An adaptive framework of real-time continuous gait phase variable estimation for lower-limb wearable robots

Phase-variable-based approaches are emerging in the control of lower-limb wearable robots, such as exoskeletons and prosthetic legs. However, real-time smooth estimation of the gait phase within each gait cycle remains an open problem. This paper presents a novel method for real-time continuous gait...

Full description

Saved in:
Bibliographic Details
Published inRobotics and autonomous systems Vol. 143; p. 103842
Main Authors Zhang, Binquan, Wang, Sun’an, Zhou, Min, Xu, Wanlu
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Phase-variable-based approaches are emerging in the control of lower-limb wearable robots, such as exoskeletons and prosthetic legs. However, real-time smooth estimation of the gait phase within each gait cycle remains an open problem. This paper presents a novel method for real-time continuous gait phase estimation during walking. The proposed framework consists of three subsystems: real-time kinematic data collection, gait phase variable estimation, and online adaptation of individual kinematics through backward data segmentation of completed gait strides. It is worth noting that we introduce an online learning mechanism for extracting and learning gait features from previous strides, in contrast with offline parameter tuning. The proposed basic gait model is initialized by human average data and is incrementally refined as a function of the individual gait features over different walking speeds. This provides a framework for long-term personalized control. Furthermore, the phase variable is constructed through the thigh angle measured by an inertial measurement unit. The resulting simple sensor system improves the usability of the proposed technique in wearable robotics. Validation experiments with seven healthy subjects, including treadmill walking and free level-ground walking, were conducted to evaluate the performance of the proposed method. In treadmill validation, the root-mean-square error (RMSE) of the phase estimator was 4.14 ± 1.68% for steady speeds, while it was 6.77 ± 2.29% for unsteady-speed walking. In level-ground validation, the average RMSE of the phase estimator was 4.59 ± 1.76%. Preliminary experiments were also conducted using a single-joint hip exoskeleton to demonstrate the usability of our method in lower-limb wearable robots. •We present a framework for real-time continuous gait phase estimation that requires no offline parameter tuning.•An on-line adaptation mechanism is designed to improve the performance of gait phase estimation.•The framework is potential in long-term adaptive and personalized control of assistive wearable devices.•Our approach requires a simple sensor system and works with a wide range of walking speeds.
AbstractList Phase-variable-based approaches are emerging in the control of lower-limb wearable robots, such as exoskeletons and prosthetic legs. However, real-time smooth estimation of the gait phase within each gait cycle remains an open problem. This paper presents a novel method for real-time continuous gait phase estimation during walking. The proposed framework consists of three subsystems: real-time kinematic data collection, gait phase variable estimation, and online adaptation of individual kinematics through backward data segmentation of completed gait strides. It is worth noting that we introduce an online learning mechanism for extracting and learning gait features from previous strides, in contrast with offline parameter tuning. The proposed basic gait model is initialized by human average data and is incrementally refined as a function of the individual gait features over different walking speeds. This provides a framework for long-term personalized control. Furthermore, the phase variable is constructed through the thigh angle measured by an inertial measurement unit. The resulting simple sensor system improves the usability of the proposed technique in wearable robotics. Validation experiments with seven healthy subjects, including treadmill walking and free level-ground walking, were conducted to evaluate the performance of the proposed method. In treadmill validation, the root-mean-square error (RMSE) of the phase estimator was 4.14 ± 1.68% for steady speeds, while it was 6.77 ± 2.29% for unsteady-speed walking. In level-ground validation, the average RMSE of the phase estimator was 4.59 ± 1.76%. Preliminary experiments were also conducted using a single-joint hip exoskeleton to demonstrate the usability of our method in lower-limb wearable robots. •We present a framework for real-time continuous gait phase estimation that requires no offline parameter tuning.•An on-line adaptation mechanism is designed to improve the performance of gait phase estimation.•The framework is potential in long-term adaptive and personalized control of assistive wearable devices.•Our approach requires a simple sensor system and works with a wide range of walking speeds.
ArticleNumber 103842
Author Zhang, Binquan
Xu, Wanlu
Zhou, Min
Wang, Sun’an
Author_xml – sequence: 1
  givenname: Binquan
  orcidid: 0000-0002-1170-8640
  surname: Zhang
  fullname: Zhang, Binquan
  email: zhangbinquan@163.com
– sequence: 2
  givenname: Sun’an
  orcidid: 0000-0003-3905-4770
