A Fokker–Planck equation for a piecewise entropy functional defined in different space domains. An application to solute partitioning at the membrane–water interface
A nonlinear Fokker–Planck equation is proposed for a system subject to different statistics (in the present study, the Gibbs–Boltzmann and Fermi–Dirac statistics) defined in different contiguous regions of space. We solved the time-dependent mono-dimensional equation numerically, and solved the time...
Saved in:
Published in | Physica A Vol. 395; pp. 171 - 182 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.02.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 0378-4371 1873-2119 |
DOI | 10.1016/j.physa.2013.09.029 |
Cover
Abstract | A nonlinear Fokker–Planck equation is proposed for a system subject to different statistics (in the present study, the Gibbs–Boltzmann and Fermi–Dirac statistics) defined in different contiguous regions of space. We solved the time-dependent mono-dimensional equation numerically, and solved the time-independent mono-dimensional equation analytically under the effect of a generic external potential equation. These zones are connected by a sharp but continuous transition region. Accurate numerical procedures ensure the convergence of the Fokker–Planck equation in the transition layer. We applied our general procedure to investigate both the stationary and the time-dependent kinetics of solute partitioning between aqueous and membrane phases. Because of the relative volumes of solute, water, and lipid (Vsolute≈Vwater<<Vlipid), the mixing entropy functional in water contains both solute and solvent contributions, while within the membrane only the solute entropy plays a significant role. Also, the potential term differs in space due to the solute interactions with different environments. Lastly, we added the effect of an electrostatic potential (occurring in all membrane systems) localized at the water interface which may deplete or increase the interfacial solute concentration. Rather surprisingly we found a strong coupling between the surface potential and the imposed asymmetric statistics. The effects are relevant when entropic and potential contributions are comparable; otherwise, the standard Boltzmannian behavior is recovered.
•A Fokker–Planck equation for two entropy functionals in different space domains has been proposed.•Stationary and transient solutions have been analyzed in terms of particle distribution.•Entropy and enthalpy effects are shown as a function of the potential. |
---|---|
AbstractList | A nonlinear Fokker–Planck equation is proposed for a system subject to different statistics (in the present study, the Gibbs–Boltzmann and Fermi–Dirac statistics) defined in different contiguous regions of space. We solved the time-dependent mono-dimensional equation numerically, and solved the time-independent mono-dimensional equation analytically under the effect of a generic external potential equation. These zones are connected by a sharp but continuous transition region. Accurate numerical procedures ensure the convergence of the Fokker–Planck equation in the transition layer. We applied our general procedure to investigate both the stationary and the time-dependent kinetics of solute partitioning between aqueous and membrane phases. Because of the relative volumes of solute, water, and lipid (Vsolute≈Vwater<<Vlipid), the mixing entropy functional in water contains both solute and solvent contributions, while within the membrane only the solute entropy plays a significant role. Also, the potential term differs in space due to the solute interactions with different environments. Lastly, we added the effect of an electrostatic potential (occurring in all membrane systems) localized at the water interface which may deplete or increase the interfacial solute concentration. Rather surprisingly we found a strong coupling between the surface potential and the imposed asymmetric statistics. The effects are relevant when entropic and potential contributions are comparable; otherwise, the standard Boltzmannian behavior is recovered.
