An adaptive framework of real-time continuous gait phase variable estimation for lower-limb wearable robots
Phase-variable-based approaches are emerging in the control of lower-limb wearable robots, such as exoskeletons and prosthetic legs. However, real-time smooth estimation of the gait phase within each gait cycle remains an open problem. This paper presents a novel method for real-time continuous gait...
Saved in:
Published in | Robotics and autonomous systems Vol. 143; p. 103842 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.09.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Phase-variable-based approaches are emerging in the control of lower-limb wearable robots, such as exoskeletons and prosthetic legs. However, real-time smooth estimation of the gait phase within each gait cycle remains an open problem. This paper presents a novel method for real-time continuous gait phase estimation during walking. The proposed framework consists of three subsystems: real-time kinematic data collection, gait phase variable estimation, and online adaptation of individual kinematics through backward data segmentation of completed gait strides. It is worth noting that we introduce an online learning mechanism for extracting and learning gait features from previous strides, in contrast with offline parameter tuning. The proposed basic gait model is initialized by human average data and is incrementally refined as a function of the individual gait features over different walking speeds. This provides a framework for long-term personalized control. Furthermore, the phase variable is constructed through the thigh angle measured by an inertial measurement unit. The resulting simple sensor system improves the usability of the proposed technique in wearable robotics. Validation experiments with seven healthy subjects, including treadmill walking and free level-ground walking, were conducted to evaluate the performance of the proposed method. In treadmill validation, the root-mean-square error (RMSE) of the phase estimator was 4.14 ± 1.68% for steady speeds, while it was 6.77 ± 2.29% for unsteady-speed walking. In level-ground validation, the average RMSE of the phase estimator was 4.59 ± 1.76%. Preliminary experiments were also conducted using a single-joint hip exoskeleton to demonstrate the usability of our method in lower-limb wearable robots.
•We present a framework for real-time continuous gait phase estimation that requires no offline parameter tuning.•An on-line adaptation mechanism is designed to improve the performance of gait phase estimation.•The framework is potential in long-term adaptive and personalized control of assistive wearable devices.•Our approach requires a simple sensor system and works with a wide range of walking speeds. |
---|---|
AbstractList | Phase-variable-based approaches are emerging in the control of lower-limb wearable robots, such as exoskeletons and prosthetic legs. However, real-time smooth estimation of the gait phase within each gait cycle remains an open problem. This paper presents a novel method for real-time continuous gait phase estimation during walking. The proposed framework consists of three subsystems: real-time kinematic data collection, gait phase variable estimation, and online adaptation of individual kinematics through backward data segmentation of completed gait strides. It is worth noting that we introduce an online learning mechanism for extracting and learning gait features from previous strides, in contrast with offline parameter tuning. The proposed basic gait model is initialized by human average data and is incrementally refined as a function of the individual gait features over different walking speeds. This provides a framework for long-term personalized control. Furthermore, the phase variable is constructed through the thigh angle measured by an inertial measurement unit. The resulting simple sensor system improves the usability of the proposed technique in wearable robotics. Validation experiments with seven healthy subjects, including treadmill walking and free level-ground walking, were conducted to evaluate the performance of the proposed method. In treadmill validation, the root-mean-square error (RMSE) of the phase estimator was 4.14 ± 1.68% for steady speeds, while it was 6.77 ± 2.29% for unsteady-speed walking. In level-ground validation, the average RMSE of the phase estimator was 4.59 ± 1.76%. Preliminary experiments were also conducted using a single-joint hip exoskeleton to demonstrate the usability of our method in lower-limb wearable robots.
•We present a framework for real-time continuous gait phase estimation that requires no offline parameter tuning.•An on-line adaptation mechanism is designed to improve the performance of gait phase estimation.•The framework is potential in long-term adaptive and personalized control of assistive wearable devices.•Our approach requires a simple sensor system and works with a wide range of walking speeds. |
ArticleNumber | 103842 |
Author | Zhang, Binquan Xu, Wanlu Zhou, Min Wang, Sun’an |
Author_xml | – sequence: 1 givenname: Binquan orcidid: 0000-0002-1170-8640 surname: Zhang fullname: Zhang, Binquan email: zhangbinquan@163.com – sequence: 2 givenname: Sun’an orcidid: 0000-0003-3905-4770 surname: Wang fullname: Wang, Sun’an email: sawang@xjtu.edu.cn – sequence: 3 givenname: Min surname: Zhou fullname: Zhou, Min email: zhimazhou@163.com – sequence: 4 givenname: Wanlu surname: Xu fullname: Xu, Wanlu email: wlxu0211@163.com |
BookMark | eNqFkM1OwzAQhC1UJErhCbj4BVL8k6TxgUNV8SdV4gISN8tx1uA2jau124q3J005cYDTSqv5RjNzSUZd6ICQG86mnPHydjXFUIc0FUzw_iOrXJyRMa9mIpsp-T4iY6YEz6pKsQtyGeOKMSaLmRyT9byjpjHb5PdAHZoNHAKuaXAUwbRZ8hugNnTJd7uwi_TD-ES3nyYC3Rv0pm6BQuxVJvnQUReQtuEAmLV-U9MDGBwkQ7p4Rc6daSNc_9wJeXu4f108ZcuXx-fFfJlZyWTKDCulUI1yvABbKiXyuqmlLYucNVwVSilbK8uctDnklZVl7nqwAuj1Tc2FnBB18rUYYkRw2vo0BExofKs508fV9EoPufRxNX1arWflL3aLfTv8-oe6O1HQ19p7QB2th85C4xFs0k3wf_Lf2eOMTQ |