  surname: Wang
  fullname: Wang, Sun’an
  email: sawang@xjtu.edu.cn
– sequence: 3
  givenname: Min
  surname: Zhou
  fullname: Zhou, Min
  email: zhimazhou@163.com
– sequence: 4
  givenname: Wanlu
  surname: Xu
  fullname: Xu, Wanlu
  email: wlxu0211@163.com
BookMark eNqFkM1OwzAQhC1UJErhCbj4BVL8k6TxgUNV8SdV4gISN8tx1uA2jau124q3J005cYDTSqv5RjNzSUZd6ICQG86mnPHydjXFUIc0FUzw_iOrXJyRMa9mIpsp-T4iY6YEz6pKsQtyGeOKMSaLmRyT9byjpjHb5PdAHZoNHAKuaXAUwbRZ8hugNnTJd7uwi_TD-ES3nyYC3Rv0pm6BQuxVJvnQUReQtuEAmLV-U9MDGBwkQ7p4Rc6daSNc_9wJeXu4f108ZcuXx-fFfJlZyWTKDCulUI1yvABbKiXyuqmlLYucNVwVSilbK8uctDnklZVl7nqwAuj1Tc2FnBB18rUYYkRw2vo0BExofKs508fV9EoPufRxNX1arWflL3aLfTv8-oe6O1HQ19p7QB2th85C4xFs0k3wf_Lf2eOMTQ
CitedBy_id crossref_primary_10_1109_TRO_2023_3235584
crossref_primary_10_3390_s23063032
crossref_primary_10_3389_fbioe_2022_842294
crossref_primary_10_1155_2022_7503668
crossref_primary_10_1088_2516_1091_ada333
crossref_primary_10_1109_LRA_2023_3256927
crossref_primary_10_1109_TNSRE_2022_3229220
crossref_primary_10_3390_s24082390
crossref_primary_10_1109_ACCESS_2025_3544758
crossref_primary_10_1109_LRA_2022_3183790
crossref_primary_10_3390_s21206751
crossref_primary_10_3390_pr11123278
crossref_primary_10_3390_s21196545
crossref_primary_10_1109_JSEN_2023_3328615
crossref_primary_10_1109_JSEN_2022_3167686
crossref_primary_10_3390_machines10100944
crossref_primary_10_3390_s24196318
crossref_primary_10_1017_wtc_2022_11
Cites_doi 10.1109/4235.985692
10.1186/s12966-017-0481-3
10.1016/j.robot.2014.09.025
10.1109/LRA.2019.2924841
10.1108/01439910910994597
10.1109/TNSRE.2019.2904477
10.3390/s16010066
10.1109/TMECH.2008.2008803
10.1186/s12984-020-00663-9
10.1016/j.patcog.2010.09.022
10.7717/peerj.918
10.2174/1874110X00903020064
10.1016/j.robot.2017.05.013
10.1109/TNSRE.2016.2521160
10.1038/s41598-019-43628-2
10.1007/s10514-017-9648-7
10.1177/0278364917713116
10.1145/2500489
10.1016/j.bbe.2013.03.005
10.1109/TRO.2018.2794536
10.1109/TASSP.1978.1163055
10.1109/TRO.2019.2913318
10.1109/TNSRE.2020.3045003
10.1016/j.neunet.2008.03.006
10.1109/ACCESS.2019.2933614
10.3390/s18072389
10.1109/JSYST.2014.2351491
10.1016/j.robot.2014.09.032
10.1177/0278364907084588
10.1097/PHM.0b013e318269d9a3
10.1186/s12984-015-0062-0
10.1016/j.robot.2014.08.012
10.1109/LRA.2018.2801473
10.1109/MCS.2018.2866605
10.1016/j.mechatronics.2011.03.003
10.1109/JBHI.2016.2608720
10.1016/j.robot.2020.103628
10.1093/ageing/afr075
10.1109/TMRB.2019.2961749
10.1177/0278364911421511
10.1007/s10115-004-0154-9
10.1115/1.4029336
10.1109/TNSRE.2016.2569019
10.1371/journal.pone.0047048
10.1371/journal.pone.0099387
10.1007/s10514-016-9566-0
10.1109/LRA.2019.2890896
10.1109/TMECH.2019.2893055
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.robot.2021.103842
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-793X
ExternalDocumentID 10_1016_j_robot_2021_103842
S0921889021001275
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPGS
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
RXW
SBC
SCC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TAE
UNMZH
WUQ
XPP
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c303t-a06329d9f15ec69924bdb3c6540d195999cb9c0f3c4e48c364fc308ee15edb123
IEDL.DBID .~1
ISSN 0921-8890
IngestDate Tue Jul 01 01:41:54 EDT 2025
Thu Apr 24 23:07:53 EDT 2025
Fri Feb 23 02:46:49 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Wearable robotics
Gait phase estimation
Trajectory correlation
Gait kinematics
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c303t-a06329d9f15ec69924bdb3c6540d195999cb9c0f3c4e48c364fc308ee15edb123
ORCID 0000-0003-3905-4770
0000-0002-1170-8640
ParticipantIDs crossref_citationtrail_10_1016_j_robot_2021_103842
crossref_primary_10_1016_j_robot_2021_103842
elsevier_sciencedirect_doi_10_1016_j_robot_2021_103842
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2021
2021-09-00
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: September 2021
PublicationDecade 2020
PublicationTitle Robotics and autonomous systems
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Lim, Lee, Jang, Kim, Park, Seo, Shim (b48) 2019; 35
Chen, Ma, Qin, Gao, Chan, Law, Qin, Liao (b6) 2016; 5
Buesing, Fisch, O’Donnell, Shahidi, Thomas, Mummidisetty, Williams, Takahashi, Rymer, Jayaraman (b18) 2015; 12
Novak, Riener (b32) 2015; 73
Júdice, Silva, Berria, Petroski, Ekelund, Sardinha (b2) 2017; 14
Al-dabbagh, Ronsse (b17) 2020; 133
Xu, Crea, Vitiello, Wang (b30) 2020
Simon, Ingraham, Fey, Finucane, Lipschutz, Young, Hargrove (b31) 2014; 9
Young, Ferris (b13) 2017; 25
Rakthanmanon, Campana, Mueen, Batista, Westover, Zhu, Zakaria, Keogh (b63) 2013; 7
Zhu, Nesler, Divekar, Peddinti, Gregg (b23) 2021
Sup, Bohara, Goldfarb (b9) 2008; 27
Villarreal, Gregg (b24) 2014
Kang, Kunapuli, Young (b44) 2020; 2
Sakoe, Chiba (b62) 1978; 26
Petrič, Gams, Ijspeert, Žlajpah (b50) 2011; 30
Yan, Parri, Garate, Cempini, Ronsse, Vitiello (b43) 2016; 41
Clerc, Kennedy (b61) 2002; 6
Seo, Lee, Lee, Ha, Shim (b20) 2016
Thatte, Shah, Geyer (b28) 2019; 4
Rezazadeh, Quintero, Divekar, Reznick, Gray, Gregg (b22) 2019; 7
Taborri, Palermo, Rossi, Cappa (b37) 2016; 16
Sugar, Bates, Holgate, Kerestes, Mignolet, New, Ramachandran, Redkar, Wheeler (b41) 2015; 7
Seo, Hyung, Choi, Lee, Shim (b42) 2015
Villarreal, Poonawala, Gregg (b25) 2017; 25
Huo, Mohammed, Moreno, Amirat (b7) 2016; 10
Asbeck, Schmidt, Walsh (b10) 2015; 73
