Role of oxidative stress in PKC-δ upregulation and cardioprotection induced by chronic intermittent hypoxia
The aim was to determine whether increased oxidative stress during the adaptation to chronic intermittent hypoxia (CIH) plays a role in the induction of improved cardiac ischemic tolerance. Adult male Wistar rats were exposed to CIH in a hypobaric chamber (7,000 m, 8 h/day, 5 days/wk, 24–30 exposure...
Saved in:
Published in | American journal of physiology. Heart and circulatory physiology Vol. 292; no. 1; pp. H224 - H230 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.01.2007
|
Subjects | |
Online Access | Get full text |
ISSN | 0363-6135 1522-1539 |
DOI | 10.1152/ajpheart.00689.2006 |
Cover
Loading…
Abstract | The aim was to determine whether increased oxidative stress during the adaptation to chronic intermittent hypoxia (CIH) plays a role in the induction of improved cardiac ischemic tolerance. Adult male Wistar rats were exposed to CIH in a hypobaric chamber (7,000 m, 8 h/day, 5 days/wk, 24–30 exposures). Half of the animals received antioxidant N-acetylcysteine (NAC; 100 mg/kg) daily before the exposure; the remaining rats received saline. Control rats were kept under normoxia and treated in a corresponding manner. One day after the last exposure (and/or NAC injection), anesthetized animals were subject to 20 min of coronary artery occlusion and 3 h of reperfusion for determination of infarct size. In parallel subgroups, biochemical analyses of the left ventricular myocardium were performed. Adaptation to CIH reduced infarct size from 56.7 ± 4.5% of the area at risk in the normoxic controls to 27.7 ± 4.9%. NAC treatment decreased the infarct size in the controls to 42.0 ± 3.4%, but it abolished the protection provided by CIH (to 41.1 ± 4.9%). CIH decreased the reduced-to-oxidized glutathione ratio and increased the relative amount of PKC isoform-δ in the particulate fraction; NAC prevented these effects. The expression of PKC-ε was decreased by CIH and not affected by NAC. Activities of superoxide dismutase, catalase, and glutathione peroxidase were affected by neither CIH nor NAC treatment. It is concluded that oxidative stress associated with CIH plays a role in the development of increased cardiac ischemic tolerance. The infarct size-limiting mechanism of CIH seems to involve the PKC-δ-dependent pathway but apparently not the increased capacity of major antioxidant enzymes. |
---|---|
AbstractList | The aim was to determine whether increased oxidative stress during the adaptation to chronic intermittent hypoxia (CIH) plays a role in the induction of improved cardiac ischemic tolerance. Adult male Wistar rats were exposed to CIH in a hypobaric chamber (7,000 m, 8 h/day, 5 days/wk, 24-30 exposures). Half of the animals received antioxidant N-acetylcysteine (NAC; 100 mg/kg) daily before the exposure; the remaining rats received saline. Control rats were kept under normoxia and treated in a corresponding manner. One day after the last exposure (and/or NAC injection), anesthetized animals were subject to 20 min of coronary artery occlusion and 3 h of reperfusion for determination of infarct size. In parallel subgroups, biochemical analyses of the left ventricular myocardium were performed. Adaptation to CIH reduced infarct size from 56.7 +/- 4.5% of the area at risk in the normoxic controls to 27.7 +/- 4.9%. NAC treatment decreased the infarct size in the controls to 42.0 +/- 3.4%, but it abolished the protection provided by CIH (to 41.1 +/- 4.9%). CIH decreased the reduced-to-oxidized glutathione ratio and increased the relative amount of PKC isoform-delta in the particulate