CitedBy_id | crossref_primary_10_1109_TRO_2023_3235584 crossref_primary_10_3390_s23063032 crossref_primary_10_3389_fbioe_2022_842294 crossref_primary_10_1155_2022_7503668 crossref_primary_10_1088_2516_1091_ada333 crossref_primary_10_1109_LRA_2023_3256927 crossref_primary_10_1109_TNSRE_2022_3229220 crossref_primary_10_3390_s24082390 crossref_primary_10_1109_ACCESS_2025_3544758 crossref_primary_10_1109_LRA_2022_3183790 crossref_primary_10_3390_s21206751 crossref_primary_10_3390_pr11123278 crossref_primary_10_3390_s21196545 crossref_primary_10_1109_JSEN_2023_3328615 crossref_primary_10_1109_JSEN_2022_3167686 crossref_primary_10_3390_machines10100944 crossref_primary_10_3390_s24196318 crossref_primary_10_1017_wtc_2022_11 |
Cites_doi | 10.1109/4235.985692 10.1186/s12966-017-0481-3 10.1016/j.robot.2014.09.025 10.1109/LRA.2019.2924841 10.1108/01439910910994597 10.1109/TNSRE.2019.2904477 10.3390/s16010066 10.1109/TMECH.2008.2008803 10.1186/s12984-020-00663-9 10.1016/j.patcog.2010.09.022 10.7717/peerj.918 10.2174/1874110X00903020064 10.1016/j.robot.2017.05.013 10.1109/TNSRE.2016.2521160 10.1038/s41598-019-43628-2 10.1007/s10514-017-9648-7 10.1177/0278364917713116 10.1145/2500489 10.1016/j.bbe.2013.03.005 10.1109/TRO.2018.2794536 10.1109/TASSP.1978.1163055 10.1109/TRO.2019.2913318 10.1109/TNSRE.2020.3045003 10.1016/j.neunet.2008.03.006 10.1109/ACCESS.2019.2933614 10.3390/s18072389 10.1109/JSYST.2014.2351491 10.1016/j.robot.2014.09.032 10.1177/0278364907084588 10.1097/PHM.0b013e318269d9a3 10.1186/s12984-015-0062-0 10.1016/j.robot.2014.08.012 10.1109/LRA.2018.2801473 10.1109/MCS.2018.2866605 10.1016/j.mechatronics.2011.03.003 10.1109/JBHI.2016.2608720 10.1016/j.robot.2020.103628 10.1093/ageing/afr075 10.1109/TMRB.2019.2961749 10.1177/0278364911421511 10.1007/s10115-004-0154-9 10.1115/1.4029336 10.1109/TNSRE.2016.2569019 10.1371/journal.pone.0047048 10.1371/journal.pone.0099387 10.1007/s10514-016-9566-0 10.1109/LRA.2019.2890896 10.1109/TMECH.2019.2893055 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. |
Copyright_xml | – notice: 2021 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.robot.2021.103842 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1872-793X |
ExternalDocumentID | 10_1016_j_robot_2021_103842 S0921889021001275 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABIVO ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPGS AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ RXW SBC SCC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K TAE UNMZH WUQ XPP ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c303t-a06329d9f15ec69924bdb3c6540d195999cb9c0f3c4e48c364fc308ee15edb123 |
IEDL.DBID | .~1 |
ISSN | 0921-8890 |
IngestDate | Tue Jul 01 01:41:54 EDT 2025 Thu Apr 24 23:07:53 EDT 2025 Fri Feb 23 02:46:49 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Wearable robotics Gait phase estimation Trajectory correlation Gait kinematics |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c303t-a06329d9f15ec69924bdb3c6540d195999cb9c0f3c4e48c364fc308ee15edb123 |
ORCID | 0000-0003-3905-4770 0000-0002-1170-8640 |
ParticipantIDs | crossref_citationtrail_10_1016_j_robot_2021_103842 crossref_primary_10_1016_j_robot_2021_103842 elsevier_sciencedirect_doi_10_1016_j_robot_2021_103842 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2021 2021-09-00 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 09 year: 2021 text: September 2021 |
PublicationDecade | 2020 |
PublicationTitle | Robotics and autonomous systems |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Lim, Lee, Jang, Kim, Park, Seo, Shim (b48) 2019; 35 Chen, Ma, Qin, Gao, Chan, Law, Qin, Liao (b6) 2016; 5 Buesing, Fisch, O’Donnell, Shahidi, Thomas, Mummidisetty, Williams, Takahashi, Rymer, Jayaraman (b18) 2015; 12 Novak, Riener (b32) 2015; 73 Júdice, Silva, Berria, Petroski, Ekelund, Sardinha (b2) 2017; 14 Al-dabbagh, Ronsse (b17) 2020; 133 Xu, Crea, Vitiello, Wang (b30) 2020 Simon, Ingraham, Fey, Finucane, Lipschutz, Young, Hargrove (b31) 2014; 9 Young, Ferris (b13) 2017; 25 Rakthanmanon, Campana, Mueen, Batista, Westover, Zhu, Zakaria, Keogh (b63) 2013; 7 Zhu, Nesler, Divekar, Peddinti, Gregg (b23) 2021 Sup, Bohara, Goldfarb (b9) 2008; 27 Villarreal, Gregg (b24) 2014 Kang, Kunapuli, Young (b44) 2020; 2 Sakoe, Chiba (b62) 1978; 26 Petrič, Gams, Ijspeert, Žlajpah (b50) 2011; 30 Yan, Parri, Garate, Cempini, Ronsse, Vitiello (b43) 2016; 41 Clerc, Kennedy (b61) 2002; 6 Seo, Lee, Lee, Ha, Shim (b20) 2016 Thatte, Shah, Geyer (b28) 2019; 4 Rezazadeh, Quintero, Divekar, Reznick, Gray, Gregg (b22) 2019; 7 Taborri, Palermo, Rossi, Cappa (b37) 2016; 16 Sugar, Bates, Holgate, Kerestes, Mignolet, New, Ramachandran, Redkar, Wheeler (b41) 2015; 7 Seo, Hyung, Choi, Lee, Shim (b42) 2015 Villarreal, Poonawala, Gregg (b25) 2017; 25 Huo, Mohammed, Moreno, Amirat (b7) 2016; 10 Asbeck, Schmidt, Walsh (b10) 2015; 73 Yan, Cempini, Oddo, Vitiello (b12) 2015; 64 Lv, Zhu, Gregg (b16) 2018; 38 Embry, Gregg (b53) 2021; 29 Waugh, Huang, Fraser, Beyer, Trinh, Mcilroy, Kulic (b52) 2019; 27 Winter (b26) 2009 Zhang, Wang, Zhu (b47) 2019 Englert, Toussaint (b56) 2014 Viteckova, Kutilek, Jirina (b8) 2013; 33 Zhu, Doan, Stence, Lv, Elery, Gregg (b21) 2017 Gui, Liu, Zhang (b33) 2019; 24 Seo, Park, Lee, Hyung, Lee, Kim, Choi, Shim (b46) 2019 Mazimpaka, Timpf (b59) 2016; 13 Keogh, Ratanamahatana (b60) 2005; 7 Lioutikov, Neumann, Maeda, Peters (b66) 2017; 36 Arnold, Hamner, Seth, Millard, Delp (b51) 2013; 216 Quintero, Villarreal, Lambert, Kapp, Gregg (b27) 2018; 34 Kang, Hsu, Young (b29) 2019; 4 Moore, Hnat, van den Bogert (b55) 2015; 3 Chastin, Ferriolli, Stephens, Fearon, Greig (b1) 2011; 41 Kong, Tomizuka (b38) 2009; 14 Jeong, Jeong, Omitaomu (b58) 2011; 44 Sawicki, Beck, Kang, Young (b5) 2020; 17 Esquenazi, Talaty, Packel, Saulino (b14) 2012; 91 Read, Woolsey, McGibbon, O’Connell (b15) 2020; 2020 Aliman, Ramli, Haris (b11) 2017; 95 Kusuda (b19) 2009; 36 Paraschos, Daniel, Peters, Neumann (b57) 2017; 42 Tanghe, Aertbelien, Vantilt, Moltedo, Bacek, Lefeber, Schutter (b65) 2018; 3 Chen, Lach, Lo, Yang (b36) 2016; 20 Dhir, Dallali, Ficanha, Ribeiro, Rastgaar (b54) 2018 Martini, Crea, Parri, Bastiani, Faraguna, McKinney, Molino-Lova, Pratali, Vitiello (b3) 2019; 9 Vu, Gomez, Cherelle, Lefeber, Nowé, Vanderborght (b45) 2018; 18 Yang, Huang, Yu, Yang, Su, Spungen, Tsai (b39) 2019 Righetti, Buchli, Ijspeert (b49) 2009; 3 Seo, Lee, Park (b64) 2017 Ramos-Murguialday, Schürholz, Caggiano, Wildgruber, Caria, Hammer, Halder, Birbaumer (b34) 2012; 7 Bae, Tomizuka (b40) 2011; 21 Au, Berniker, Herr (b4) 2008; 21 Perry (b35) 2010 Au (10.1016/j.robot.2021.103842_b4) 2008; 21 Al-dabbagh (10.1016/j.robot.2021.103842_b17) 2020; 133 Paraschos (10.1016/j.robot.2021.103842_b57) 2017; 42 Viteckova (10.1016/j.robot.2021.103842_b8) 2013; 33 Buesing (10.1016/j.robot.2021.103842_b18) 2015; 12 Villarreal (10.1016/j.robot.2021.103842_b24) 2014 Villarreal (10.1016/j.robot.2021.103842_b25) 2017; 25 Simon (10.1016/j.robot.2021.103842_b31) 2014; 9 Keogh (10.1016/j.robot.2021.103842_b60) 2005; 7 Aliman (10.1016/j.robot.2021.103842_b11) 2017; 95 Seo (10.1016/j.robot.2021.103842_b20) 2016 Bae (10.1016/j.robot.2021.103842_b40) 2011; 21 Zhu (10.1016/j.robot.2021.103842_b21) 2017 Lv (10.1016/j.robot.2021.103842_b16) 2018; 38 Zhang (10.1016/j.robot.2021.103842_b47) 2019 Esquenazi (10.1016/j.robot.2021.103842_b14) 2012; 91 Jeong (10.1016/j.robot.2021.103842_b58) 2011; 44 Read (10.1016/j.robot.2021.103842_b15) 2020; 2020 Kang (10.1016/j.robot.2021.103842_b29) 2019; 4 Yan (10.1016/j.robot.2021.103842_b43) 2016; 41 Gui (10.1016/j.robot.2021.103842_b33) 2019; 24 Petrič (10.1016/j.robot.2021.103842_b50) 2011; 30 Zhu (10.1016/j.robot.2021.103842_b23) 2021 Chen (10.1016/j.robot.2021.103842_b36) 2016; 20 Sup (10.1016/j.robot.2021.103842_b9) 2008; 27 Yan (10.1016/j.robot.2021.103842_b12) 2015; 64 Yang (10.1016/j.robot.2021.103842_b39) 2019 Sugar (10.1016/j.robot.2021.103842_b41) 2015; 7 Chastin (10.1016/j.robot.2021.103842_b1) 2011; 41 Young (10.1016/j.robot.2021.103842_b13) 2017; 25 Mazimpaka (10.1016/j.robot.2021.103842_b59) 2016; 13 Thatte (10.1016/j.robot.2021.103842_b28) 2019; 4 Quintero (10.1016/j.robot.2021.103842_b27) 2018; 34 Sawicki (10.1016/j.robot.2021.103842_b5) 2020; 17 Seo (10.1016/j.robot.2021.103842_b46) 2019 Righetti (10.1016/j.robot.2021.103842_b49) 2009; 3 Waugh (10.1016/j.robot.2021.103842_b52) 2019; 27 Rakthanmanon (10.1016/j.robot.2021.103842_b63) 2013; 7 Martini (10.1016/j.robot.2021.103842_b3) 2019; 9 Lim (10.1016/j.robot.2021.103842_b48) 2019; 35 Englert (10.1016/j.robot.2021.103842_b56) 2014 Kang (10.1016/j.robot.2021.103842_b44) 2020; 2 Vu (10.1016/j.robot.2021.103842_b45) 2018; 18 Dhir (10.1016/j.robot.2021.103842_b54) 2018 Rezazadeh (10.1016/j.robot.2021.103842_b22) 2019; 7 Moore (10.1016/j.robot.2021.103842_b55) 2015; 3 Winter (10.1016/j.robot.2021.103842_b26) 2009 Kong (10.1016/j.robot.2021.103842_b38) 2009; 14 Perry (10.1016/j.robot.2021.103842_b35) 2010 Lioutikov (10.1016/j.robot.2021.103842_b66) 2017; 36 Chen (10.1016/j.robot.2021.103842_b6) 2016; 5 Seo (10.1016/j.robot.2021.103842_b42) 2015 Embry (10.1016/j.robot.2021.103842_b53) 2021; 29 Taborri (10.1016/j.robot.2021.103842_b37) 2016; 16 Júdice (10.1016/j.robot.2021.103842_b2) 2017; 14 Novak (10.1016/j.robot.2021.103842_b32) 2015; 73 Ramos-Murguialday (10.1016/j.robot.2021.103842_b34) 2012; 7 Seo (10.1016/j.robot.2021.103842_b64) 2017 Asbeck (10.1016/j.robot.2021.103842_b10) 2015; 73 Xu (10.1016/j.robot.2021.103842_b30) 2020 Huo (10.1016/j.robot.2021.103842_b7) 2016; 10 Clerc (10.1016/j.robot.2021.103842_b61) 2002; 6 Sakoe (10.1016/j.robot.2021.103842_b62) 1978; 26 Kusuda (10.1016/j.robot.2021.103842_b19) 2009; 36 Tanghe (10.1016/j.robot.2021.103842_b65) 2018; 3 Arnold (10.1016/j.robot.2021.103842_b51) 2013; 216 |
References_xml | – volume: 44 start-page: 2231 year: 2011 end-page: 2240 ident: b58 article-title: Weighted dynamic time warping for time series classification publication-title: Pattern Recognit. – volume: 10 start-page: 1068 year: 2016 end-page: 1081 ident: b7 article-title: Lower limb wearable robots for assistance and rehabilitation: A state of the art publication-title: IEEE Syst. J. – volume: 3 start-page: 64 year: 2009 end-page: 69 ident: b49 article-title: Adaptive frequency oscillators and applications publication-title: Open Cybern. Syst. J. – volume: 36 start-page: 537 year: 2009 end-page: 539 ident: b19 article-title: In quest of mobility – Honda to develop walking assist devices publication-title: Ind. Robot – volume: 27 start-page: 733 year: 2019 end-page: 742 ident: b52 article-title: Online learning of gait models from older adult data publication-title: IEEE Trans. Neural Syst. Rehabilitation Eng. – volume: 14 year: 2017 ident: b2 article-title: Sedentary patterns, physical activity and health-related physical fitness in youth: A cross-sectional study publication-title: Int. J. Behav. Nutr. Phys. Act. – volume: 29 start-page: 262 year: 2021 end-page: 272 ident: b53 article-title: Analysis of continuously varying kinematics for prosthetic leg control applications publication-title: IEEE Trans. Neural Syst. Rehabilitation Eng. – volume: 30 start-page: 1775 year: 2011 end-page: 1788 ident: b50 article-title: On-line frequency adaptation and movement imitation for rhythmic robotic tasks publication-title: Int. J. Robot. Res. – volume: 