Yan, Cempini, Oddo, Vitiello (b12) 2015; 64
Lv, Zhu, Gregg (b16) 2018; 38
Embry, Gregg (b53) 2021; 29
Waugh, Huang, Fraser, Beyer, Trinh, Mcilroy, Kulic (b52) 2019; 27
Winter (b26) 2009
Zhang, Wang, Zhu (b47) 2019
Englert, Toussaint (b56) 2014
Viteckova, Kutilek, Jirina (b8) 2013; 33
Zhu, Doan, Stence, Lv, Elery, Gregg (b21) 2017
Gui, Liu, Zhang (b33) 2019; 24
Seo, Park, Lee, Hyung, Lee, Kim, Choi, Shim (b46) 2019
Mazimpaka, Timpf (b59) 2016; 13
Keogh, Ratanamahatana (b60) 2005; 7
Lioutikov, Neumann, Maeda, Peters (b66) 2017; 36
Arnold, Hamner, Seth, Millard, Delp (b51) 2013; 216
Quintero, Villarreal, Lambert, Kapp, Gregg (b27) 2018; 34
Kang, Hsu, Young (b29) 2019; 4
Moore, Hnat, van den Bogert (b55) 2015; 3
Chastin, Ferriolli, Stephens, Fearon, Greig (b1) 2011; 41
Kong, Tomizuka (b38) 2009; 14
Jeong, Jeong, Omitaomu (b58) 2011; 44
Sawicki, Beck, Kang, Young (b5) 2020; 17
Esquenazi, Talaty, Packel, Saulino (b14) 2012; 91
Read, Woolsey, McGibbon, O’Connell (b15) 2020; 2020
Aliman, Ramli, Haris (b11) 2017; 95
Kusuda (b19) 2009; 36
Paraschos, Daniel, Peters, Neumann (b57) 2017; 42
Tanghe, Aertbelien, Vantilt, Moltedo, Bacek, Lefeber, Schutter (b65) 2018; 3
Chen, Lach, Lo, Yang (b36) 2016; 20
Dhir, Dallali, Ficanha, Ribeiro, Rastgaar (b54) 2018
Martini, Crea, Parri, Bastiani, Faraguna, McKinney, Molino-Lova, Pratali, Vitiello (b3) 2019; 9
Vu, Gomez, Cherelle, Lefeber, Nowé, Vanderborght (b45) 2018; 18
Yang, Huang, Yu, Yang, Su, Spungen, Tsai (b39) 2019
Righetti, Buchli, Ijspeert (b49) 2009; 3
Seo, Lee, Park (b64) 2017
Ramos-Murguialday, Schürholz, Caggiano, Wildgruber, Caria, Hammer, Halder, Birbaumer (b34) 2012; 7
Bae, Tomizuka (b40) 2011; 21
Au, Berniker, Herr (b4) 2008; 21
Perry (b35) 2010
Au (10.1016/j.robot.2021.103842_b4) 2008; 21
Al-dabbagh (10.1016/j.robot.2021.103842_b17) 2020; 133
Paraschos (10.1016/j.robot.2021.103842_b57) 2017; 42
Viteckova (10.1016/j.robot.2021.103842_b8) 2013; 33
Buesing (10.1016/j.robot.2021.103842_b18) 2015; 12
Villarreal (10.1016/j.robot.2021.103842_b24) 2014
Villarreal (10.1016/j.robot.2021.103842_b25) 2017; 25
Simon (10.1016/j.robot.2021.103842_b31) 2014; 9
Keogh (10.1016/j.robot.2021.103842_b60) 2005; 7
Aliman (10.1016/j.robot.2021.103842_b11) 2017; 95
Seo (10.1016/j.robot.2021.103842_b20) 2016
Bae (10.1016/j.robot.2021.103842_b40) 2011; 21
Zhu (10.1016/j.robot.2021.103842_b21) 2017
Lv (10.1016/j.robot.2021.103842_b16) 2018; 38
Zhang (10.1016/j.robot.2021.103842_b47) 2019
Esquenazi (10.1016/j.robot.2021.103842_b14) 2012; 91
Jeong (10.1016/j.robot.2021.103842_b58) 2011; 44
Read (10.1016/j.robot.2021.103842_b15) 2020; 2020
Kang (10.1016/j.robot.2021.103842_b29) 2019; 4
Yan (10.1016/j.robot.2021.103842_b43) 2016; 41
Gui (10.1016/j.robot.2021.103842_b33) 2019; 24
Petrič (10.1016/j.robot.2021.103842_b50) 2011; 30
Zhu (10.1016/j.robot.2021.103842_b23) 2021
Chen (10.1016/j.robot.2021.103842_b36) 2016; 20
Sup (10.1016/j.robot.2021.103842_b9) 2008; 27
Yan (10.1016/j.robot.2021.103842_b12) 2015; 64
Yang (10.1016/j.robot.2021.103842_b39) 2019
Sugar (10.1016/j.robot.2021.103842_b41) 2015; 7
Chastin (10.1016/j.robot.2021.103842_b1) 2011; 41
Young (10.1016/j.robot.2021.103842_b13) 2017; 25
Mazimpaka (10.1016/j.robot.2021.103842_b59) 2016; 13
Thatte (10.1016/j.robot.2021.103842_b28) 2019; 4
Quintero (10.1016/j.robot.2021.103842_b27) 2018; 34
Sawicki (10.1016/j.robot.2021.103842_b5) 2020; 17
Seo (10.1016/j.robot.2021.103842_b46) 2019
Righetti (10.1016/j.robot.2021.103842_b49) 2009; 3
Waugh (10.1016/j.robot.2021.103842_b52) 2019; 27
Rakthanmanon (10.1016/j.robot.2021.103842_b63) 2013; 7
Martini (10.1016/j.robot.2021.103842_b3) 2019; 9
Lim (10.1016/j.robot.2021.103842_b48) 2019; 35
Englert (10.1016/j.robot.2021.103842_b56) 2014
Kang (10.1016/j.robot.2021.103842_b44) 2020; 2
Vu (10.1016/j.robot.2021.103842_b45) 2018; 18
Dhir (10.1016/j.robot.2021.103842_b54) 2018
Rezazadeh (10.1016/j.robot.2021.103842_b22) 2019; 7
Moore (10.1016/j.robot.2021.103842_b55) 2015; 3
Winter (10.1016/j.robot.2021.103842_b26) 2009
Kong (10.1016/j.robot.2021.103842_b38) 2009; 14
Perry (10.1016/j.robot.2021.103842_b35) 2010
Lioutikov (10.1016/j.robot.2021.103842_b66) 2017; 36
Chen (10.1016/j.robot.2021.103842_b6) 2016; 5
Seo (10.1016/j.robot.2021.103842_b42) 2015
Embry (10.1016/j.robot.2021.103842_b53) 2021; 29
Taborri (10.1016/j.robot.2021.103842_b37) 2016; 16
Júdice (10.1016/j.robot.2021.103842_b2) 2017; 14
Novak (10.1016/j.robot.2021.103842_b32) 2015; 73
Ramos-Murguialday (10.1016/j.robot.2021.103842_b34) 2012; 7
Seo (10.1016/j.robot.2021.103842_b64) 2017
Asbeck (10.1016/j.robot.2021.103842_b10) 2015; 73
Xu (10.1016/j.robot.2021.103842_b30) 2020
Huo (10.1016/j.robot.2021.103842_b7) 2016; 10
Clerc (10.1016/j.robot.2021.103842_b61) 2002; 6
Sakoe (10.1016/j.robot.2021.103842_b62) 1978; 26
Kusuda (10.1016/j.robot.2021.103842_b19) 2009; 36
Tanghe (10.1016/j.robot.2021.103842_b65) 2018; 3
Arnold (10.1016/j.robot.2021.103842_b51) 2013; 216
References_xml – volume: 44
  start-page: 2231
  year: 2011
  end-page: 2240
  ident: b58
  article-title: Weighted dynamic time warping for time series classification
  publication-title: Pattern Recognit.
– volume: 10
  start-page: 1068
  year: 2016
  end-page: 1081
  ident: b7
  article-title: Lower limb wearable robots for assistance and rehabilitation: A state of the art
  publication-title: IEEE Syst. J.