•A Fokker–Planck equation for two entropy functionals in different space domains has been proposed.•Stationary and transient solutions have been analyzed in terms of particle distribution.•Entropy and enthalpy effects are shown as a function of the potential. |
Author | Grassi, Antonio Raudino, Antonio |
Author_xml | – sequence: 1 givenname: Antonio surname: Grassi fullname: Grassi, Antonio email: agrassi@unict.it organization: Dipartimento di Scienze del Farmaco, v.le A.Doria 6, Università di Catania, 95125 Catania, Italy – sequence: 2 givenname: Antonio surname: Raudino fullname: Raudino, Antonio email: araudino@dipchi.unict.it organization: Dipartimento di Scienze Chimiche, v.le A.Doria 6, Università di Catania, 95125 Catania, Italy |
BookMark | eNqFkEGOEzEQRS00SGQGTsCmLtCNHXe64wWLaMQA0kjDAtZWtV1mnHTsxnYYZccdOAXX4iTjTFixgE2VVPrvq_6_ZBchBmLsteCt4KJ_s23n-2PGdsmFbLlq-VI9YwuxHmSzFEJdsAWXw7rp5CBesMuct5xzMcjlgv3awE3c7Sj9_vHz04TB7IC-HbD4GMDFBAizJ0MPPhNQKCnOR3CHYE4CnMCS84Es-ADWO0epaiDPaAhs3KMPuYVNAJznyZuza4mQ43QoBDOm4k83H74CFij3BHvajwkD1XcesFCqznW6aviSPXc4ZXr1Z1-xLzfvPl9_aG7v3n-83tw2RnJZGrUS_dhxNfYoLHXOjNagMGKUoqOhV6PoFVYlrVw_DqZDKzl3hHY1iHWNI6-YOvuaFHNO5LTx5en1ktBPWnB96lxv9VPn-tS55krXzisr_2Ln5PeYjv-h3p4pqrG-e0o6G0_BkPWJTNE2-n_yj7L9pm4 |
CitedBy_id | crossref_primary_10_1016_j_cnsns_2023_107131 crossref_primary_10_1103_PhysRevE_102_062105 crossref_primary_10_1007_s10955_014_1031_x crossref_primary_10_1016_j_physleta_2014_10_046 |
Cites_doi | 10.1103/PhysRevA.42.1875 10.1016/0021-9991(70)90001-X 10.1002/cnm.1458 10.1007/BF01106788 10.1093/imamat/hxm039 10.1016/S0378-4371(01)00184-4 10.1016/S0031-8914(40)90098-2 10.1016/S0378-4371(98)00561-5 10.1002/cpa.3160060204 10.1103/PhysRevA.35.1795 10.1021/j100174a052 10.1016/j.physa.2006.08.076 10.1002/andp.19143480507 10.1007/BF01016429 10.1016/S0375-9601(01)00543-6 10.1590/S0103-97331999000100004 10.1063/1.474674 10.3390/e5020220 10.1063/1.1367327 10.1016/j.jcp.2011.03.020 10.1016/j.physleta.2005.01.016 10.1021/j100182a030 10.1007/BF01899712 10.1016/S0375-9601(98)00500-3 10.1016/S0375-9601(01)00812-X 10.1007/BF01323507 10.1103/PhysRevE.54.931 10.1063/1.3698598 10.1088/0305-4470/31/23/009 10.1103/PhysRevE.68.036108 10.1016/j.aop.2005.04.006 10.1088/0305-4470/32/7/002 10.1016/0378-4371(95)00211-1 10.1007/BF01020331 10.1007/BF01268919 10.1140/epjb/e2009-00172-9 10.1016/0375-9601(79)90088-4 10.1140/epjb/e2008-00142-9 10.1002/9780470142653.ch4 10.1016/S0375-9601(96)00832-8 10.1007/BF01050435 10.1016/0375-9601(90)90717-3 10.1143/PTP.56.786 10.1016/0021-9991(85)90070-1 10.1007/BF01899728 10.1016/S0020-7462(98)00048-1 10.1103/PhysRevE.56.1197 10.1103/PhysRevE.62.3246 10.1016/S0375-9601(98)00572-6 10.1140/epjb/e2002-00412-6 10.1103/PhysRevE.49.5103 10.1016/S0019-9958(71)90065-9 10.1016/j.aop.2011.11.004 |
ContentType | Journal Article |
Copyright | 2013 Elsevier B.V. |
Copyright_xml | – notice: 2013 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.physa.2013.09.029 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1873-2119 |