fraction; NAC prevented these effects. The expression of PKC-epsilon was decreased by CIH and not affected by NAC. Activities of superoxide dismutase, catalase, and glutathione peroxidase were affected by neither CIH nor NAC treatment. It is concluded that oxidative stress associated with CIH plays a role in the development of increased cardiac ischemic tolerance. The infarct size-limiting mechanism of CIH seems to involve the PKC-delta-dependent pathway but apparently not the increased capacity of major antioxidant enzymes. The aim was to determine whether increased oxidative stress during the adaptation to chronic intermittent hypoxia (CIH) plays a role in the induction of improved cardiac ischemic tolerance. Adult male Wistar rats were exposed to CIH in a hypobaric chamber (7,000 m, 8 h/day, 5 days/wk, 24-30 exposures). Half of the animals received antioxidant N-acetylcysteine (NAC; 100 mg/kg) daily before the exposure; the remaining rats received saline. Control rats were kept under normoxia and treated in a corresponding manner. One day after the last exposure (and/or NAC injection), anesthetized animals were subject to 20 min of coronary artery occlusion and 3 h of reperfusion for determination of infarct size. In parallel subgroups, biochemical analyses of the left ventricular myocardium were performed. Adaptation to CIH reduced infarct size from 56.7 +/- 4.5% of the area at risk in the normoxic controls to 27.7 +/- 4.9%. NAC treatment decreased the infarct size in the controls to 42.0 +/- 3.4%, but it abolished the protection provided by CIH (to 41.1 +/- 4.9%). CIH decreased the reduced-to-oxidized glutathione ratio and increased the relative amount of PKC isoform-delta in the particulate fraction; NAC prevented these effects. The expression of PKC-epsilon was decreased by CIH and not affected by NAC. Activities of superoxide dismutase, catalase, and glutathione peroxidase were affected by neither CIH nor NAC treatment. It is concluded that oxidative stress associated with CIH plays a role in the development of increased cardiac ischemic tolerance. The infarct size-limiting mechanism of CIH seems to involve the PKC-delta-dependent pathway but apparently not the increased capacity of major antioxidant enzymes.The aim was to determine whether increased oxidative stress during the adaptation to chronic intermittent hypoxia (CIH) plays a role in the induction of improved cardiac ischemic tolerance. Adult male Wistar rats were exposed to CIH in a hypobaric chamber (7,000 m, 8 h/day, 5 days/wk, 24-30 exposures). Half of the animals received antioxidant N-acetylcysteine (NAC; 100 mg/kg) daily before the exposure; the remaining rats received saline. Control rats were kept under normoxia and treated in a corresponding manner. One day after the last exposure (and/or NAC injection), anesthetized animals were subject to 20 min of coronary artery occlusion and 3 h of reperfusion for determination of infarct size. In parallel subgroups, biochemical analyses of the left ventricular myocardium were performed. Adaptation to CIH reduced infarct size from 56.7 +/- 4.5% of the area at risk in the normoxic controls to 27.7 +/- 4.9%. NAC treatment decreased the infarct size in the controls to 42.0 +/- 3.4%, but it abolished the protection provided by CIH (to 41.1 +/- 4.9%). CIH decreased the reduced-to-oxidized glutathione ratio and increased the relative amount of PKC isoform-delta in the particulate fraction; NAC prevented these effects. The expression of PKC-epsilon was decreased by CIH and not affected by NAC. Activities of superoxide dismutase, catalase, and glutathione peroxidase were affected by neither