– volume: 3
  start-page: 64
  year: 2009
  end-page: 69
  ident: b49
  article-title: Adaptive frequency oscillators and applications
  publication-title: Open Cybern. Syst. J.
– volume: 36
  start-page: 537
  year: 2009
  end-page: 539
  ident: b19
  article-title: In quest of mobility – Honda to develop walking assist devices
  publication-title: Ind. Robot
– volume: 27
  start-page: 733
  year: 2019
  end-page: 742
  ident: b52
  article-title: Online learning of gait models from older adult data
  publication-title: IEEE Trans. Neural Syst. Rehabilitation Eng.
– volume: 14
  year: 2017
  ident: b2
  article-title: Sedentary patterns, physical activity and health-related physical fitness in youth: A cross-sectional study
  publication-title: Int. J. Behav. Nutr. Phys. Act.
– volume: 29
  start-page: 262
  year: 2021
  end-page: 272
  ident: b53
  article-title: Analysis of continuously varying kinematics for prosthetic leg control applications
  publication-title: IEEE Trans. Neural Syst. Rehabilitation Eng.
– volume: 30
  start-page: 1775
  year: 2011
  end-page: 1788
  ident: b50
  article-title: On-line frequency adaptation and movement imitation for rhythmic robotic tasks
  publication-title: Int. J. Robot. Res.
– volume: 41
  start-page: 759
  year: 2016
  end-page: 774
  ident: b43
  article-title: An oscillator-based smooth real-time estimate of gait phase for wearable robotics
  publication-title: Auton. Robots
– volume: 7
  year: 2012
  ident: b34
  article-title: Proprioceptive feedback and brain computer interface (BCI) based neuroprostheses
  publication-title: PLoS One
– volume: 36
  start-page: 879
  year: 2017
  end-page: 894
  ident: b66
  article-title: Learning movement primitive libraries through probabilistic segmentation
  publication-title: Int. J. Robot. Res.
– volume: 26
  start-page: 43
  year: 1978
  end-page: 49
  ident: b62
  article-title: Dynamic programming algorithm optimization for spoken word recognition
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
– start-page: 1488
  year: 2018
  end-page: 1495
  ident: b54
  article-title: Locomotion envelopes for adaptive control of powered ankle prostheses
  publication-title: 2018 IEEE International Conference on Robotics and Automation, ICRA
– volume: 7
  year: 2015
  ident: b41
  article-title: Limit cycles to enhance human performance based on phase oscillators
  publication-title: J. Mech. Robot.
– volume: 27
  start-page: 263
  year: 2008
  ident: b9
  article-title: Design and control of a powered transfemoral prosthesis
  publication-title: Int. J. Robot. Res.
– volume: 34
  start-page: 686
  year: 2018
  end-page: 701
  ident: b27
  article-title: Continuous-phase control of a powered knee–ankle prosthesis: Amputee experiments across speeds and inclines
  publication-title: IEEE Trans. Robot.
– volume: 25
  start-page: 171
  year: 2017
  end-page: 182
  ident: b13
  article-title: State of the art and future directions for lower limb robotic exoskeletons
  publication-title: IEEE Trans. Neural Syst. Rehabilitation Eng.
– volume: 2020
  start-page: 1
  year: 2020
  end-page: 8
  ident: b15
  article-title: Physiotherapists’ experiences using the ekso bionic exoskeleton with patients in a neurological rehabilitation hospital: A qualitative study
  publication-title: Rehabil. Res. Pract.
– volume: 3
  year: 2015
  ident: b55
  article-title: An elaborate data set on human gait and the effect of mechanical perturbations
  publication-title: PeerJ
– volume: 18
  start-page: 2389
  year: 2018
  ident: b45
  article-title: ED-FNN: A new deep learning algorithm to detect percentage of the gait cycle for powered prostheses
  publication-title: Sensors
– volume: 20
  start-page: 1521
  year: 2016
  end-page: 1537
  ident: b36
  article-title: Toward pervasive gait analysis with wearable sensors: A systematic review
  publication-title: IEEE J. Biomed. Health Inform.
– start-page: 4628
  year: 2016
  end-page: 4635
  ident: b20
  article-title: Fully autonomous hip exoskeleton saves metabolic cost of walking
  publication-title: 2016 IEEE International Conference on Robotics and Automation, ICRA
– volume: 7
  start-page: 1
  year: 2013
  end-page: 31
  ident: b63
  article-title: Addressing big data time series
  publication-title: ACM Trans. Knowl. Discov. Data
– volume: 16
  start-page: 66
  year: 2016
  ident: b37
  article-title: Gait partitioning methods: A systematic review
  publication-title: Sensors
– volume: 17
  year: 2020
  ident: b5
  article-title: The exoskeleton expansion: Improving walking and running economy
  publication-title: J. Neuroeng. Rehabil.
– start-page: 246
  year: 2017
  end-page: 251
  ident: b64
  article-title: Autonomous hip exoskeleton saves metabolic cost of walking uphill
  publication-title: 2017 International Conference on Rehabilitation Robotics, ICORR
– volume: 2
  start-page: 28
  year: 2020
  end-page: 37
  ident: b44
  article-title: Real-time neural network-based gait phase estimation using a robotic hip exoskeleton
  publication-title: IEEE Trans. Med. Robot. Bionics
– volume: 73
  start-page: 102
  year: 2015
  end-page: 110
  ident: b10
  article-title: Soft exosuit for hip assistance
  publication-title: Robot. Auton. Syst.
– volume: 64
  start-page: 120
  year: 2015
  end-page: 136
  ident: b12
  article-title: Review of assistive strategies in powered lower-limb orthoses and exoskeletons
  publication-title: Robot. Auton. Syst.
– volume: 38
  start-page: 88
  year: 2018
  end-page: 113
  ident: b16
  article-title: On the design and control of highly backdrivable lower-limb exoskeletons: A discussion of past and ongoing work
  publication-title: IEEE Control Syst.
– volume: 14
  start-page: 358
  year: 2009
  end-page: 370
  ident: b38
  article-title: A gait monitoring system based on air pressure sensors embedded in a shoe
  publication-title: IEEE/ASME Trans. Mechatronics
– volume: 3
  start-page: 1647
  year: 2018
  end-page: 1654
  ident: b65
  article-title: Realtime delayless estimation of derivatives of noisy sensor signals for quasi-cyclic motions with application to joint acceleration estimation on an exoskeleton
  publication-title: IEEE Robot. Autom. Lett.
– volume: 7
  start-page: 358
  year: 2005
  end-page: 386
  ident: b60
  article-title: Exact indexing of dynamic time warping
  publication-title: Knowl. Inf. Syst.