41 start-page: 759 year: 2016 end-page: 774 ident: b43 article-title: An oscillator-based smooth real-time estimate of gait phase for wearable robotics publication-title: Auton. Robots – volume: 7 year: 2012 ident: b34 article-title: Proprioceptive feedback and brain computer interface (BCI) based neuroprostheses publication-title: PLoS One – volume: 36 start-page: 879 year: 2017 end-page: 894 ident: b66 article-title: Learning movement primitive libraries through probabilistic segmentation publication-title: Int. J. Robot. Res. – volume: 26 start-page: 43 year: 1978 end-page: 49 ident: b62 article-title: Dynamic programming algorithm optimization for spoken word recognition publication-title: IEEE Trans. Acoust. Speech Signal Process. – start-page: 1488 year: 2018 end-page: 1495 ident: b54 article-title: Locomotion envelopes for adaptive control of powered ankle prostheses publication-title: 2018 IEEE International Conference on Robotics and Automation, ICRA – volume: 7 year: 2015 ident: b41 article-title: Limit cycles to enhance human performance based on phase oscillators publication-title: J. Mech. Robot. – volume: 27 start-page: 263 year: 2008 ident: b9 article-title: Design and control of a powered transfemoral prosthesis publication-title: Int. J. Robot. Res. – volume: 34 start-page: 686 year: 2018 end-page: 701 ident: b27 article-title: Continuous-phase control of a powered knee–ankle prosthesis: Amputee experiments across speeds and inclines publication-title: IEEE Trans. Robot. – volume: 25 start-page: 171 year: 2017 end-page: 182 ident: b13 article-title: State of the art and future directions for lower limb robotic exoskeletons publication-title: IEEE Trans. Neural Syst. Rehabilitation Eng. – volume: 2020 start-page: 1 year: 2020 end-page: 8 ident: b15 article-title: Physiotherapists’ experiences using the ekso bionic exoskeleton with patients in a neurological rehabilitation hospital: A qualitative study publication-title: Rehabil. Res. Pract. – volume: 3 year: 2015 ident: b55 article-title: An elaborate data set on human gait and the effect of mechanical perturbations publication-title: PeerJ – volume: 18 start-page: 2389 year: 2018 ident: b45 article-title: ED-FNN: A new deep learning algorithm to detect percentage of the gait cycle for powered prostheses publication-title: Sensors – volume: 20 start-page: 1521 year: 2016 end-page: 1537 ident: b36 article-title: Toward pervasive gait analysis with wearable sensors: A systematic review publication-title: IEEE J. Biomed. Health Inform. – start-page: 4628 year: 2016 end-page: 4635 ident: b20 article-title: Fully autonomous hip exoskeleton saves metabolic cost of walking publication-title: 2016 IEEE International Conference on Robotics and Automation, ICRA – volume: 7 start-page: 1 year: 2013 end-page: 31 ident: b63 article-title: Addressing big data time series publication-title: ACM Trans. Knowl. Discov. Data – volume: 16 start-page: 66 year: 2016 ident: b37 article-title: Gait partitioning methods: A systematic review publication-title: Sensors – volume: 17 year: 2020 ident: b5 article-title: The exoskeleton expansion: Improving walking and running economy publication-title: J. Neuroeng. Rehabil. – start-page: 246 year: 2017 end-page: 251 ident: b64 article-title: Autonomous hip exoskeleton saves metabolic cost of walking uphill publication-title: 2017 International Conference on Rehabilitation Robotics, ICORR – volume: 2 start-page: 28 year: 2020 end-page: 37 ident: b44 article-title: Real-time neural network-based gait phase estimation using a robotic hip exoskeleton publication-title: IEEE Trans. Med. Robot. Bionics – volume: 73 start-page: 102 year: 2015 end-page: 110 ident: b10 article-title: Soft exosuit for hip assistance publication-title: Robot. Auton. Syst. – volume: 64 start-page: 120 year: 2015 end-page: 136 ident: b12 article-title: Review of assistive strategies in powered lower-limb orthoses and exoskeletons publication-title: Robot. Auton. Syst. – volume: 38 start-page: 88 year: 2018 end-page: 113 ident: b16 article-title: On the design and control of highly backdrivable lower-limb exoskeletons: A discussion of past and ongoing work publication-title: IEEE Control Syst. – volume: 14 start-page: 358 year: 2009 end-page: 370 ident: b38 article-title: A gait monitoring system based on air pressure sensors embedded in a shoe publication-title: IEEE/ASME Trans. Mechatronics – volume: 3 start-page: 1647 year: 2018 end-page: 1654 ident: b65 article-title: Realtime delayless estimation of derivatives of noisy sensor signals for quasi-cyclic motions with application to joint acceleration estimation on an exoskeleton publication-title: IEEE Robot. Autom. Lett. – volume: 7 start-page: 358 year: 2005 end-page: 386 ident: b60 article-title: Exact indexing of dynamic time warping publication-title: Knowl. Inf. Syst. – volume: 91 start-page: 911 year: 2012 end-page: 921 ident: b14 article-title: The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury publication-title: Am. J. Phys. Med. Rehabil. – start-page: 1363 year: 2014 end-page: 1369 ident: b56 article-title: Reactive phase and task space adaptation for robust motion execution publication-title: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems – volume: 42 start-page: 529 year: 2017 end-page: 551 ident: b57 article-title: Using probabilistic movement primitives in robotics publication-title: Auton. Robots – start-page: 1 year: 2021 ident: b23 article-title: Design principles for compact, backdrivable actuation in partial-assist powered knee orthoses publication-title: IEEE/ASME Trans. Mechatronics – volume: 5 start-page: 26 year: 2016 end-page: 37 ident: b6 article-title: Recent developments and challenges of lower