Role of oxidative stress in PKC-δ upregulation and cardioprotection induced by chronic intermittent hypoxia

The aim was to determine whether increased oxidative stress during the adaptation to chronic intermittent hypoxia (CIH) plays a role in the induction of improved cardiac ischemic tolerance. Adult male Wistar rats were exposed to CIH in a hypobaric chamber (7,000 m, 8 h/day, 5 days/wk, 24–30 exposure...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of physiology. Heart and circulatory physiology Vol. 292; no. 1; pp. H224 - H230
Main Authors Kolář, František, Ježková, Jana, Balková, Patricie, Břeh, Jiří, Neckář, Jan, Novák, František, Nováková, Olga, Tomášová, Helena, Srbová, Martina, Ošt’ádal, Bohuslav, Wilhelm, Jiří, Herget, Jan
Format Journal Article
LanguageEnglish
Published United States 01.01.2007
Subjects
Online AccessGet full text
ISSN0363-6135
1522-1539
DOI10.1152/ajpheart.00689.2006

Cover

Loading…
Abstract The aim was to determine whether increased oxidative stress during the adaptation to chronic intermittent hypoxia (CIH) plays a role in the induction of improved cardiac ischemic tolerance. Adult male Wistar rats were exposed to CIH in a hypobaric chamber (7,000 m, 8 h/day, 5 days/wk, 24–30 exposures). Half of the animals received antioxidant N-acetylcysteine (NAC; 100 mg/kg) daily before the exposure; the remaining rats received saline. Control rats were kept under normoxia and treated in a corresponding manner. One day after the last exposure (and/or NAC injection), anesthetized animals were subject to 20 min of coronary artery occlusion and 3 h of reperfusion for determination of infarct size. In parallel subgroups, biochemical analyses of the left ventricular myocardium were performed. Adaptation to CIH reduced infarct size from 56.7 ± 4.5% of the area at risk in the normoxic controls to 27.7 ± 4.9%. NAC treatment decreased the infarct size in the controls to 42.0 ± 3.4%, but it abolished the protection provided by CIH (to 41.1 ± 4.9%). CIH decreased the reduced-to-oxidized glutathione ratio and increased the relative amount of PKC isoform-δ in the particulate fraction; NAC prevented these effects. The expression of PKC-ε was decreased by CIH and not affected by NAC. Activities of superoxide dismutase, catalase, and glutathione peroxidase were affected by neither CIH nor NAC treatment. It is concluded that oxidative stress associated with CIH plays a role in the development of increased cardiac ischemic tolerance. The infarct size-limiting mechanism of CIH seems to involve the PKC-δ-dependent pathway but apparently not the increased capacity of major antioxidant enzymes.
AbstractList The aim was to determine whether increased oxidative stress during the adaptation to chronic intermittent hypoxia (CIH) plays a role in the induction of improved cardiac ischemic tolerance. Adult male Wistar rats were exposed to CIH in a hypobaric chamber (7,000 m, 8 h/day, 5 days/wk, 24-30 exposures). Half of the animals received antioxidant N-acetylcysteine (NAC; 100 mg/kg) daily before the exposure; the remaining rats received saline. Control rats were kept under normoxia and treated in a corresponding manner. One day after the last exposure (and/or NAC injection), anesthetized animals were subject to 20 min of coronary artery occlusion and 3 h of reperfusion for determination of infarct size. In parallel subgroups, biochemical analyses of the left ventricular myocardium were performed. Adaptation to CIH reduced infarct size from 56.7 +/- 4.5% of the area at risk in the normoxic controls to 27.7 +/- 4.9%. NAC treatment decreased the infarct size in the controls to 42.0 +/- 3.4%, but it abolished the protection provided by CIH (to 41.1 +/- 4.9%). CIH decreased the reduced-to-oxidized glutathione ratio and increased the relative amount of PKC isoform-delta in the particulate fraction; NAC prevented these effects. The expression of PKC-epsilon was decreased by CIH and not affected by NAC. Activities of superoxide dismutase, catalase, and glutathione peroxidase were affected by neither CIH nor NAC treatment. It is concluded that oxidative stress associated with CIH plays a role in the development of increased cardiac ischemic tolerance. The infarct size-limiting mechanism of CIH seems to involve the PKC-delta-dependent pathway but apparently not the increased capacity of major antioxidant enzymes.