EndPage | 182 |
ExternalDocumentID | 10_1016_j_physa_2013_09_029 S0378437113008832 |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN 9JO AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAPFB AAQFI AAXUO ABAOU ABMAC ABNEU ABXDB ABYKQ ACAZW ACDAQ ACFVG ACGFS ACNCT ACRLP ADBBV ADEZE ADFHU ADGUI AEBSH AEKER AEYQN AFFNX AFKWA AFTJW AGHFR AGTHC AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIIAU AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR AXJTR AXLSJ BKOJK BLXMC EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IXIXF J1W K-O KOM M38 M41 MHUIS MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSB SSF SSQ SSW SSZ T5K TN5 TWZ WH7 XPP YNT ZMT ~02 ~G- 29O 6TJ AAFFL AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABJNI ABWVN ACNNM ACROA ACRPL ADMUD ADNMO ADVLN AEIPS AFJKZ AFODL AFXIZ AGCQF AGQPQ AGRNS AIIUN AJWLA ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BEHZQ BEZPJ BGSCR BNPGV BNTGB BPUDD BULVW BZJEE CITATION EJD FEDTE FGOYB HMV HVGLF HZ~ MVM NDZJH R2- SEW SPG SSH VOH WUQ XJT XOL YYP ZY4 |
ID | FETCH-LOGICAL-c303t-9516b409b6a1de4fcbdca1c1b314e769b169a303e5f6b7c4ad300fead5718def3 |
IEDL.DBID | AIKHN |
ISSN | 0378-4371 |
IngestDate | Tue Jul 01 03:22:36 EDT 2025 Thu Apr 24 22:51:54 EDT 2025 Fri Feb 23 02:31:24 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Membrane interface Mixing entropy functional Numerical simulation Fokker–Planck |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c303t-9516b409b6a1de4fcbdca1c1b314e769b169a303e5f6b7c4ad300fead5718def3 |
PageCount | 12 |
ParticipantIDs | crossref_citationtrail_10_1016_j_physa_2013_09_029 crossref_primary_10_1016_j_physa_2013_09_029 elsevier_sciencedirect_doi_10_1016_j_physa_2013_09_029 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-02-01 2014-2-00 |
PublicationDateYYYYMMDD | 2014-02-01 |
PublicationDate_xml | – month: 02 year: 2014 text: 2014-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Physica A |
PublicationYear | 2014 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Frank (br000025) 2005 Hoffman, Kouri (br000320) 1992; 96 Borges, Roditi (br000075) 1998; 246 Chavanis (br000150) 2008; 62 Zheng, Chen, Wei (br000285) 2011; 230 C.-L. Ho, 3 May 2012. Wehner, Wolfer (br000205) 1987; 35 Soler, Martinez, Donoso (br000210) 1992; 69 Hoffman, Nayar, Sharafeddin, Kouri (br000315) 1991; 95 [math-ph]. Chen, Wei (br000300) 2012; 136 Shiino (br000125) 2001; 42 Tomita, Ito, Kidachi (br000240) 1976; 56 Palleschi, Sarri, Marcozzi, Torquari (br000260) 1990; 146 deGennes (br000325) 1979 Anteneodo, Plastino (br000105) 1999; 32 Landsberg, Vedral (br000090) 1998; 247 Aczel, Daroczy (br000050) 1975 Frank, Plastino (br000135) 2002; 30 Shafee (br000145) 2007; 72 Abe (br000070) 1997; 224 Reyni (br000040) 1970 Plastino, Plastino (br000160) 1995; 222 Torvattanabun, Duangpithak (br000225) 2011; 5 Landsberg (br000095) 1999; 29 Arimoto (br000045) 1971; 19 Chang, Cooper (br000245) 1970; 6 Zhang, Wei, Kouri, Hoffman (br000295) 1997; 56 Risken (br000015) 1989 Kaniadakis (br000110) 2000; 66 Lo (br000170) 2005; 336 Lin, Ho (br000175) 2012; 327 Kaniadakis, Quarati (br000030) 1994; 49 He (br000220) 1999; 34 Suzuki (br000190) 1981; 46 Lo (br000180) 2005; 319 Papa (br000080) 1998; 31 Zhang, Wei, Kouri, Hoffman (br000290) 1997; 107 S. Gottlieb, G.W. Wei, S. Zhao, A unified discontinuous Galerkin framework for time integration, 2010. Chavanis (br000035) 2003; 68 Sharma, Taneja (br000060) 1975; 22 Larsen, Levermore, Pomraning (br000270) 1985; 61 Kramers (br000020) 1940; 7 Casado, Morillo (br000215) 1990; 42 Caroli, Caroli, Roulet (br000195) 1981; 26 Planck (br000010) 1917; 324 Dekker, Van Kampen (br000235) 1979; 73A Frieden (br000085) 1998 Israelachvili (br000330) 2011 Chen, Chen, Wei (br000305) 2012; 28 Tsallis (br000065) 1988; 52 Drodzov, Morillo (br000275) 1996; 54 Desai, Zwanzig (br000200) 1978; 19 Kaniadakis (br000115) 2001; 296 San Miguel (br000155) 1979; 33 Wang (br000140) 2003; 5 Schwãmmle, Curado, Nobre (br000310) 2009; 70 Forsythe, Wasow (br000255) 1967 Kumar, Narayanan (br000265) 2006; 31 Kaniadakis (br000120) 2001; 288 Mittal (br000055) 1975; 22 Chavanis, Sire (br000165) 2007; 375 Lenzi, Lenzi, Belich, Lucena (br000130) 2002; 292 Lax (br000250) 1953; 6 Di Sisto, Martinez, Orellana, Plastino, Plastino (br000100) 1999; 265 Fokker (br000005) 1914; 43 Van Kampen (br000230) 1977; 17 Arimoto (10.1016/j.physa.2013.09.029_br000045) 1971; 19 Lin (10.1016/j.physa.2013.09.029_br000175) 2012; 327 Fokker (10.1016/j.physa.2013.09.029_br000005) 1914; 43 Mittal (10.1016/j.physa.2013.09.029_br000055) 1975; 22 He (10.1016/j.physa.2013.09.029_br000220) 1999; 34 Papa (10.1016/j.physa.2013.09.029_br000080) 1998; 31 Chavanis (10.1016/j.physa.2013.09.029_br000165) 2007; 375 Tsallis (10.1016/j.physa.2013.09.029_br000065) 1988; 52 Drodzov (10.1016/j.physa.2013.09.029_br000275) 1996; 54 Israelachvili (10.1016/j.physa.2013.09.029_br000330) 2011 Shiino (10.1016/j.physa.2013.09.029_br000125) 2001; 42 Frieden (10.1016/j.physa.2013.09.029_br000085) 1998 Dekker (10.1016/j.physa.2013.09.029_br000235) 1979; 73A Chen (10.1016/j.physa.2013.09.029_br000300) 2012; 136 Planck (10.1016/j.physa.2013.09.029_br000010) 1917; 324 Hoffman (10.1016/j.physa.2013.09.029_br000320) 1992; 96 Plastino (10.1016/j.physa.2013.09.029_br000160) 1995; 222 Desai (10.1016/j.physa.2013.09.029_br000200) 1978; 19 deGennes (10.1016/j.physa.2013.09.029_br000325) 1979 Chavanis (10.1016/j.physa.2013.09.029_br000150) 2008; 62 Lo (10.1016/j.physa.2013.09.029_br000180) 2005; 319 10.1016/j.physa.2013.09.029_br000185 Lax (10.1016/j.physa.2013.09.029_br000250) 1953; 6 Larsen (10.1016/j.physa.2013.09.029_br000270) 1985; 61 Hoffman (10.1016/j.physa.2013.09.029_br000315) 1991; 95 Kramers (10.1016/j.physa.2013.09.029_br000020) 1940; 7 Kaniadakis (10.1016/j.physa.2013.09.029_br000030) 1994; 49 Risken (10.1016/j.physa.2013.09.029_br000015) 1989 Zhang (10.1016/j.physa.2013.09.029_br000295) 1997; 56 Kumar (10.1016/j.physa.2013.09.029_br000265) 2006; 31 Lenzi (10.1016/j.physa.2013.09.029_br000130) 2002; 292 Torvattanabun (10.1016/j.physa.2013.09.029_br000225) 2011; 5 Schwãmmle (10.1016/j.physa.2013.09.029_br000310) 2009; 70 Tomita (10.1016/j.physa.2013.09.029_br000240) 1976; 56 Soler (10.1016/j.physa.2013.09.029_br000210) 1992; 69 Di Sisto (10.1016/j.physa.2013.09.029_br000100) 1999; 265 Wehner (10.1016/j.physa.2013.09.029_br000205) 1987; 35 Abe (10.1016/j.physa.2013.09.029_br000070) 1997; 224 Kaniadakis (10.1016/j.physa.2013.09.029_br000120) 2001; 288 Suzuki (10.1016/j.physa.2013.09.029_br000190) 1981; 46 Chen (10.1016/j.physa.2013.09.029_br000305) 2012; 28 Palleschi (10.1016/j.physa.2013.09.029_br000260) 1990; 146 Frank (10.1016/j.physa.2013.09.029_br000025) 2005 Borges (10.1016/j.physa.2013.09.029_br000075) 1998; 246 Chang (10.1016/j.physa.2013.09.029_br000245) 1970; 6 Landsberg (10.1016/j.physa.2013.09.029_br000095) 1999; 29 Wang (10.1016/j.physa.2013.09.029_br000140) 2003; 5 Van Kampen (10.1016/j.physa.2013.09.029_br000230) 1977; 17 Kaniadakis (10.1016/j.physa.2013.09.029_br000115) 2001; 296 Frank (10.1016/j.physa.2013.09.029_br000135) 2002; 30 Landsberg (10.1016/j.physa.2013.09.029_br000090) 1998; 247 San Miguel (10.1016/j.physa.2013.09.029_br000155) 1979; 33 Forsythe (10.1016/j.physa.2013.09.029_br000255) 1967 Sharma (10.1016/j.physa.2013.09.029_br000060) 1975; 22 Shafee (10.1016/j.physa.2013.09.029_br000145) 2007; 72 Zhang (10.1016/j.physa.2013.09.029_br000290) 1997; 107 Caroli (10.1016/j.physa.2013.09.029_br000195) 1981; 26 Anteneodo (10.1016/j.physa.2013.09.029_br000105) 1999; 32 Reyni (10.1016/j.physa.2013.09.029_br000040) 1970 Kaniadakis (10.1016/j.physa.2013.09.029_br000110) 2000; 66 Chavanis (10.1016/j.physa.2013.09.029_br000035) 2003; 68 Lo (10.1016/j.physa.2013.09.029_br000170) 2005; 336 10.1016/j.physa.2013.09.029_br000280 Zheng (10.1016/j.physa.2013.09.029_br000285) 2011; 230 Casado (10.1016/j.physa.2013.09.029_br000215) 1990; 42 Aczel (10.1016/j.physa.2013.09.029_br000050) 1975 |
References_xml | – volume: 66 start-page: 3246 year: 2000 ident: br000110 publication-title: Phys. Rev. E – volume: 70 start-page: 107 year: 2009 ident: br000310 publication-title: Eur. Phys. J. B – volume: 327 start-page: 386 year: 2012 ident: br000175 publication-title: Ann. Phys. – volume: 73A start-page: 374 year: 1979 ident: br000235 publication-title: Phys. Lett. – year: 2005 ident: br000025 article-title: Nonlinear Fokker–Planck Equation: Fundamentals and Applications – year: 1979 ident: br000325 article-title: Scaling Concepts in Polymer Physics – reference: [math-ph]. – volume: 56 start-page: 786 year: 1976 ident: br000240 publication-title: Progr. Theoret. Phys. – year: 2011 ident: br000330 article-title: Intermolecular and Surface Forces – volume: 62 start-page: 179 year: 2008 ident: br000150 publication-title: Eur. Phys. J. B – volume: 43 start-page: 810 year: 1914 ident: br000005 publication-title: Ann. Phys. – volume: 324 year: 1917 ident: br000010 publication-title: Sitzber. Preuss. Akad. Wiss. – volume: 