extremity exoskeletons publication-title: J. Orthop. Transl. – volume: 133 year: 2020 ident: b17 article-title: A review of terrain detection systems for applications in locomotion assistance publication-title: Robot. Auton. Syst. – volume: 95 start-page: 102 year: 2017 end-page: 116 ident: b11 article-title: Design and development of lower limb exoskeletons: A survey publication-title: Robot. Auton. Syst. – volume: 6 start-page: 58 year: 2002 end-page: 73 ident: b61 article-title: The particle swarm - explosion, stability, and convergence in a multidimensional complex space publication-title: IEEE Trans. Evol. Comput. – volume: 9 year: 2019 ident: b3 article-title: Gait training using a robotic hip exoskeleton improves metabolic gait efficiency in the elderly publication-title: Sci. Rep. – start-page: 809 year: 2019 end-page: 815 ident: b46 article-title: RNN-based on-line continuous gait phase estimation from shank-mounted IMUs to control ankle exoskeletons publication-title: 2019 IEEE 16th International Conference on Rehabilitation Robotics, ICORR – volume: 21 start-page: 961 year: 2011 end-page: 970 ident: b40 article-title: Gait phase analysis based on a hidden Markov model publication-title: Mechatronics – volume: 12 year: 2015 ident: b18 article-title: Effects of a wearable exoskeleton stride management assist system (SMA®) on spatiotemporal gait characteristics in individuals after stroke: A randomized controlled trial publication-title: J. Neuroeng. Rehabil. – volume: 25 start-page: 265 year: 2017 end-page: 278 ident: b25 article-title: A robust parameterization of human gait patterns across phase-shifting perturbations publication-title: IEEE Trans. Neural Syst. Rehabilitation Eng. – volume: 73 start-page: 155 year: 2015 end-page: 170 ident: b32 article-title: A survey of sensor fusion methods in wearable robotics publication-title: Robot. Auton. Syst. – volume: 9 year: 2014 ident: b31 article-title: Configuring a powered knee and ankle prosthesis for transfemoral amputees within five specific ambulation modes publication-title: PLoS One – volume: 24 start-page: 483 year: 2019 end-page: 494 ident: b33 article-title: A practical and adaptive method to achieve EMG-based torque estimation for a robotic exoskeleton publication-title: IEEE/ASME Trans. Mechatronics – start-page: 1127 year: 2019 end-page: 1132 ident: b47 article-title: A user-adaptive online learning approach of real-time gait phase detection for walking assistance publication-title: 2019 IEEE Symposium Series on Computational Intelligence, SSCI – start-page: 4017 year: 2014 end-page: 4021 ident: b24 article-title: A survey of phase variable candidates of human locomotion publication-title: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society – year: 2010 ident: b35 article-title: Gait Analysis: Normal and Pathological Function – start-page: 5565 year: 2015 end-page: 5571 ident: b42 article-title: A new adaptive frequency oscillator for gait assistance publication-title: 2015 IEEE International Conference on Robotics and Automation, ICRA – volume: 35 start-page: 1055 year: 2019 end-page: 1062 ident: b48 article-title: Delayed output feedback control for gait assistance with a robotic hip exoskeleton publication-title: IEEE Trans. Robot. – start-page: 504 year: 2017 end-page: 510 ident: b21 article-title: Design and validation of a torque dense, highly backdrivable powered knee-ankle orthosis publication-title: 2017 IEEE International Conference on Robotics and Automation, ICRA – volume: 13 start-page: 61 year: 2016 end-page: 99 ident: b59 article-title: Trajectory data mining: A review of methods and applications publication-title: J. Spat. Inf. Sci. – year: 2009 ident: b26 article-title: Biomechanics and Motor Control of Human Movement – volume: 4 start-page: 3129 year: 2019 end-page: 3136 ident: b28 article-title: Robust and adaptive lower limb prosthesis stance control via extended Kalman filter-based gait phase estimation publication-title: IEEE Robot. Autom. Lett. – volume: 41 start-page: 111 year: 2011 end-page: 114 ident: b1 article-title: Relationship between sedentary behaviour, physical activity, muscle quality and body composition in healthy older adults publication-title: Age Ageing – volume: 33 start-page: 96 year: 2013 end-page: 105 ident: b8 article-title: Wearable lower limb robotics: A review publication-title: Biocybern. Biomed. Eng. – volume: 7 start-page: 109840 year: 2019 end-page: 109855 ident: b22 article-title: A phase variable approach for improved rhythmic and non-rhythmic control of a powered knee-ankle prosthesis publication-title: IEEE Access – start-page: 1890 year: 2020 end-page: 1895 ident: b30 article-title: Online estimation of continuous gait phase for robotic transtibial prostheses based on adaptive oscillators publication-title: 2020 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM – volume: 4 start-page: 430 year: 2019 end-page: 437 ident: b29 article-title: The effect of hip assistance levels on human energetic cost using robotic hip exoskeletons publication-title: IEEE Robot. Autom. Lett. – year: 2019 ident: b39 article-title: Machine learning based adaptive gait phase estimation using inertial measurement sensors publication-title: 2019 Design of Medical Devices Conference – volume: 21 start-page: 654 year: 2008 end-page: 666 ident: b4 article-title: Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits publication-title: Neural Netw. – volume: 216 start-page: 2150 year: 2013 end-page: 2160 ident: b51 article-title: How muscle fiber lengths and velocities affect muscle force generation as humans walk and run at different speeds publication-title: J. Exp. Biol. – volume: 6 start-page: 58 issue: 1 year: 2002 ident: 10.1016/j.robot.2021.103842_b61 