The aim was to determine whether increased oxidative stress during the adaptation to chronic intermittent hypoxia (CIH) plays a role in the induction of improved cardiac ischemic tolerance. Adult male Wistar rats were exposed to CIH in a hypobaric chamber (7,000 m, 8 h/day, 5 days/wk, 24-30 exposures). Half of the animals received antioxidant N-acetylcysteine (NAC; 100 mg/kg) daily before the exposure; the remaining rats received saline. Control rats were kept under normoxia and treated in a corresponding manner. One day after the last exposure (and/or NAC injection), anesthetized animals were subject to 20 min of coronary artery occlusion and 3 h of reperfusion for determination of infarct size. In parallel subgroups, biochemical analyses of the left ventricular myocardium were performed. Adaptation to CIH reduced infarct size from 56.7 +/- 4.5% of the area at risk in the normoxic controls to 27.7 +/- 4.9%. NAC treatment decreased the infarct size in the controls to 42.0 +/- 3.4%, but it abolished the protection provided by CIH (to 41.1 +/- 4.9%). CIH decreased the reduced-to-oxidized glutathione ratio and increased the relative amount of PKC isoform-delta in the particulate fraction; NAC prevented these effects. The expression of PKC-epsilon was decreased by CIH and not affected by NAC. Activities of superoxide dismutase, catalase, and glutathione peroxidase were affected by neither CIH nor NAC treatment. It is concluded that oxidative stress associated with CIH plays a role in the development of increased cardiac ischemic tolerance. The infarct size-limiting mechanism of CIH seems to involve the PKC-delta-dependent pathway but apparently not the increased capacity of major antioxidant enzymes.The aim was to determine whether increased oxidative stress during the adaptation to chronic intermittent hypoxia (CIH) plays a role in the induction of improved cardiac ischemic tolerance. Adult male Wistar rats were exposed to CIH in a hypobaric chamber (7,000 m, 8 h/day, 5 days/wk, 24-30 exposures). Half of the animals received antioxidant N-acetylcysteine (NAC; 100 mg/kg) daily before the exposure; the remaining rats received saline. Control rats were kept under normoxia and treated in a corresponding manner. One day after the last exposure (and/or NAC injection), anesthetized animals were subject to 20 min of coronary artery occlusion and 3 h of reperfusion for determination of infarct size. In parallel subgroups, biochemical analyses of the left ventricular myocardium were performed. Adaptation to CIH reduced infarct size from 56.7 +/- 4.5% of the area at risk in the normoxic controls to 27.7 +/- 4.9%. NAC treatment decreased the infarct size in the controls to 42.0 +/- 3.4%, but it abolished the protection provided by CIH (to 41.1 +/- 4.9%). CIH decreased the reduced-to-oxidized glutathione ratio and increased the relative amount of PKC isoform-delta in the particulate fraction; NAC prevented these effects. The expression of PKC-epsilon was decreased by CIH and not affected by NAC. Activities of superoxide dismutase, catalase, and glutathione peroxidase were affected by neither CIH nor NAC treatment. It is concluded that oxidative stress associated with CIH plays a role in the development of increased cardiac ischemic tolerance. The infarct size-limiting mechanism of CIH seems to involve the PKC-delta-dependent pathway but apparently not the increased capacity of major antioxidant enzymes.