107 start-page: 3239 year: 1997 ident: br000290 publication-title: J. Chem. Phys. – volume: 146 start-page: 378 year: 1990 ident: br000260 publication-title: Phys. Lett. A – volume: 247 start-page: 211 year: 1998 ident: br000090 publication-title: Phys. Lett. A – volume: 230 start-page: 5239 year: 2011 ident: br000285 publication-title: J. Comput. Phys. – volume: 5 start-page: 2193 year: 2011 ident: br000225 publication-title: Int. J. Math. Anal. – volume: 19 start-page: 181 year: 1971 ident: br000045 publication-title: Inf. Control – volume: 96 start-page: 1179 year: 1992 ident: br000320 publication-title: J. Phys. Chem. – volume: 42 start-page: 2540 year: 2001 ident: br000125 publication-title: J. Math. Phys. – volume: 46 start-page: 195 year: 1981 ident: br000190 publication-title: Adv. Chem. Phys. – volume: 336 start-page: 141 year: 2005 ident: br000170 publication-title: Phys. Lett. A – volume: 54 start-page: 931 year: 1996 ident: br000275 publication-title: Phys. Rev. E – volume: 22 start-page: 205 year: 1975 ident: br000060 publication-title: Metrika – volume: 7 start-page: 284 year: 1940 ident: br000020 publication-title: Physica – volume: 69 start-page: 813 year: 1992 ident: br000210 publication-title: J. Stat. Phys. – volume: 95 start-page: 8299 year: 1991 ident: br000315 publication-title: J. Phys. Chem. – volume: 61 start-page: 359 year: 1985 ident: br000270 publication-title: J. Comput. Phys. – year: 1970 ident: br000040 article-title: Probability Theory – volume: 5 start-page: 220 year: 2003 ident: br000140 publication-title: Entropy – volume: 35 start-page: 1795 year: 1987 ident: br000205 publication-title: Phys. Rev. A – year: 1975 ident: br000050 article-title: On Measures of Information and Their Characterizations – volume: 32 start-page: 1089 year: 1999 ident: br000105 publication-title: J. Phys. A: Math. Gen. – volume: 375 start-page: 140 year: 2007 ident: br000165 publication-title: Physica A – volume: 72 start-page: 785 year: 2007 ident: br000145 publication-title: IMA J. Appl. Math. – reference: C.-L. Ho, 3 May 2012. – volume: 33 start-page: 307 year: 1979 ident: br000155 publication-title: Z. Phys. B – volume: 6 start-page: 1 year: 1970 ident: br000245 publication-title: J. Comput. Phys. – volume: 224 start-page: 326 year: 1997 ident: br000070 publication-title: Phys. Lett. A – volume: 296 start-page: 405 year: 2001 ident: br000115 publication-title: Physica A – volume: 19 start-page: 1 year: 1978 ident: br000200 publication-title: J. Stat. Phys. – volume: 292 start-page: 315 year: 2002 ident: br000130 publication-title: Phys. Lett. A – volume: 30 start-page: 543 year: 2002 ident: br000135 publication-title: Eur. Phys. J. B – volume: 29 start-page: 46 year: 1999 ident: br000095 publication-title: Braz. J. Phys. – volume: 49 start-page: 5103 year: 1994 ident: br000030 publication-title: Phys. Rev. E – volume: 56 start-page: 1197 year: 1997 ident: br000295 publication-title: Phys. Rev. E – volume: 68 start-page: 036108 year: 