article-title: The particle swarm - explosion, stability, and convergence in a multidimensional complex space publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.985692 – volume: 14 issue: 1 year: 2017 ident: 10.1016/j.robot.2021.103842_b2 article-title: Sedentary patterns, physical activity and health-related physical fitness in youth: A cross-sectional study publication-title: Int. J. Behav. Nutr. Phys. Act. doi: 10.1186/s12966-017-0481-3 – volume: 73 start-page: 102 year: 2015 ident: 10.1016/j.robot.2021.103842_b10 article-title: Soft exosuit for hip assistance publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2014.09.025 – volume: 4 start-page: 3129 issue: 4 year: 2019 ident: 10.1016/j.robot.2021.103842_b28 article-title: Robust and adaptive lower limb prosthesis stance control via extended Kalman filter-based gait phase estimation publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2019.2924841 – volume: 36 start-page: 537 issue: 6 year: 2009 ident: 10.1016/j.robot.2021.103842_b19 article-title: In quest of mobility – Honda to develop walking assist devices publication-title: Ind. Robot doi: 10.1108/01439910910994597 – volume: 27 start-page: 733 issue: 4 year: 2019 ident: 10.1016/j.robot.2021.103842_b52 article-title: Online learning of gait models from older adult data publication-title: IEEE Trans. Neural Syst. Rehabilitation Eng. doi: 10.1109/TNSRE.2019.2904477 – start-page: 4628 year: 2016 ident: 10.1016/j.robot.2021.103842_b20 article-title: Fully autonomous hip exoskeleton saves metabolic cost of walking – volume: 16 start-page: 66 issue: 1 year: 2016 ident: 10.1016/j.robot.2021.103842_b37 article-title: Gait partitioning methods: A systematic review publication-title: Sensors doi: 10.3390/s16010066 – volume: 14 start-page: 358 issue: 3 year: 2009 ident: 10.1016/j.robot.2021.103842_b38 article-title: A gait monitoring system based on air pressure sensors embedded in a shoe publication-title: IEEE/ASME Trans. Mechatronics doi: 10.1109/TMECH.2008.2008803 – start-page: 4017 year: 2014 ident: 10.1016/j.robot.2021.103842_b24 article-title: A survey of phase variable candidates of human locomotion – volume: 17 issue: 1 year: 2020 ident: 10.1016/j.robot.2021.103842_b5 article-title: The exoskeleton expansion: Improving walking and running economy publication-title: J. Neuroeng. Rehabil. doi: 10.1186/s12984-020-00663-9 – volume: 44 start-page: 2231 issue: 9 year: 2011 ident: 10.1016/j.robot.2021.103842_b58 article-title: Weighted dynamic time warping for time series classification publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2010.09.022 – volume: 3 year: 2015 ident: 10.1016/j.robot.2021.103842_b55 article-title: An elaborate data set on human gait and the effect of mechanical perturbations publication-title: PeerJ doi: 10.7717/peerj.918 – volume: 3 start-page: 64 issue: 2 year: 2009 ident: 10.1016/j.robot.2021.103842_b49 article-title: Adaptive frequency oscillators and applications publication-title: Open Cybern. Syst. J. doi: 10.2174/1874110X00903020064 – volume: 95 start-page: 102 year: 2017 ident: 10.1016/j.robot.2021.103842_b11 article-title: Design and development of lower limb exoskeletons: A survey publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2017.05.013 – start-page: 1363 year: 2014 ident: 10.1016/j.robot.2021.103842_b56 article-title: Reactive phase and task space adaptation for robust motion execution – volume: 25 start-page: 171 issue: 2 year: 2017 ident: 10.1016/j.robot.2021.103842_b13 article-title: State of the art and future directions for lower limb robotic exoskeletons publication-title: IEEE Trans. Neural Syst. Rehabilitation Eng. doi: 10.1109/TNSRE.2016.2521160 – volume: 9 issue: 1 year: 2019 ident: 10.1016/j.robot.2021.103842_b3 article-title: Gait training using a robotic hip exoskeleton improves metabolic gait efficiency in the elderly publication-title: Sci. Rep. doi: 10.1038/s41598-019-43628-2 – volume: 42 start-page: 529 issue: 3 year: 2017 ident: 10.1016/j.robot.2021.103842_b57 article-title: Using probabilistic movement primitives in robotics publication-title: Auton. Robots doi: 10.1007/s10514-017-9648-7 – volume: 36 start-page: 879 issue: 8 year: 2017 ident: 10.1016/j.robot.2021.103842_b66 article-title: Learning movement primitive libraries through probabilistic segmentation publication-title: Int. J. Robot. Res. doi: 10.1177/0278364917713116 – volume: 7 start-page: 1 issue: 3 year: 2013 ident: 10.1016/j.robot.2021.103842_b63 article-title: Addressing big data time series publication-title: ACM Trans. Knowl. Discov. Data doi: 10.1145/2500489 – volume: 33 start-page: 96 issue: 2 year: 2013 ident: 10.1016/j.robot.2021.103842_b8 article-title: Wearable lower limb robotics: A review publication-title: Biocybern. Biomed. Eng. doi: 10.1016/j.bbe.2013.03.005 – start-page: 5565 year: 2015 ident: 10.1016/j.robot.2021.103842_b42 article-title: A new adaptive frequency oscillator for gait assistance – start-page: 504 year: 2017 ident: 10.1016/j.robot.2021.103842_b21 article-title: Design and validation of a torque dense, highly backdrivable powered knee-ankle orthosis – volume: 34 start-page: 686 issue: 3 year: 2018 ident: 10.1016/j.robot.2021.103842_b27 article-title: Continuous-phase control of a powered knee–ankle prosthesis: Amputee experiments across speeds and inclines publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2018.2794536 – start-page: 1127 year: 2019 ident: 10.1016/j.robot.2021.103842_b47 article-title: A user-adaptive online learning approach of real-time gait phase detection for walking assistance – volume: 26 start-page: 43 issue: 1 year: 1978 ident: 10.1016/j.robot.2021.103842_b62 article-title: Dynamic programming algorithm optimization for spoken word recognition