The aim was to determine whether increased oxidative stress during the adaptation to chronic intermittent hypoxia (CIH) plays a role in the induction of improved cardiac ischemic tolerance. Adult male Wistar rats were exposed to CIH in a hypobaric chamber (7,000 m, 8 h/day, 5 days/wk, 24–30 exposures). Half of the animals received antioxidant N-acetylcysteine (NAC; 100 mg/kg) daily before the exposure; the remaining rats received saline. Control rats were kept under normoxia and treated in a corresponding manner. One day after the last exposure (and/or NAC injection), anesthetized animals were subject to 20 min of coronary artery occlusion and 3 h of reperfusion for determination of infarct size. In parallel subgroups, biochemical analyses of the left ventricular myocardium were performed. Adaptation to CIH reduced infarct size from 56.7 ± 4.5% of the area at risk in the normoxic controls to 27.7 ± 4.9%. NAC treatment decreased the infarct size in the controls to 42.0 ± 3.4%, but it abolished the protection provided by CIH (to 41.1 ± 4.9%). CIH decreased the reduced-to-oxidized glutathione ratio and increased the relative amount of PKC isoform-δ in the particulate fraction; NAC prevented these effects. The expression of PKC-ε was decreased by CIH and not affected by NAC. Activities of superoxide dismutase, catalase, and glutathione peroxidase were affected by neither CIH nor NAC treatment. It is concluded that oxidative stress associated with CIH plays a role in the development of increased cardiac ischemic tolerance. The infarct size-limiting mechanism of CIH seems to involve the PKC-δ-dependent pathway but apparently not the increased capacity of major antioxidant enzymes.
Author Nováková, Olga
Břeh, Jiří
Srbová, Martina
Ošt’ádal, Bohuslav
Herget, Jan
Kolář, František
Neckář, Jan
Ježková, Jana
Wilhelm, Jiří
Tomášová, Helena
Balková, Patricie
Novák, František
Author_xml – sequence: 1
  givenname: František
  surname: Kolář
  fullname: Kolář, František
– sequence: 2
  givenname: Jana
  surname: Ježková
  fullname: Ježková, Jana
– sequence: 3
  givenname: Patricie
  surname: Balková
  fullname: Balková, Patricie
– sequence: 4
  givenname: Jiří
  surname: Břeh
  fullname: Břeh, Jiří
– sequence: 5
  givenname: Jan
  surname: Neckář
  fullname: Neckář, Jan
– sequence: 6
  givenname: František
  surname: Novák
  fullname: Novák, František
– sequence: 7
  givenname: Olga
  surname: Nováková
  fullname: Nováková, Olga
– sequence: 8
  givenname: Helena
  surname: Tomášová
  fullname: Tomášová, Helena
– sequence: 9
  givenname: Martina
  surname: Srbová
  fullname: Srbová, Martina
– sequence: 10
  givenname: Bohuslav
  surname: Ošt’ádal
  fullname: Ošt’ádal, Bohuslav
– sequence: 11
  givenname: Jiří
  surname: Wilhelm
  fullname: Wilhelm, Jiří
– sequence: 12
  givenname: Jan
  surname: Herget