CIH nor NAC treatment. It is concluded that oxidative stress associated with CIH plays a role in the development of increased cardiac ischemic tolerance. The infarct size-limiting mechanism of CIH seems to involve the PKC-delta-dependent pathway but apparently not the increased capacity of major antioxidant enzymes. The aim was to determine whether increased oxidative stress during the adaptation to chronic intermittent hypoxia (CIH) plays a role in the induction of improved cardiac ischemic tolerance. Adult male Wistar rats were exposed to CIH in a hypobaric chamber (7,000 m, 8 h/day, 5 days/wk, 24–30 exposures). Half of the animals received antioxidant N-acetylcysteine (NAC; 100 mg/kg) daily before the exposure; the remaining rats received saline. Control rats were kept under normoxia and treated in a corresponding manner. One day after the last exposure (and/or NAC injection), anesthetized animals were subject to 20 min of coronary artery occlusion and 3 h of reperfusion for determination of infarct size. In parallel subgroups, biochemical analyses of the left ventricular myocardium were performed. Adaptation to CIH reduced infarct size from 56.7 ± 4.5% of the area at risk in the normoxic controls to 27.7 ± 4.9%. NAC treatment decreased the infarct size in the controls to 42.0 ± 3.4%, but it abolished the protection provided by CIH (to 41.1 ± 4.9%). CIH decreased the reduced-to-oxidized glutathione ratio and increased the relative amount of PKC isoform-δ in the particulate fraction; NAC prevented these effects. The expression of PKC-ε was decreased by CIH and not affected by NAC. Activities of superoxide dismutase, catalase, and glutathione peroxidase were affected by neither CIH nor NAC treatment. It is concluded that oxidative stress associated with CIH plays a role in the development of increased cardiac ischemic tolerance. The infarct size-limiting mechanism of CIH seems to involve the PKC-δ-dependent pathway but apparently not the increased capacity of major antioxidant enzymes. |
Author | Nováková, Olga Břeh, Jiří Srbová, Martina Ošt’ádal, Bohuslav Herget, Jan Kolář, František Neckář, Jan Ježková, Jana Wilhelm, Jiří Tomášová, Helena Balková, Patricie Novák, František |
Author_xml | – sequence: 1 givenname: František surname: Kolář fullname: Kolář, František – sequence: 2 givenname: Jana surname: Ježková fullname: Ježková, Jana – sequence: 3 givenname: Patricie surname: Balková fullname: Balková, Patricie – sequence: 4 givenname: Jiří surname: Břeh fullname: Břeh, Jiří – sequence: 5 givenname: Jan surname: Neckář fullname: Neckář, Jan – sequence: 6 givenname: František surname: Novák fullname: Novák, František – sequence: 7 givenname: Olga surname: Nováková fullname: Nováková, Olga – sequence: 8 givenname: Helena surname: Tomášová fullname: Tomášová, Helena – sequence: 9 givenname: Martina surname: Srbová fullname: Srbová, Martina – sequence: 10 givenname: Bohuslav surname: Ošt’ádal fullname: Ošt’ádal, Bohuslav – sequence: 11 givenname: Jiří surname: Wilhelm fullname: Wilhelm, Jiří – sequence: 12 givenname: Jan surname: Herget fullname: Herget, Jan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/16936002$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UctOGzEUtRAVCY8vqFR51d2k9jhjxksUlYIaiaoqa8tjXxOjiT3YHkT-q9_BN-EEwoIFqyudl67OOUaHPnhA6CslM0qb-oe6H1agYp4Rwlsxq8s5QNPC1BVtmDhEU8I4qzhlzQQdp3RPCGnOOTtCE8oF44TUU9T_DT3gYHF4ckZl9wg45QgpYefxn9-L6vk_HocId2Nf2OCx8gZrFY0LQwwZ9A503owaDO42WK9i8E4XKENcu5zBZ7zaDCVfnaIvVvUJzt7uCbq9_PlvcVUtb35dLy6WlWaE5Uq0lPO6pXXXqHZeN-2czg3vOJxTSnRtbCcA5g2A1cpa1lDRCcsptcJQZQhnJ-j7a2558WGElOXaJQ19rzyEMUleEllpowi_vQnHbg1GDtGtVdzIfT9FIF4FOoaUIlipXd4VkaNyvaREbreQ-y3kbgu53aJ42Qfve_wnrheVbpJA |