publication-title: IEEE Trans. Acoust. Speech Signal Process. doi: 10.1109/TASSP.1978.1163055 – volume: 35 start-page: 1055 issue: 4 year: 2019 ident: 10.1016/j.robot.2021.103842_b48 article-title: Delayed output feedback control for gait assistance with a robotic hip exoskeleton publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2019.2913318 – volume: 29 start-page: 262 year: 2021 ident: 10.1016/j.robot.2021.103842_b53 article-title: Analysis of continuously varying kinematics for prosthetic leg control applications publication-title: IEEE Trans. Neural Syst. Rehabilitation Eng. doi: 10.1109/TNSRE.2020.3045003 – volume: 21 start-page: 654 issue: 4 year: 2008 ident: 10.1016/j.robot.2021.103842_b4 article-title: Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits publication-title: Neural Netw. doi: 10.1016/j.neunet.2008.03.006 – volume: 7 start-page: 109840 year: 2019 ident: 10.1016/j.robot.2021.103842_b22 article-title: A phase variable approach for improved rhythmic and non-rhythmic control of a powered knee-ankle prosthesis publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2933614 – volume: 216 start-page: 2150 issue: 11 year: 2013 ident: 10.1016/j.robot.2021.103842_b51 article-title: How muscle fiber lengths and velocities affect muscle force generation as humans walk and run at different speeds publication-title: J. Exp. Biol. – volume: 18 start-page: 2389 issue: 7 year: 2018 ident: 10.1016/j.robot.2021.103842_b45 article-title: ED-FNN: A new deep learning algorithm to detect percentage of the gait cycle for powered prostheses publication-title: Sensors doi: 10.3390/s18072389 – volume: 10 start-page: 1068 issue: 3 year: 2016 ident: 10.1016/j.robot.2021.103842_b7 article-title: Lower limb wearable robots for assistance and rehabilitation: A state of the art publication-title: IEEE Syst. J. doi: 10.1109/JSYST.2014.2351491 – volume: 64 start-page: 120 year: 2015 ident: 10.1016/j.robot.2021.103842_b12 article-title: Review of assistive strategies in powered lower-limb orthoses and exoskeletons publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2014.09.032 – volume: 27 start-page: 263 issue: 2 year: 2008 ident: 10.1016/j.robot.2021.103842_b9 article-title: Design and control of a powered transfemoral prosthesis publication-title: Int. J. Robot. Res. doi: 10.1177/0278364907084588 – volume: 91 start-page: 911 issue: 11 year: 2012 ident: 10.1016/j.robot.2021.103842_b14 article-title: The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury publication-title: Am. J. Phys. Med. Rehabil. doi: 10.1097/PHM.0b013e318269d9a3 – volume: 12 issue: 1 year: 2015 ident: 10.1016/j.robot.2021.103842_b18 article-title: Effects of a wearable exoskeleton stride management assist system (SMA®) on spatiotemporal gait characteristics in individuals after stroke: A randomized controlled trial publication-title: J. Neuroeng. Rehabil. doi: 10.1186/s12984-015-0062-0 – start-page: 1890 year: 2020 ident: 10.1016/j.robot.2021.103842_b30 article-title: Online estimation of continuous gait phase for robotic transtibial prostheses based on adaptive oscillators – year: 2010 ident: 10.1016/j.robot.2021.103842_b35 – volume: 73 start-page: 155 year: 2015 ident: 10.1016/j.robot.2021.103842_b32 article-title: A survey of sensor fusion methods in wearable robotics publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2014.08.012 – volume: 2020 start-page: 1 year: 2020 ident: 10.1016/j.robot.2021.103842_b15 article-title: Physiotherapists’ experiences using the ekso bionic exoskeleton with patients in a neurological rehabilitation hospital: A qualitative study publication-title: Rehabil. Res. Pract. – volume: 3 start-page: 1647 issue: 3 year: 2018 ident: 10.1016/j.robot.2021.103842_b65 article-title: Realtime delayless estimation of derivatives of noisy sensor signals for quasi-cyclic motions with application to joint acceleration estimation on an exoskeleton publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2018.2801473 – volume: 38 start-page: 88 issue: 6 year: 2018 ident: 10.1016/j.robot.2021.103842_b16 article-title: On the design and control of highly backdrivable lower-limb exoskeletons: A discussion of past and ongoing work publication-title: IEEE Control Syst. doi: 10.1109/MCS.2018.2866605 – volume: 21 start-page: 961 issue: 6 year: 2011 ident: 10.1016/j.robot.2021.103842_b40 article-title: Gait phase analysis based on a hidden Markov model publication-title: Mechatronics doi: 10.1016/j.mechatronics.2011.03.003 – start-page: 1488 year: 2018 ident: 10.1016/j.robot.2021.103842_b54 article-title: Locomotion envelopes for adaptive control of powered ankle prostheses – volume: 20 start-page: 1521 issue: 6 year: 2016 ident: 10.1016/j.robot.2021.103842_b36 article-title: Toward pervasive gait analysis with wearable sensors: A systematic review publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2016.2608720 – volume: 133 year: 2020 ident: 10.1016/j.robot.2021.103842_b17 article-title: A review of terrain detection systems for applications in locomotion assistance publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2020.103628 – start-page: 246 year: 2017 ident: 10.1016/j.robot.2021.103842_b64 article-title: Autonomous hip exoskeleton saves metabolic cost of walking uphill – volume: 5 start-page: 26 year: 2016 ident: 10.1016/j.robot.2021.103842_b6 article-title: Recent developments and challenges of lower extremity exoskeletons publication-title: J. Orthop. Transl. – volume: 41 start-page: 111 issue: 1 year: 2011 ident: 10.1016/j.robot.2021.103842_b1 article-title: Relationship between sedentary behaviour, physical activity, muscle quality and body composition in healthy older adults publication-title: Age Ageing doi: 10.1093/ageing/afr075 – volume: 2 start-page: 28 issue: 