  fullname: Herget, Jan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/16936002$$D View this record in MEDLINE/PubMed
BookMark eNp9UctOGzEUtRAVCY8vqFR51d2k9jhjxksUlYIaiaoqa8tjXxOjiT3YHkT-q9_BN-EEwoIFqyudl67OOUaHPnhA6CslM0qb-oe6H1agYp4Rwlsxq8s5QNPC1BVtmDhEU8I4qzhlzQQdp3RPCGnOOTtCE8oF44TUU9T_DT3gYHF4ckZl9wg45QgpYefxn9-L6vk_HocId2Nf2OCx8gZrFY0LQwwZ9A503owaDO42WK9i8E4XKENcu5zBZ7zaDCVfnaIvVvUJzt7uCbq9_PlvcVUtb35dLy6WlWaE5Uq0lPO6pXXXqHZeN-2czg3vOJxTSnRtbCcA5g2A1cpa1lDRCcsptcJQZQhnJ-j7a2558WGElOXaJQ19rzyEMUleEllpowi_vQnHbg1GDtGtVdzIfT9FIF4FOoaUIlipXd4VkaNyvaREbreQ-y3kbgu53aJ42Qfve_wnrheVbpJA
CitedBy_id crossref_primary_10_1007_s12576_014_0323_x
crossref_primary_10_1113_jphysiol_2008_160887
crossref_primary_10_3390_ijms242216497
crossref_primary_10_1038_aps_2009_57
crossref_primary_10_33549_physiolres_932860
crossref_primary_10_3389_fpsyt_2016_00071
crossref_primary_10_1007_s11010_016_2833_8
crossref_primary_10_33549_physiolres_935337
crossref_primary_10_1016_j_vph_2008_07_001
crossref_primary_10_1113_expphysiol_2012_065102
crossref_primary_10_3109_03009734_2013_766914
crossref_primary_10_1186_s12872_020_01702_y
crossref_primary_10_1371_journal_pone_0076659
crossref_primary_10_1007_s00395_016_0538_5
crossref_primary_10_1152_ajpheart_01264_2007
crossref_primary_10_33549_physiolres_932597
crossref_primary_10_1016_j_phrs_2015_07_011
crossref_primary_10_1089_ham_2010_1021
crossref_primary_10_5937_scriptamed54_42460
crossref_primary_10_1152_japplphysiol_00772_2020
crossref_primary_10_1017_S0007114509389242
crossref_primary_10_1016_j_jss_2009_03_017
crossref_primary_10_3892_ijmm_2016_2535
crossref_primary_10_1139_y2012_052
crossref_primary_10_1371_journal_pone_0057065
crossref_primary_10_1134_S0022093022020211
crossref_primary_10_33549_physiolres_932396
crossref_primary_10_1152_ajpheart_00060_2018
crossref_primary_10_33549_physiolres_932591
crossref_primary_10_1016_j_yjmcc_2017_03_007
crossref_primary_10_1016_S1734_1140_09_70002_7
crossref_primary_10_33549_physiolres_935513
crossref_primary_10_1152_physiolgenomics_00083_2011
crossref_primary_10_1016_j_bbrc_2007_02_128
crossref_primary_10_1042_CS20170083
crossref_primary_10_1111_j_1471_4159_2009_05909_x
crossref_primary_10_1139_cjpp_2017_0022
crossref_primary_10_1152_physiolgenomics_00058_2015
crossref_primary_10_1007_s11055_012_9577_z
crossref_primary_10_1152_japplphysiol_01035_2014
crossref_primary_10_1152_ajpheart_00276_2011
crossref_primary_10_1177_1535370213508718
crossref_primary_10_1580_08_WEME_SA_282_1
crossref_primary_10_1152_ajpheart_01371_2007
crossref_primary_10_3390_md13020838
crossref_primary_10_1152_japplphysiol_00545_2007
crossref_primary_10_1007_s11010_010_0581_8
crossref_primary_10_1016_j_resp_2020_103526
crossref_primary_10_3390_ijms25179627
crossref_primary_10_33549_physiolres_932042
crossref_primary_10_1152_japplphysiol_00671_2016
crossref_primary_10_1007_s40675_019_0134_y
crossref_primary_10_3181_0710_MR_267