– volume: 91
  start-page: 911
  year: 2012
  end-page: 921
  ident: b14
  article-title: The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury
  publication-title: Am. J. Phys. Med. Rehabil.
– start-page: 1363
  year: 2014
  end-page: 1369
  ident: b56
  article-title: Reactive phase and task space adaptation for robust motion execution
  publication-title: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems
– volume: 42
  start-page: 529
  year: 2017
  end-page: 551
  ident: b57
  article-title: Using probabilistic movement primitives in robotics
  publication-title: Auton. Robots
– start-page: 1
  year: 2021
  ident: b23
  article-title: Design principles for compact, backdrivable actuation in partial-assist powered knee orthoses
  publication-title: IEEE/ASME Trans. Mechatronics
– volume: 5
  start-page: 26
  year: 2016
  end-page: 37
  ident: b6
  article-title: Recent developments and challenges of lower extremity exoskeletons
  publication-title: J. Orthop. Transl.
– volume: 133
  year: 2020
  ident: b17
  article-title: A review of terrain detection systems for applications in locomotion assistance
  publication-title: Robot. Auton. Syst.
– volume: 95
  start-page: 102
  year: 2017
  end-page: 116
  ident: b11
  article-title: Design and development of lower limb exoskeletons: A survey
  publication-title: Robot. Auton. Syst.
– volume: 6
  start-page: 58
  year: 2002
  end-page: 73
  ident: b61
  article-title: The particle swarm - explosion, stability, and convergence in a multidimensional complex space
  publication-title: IEEE Trans. Evol. Comput.
– volume: 9
  year: 2019
  ident: b3
  article-title: Gait training using a robotic hip exoskeleton improves metabolic gait efficiency in the elderly
  publication-title: Sci. Rep.
– start-page: 809
  year: 2019
  end-page: 815
  ident: b46
  article-title: RNN-based on-line continuous gait phase estimation from shank-mounted IMUs to control ankle exoskeletons
  publication-title: 2019 IEEE 16th International Conference on Rehabilitation Robotics, ICORR
– volume: 21
  start-page: 961
  year: 2011
  end-page: 970
  ident: b40
  article-title: Gait phase analysis based on a hidden Markov model
  publication-title: Mechatronics
– volume: 12
  year: 2015
  ident: b18
  article-title: Effects of a wearable exoskeleton stride management assist system (SMA®) on spatiotemporal gait characteristics in individuals after stroke: A randomized controlled trial
  publication-title: J. Neuroeng. Rehabil.
– volume: 25
  start-page: 265
  year: 2017
  end-page: 278
  ident: b25
  article-title: A robust parameterization of human gait patterns across phase-shifting perturbations
  publication-title: IEEE Trans. Neural Syst. Rehabilitation Eng.
– volume: 73
  start-page: 155
  year: 2015
  end-page: 170
  ident: b32
  article-title: A survey of sensor fusion methods in wearable robotics
  publication-title: Robot. Auton. Syst.
– volume: 9
  year: 2014
  ident: b31
  article-title: Configuring a powered knee and ankle prosthesis for transfemoral amputees within five specific ambulation modes
  publication-title: PLoS One
– volume: 24
  start-page: 483
  year: 2019
  end-page: 494
  ident: b33
  article-title: A practical and adaptive method to achieve EMG-based torque estimation for a robotic exoskeleton
  publication-title: IEEE/ASME Trans. Mechatronics
– start-page: 1127
  year: 2019
  end-page: 1132
  ident: b47
  article-title: A user-adaptive online learning approach of real-time gait phase detection for walking assistance
  publication-title: 2019 IEEE Symposium Series on Computational Intelligence, SSCI
– start-page: 4017
  year: 2014
  end-page: 4021
  ident: b24
  article-title: A survey of phase variable candidates of human locomotion
  publication-title: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
– year: 2010
  ident: b35
  article-title: Gait Analysis: Normal and Pathological Function
– start-page: 5565
  year: 2015
  end-page: 5571
  ident: b42
  article-title: A new adaptive frequency oscillator for gait assistance
  publication-title: 2015 IEEE International Conference on Robotics and Automation, ICRA
– volume: 35
  start-page: 1055
  year: 2019
  end-page: 1062
  ident: b48
  article-title: Delayed output feedback control for gait assistance with a robotic hip exoskeleton
  publication-title: IEEE Trans. Robot.
– start-page: 504
  year: 2017
  end-page: 510
  ident: b21
  article-title: Design and validation of a torque dense, highly backdrivable powered knee-ankle orthosis
  publication-title: 2017 IEEE International Conference on Robotics and Automation, ICRA
– volume: 13
  start-page: 61
  year: 2016
  end-page: 99
  ident: b59
  article-title: Trajectory data mining: A review of methods and applications
  publication-title: J. Spat. Inf. Sci.
– year: 2009
  ident: b26
  article-title: Biomechanics and Motor Control of Human Movement
– volume: 4
  start-page: 3129
  year: 2019
  end-page: 3136
  ident: b28
  article-title: Robust and adaptive lower limb prosthesis stance control via extended Kalman filter-based gait phase estimation
  publication-title: IEEE Robot. Autom. Lett.
– volume: 41
  start-page: 111
  year: 2011
  end-page: 114
  ident: b1
  article-title: Relationship between sedentary behaviour, physical activity, muscle quality and body composition in healthy older adults
  publication-title: Age Ageing
– volume: 33
  start-page: 96
  year: 2013
  end-page: 105
  ident: b8
  article-title: Wearable lower limb robotics: A review
  publication-title: Biocybern. Biomed. Eng.
– volume: 7
  start-page: 109840
  year: 2019
  end-page: 109855
  ident: b22
  article-title: A phase variable approach for improved rhythmic and non-rhythmic control of a powered knee-ankle prosthesis
  publication-title: IEEE Access
– start-page: 1890
  year: 2020
  end-page: 1895
  ident: b30
  article-title: Online estimation of continuous gait phase for robotic transtibial prostheses based on adaptive oscillators
  publication-title: 2020 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM
– volume: 4
  start-page: 430
  year: 2019
  end-page: 437
  ident: b29
  article-title: The effect of hip assistance levels on human energetic cost using robotic hip exoskeletons
  publication-title: IEEE Robot. Autom. Lett.
– year: 2019
  ident: b39
  article-title: Machine learning based adaptive gait phase estimation using inertial measurement sensors
  publication-title: 2019 Design of Medical Devices Conference
– volume: 21
  start-page: 654
  year: 2008
  end-page: 666
  ident: b4
  article-title: Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits
  publication-title: Neural Netw.
– volume: 216
  start-page: 2150
  year: 2013
  end-page: 2160
  ident: b51
  article-title: How muscle fiber lengths and velocities affect muscle force generation as humans walk and run at different speeds
  publication-title: J. Exp. Biol.