CitedBy_id | crossref_primary_10_1007_s12576_014_0323_x crossref_primary_10_1113_jphysiol_2008_160887 crossref_primary_10_3390_ijms242216497 crossref_primary_10_1038_aps_2009_57 crossref_primary_10_33549_physiolres_932860 crossref_primary_10_3389_fpsyt_2016_00071 crossref_primary_10_1007_s11010_016_2833_8 crossref_primary_10_33549_physiolres_935337 crossref_primary_10_1016_j_vph_2008_07_001 crossref_primary_10_1113_expphysiol_2012_065102 crossref_primary_10_3109_03009734_2013_766914 crossref_primary_10_1186_s12872_020_01702_y crossref_primary_10_1371_journal_pone_0076659 crossref_primary_10_1007_s00395_016_0538_5 crossref_primary_10_1152_ajpheart_01264_2007 crossref_primary_10_33549_physiolres_932597 crossref_primary_10_1016_j_phrs_2015_07_011 crossref_primary_10_1089_ham_2010_1021 crossref_primary_10_5937_scriptamed54_42460 crossref_primary_10_1152_japplphysiol_00772_2020 crossref_primary_10_1017_S0007114509389242 crossref_primary_10_1016_j_jss_2009_03_017 crossref_primary_10_3892_ijmm_2016_2535 crossref_primary_10_1139_y2012_052 crossref_primary_10_1371_journal_pone_0057065 crossref_primary_10_1134_S0022093022020211 crossref_primary_10_33549_physiolres_932396 crossref_primary_10_1152_ajpheart_00060_2018 crossref_primary_10_33549_physiolres_932591 crossref_primary_10_1016_j_yjmcc_2017_03_007 crossref_primary_10_1016_S1734_1140_09_70002_7 crossref_primary_10_33549_physiolres_935513 crossref_primary_10_1152_physiolgenomics_00083_2011 crossref_primary_10_1016_j_bbrc_2007_02_128 crossref_primary_10_1042_CS20170083 crossref_primary_10_1111_j_1471_4159_2009_05909_x crossref_primary_10_1139_cjpp_2017_0022 crossref_primary_10_1152_physiolgenomics_00058_2015 crossref_primary_10_1007_s11055_012_9577_z crossref_primary_10_1152_japplphysiol_01035_2014 crossref_primary_10_1152_ajpheart_00276_2011 crossref_primary_10_1177_1535370213508718 crossref_primary_10_1580_08_WEME_SA_282_1 crossref_primary_10_1152_ajpheart_01371_2007 crossref_primary_10_3390_md13020838 crossref_primary_10_1152_japplphysiol_00545_2007 crossref_primary_10_1007_s11010_010_0581_8 crossref_primary_10_1016_j_resp_2020_103526 crossref_primary_10_3390_ijms25179627 crossref_primary_10_33549_physiolres_932042 crossref_primary_10_1152_japplphysiol_00671_2016 crossref_primary_10_1007_s40675_019_0134_y crossref_primary_10_3181_0710_MR_267 crossref_primary_10_1007_s12576_017_0546_8 crossref_primary_10_3390_biomedicines11041044 crossref_primary_10_1111_j_1471_4159_2010_06843_x crossref_primary_10_1161_CIRCULATIONAHA_119_044998 crossref_primary_10_33549_physiolres_934439 crossref_primary_10_1155_2022_1438470 crossref_primary_10_1111_j_1365_2869_2009_00754_x crossref_primary_10_1016_j_mito_2012_10_007 crossref_primary_10_1177_1074248413494814 crossref_primary_10_1007_s10286_010_0064_8 crossref_primary_10_1016_j_resp_2007_03_005 crossref_primary_10_1111_jcmm_13121 crossref_primary_10_1210_en_2008_1493 crossref_primary_10_1021_acs_jmedchem_4c00341 crossref_primary_10_1016_j_phrs_2021_105716 crossref_primary_10_1016_j_ijcard_2013_08_001 crossref_primary_10_1111_apha_12489 crossref_primary_10_1007_s00395_011_0169_9 crossref_primary_10_1007_s11010_011_0886_2 crossref_primary_10_1111_j_1600_0838_2008_00832_x crossref_primary_10_7555_JBR_36_20220125 crossref_primary_10_1016_j_ijcard_2014_02_011 |