crossref_primary_10_1007_s12576_017_0546_8
crossref_primary_10_3390_biomedicines11041044
crossref_primary_10_1111_j_1471_4159_2010_06843_x
crossref_primary_10_1161_CIRCULATIONAHA_119_044998
crossref_primary_10_33549_physiolres_934439
crossref_primary_10_1155_2022_1438470
crossref_primary_10_1111_j_1365_2869_2009_00754_x
crossref_primary_10_1016_j_mito_2012_10_007
crossref_primary_10_1177_1074248413494814
crossref_primary_10_1007_s10286_010_0064_8
crossref_primary_10_1016_j_resp_2007_03_005
crossref_primary_10_1111_jcmm_13121
crossref_primary_10_1210_en_2008_1493
crossref_primary_10_1021_acs_jmedchem_4c00341
crossref_primary_10_1016_j_phrs_2021_105716
crossref_primary_10_1016_j_ijcard_2013_08_001
crossref_primary_10_1111_apha_12489
crossref_primary_10_1007_s00395_011_0169_9
crossref_primary_10_1007_s11010_011_0886_2
crossref_primary_10_1111_j_1600_0838_2008_00832_x
crossref_primary_10_7555_JBR_36_20220125
crossref_primary_10_1016_j_ijcard_2014_02_011
Cites_doi 10.1042/CS20050227
10.1038/sj.bjp.0704619
10.1007/BF02714956
10.1021/tx960046z
10.1152/ajpheart.2000.278.2.H331
10.1097/00000542-200307000-00023
10.1016/S0076-6879(84)05016-3
10.1007/s11010-005-4817-y
10.1161/hh1501.094266
10.33549/physiolres.930303
10.1023/A:1015349928000
10.1152/ajpheart.00683.2001
10.1006/jmcc.1999.1013
10.1074/jbc.273.29.18092
10.1152/jappl.2001.90.4.1299
10.1016/S1357-2725(99)00018-7
10.1152/ajpheart.2001.281.3.H1346
10.1016/0003-2697(80)90139-6
10.1016/j.yjmcc.2005.07.001
10.1016/j.lfs.2004.07.005
10.1152/ajpcell.1985.249.5.C379
10.1016/j.cardiores.2003.10.025
10.1161/01.RES.80.5.743
10.1016/j.lfs.2004.11.027
10.1152/ajpheart.2000.278.1.H94
10.1161/01.RES.87.6.460
10.1126/science.166.3912.1535
10.1111/j.1749-6632.1999.tb09224.x
10.1016/S0008-6363(02)00337-1
10.1016/0003-2697(77)90043-4
10.1016/j.yjmcc.2004.07.008
10.1097/00000542-200403000-00008
10.1016/0167-5273(90)90060-I
10.1042/BJ20040704
10.1006/jmcc.1996.0265
10.1007/s00421-003-0939-7
10.1385/CBB:44:1:103
10.1097/00000542-200403000-00011
10.1016/S0024-3205(03)00429-6
10.33549/physiolres.930000.53.S3
10.1016/S0008-6363(02)00456-X
10.1152/ajpheart.00586.2004
10.1164/rccm.200504-560OC
10.1161/01.CIR.0000022018.68965.6D
10.1016/S0735-1097(02)02001-6
10.1007/s003950200007
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1152/ajpheart.00689.2006
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1522-1539
EndPage H230
ExternalDocumentID 16936002
10_1152_ajpheart_00689_2006
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
23M
2WC
39C
3O-
4.4
53G
5GY
5VS
6J9
8M5
AAFWJ
AAYXX
ABJNI
ACBEA
ACIWK
ACPRK
ADBBV
AENEX
AFFNX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKKCC
BKOMP
BTFSW
C1A
CITATION
E3Z
EBS
EJD
EMOBN
F5P
GX1
H13
ITBOX
KQ8
OK1
P2P
PQQKQ
RAP
RHI
RPL
RPRKH
TR2
UKR
W8F
WH7
WOQ
XSW
YSK
YYP
~02
CGR
CUY
CVF
DIK
ECM
EIF
NPM
RHF
7X8
ID FETCH-LOGICAL-c303t-981662812b5a84258414d6b6e7110c2dfb9ee45eefcaff3519b9f611f9d1ad063