– volume: 6
  start-page: 58
  issue: 1
  year: 2002
  ident: 10.1016/j.robot.2021.103842_b61
  article-title: The particle swarm - explosion, stability, and convergence in a multidimensional complex space
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.985692
– volume: 14
  issue: 1
  year: 2017
  ident: 10.1016/j.robot.2021.103842_b2
  article-title: Sedentary patterns, physical activity and health-related physical fitness in youth: A cross-sectional study
  publication-title: Int. J. Behav. Nutr. Phys. Act.
  doi: 10.1186/s12966-017-0481-3
– volume: 73
  start-page: 102
  year: 2015
  ident: 10.1016/j.robot.2021.103842_b10
  article-title: Soft exosuit for hip assistance
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/j.robot.2014.09.025
– volume: 4
  start-page: 3129
  issue: 4
  year: 2019
  ident: 10.1016/j.robot.2021.103842_b28
  article-title: Robust and adaptive lower limb prosthesis stance control via extended Kalman filter-based gait phase estimation
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2019.2924841
– volume: 36
  start-page: 537
  issue: 6
  year: 2009
  ident: 10.1016/j.robot.2021.103842_b19
  article-title: In quest of mobility – Honda to develop walking assist devices
  publication-title: Ind. Robot
  doi: 10.1108/01439910910994597
– volume: 27
  start-page: 733
  issue: 4
  year: 2019
  ident: 10.1016/j.robot.2021.103842_b52
  article-title: Online learning of gait models from older adult data
  publication-title: IEEE Trans. Neural Syst. Rehabilitation Eng.
  doi: 10.1109/TNSRE.2019.2904477
– start-page: 4628
  year: 2016
  ident: 10.1016/j.robot.2021.103842_b20
  article-title: Fully autonomous hip exoskeleton saves metabolic cost of walking
– volume: 16
  start-page: 66
  issue: 1
  year: 2016
  ident: 10.1016/j.robot.2021.103842_b37
  article-title: Gait partitioning methods: A systematic review
  publication-title: Sensors
  doi: 10.3390/s16010066
– volume: 14
  start-page: 358
  issue: 3
  year: 2009
  ident: 10.1016/j.robot.2021.103842_b38
  article-title: A gait monitoring system based on air pressure sensors embedded in a shoe
  publication-title: IEEE/ASME Trans. Mechatronics
  doi: 10.1109/TMECH.2008.2008803
– start-page: 4017
  year: 2014
  ident: 10.1016/j.robot.2021.103842_b24
  article-title: A survey of phase variable candidates of human locomotion
– volume: 17
  issue: 1
  year: 2020
  ident: 10.1016/j.robot.2021.103842_b5
  article-title: The exoskeleton expansion: Improving walking and running economy
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/s12984-020-00663-9
– volume: 44
  start-page: 2231
  issue: 9
  year: 2011
  ident: 10.1016/j.robot.2021.103842_b58
  article-title: Weighted dynamic time warping for time series classification
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2010.09.022
– volume: 3
  year: 2015
  ident: 10.1016/j.robot.2021.103842_b55
  article-title: An elaborate data set on human gait and the effect of mechanical perturbations
  publication-title: PeerJ
  doi: 10.7717/peerj.918
– volume: 3
  start-page: 64
  issue: 2
  year: 2009
  ident: 10.1016/j.robot.2021.103842_b49
  article-title: Adaptive frequency oscillators and applications
  publication-title: Open Cybern. Syst. J.
  doi: 10.2174/1874110X00903020064
– volume: 95
  start-page: 102
  year: 2017
  ident: 10.1016/j.robot.2021.103842_b11
  article-title: Design and development of lower limb exoskeletons: A survey
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/j.robot.2017.05.013
– start-page: 1363
  year: 2014
  ident: 10.1016/j.robot.2021.103842_b56
  article-title: Reactive phase and task space adaptation for robust motion execution
– volume: 25
  start-page: 171
  issue: 2
  year: 2017
  ident: 10.1016/j.robot.2021.103842_b13
  article-title: State of the art and future directions for lower limb robotic exoskeletons
  publication-title: IEEE Trans. Neural Syst. Rehabilitation Eng.
  doi: 10.1109/TNSRE.2016.2521160
– volume: 9
  issue: 1
  year: 2019
  ident: 10.1016/j.robot.2021.103842_b3
  article-title: Gait training using a robotic hip exoskeleton improves metabolic gait efficiency in the elderly
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-43628-2
– volume: 42
  start-page: 529
  issue: 3
  year: 2017
  ident: 10.1016/j.robot.2021.103842_b57
  article-title: Using probabilistic movement primitives in robotics
  publication-title: Auton. Robots
  doi: 10.1007/s10514-017-9648-7
– volume: 36
  start-page: 879
  issue: 8
  year: 2017
  ident: 10.1016/j.robot.2021.103842_b66
  article-title: Learning movement primitive libraries through probabilistic segmentation
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364917713116
– volume: 7
  start-page: 1
  issue: 3
  year: 2013
  ident: 10.1016/j.robot.2021.103842_b63
  article-title: Addressing big data time series
  publication-title: ACM Trans. Knowl. Discov. Data
  doi: 10.1145/2500489
– volume: 33
  start-page: 96
  issue: 2
  year: 2013
  ident: 10.1016/j.robot.2021.103842_b8
  article-title: Wearable lower limb robotics: A review
  publication-title: Biocybern. Biomed. Eng.
  doi: 10.1016/j.bbe.2013.03.005
– start-page: 5565
  year: 2015
  ident: 10.1016/j.robot.2021.103842_b42
  article-title: A new adaptive frequency oscillator for gait assistance
– start-page: 504
  year: 2017
  ident: 10.1016/j.robot.2021.103842_b21
  article-title: Design and validation of a torque dense, highly backdrivable powered knee-ankle orthosis
– volume: 34
  start-page: 686
  issue: 3
  year: 2018
  ident: 10.1016/j.robot.2021.103842_b27
  article-title: Continuous-phase control of a powered knee–ankle prosthesis: Amputee experiments across speeds and inclines
  publication-title: IEEE Trans. Robot.
  doi: 10.1109/TRO.2018.2794536
– start-page: 1127
  year: 2019
  ident: 10.1016/j.robot.2021.103842_b47
  article-title: A user-adaptive online learning approach of real-time gait phase detection for walking assistance
– volume: 26
  start-page: 43
  issue: 1
  year: 1978
  ident: 10.1016/j.robot.2021.103842_b62
  article-title: Dynamic programming algorithm optimization for spoken word recognition
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
  doi: 10.1109/TASSP.1978.1163055
– volume: 35
  start-page: 1055
  issue: 4
  year: 2019
  ident: 10.1016/j.robot.2021.103842_b48
  article-title: Delayed output feedback control for gait assistance with a robotic hip exoskeleton
  publication-title: IEEE Trans. Robot.