Cites_doi | 10.1042/CS20050227 10.1038/sj.bjp.0704619 10.1007/BF02714956 10.1021/tx960046z 10.1152/ajpheart.2000.278.2.H331 10.1097/00000542-200307000-00023 10.1016/S0076-6879(84)05016-3 10.1007/s11010-005-4817-y 10.1161/hh1501.094266 10.33549/physiolres.930303 10.1023/A:1015349928000 10.1152/ajpheart.00683.2001 10.1006/jmcc.1999.1013 10.1074/jbc.273.29.18092 10.1152/jappl.2001.90.4.1299 10.1016/S1357-2725(99)00018-7 10.1152/ajpheart.2001.281.3.H1346 10.1016/0003-2697(80)90139-6 10.1016/j.yjmcc.2005.07.001 10.1016/j.lfs.2004.07.005 10.1152/ajpcell.1985.249.5.C379 10.1016/j.cardiores.2003.10.025 10.1161/01.RES.80.5.743 10.1016/j.lfs.2004.11.027 10.1152/ajpheart.2000.278.1.H94 10.1161/01.RES.87.6.460 10.1126/science.166.3912.1535 10.1111/j.1749-6632.1999.tb09224.x 10.1016/S0008-6363(02)00337-1 10.1016/0003-2697(77)90043-4 10.1016/j.yjmcc.2004.07.008 10.1097/00000542-200403000-00008 10.1016/0167-5273(90)90060-I 10.1042/BJ20040704 10.1006/jmcc.1996.0265 10.1007/s00421-003-0939-7 10.1385/CBB:44:1:103 10.1097/00000542-200403000-00011 10.1016/S0024-3205(03)00429-6 10.33549/physiolres.930000.53.S3 10.1016/S0008-6363(02)00456-X 10.1152/ajpheart.00586.2004 10.1164/rccm.200504-560OC 10.1161/01.CIR.0000022018.68965.6D 10.1016/S0735-1097(02)02001-6 10.1007/s003950200007 |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1152/ajpheart.00689.2006 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1522-1539 |
EndPage | H230 |
ExternalDocumentID | 16936002 10_1152_ajpheart_00689_2006 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 23M 2WC 39C 3O- 4.4 53G 5GY 5VS 6J9 8M5 AAFWJ AAYXX ABJNI ACBEA ACIWK ACPRK ADBBV AENEX AFFNX AFRAH ALMA_UNASSIGNED_HOLDINGS BAWUL BKKCC BKOMP BTFSW C1A CITATION E3Z EBS EJD EMOBN F5P GX1 H13 ITBOX KQ8 OK1 P2P PQQKQ RAP RHI RPL RPRKH TR2 UKR W8F WH7 WOQ XSW YSK YYP ~02 CGR CUY CVF DIK ECM EIF NPM RHF 7X8 |
ID | FETCH-LOGICAL-c303t-981662812b5a84258414d6b6e7110c2dfb9ee45eefcaff3519b9f611f9d1ad063 |
ISSN | 0363-6135 |
IngestDate | Fri Jul 11 15:26:02 EDT 2025 Sat Sep 28 07:39:48 EDT 2024 Tue Jul 01 04:20:06 EDT 2025 Thu Apr 24 23:03:53 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c303t-981662812b5a84258414d6b6e7110c2dfb9ee45eefcaff3519b9f611f9d1ad063 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 16936002 |
PQID | 68413000 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_68413000 pubmed_primary_16936002 crossref_citationtrail_10_1152_ajpheart_00689_2006 crossref_primary_10_1152_ajpheart_00689_2006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2007-01-00 2007-Jan 20070101 |
PublicationDateYYYYMMDD | 2007-01-01 |
PublicationDate_xml | – month: 01 year: 2007 text: 2007-01-00 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | American journal of physiology. Heart and circulatory physiology |
PublicationTitleAlternate | Am J Physiol Heart Circ Physiol |
PublicationYear | 2007 |
References | R21 R20 R23 R22 R25 R24 R27 R26 R29 R28 R1 R2 R3 R4 R5 R6 R7 R8 R9 R30 R32 R31 R34 R33 R36 R35 R38 R37 R39 R41 R40 R43 R42 R45 R44 R47 R46 R49 R48 R10 R12 R11 R14 R13 R16 R15 R18 R17 R19 |
References_xml | – ident: R36 doi: 10.1042/CS20050227 – ident: R2 doi: 10.1038/sj.bjp.0704619 – ident: R7 doi: 10.1007/BF02714956 – ident: R27 doi: 10.1021/tx960046z – ident: R32 doi: 10.1152/ajpheart.2000.278.2.H331 – ident: R44 doi: 10.1097/00000542-200307000-00023 – ident: R1 doi: 10.1016/S0076-6879(84)05016-3 – ident: R33 – ident: R39 doi: 10.1007/s11010-005-4817-y – ident: R10 doi: 10.1161/hh1501.094266 – ident: R30 doi: 10.33549/physiolres.930303 – ident: R18 doi: 10.1023/A:1015349928000 – ident: R47 doi: 10.1152/ajpheart.00683.2001 – ident: R3 doi: 10.1006/jmcc.1999.1013 – ident: R45 doi: 10.1074/jbc.273.29.18092 – ident: R22 doi: 10.1152/jappl.2001.90.4.1299 – ident: R46 doi: 10.1016/S1357-2725(99)00018-7 – ident: R17 doi: 10.1152/ajpheart.2001.281.3.H1346 – ident: R16 doi: 10.1016/0003-2697(80)90139-6 – ident: R19 doi: 10.1016/j.yjmcc.2005.07.001 – ident: R13 doi: 10.1016/j.lfs.2004.07.005 – ident: R41 doi: 10.1152/ajpcell.1985.249.5.C379 – ident: R5 doi: 10.1016/j.cardiores.2003.10.025 – ident: R43 doi: 10.1161/01.RES.80.5.743 – ident: R25 doi: 10.1016/j.lfs.2004.11.027 – ident: R23 doi: 10.1152/ajpheart.2000.278.1.H94 – ident: R35 doi: 10.1161/01.RES.87.6.460 – ident: R9 doi: 10.1126/science.166.3912.1535 – ident: R11 doi: 10.1111/j.1749-6632.1999.tb09224.x – ident: R21 doi: 10.1016/S0008-6363(02)00337-1 – ident: R37 doi: 10.1016/0003-2697(77)90043-4 – ident: R15 doi: 10.1016/j.yjmcc.2004.07.008 – ident: R6 doi: 10.1097/00000542-200403000-00008 – ident: R40 doi: 10.1016/0167-5273(90)90060-I – ident: R42 doi: 10.1042/BJ20040704 – ident: R4 doi: 10.1006/jmcc.1996.0265 – ident: R49 doi: 10.1007/s00421-003-0939-7 – ident: R12 doi: 10.1385/CBB:44:1:103 – ident: R14 – ident: R26 doi: 10.1097/00000542-200403000-00011 – ident: R48 doi: 10.1016/S0024-3205(03)00429-6 – ident: R24 doi: 10.33549/physiolres.930000.53.S3 – ident: R31 doi: 10.1016/S0008-6363(02)00456-X – ident: R28 doi: 10.1152/ajpheart.00586.2004 – ident: R8 doi: 10.1164/rccm.200504-560OC – ident: R38 doi: 10.1161/01.CIR.0000022018.68965.6D – ident: R20 doi: 10.1016/S0735-1097(02)02001-6 – ident: R29 doi: 10.1007/s003950200007 – ident: R34 |
SSID | ssj0005763 |
Score | 2.1773446 |
Snippet | The aim was to determine whether increased oxidative stress during the adaptation to chronic intermittent hypoxia (CIH) plays a role in the induction of... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | H224 |
SubjectTerms | Animals Chronic Disease Hypoxia - complications Hypoxia - physiopathology Hypoxia - prevention & control Ischemic Preconditioning, Myocardial - methods Male Myocardial Infarction - physiopathology Myocardial Infarction - prevention & control Oxidative Stress Protein Kinase C-delta - metabolism Rats Rats, Wistar Secondary Prevention Up-Regulation |
Title | Role of oxidative stress in PKC-δ upregulation and cardioprotection induced by chronic intermittent hypoxia |
URI | https://www.ncbi.nlm.nih.gov/pubmed/16936002 https://www.proquest.com/docview/68413000 |
Volume | 292 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ZjtMwFLXKICFeEMywlNUPiBfI0LhZmsfRMKOqs7ColfoWOY6tCZSkCgmi8yv8LPfaTpoyZX2JqjSJo94j99j33HMJee5KFqIPljNko4HjKbS8Td3AidLUZ1Iol-uekWfnwXjmTeb-vNf73lEt1VWyLy631pX8T1ThHMQVq2T_IbLtQ-EEfIb4whEiDMe_ivEHKw0svmWpMfC2pR8ZzGwnh04qFxV_WS9L03C-UR4LrUG1Dg1G65jWwlBRYcxytY0E1vpXqBW4WC1hCN4lsm2mp2M9oXdJ9Db9PpY3lUa8LrISta46mb--op3oi4XO1btlQ6OxO3RbPjSRl5-Kr-YKI-rN1zsIfLHxnek2kHVkAlLvGU0yIwd4s7HDEXZ2OJrKriEscY2tSTNrs4hdgaeZg8fMVGVf_XPw0WyWf1xir_AKFX0jXaq0xYr7_G18PDs9jadH8-k1cp3BGgTbY5y8X1vRw0Jt2CTC8eWspRUM8nrLEJu05xdrGc1pprfJLbsYoQcGWXdIT-a7ZO8gh2B9XtEX9F0brl1y48yqMPZIgbijhaIt7qjBHc1y2uKOdnFHAQn0Z9xRizuarKjFHe3ijlrc3SWz46Pp4dixjTscAYyociJMRjOgjonPMc078lwvDZJAhkA2BUtVEknp-VIqwZXCFpFJpALXVVHq8hRI8z2ykxe5fECo8rkr4OxIRpGX-AkPvShhQLKDITxChX3Cmt81FtbVHpurLGK9uvVZ3AQj1sHAtqtBn7xqb1oaU5ffX_6sCVgMky9m1Hgui_pLHIyQAw4GfXLfxHH9uABeEdjGwz_e-4jcXIP-Mdmpylo-AaJbJU814H4ACCivFA |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Role+of+oxidative+stress+in+PKC-delta+upregulation+and+cardioprotection+induced+by+chronic+intermittent+hypoxia&rft.jtitle=American+journal+of+physiology.+Heart+and+circulatory+physiology&rft.au=Kol%C3%A1r%2C+Frantisek&rft.au=Jezkov%C3%A1%2C+Jana&rft.au=Balkov%C3%A1%2C+Patricie&rft.au=Breh%2C+Jir%C3%AD&rft.date=2007-01-01&rft.issn=0363-6135&rft.volume=292&rft.issue=1&rft.spage=H224&rft_id=info:doi/10.1152%2Fajpheart.00689.2006&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-6135&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-6135&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-6135&client=summon |