ISSN 0363-6135
IngestDate Fri Jul 11 15:26:02 EDT 2025
Sat Sep 28 07:39:48 EDT 2024
Tue Jul 01 04:20:06 EDT 2025
Thu Apr 24 23:03:53 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c303t-981662812b5a84258414d6b6e7110c2dfb9ee45eefcaff3519b9f611f9d1ad063
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 16936002
PQID 68413000
PQPubID 23479
ParticipantIDs proquest_miscellaneous_68413000
pubmed_primary_16936002
crossref_citationtrail_10_1152_ajpheart_00689_2006
crossref_primary_10_1152_ajpheart_00689_2006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-01-00
2007-Jan
20070101
PublicationDateYYYYMMDD 2007-01-01
PublicationDate_xml – month: 01
  year: 2007
  text: 2007-01-00
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle American journal of physiology. Heart and circulatory physiology
PublicationTitleAlternate Am J Physiol Heart Circ Physiol
PublicationYear 2007
References R21
R20
R23
R22
R25
R24
R27
R26
R29
R28
R1
R2
R3
R4
R5
R6
R7
R8
R9
R30
R32
R31
R34
R33
R36
R35
R38
R37
R39
R41
R40
R43
R42
R45
R44
R47
R46
R49
R48
R10
R12
R11
R14
R13
R16
R15
R18
R17
R19
References_xml – ident: R36
  doi: 10.1042/CS20050227
– ident: R2
  doi: 10.1038/sj.bjp.0704619
– ident: R7
  doi: 10.1007/BF02714956
– ident: R27
  doi: 10.1021/tx960046z
– ident: R32
  doi: 10.1152/ajpheart.2000.278.2.H331
– ident: R44
  doi: 10.1097/00000542-200307000-00023
– ident: R1
  doi: 10.1016/S0076-6879(84)05016-3
– ident: R33
– ident: R39
  doi: 10.1007/s11010-005-4817-y
– ident: R10
  doi: 10.1161/hh1501.094266
– ident: R30
  doi: 10.33549/physiolres.930303
– ident: R18
  doi: 10.1023/A:1015349928000
– ident: R47
  doi: 10.1152/ajpheart.00683.2001
– ident: R3
  doi: 10.1006/jmcc.1999.1013
– ident: R45
  doi: 10.1074/jbc.273.29.18092
– ident: R22
  doi: 10.1152/jappl.2001.90.4.1299
– ident: R46
  doi: 10.1016/S1357-2725(99)00018-7
– ident: R17
  doi: 10.1152/ajpheart.2001.281.3.H1346
– ident: R16
  doi: 10.1016/0003-2697(80)90139-6
– ident: R19
  doi: 10.1016/j.yjmcc.2005.07.001
– ident: R13
  doi: 10.1016/j.lfs.2004.07.005
– ident: R41
  doi: 10.1152/ajpcell.1985.249.5.C379
– ident: R5
  doi: 10.1016/j.cardiores.2003.10.025
– ident: R43
  doi: 10.1161/01.RES.80.5.743
– ident: R25
  doi: 10.1016/j.lfs.2004.11.027
– ident: R23
  doi: 10.1152/ajpheart.2000.278.1.H94
– ident: R35
  doi: 10.1161/01.RES.87.6.460
– ident: R9
  doi: 10.1126/science.166.3912.1535
– ident: R11
  doi: 10.1111/j.1749-6632.1999.tb09224.x
– ident: R21
  doi: 10.1016/S0008-6363(02)00337-1
– ident: R37
  doi: 10.1016/0003-2697(77)90043-4
– ident: R15
  doi: 10.1016/j.yjmcc.2004.07.008
– ident: R6
  doi: 10.1097/00000542-200403000-00008
– ident: R40
  doi: 10.1016/0167-5273(90)90060-I
– ident: R42
  doi: 10.1042/BJ20040704
– ident: R4
  doi: 10.1006/jmcc.1996.0265
– ident: R49
  doi: 10.1007/s00421-003-0939-7
– ident: R12
  doi: 10.1385/CBB:44:1:103