  doi: 10.1109/TRO.2019.2913318
– volume: 29
  start-page: 262
  year: 2021
  ident: 10.1016/j.robot.2021.103842_b53
  article-title: Analysis of continuously varying kinematics for prosthetic leg control applications
  publication-title: IEEE Trans. Neural Syst. Rehabilitation Eng.
  doi: 10.1109/TNSRE.2020.3045003
– volume: 21
  start-page: 654
  issue: 4
  year: 2008
  ident: 10.1016/j.robot.2021.103842_b4
  article-title: Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2008.03.006
– volume: 7
  start-page: 109840
  year: 2019
  ident: 10.1016/j.robot.2021.103842_b22
  article-title: A phase variable approach for improved rhythmic and non-rhythmic control of a powered knee-ankle prosthesis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2933614
– volume: 216
  start-page: 2150
  issue: 11
  year: 2013
  ident: 10.1016/j.robot.2021.103842_b51
  article-title: How muscle fiber lengths and velocities affect muscle force generation as humans walk and run at different speeds
  publication-title: J. Exp. Biol.
– volume: 18
  start-page: 2389
  issue: 7
  year: 2018
  ident: 10.1016/j.robot.2021.103842_b45
  article-title: ED-FNN: A new deep learning algorithm to detect percentage of the gait cycle for powered prostheses
  publication-title: Sensors
  doi: 10.3390/s18072389
– volume: 10
  start-page: 1068
  issue: 3
  year: 2016
  ident: 10.1016/j.robot.2021.103842_b7
  article-title: Lower limb wearable robots for assistance and rehabilitation: A state of the art
  publication-title: IEEE Syst. J.
  doi: 10.1109/JSYST.2014.2351491
– volume: 64
  start-page: 120
  year: 2015
  ident: 10.1016/j.robot.2021.103842_b12
  article-title: Review of assistive strategies in powered lower-limb orthoses and exoskeletons
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/j.robot.2014.09.032
– volume: 27
  start-page: 263
  issue: 2
  year: 2008
  ident: 10.1016/j.robot.2021.103842_b9
  article-title: Design and control of a powered transfemoral prosthesis
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364907084588
– volume: 91
  start-page: 911
  issue: 11
  year: 2012
  ident: 10.1016/j.robot.2021.103842_b14
  article-title: The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury
  publication-title: Am. J. Phys. Med. Rehabil.
  doi: 10.1097/PHM.0b013e318269d9a3
– volume: 12
  issue: 1
  year: 2015
  ident: 10.1016/j.robot.2021.103842_b18
  article-title: Effects of a wearable exoskeleton stride management assist system (SMA®) on spatiotemporal gait characteristics in individuals after stroke: A randomized controlled trial
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/s12984-015-0062-0
– start-page: 1890
  year: 2020
  ident: 10.1016/j.robot.2021.103842_b30
  article-title: Online estimation of continuous gait phase for robotic transtibial prostheses based on adaptive oscillators
– year: 2010
  ident: 10.1016/j.robot.2021.103842_b35
– volume: 73
  start-page: 155
  year: 2015
  ident: 10.1016/j.robot.2021.103842_b32
  article-title: A survey of sensor fusion methods in wearable robotics
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/j.robot.2014.08.012
– volume: 2020
  start-page: 1
  year: 2020
  ident: 10.1016/j.robot.2021.103842_b15
  article-title: Physiotherapists’ experiences using the ekso bionic exoskeleton with patients in a neurological rehabilitation hospital: A qualitative study
  publication-title: Rehabil. Res. Pract.
– volume: 3
  start-page: 1647
  issue: 3
  year: 2018
  ident: 10.1016/j.robot.2021.103842_b65
  article-title: Realtime delayless estimation of derivatives of noisy sensor signals for quasi-cyclic motions with application to joint acceleration estimation on an exoskeleton
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2018.2801473
– volume: 38
  start-page: 88
  issue: 6
  year: 2018
  ident: 10.1016/j.robot.2021.103842_b16
  article-title: On the design and control of highly backdrivable lower-limb exoskeletons: A discussion of past and ongoing work
  publication-title: IEEE Control Syst.
  doi: 10.1109/MCS.2018.2866605
– volume: 21
  start-page: 961
  issue: 6
  year: 2011
  ident: 10.1016/j.robot.2021.103842_b40
  article-title: Gait phase analysis based on a hidden Markov model
  publication-title: Mechatronics
  doi: 10.1016/j.mechatronics.2011.03.003
– start-page: 1488
  year: 2018
  ident: 10.1016/j.robot.2021.103842_b54
  article-title: Locomotion envelopes for adaptive control of powered ankle prostheses
– volume: 20
  start-page: 1521
  issue: 6
  year: 2016
  ident: 10.1016/j.robot.2021.103842_b36
  article-title: Toward pervasive gait analysis with wearable sensors: A systematic review
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2016.2608720
– volume: 133
  year: 2020
  ident: 10.1016/j.robot.2021.103842_b17
  article-title: A review of terrain detection systems for applications in locomotion assistance
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/j.robot.2020.103628
– start-page: 246
  year: 2017
  ident: 10.1016/j.robot.2021.103842_b64
  article-title: Autonomous hip exoskeleton saves metabolic cost of walking uphill
– volume: 5
  start-page: 26
  year: 2016
  ident: 10.1016/j.robot.2021.103842_b6
  article-title: Recent developments and challenges of lower extremity exoskeletons
  publication-title: J. Orthop. Transl.
– volume: 41
  start-page: 111
  issue: 1
  year: 2011
  ident: 10.1016/j.robot.2021.103842_b1
  article-title: Relationship between sedentary behaviour, physical activity, muscle quality and body composition in healthy older adults
  publication-title: Age Ageing
  doi: 10.1093/ageing/afr075
– volume: 2
  start-page: 28
  issue: 1
  year: 2020
  ident: 10.1016/j.robot.2021.103842_b44
  article-title: Real-time neural network-based gait phase estimation using a robotic hip exoskeleton
  publication-title: IEEE Trans. Med. Robot. Bionics
  doi: 10.1109/TMRB.2019.2961749
– volume: 30
  start-page: 1775
  issue: 14
  year: 2011
  ident: 10.1016/j.robot.2021.103842_b50
  article-title: On-line frequency adaptation and movement imitation for rhythmic robotic tasks
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364911421511
– volume: 7
  start-page: 358
  issue: 3
  year: 2005
  ident: 10.1016/j.robot.2021.103842_b60
  article-title: Exact indexing of dynamic time warping
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-004-0154-9
– volume: 7
  issue: 1
  year: 2015
  ident: 10.1016/j.robot.2021.103842_b41
  article-title: Limit cycles to enhance human performance based on phase oscillators
  publication-title: J. Mech. Robot.
