzzy boundary value problems
  publication-title: Soft comput
  doi: 10.1007/s00500-016-2262-3
– volume: 56
  start-page: 2500
  year: 2018
  ident: 10.1016/j.chaos.2019.07.023_bib0011
  article-title: The unified method for conformable time fractional Schrödinger equation with perturbation terms
  publication-title: Chin J Phys
  doi: 10.1016/j.cjph.2018.06.009
– volume: 73
  start-page: 1243
  year: 2017
  ident: 10.1016/j.chaos.2019.07.023_bib0029
  article-title: Fitted reproducing kernel Hilbert space method for the solutions of some certain classes of time-fractional partial differential equations subject to initial and Neumann boundary conditions
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2016.11.032
– volume: 94
  start-page: 1819
  year: 2018
  ident: 10.1016/j.chaos.2019.07.023_bib0042
  article-title: Numerical solutions of time-fractional partial integrodifferential equations of Robin functions types in Hilbert space with error bounds and error estimates
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-018-4459-8
– volume: 7
  start-page: 1
  issue: 2015
  year: 2015
  ident: 10.1016/j.chaos.2019.07.023_bib0002
  article-title: Numerical solution for the model of RLC circuit via the fractional derivative without singular kernel
  publication-title: Adv Mech Eng
– volume: 55
  start-page: 1
  year: 2018
  ident: 10.1016/j.chaos.2019.07.023_bib0041
  article-title: Numerical solutions of systems of first-order, two-point BVPs based on the reproducing kernel algorithm
  publication-title: Calcolo
  doi: 10.1007/s10092-018-0274-3
– year: 2009
  ident: 10.1016/j.chaos.2019.07.023_bib0025
SSID ssj0001062
Score 2.5646613
Snippet •In this analysis, by developed the reproducing kernel algorithm within the Atangana–Baleanu fractional operator, the numerical solutions of Volterra...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 394
SubjectTerms Atangana–Baleanu fractional approach
Reproducing kernel algorithm
Volterra integro-differential equation
Title Fitted fractional reproducing kernel algorithm for the numerical solutions of ABC – Fractional Volterra integro-differential equations
URI https://dx.doi.org/10.1016/j.chaos.2019.07.023
Volume 126
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQLDAgKCDe8sAAEqFu49TxWCqqAioLD7FFsWNDISSQhhUxsvMP-SXc5VFAQgyMsWwr8p3vvtPdfSZkB9TG85nFixS5DrcydMANozHkTDPjdnyLvcPDs87gkp9ce9dTpFf3wmBZZWX7S5teWOtqpFmdZvNxNGqeI_hmQkiAIJh7wyY-zgVq-cHLV5kHhDxFJgEmOzi7Zh4qarz0bZgiZ3dLFgyebfd37_TN4_QXyHwFFWm3_JtFMmWSBpkbTnhWxw2yWF3NMd2t-KP3lshbf5QDjqQ2K5sWYA-krkRmV_BT9N5kiYlpGN-k2Si_faAAWynsSZPnMnsT04k-0tTS7mGPfry-0_7Xdlcp5tizkJZkE6lTP7MC5iKm5qmkDx8vk8v-0UVv4FQPLjgaPFnuhBBdhFq77Zb1JEjJY1YqqX3tqYirNje2Y1wlrW4xoyLBjG9YJDxhMIzSXuSukOkkTcwqoQAbtSu1Za72OYQlylMAJoTi0gqAeGqNtOuDDnTFRo6PYsRBXXZ2FxTSCVA6ARMBSGeN7E8WPZZkHH9P79QSDH7oVADu4q-F6_9duEFm8ausQdsk03n2bLYAtORqu9DKbTLTPT4dnH0Ci0Pu_w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7R5UA5VDxaQQvUBw4gEa13E2_i47JitRR2LzzEzYodm10ICc2GO0fu_Yf9JYwTZ2mlikOvsceKPOOZbzTjzwD7aDYsosYepMT3AsNjD8OwdYYBVVT7vcjYu8PjSW90Ffy4YTdLMGjuwti2Suf7a59eeWv3pe12s_04m7UvLPimYcgRgtjaG_8Ay5adirVguX96NposHDJmPVUxAed7VqAhH6ravNQ0zi1td4dXJJ5d_98B6o-gM1yDTw4tkn79Q-uwpLMNWB0vqFbnG7DuTuecHDgK6cNNeBnOSoSSxBT1vQVcw7JXWnJXDFXkXheZTkmc3ubFrJw-EESuBNck2VNdwEnJwiRJbkj_eEB-P_8iw7flrnNbZi9iUvNN5F7z0gp6jJTonzWD-PwzXA1PLgcjz7254CkMZqUXY4IRK-V3O4ZxVBSjhkuuIsVkEshuoE1P-5Ib1aFaJiHVkaZJyEJtMynFEv8LtLI801tAEDkqnytDfRUFmJlIJhFPhDLgJkSUJ7eh22y0UI6Q3L6LkYqm8-xOVNoRVjuChgK1sw1HC6HHmo_j_em9RoPiL7MSGDHeE_z6v4LfYWV0OT4X56eTs2_w0Y7ULWk70CqLJ72LGKaUe85GXwG0__Gw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fitted+fractional+reproducing+kernel+algorithm+for+the+numerical+solutions+of+ABC+%E2%80%93+Fractional+Volterra+integro-differential+equations&rft.jtitle=Chaos%2C+solitons+and+fractals&rft.au=Arqub%2C+Omar+Abu&rft.au=Maayah%2C+Banan&rft.date=2019-09-01&rft.issn=0960-0779&rft.volume=126&rft.spage=394&rft.epage=402&rft_id=info:doi/10.1016%2Fj.chaos.2019.07.023&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_chaos_2019_07_023
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-0779&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-0779&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-0779&client=summon