– ident: R14
– ident: R26
  doi: 10.1097/00000542-200403000-00011
– ident: R48
  doi: 10.1016/S0024-3205(03)00429-6
– ident: R24
  doi: 10.33549/physiolres.930000.53.S3
– ident: R31
  doi: 10.1016/S0008-6363(02)00456-X
– ident: R28
  doi: 10.1152/ajpheart.00586.2004
– ident: R8
  doi: 10.1164/rccm.200504-560OC
– ident: R38
  doi: 10.1161/01.CIR.0000022018.68965.6D
– ident: R20
  doi: 10.1016/S0735-1097(02)02001-6
– ident: R29
  doi: 10.1007/s003950200007
– ident: R34
SSID ssj0005763
Score 2.1773446
Snippet The aim was to determine whether increased oxidative stress during the adaptation to chronic intermittent hypoxia (CIH) plays a role in the induction of...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage H224
SubjectTerms Animals
Chronic Disease
Hypoxia - complications
Hypoxia - physiopathology
Hypoxia - prevention & control
Ischemic Preconditioning, Myocardial - methods
Male
Myocardial Infarction - physiopathology
Myocardial Infarction - prevention & control
Oxidative Stress
Protein Kinase C-delta - metabolism
Rats
Rats, Wistar
Secondary Prevention
Up-Regulation
Title Role of oxidative stress in PKC-δ upregulation and cardioprotection induced by chronic intermittent hypoxia
URI https://www.ncbi.nlm.nih.gov/pubmed/16936002
https://www.proquest.com/docview/68413000
Volume 292
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ZjtMwFLXKICFeEMywlNUPiBfI0LhZmsfRMKOqs7ColfoWOY6tCZSkCgmi8yv8LPfaTpoyZX2JqjSJo94j99j33HMJee5KFqIPljNko4HjKbS8Td3AidLUZ1Iol-uekWfnwXjmTeb-vNf73lEt1VWyLy631pX8T1ThHMQVq2T_IbLtQ-EEfIb4whEiDMe_ivEHKw0svmWpMfC2pR8ZzGwnh04qFxV_WS9L03C-UR4LrUG1Dg1G65jWwlBRYcxytY0E1vpXqBW4WC1hCN4lsm2mp2M9oXdJ9Db9PpY3lUa8LrISta46mb--op3oi4XO1btlQ6OxO3RbPjSRl5-Kr-YKI-rN1zsIfLHxnek2kHVkAlLvGU0yIwd4s7HDEXZ2OJrKriEscY2tSTNrs4hdgaeZg8fMVGVf_XPw0WyWf1xir_AKFX0jXaq0xYr7_G18PDs9jadH8-k1cp3BGgTbY5y8X1vRw0Jt2CTC8eWspRUM8nrLEJu05xdrGc1pprfJLbsYoQcGWXdIT-a7ZO8gh2B9XtEX9F0brl1y48yqMPZIgbijhaIt7qjBHc1y2uKOdnFHAQn0Z9xRizuarKjFHe3ijlrc3SWz46Pp4dixjTscAYyociJMRjOgjonPMc078lwvDZJAhkA2BUtVEknp-VIqwZXCFpFJpALXVVHq8hRI8z2ykxe5fECo8rkr4OxIRpGX-AkPvShhQLKDITxChX3Cmt81FtbVHpurLGK9uvVZ3AQj1sHAtqtBn7xqb1oaU5ffX_6sCVgMky9m1Hgui_pLHIyQAw4GfXLfxHH9uABeEdjGwz_e-4jcXIP-Mdmpylo-AaJbJU814H4ACCivFA
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Role+of+oxidative+stress+in+PKC-delta+upregulation+and+cardioprotection+induced+by+chronic+intermittent+hypoxia&rft.jtitle=American+journal+of+physiology.+Heart+and+circulatory+physiology&rft.au=Kol%C3%A1r%2C+Frantisek&rft.au=Jezkov%C3%A1%2C+Jana&rft.au=Balkov%C3%A1%2C+Patricie&rft.au=Breh%2C+Jir%C3%AD&rft.date=2007-01-01&rft.issn=0363-6135&rft.volume=292&rft.issue=1&rft.spage=H224&rft_id=info:doi/10.1152%2Fajpheart.00689.2006&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-6135&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-6135&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-6135&client=summon