  doi: 10.1115/1.4029336
– volume: 25
  start-page: 265
  issue: 3
  year: 2017
  ident: 10.1016/j.robot.2021.103842_b25
  article-title: A robust parameterization of human gait patterns across phase-shifting perturbations
  publication-title: IEEE Trans. Neural Syst. Rehabilitation Eng.
  doi: 10.1109/TNSRE.2016.2569019
– volume: 7
  issue: 10
  year: 2012
  ident: 10.1016/j.robot.2021.103842_b34
  article-title: Proprioceptive feedback and brain computer interface (BCI) based neuroprostheses
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0047048
– volume: 9
  issue: 6
  year: 2014
  ident: 10.1016/j.robot.2021.103842_b31
  article-title: Configuring a powered knee and ankle prosthesis for transfemoral amputees within five specific ambulation modes
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0099387
– volume: 41
  start-page: 759
  issue: 3
  year: 2016
  ident: 10.1016/j.robot.2021.103842_b43
  article-title: An oscillator-based smooth real-time estimate of gait phase for wearable robotics
  publication-title: Auton. Robots
  doi: 10.1007/s10514-016-9566-0
– volume: 4
  start-page: 430
  issue: 2
  year: 2019
  ident: 10.1016/j.robot.2021.103842_b29
  article-title: The effect of hip assistance levels on human energetic cost using robotic hip exoskeletons
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2019.2890896
– start-page: 1
  year: 2021
  ident: 10.1016/j.robot.2021.103842_b23
  article-title: Design principles for compact, backdrivable actuation in partial-assist powered knee orthoses
  publication-title: IEEE/ASME Trans. Mechatronics
– year: 2019
  ident: 10.1016/j.robot.2021.103842_b39
  article-title: Machine learning based adaptive gait phase estimation using inertial measurement sensors
– start-page: 809
  year: 2019
  ident: 10.1016/j.robot.2021.103842_b46
  article-title: RNN-based on-line continuous gait phase estimation from shank-mounted IMUs to control ankle exoskeletons
– volume: 13
  start-page: 61
  year: 2016
  ident: 10.1016/j.robot.2021.103842_b59
  article-title: Trajectory data mining: A review of methods and applications
  publication-title: J. Spat. Inf. Sci.
– year: 2009
  ident: 10.1016/j.robot.2021.103842_b26
– volume: 24
  start-page: 483
  issue: 2
  year: 2019
  ident: 10.1016/j.robot.2021.103842_b33
  article-title: A practical and adaptive method to achieve EMG-based torque estimation for a robotic exoskeleton
  publication-title: IEEE/ASME Trans. Mechatronics
  doi: 10.1109/TMECH.2019.2893055
SSID ssj0003573
Score 2.432802
Snippet Phase-variable-based approaches are emerging in the control of lower-limb wearable robots, such as exoskeletons and prosthetic legs. However, real-time smooth...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103842
SubjectTerms Gait kinematics
Gait phase estimation
Trajectory correlation
Wearable robotics
Title An adaptive framework of real-time continuous gait phase variable estimation for lower-limb wearable robots
URI https://dx.doi.org/10.1016/j.robot.2021.103842
Volume 143
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIryqDwwYpomThqPVUVVqNQBqOgWxY4DgZBEpYWN386dk0CRUAemyNGdZF2ce8jffUfIOURx7kq3x7joRlCgqB4TvieY43CXh73QsmKD8p14oym_mbmzBhnUvTAIq6x8f-nTjbeu3nQqa3aKJOncWQLCE16Tdc39KTaac97DU375-QPzcNzylhmEGUrXzEMG4zXPZY6ASrtriMK5_Xd0Wok4wx2yXaWKtF_uZpc0dLZHtlYIBPfJSz-jYRQW6LNoXOOsaB5TyAVThoPjKYLRk2wJFT59DJMFLZ4gcNF3qJGxa4oiy0bZvkghf6UpTk1jafIq6Qf8BEbE7P_tgEyHV_eDEavGJzAFcWnBQsg-bBGJuOtq5QkotGQkHeVBjhYhpYwQSgplxY7imvvK8XgMir7WIB9JiGiHpJnlmT4i1La1pW0fPJIS3Oe-jEEDFmEUaw88RovYtdkCVXGL44iLNKhBZM-B2WuAtg5KW7fIxbdSUVJrrBf36u8R_DohATj_dYrH_1U8IZu4KhFlp6S5mC_1GaQgC9k2Z6xNNvrX49EEn-Pbh_EXhkPdFA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGYAB8RTl6YER0zRx0nisKqoCpQut1M2KHQcCIYlKChu_nbOTQJEQA2OSO8m62N_dyd_dIXQOXpy6wu0SyjohJCiyS5jvMeI41KVBN7CsyLB8x95wSm9m7qyB-nUtjKZVVthfYrpB6-pNu7JmO4_j9r3FwD3pa7KOuT91V9AqheOrxxhcfnzzPBy3vGYGaaLF69ZDhuQ1z0SmGZV2x3QKp_bv7mnJ5Qy20GYVK-JeuZxt1FDpDtpY6iC4i557KQ7CINeghaOaaIWzCEMwmBA9OR5rNnqcLiDFxw9BXOD8ETwXfoMkWZdNYd1mo6xfxBDA4kSPTSNJ_CLwO5wCI2LW_7qHpoOrSX9IqvkJRIJjKkgA4YfNQhZ1XCU9BpmWCIUjPQjSQt1ThjEpmLQiR1JFfel4NAJFXymQDwW4tH3UTLNUHSBs28pStg-QJBn1qS8i0ICHIIyUB5DRQnZtNi6r5uJ6xkXCaxbZEzdr5drWvLR1C118KeVlb42_xb36f_AfW4QD-v-lePhfxTO0Npzcjfjoenx7hNb1l5JedoyaxXyhTiAeKcSp2W-fxm_c_w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+adaptive+framework+of+real-time+continuous+gait+phase+variable+estimation+for+lower-limb+wearable+robots&rft.jtitle=Robotics+and+autonomous+systems&rft.au=Zhang%2C+Binquan&rft.au=Wang%2C+Sun%E2%80%99an&rft.au=Zhou%2C+Min&rft.au=Xu%2C+Wanlu&rft.date=2021-09-01&rft.issn=0921-8890&rft.volume=143&rft.spage=103842&rft_id=info:doi/10.1016%2Fj.robot.2021.103842&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_robot_2021_103842
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-8890&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-8890&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-8890&client=summon