1 year: 2020 ident: 10.1016/j.robot.2021.103842_b44 article-title: Real-time neural network-based gait phase estimation using a robotic hip exoskeleton publication-title: IEEE Trans. Med. Robot. Bionics doi: 10.1109/TMRB.2019.2961749 – volume: 30 start-page: 1775 issue: 14 year: 2011 ident: 10.1016/j.robot.2021.103842_b50 article-title: On-line frequency adaptation and movement imitation for rhythmic robotic tasks publication-title: Int. J. Robot. Res. doi: 10.1177/0278364911421511 – volume: 7 start-page: 358 issue: 3 year: 2005 ident: 10.1016/j.robot.2021.103842_b60 article-title: Exact indexing of dynamic time warping publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-004-0154-9 – volume: 7 issue: 1 year: 2015 ident: 10.1016/j.robot.2021.103842_b41 article-title: Limit cycles to enhance human performance based on phase oscillators publication-title: J. Mech. Robot. doi: 10.1115/1.4029336 – volume: 25 start-page: 265 issue: 3 year: 2017 ident: 10.1016/j.robot.2021.103842_b25 article-title: A robust parameterization of human gait patterns across phase-shifting perturbations publication-title: IEEE Trans. Neural Syst. Rehabilitation Eng. doi: 10.1109/TNSRE.2016.2569019 – volume: 7 issue: 10 year: 2012 ident: 10.1016/j.robot.2021.103842_b34 article-title: Proprioceptive feedback and brain computer interface (BCI) based neuroprostheses publication-title: PLoS One doi: 10.1371/journal.pone.0047048 – volume: 9 issue: 6 year: 2014 ident: 10.1016/j.robot.2021.103842_b31 article-title: Configuring a powered knee and ankle prosthesis for transfemoral amputees within five specific ambulation modes publication-title: PLoS One doi: 10.1371/journal.pone.0099387 – volume: 41 start-page: 759 issue: 3 year: 2016 ident: 10.1016/j.robot.2021.103842_b43 article-title: An oscillator-based smooth real-time estimate of gait phase for wearable robotics publication-title: Auton. Robots doi: 10.1007/s10514-016-9566-0 – volume: 4 start-page: 430 issue: 2 year: 2019 ident: 10.1016/j.robot.2021.103842_b29 article-title: The effect of hip assistance levels on human energetic cost using robotic hip exoskeletons publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2019.2890896 – start-page: 1 year: 2021 ident: 10.1016/j.robot.2021.103842_b23 article-title: Design principles for compact, backdrivable actuation in partial-assist powered knee orthoses publication-title: IEEE/ASME Trans. Mechatronics – year: 2019 ident: 10.1016/j.robot.2021.103842_b39 article-title: Machine learning based adaptive gait phase estimation using inertial measurement sensors – start-page: 809 year: 2019 ident: 10.1016/j.robot.2021.103842_b46 article-title: RNN-based on-line continuous gait phase estimation from shank-mounted IMUs to control ankle exoskeletons – volume: 13 start-page: 61 year: 2016 ident: 10.1016/j.robot.2021.103842_b59 article-title: Trajectory data mining: A review of methods and applications publication-title: J. Spat. Inf. Sci. – year: 2009 ident: 10.1016/j.robot.2021.103842_b26 – volume: 24 start-page: 483 issue: 2 year: 2019 ident: 10.1016/j.robot.2021.103842_b33 article-title: A practical and adaptive method to achieve EMG-based torque estimation for a robotic exoskeleton publication-title: IEEE/ASME Trans. Mechatronics doi: 10.1109/TMECH.2019.2893055 |
SSID | ssj0003573 |
Score | 2.432802 |
Snippet | Phase-variable-based approaches are emerging in the control of lower-limb wearable robots, such as exoskeletons and prosthetic legs. However, real-time smooth... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 103842 |
SubjectTerms | Gait kinematics Gait phase estimation Trajectory correlation Wearable robotics |
Title | An adaptive framework of real-time continuous gait phase variable estimation for lower-limb wearable robots |
URI | https://dx.doi.org/10.1016/j.robot.2021.103842 |
Volume | 143 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIryqDwwYpomThqPVUVVqNQBqOgWxY4DgZBEpYWN386dk0CRUAemyNGdZF2ce8jffUfIOURx7kq3x7joRlCgqB4TvieY43CXh73QsmKD8p14oym_mbmzBhnUvTAIq6x8f-nTjbeu3nQqa3aKJOncWQLCE16Tdc39KTaac97DU375-QPzcNzylhmEGUrXzEMG4zXPZY6ASrtriMK5_Xd0Wok4wx2yXaWKtF_uZpc0dLZHtlYIBPfJSz-jYRQW6LNoXOOsaB5TyAVThoPjKYLRk2wJFT59DJMFLZ4gcNF3qJGxa4oiy0bZvkghf6UpTk1jafIq6Qf8BEbE7P_tgEyHV_eDEavGJzAFcWnBQsg-bBGJuOtq5QkotGQkHeVBjhYhpYwQSgplxY7imvvK8XgMir7WIB9JiGiHpJnlmT4i1La1pW0fPJIS3Oe-jEEDFmEUaw88RovYtdkCVXGL44iLNKhBZM-B2WuAtg5KW7fIxbdSUVJrrBf36u8R_DohATj_dYrH_1U8IZu4KhFlp6S5mC_1GaQgC9k2Z6xNNvrX49EEn-Pbh_EXhkPdFA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGYAB8RTl6YER0zRx0nisKqoCpQut1M2KHQcCIYlKChu_nbOTQJEQA2OSO8m62N_dyd_dIXQOXpy6wu0SyjohJCiyS5jvMeI41KVBN7CsyLB8x95wSm9m7qyB-nUtjKZVVthfYrpB6-pNu7JmO4_j9r3FwD3pa7KOuT91V9AqheOrxxhcfnzzPBy3vGYGaaLF69ZDhuQ1z0SmGZV2x3QKp_bv7mnJ5Qy20GYVK-JeuZxt1FDpDtpY6iC4i557KQ7CINeghaOaaIWzCEMwmBA9OR5rNnqcLiDFxw9BXOD8ETwXfoMkWZdNYd1mo6xfxBDA4kSPTSNJ_CLwO5wCI2LW_7qHpoOrSX9IqvkJRIJjKkgA4YfNQhZ1XCU9BpmWCIUjPQjSQt1ThjEpmLQiR1JFfel4NAJFXymQDwW4tH3UTLNUHSBs28pStg-QJBn1qS8i0ICHIIyUB5DRQnZtNi6r5uJ6xkXCaxbZEzdr5drWvLR1C118KeVlb42_xb36f_AfW4QD-v-lePhfxTO0Npzcjfjoenx7hNb1l5JedoyaxXyhTiAeKcSp2W-fxm_c_w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+adaptive+framework+of+real-time+continuous+gait+phase+variable+estimation+for+lower-limb+wearable+robots&rft.jtitle=Robotics+and+autonomous+systems&rft.au=Zhang%2C+Binquan&rft.au=Wang%2C+Sun%E2%80%99an&rft.au=Zhou%2C+Min&rft.au=Xu%2C+Wanlu&rft.date=2021-09-01&rft.issn=0921-8890&rft.volume=143&rft.spage=103842&rft_id=info:doi/10.1016%2Fj.robot.2021.103842&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_robot_2021_103842 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-8890&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-8890&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-8890&client=summon |