2003 ident: br000035 publication-title: Phys. Rev. E – volume: 42 start-page: 1875 year: 1990 ident: br000215 publication-title: Phys. Rev. A – volume: 222 start-page: 347 year: 1995 ident: br000160 publication-title: Physica A – volume: 34 start-page: 699 year: 1999 ident: br000220 publication-title: Int. J. Non-Linear Mech. – volume: 22 start-page: 35 year: 1975 ident: br000055 publication-title: Metrika – year: 1967 ident: br000255 article-title: Finite Difference Methods for Partial Differential Equations – reference: S. Gottlieb, G.W. Wei, S. Zhao, A unified discontinuous Galerkin framework for time integration, 2010. – volume: 288 start-page: 283 year: 2001 ident: br000120 publication-title: Phys. Lett. A – volume: 136 start-page: 134109 year: 2012 ident: br000300 publication-title: J. Chem. Phys. – volume: 31 start-page: 445 year: 2006 ident: br000265 publication-title: Sãdhanã – volume: 17 start-page: 71 year: 1977 ident: br000230 publication-title: J. Stat. Phys. – volume: 31 start-page: 5271 year: 1998 ident: br000080 publication-title: J. Phys. A: Math. Gen. – year: 1998 ident: br000085 article-title: Physics from Fisher Information – volume: 26 start-page: 83 year: 1981 ident: br000195 publication-title: J. Stat. Phys. – volume: 6 start-page: 231 year: 1953 ident: br000250 publication-title: Comm. Pure Appl. Math. – year: 1989 ident: br000015 article-title: The Fokker–Planck Equation – volume: 265 start-page: 590 year: 1999 ident: br000100 publication-title: Physica A – volume: 28 start-page: 2551 year: 2012 ident: br000305 publication-title: Int. J. Numer. Methods Biomed. Eng. – volume: 246 start-page: 399 year: 1998 ident: br000075 publication-title: Phys. Lett. A – volume: 52 start-page: 479 year: 1988 ident: br000065 publication-title: J. Stat. Phys. – volume: 319 start-page: 326 year: 2005 ident: br000180 publication-title: Ann. Phys. – volume: 42 start-page: 1875 year: 1990 ident: 10.1016/j.physa.2013.09.029_br000215 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.42.1875 – volume: 6 start-page: 1 year: 1970 ident: 10.1016/j.physa.2013.09.029_br000245 publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(70)90001-X – ident: 10.1016/j.physa.2013.09.029_br000280 – volume: 28 start-page: 2551 year: 2012 ident: 10.1016/j.physa.2013.09.029_br000305 publication-title: Int. J. Numer. Methods Biomed. Eng. doi: 10.1002/cnm.1458 – volume: 26 start-page: 83 year: 1981 ident: 10.1016/j.physa.2013.09.029_br000195 publication-title: J. Stat. Phys. doi: 10.1007/BF01106788 – volume: 72 start-page: 785 year: 2007 ident: 10.1016/j.physa.2013.09.029_br000145 publication-title: IMA J. Appl. Math. doi: 10.1093/imamat/hxm039 – volume: 324 year: 1917 ident: 10.1016/j.physa.2013.09.029_br000010 publication-title: Sitzber. Preuss. Akad. Wiss. – volume: 296 start-page: 405 year: 2001 ident: 10.1016/j.physa.2013.09.029_br000115 publication-title: Physica A doi: 10.1016/S0378-4371(01)00184-4 – volume: 7 start-page: 284 year: 1940 ident: 10.1016/j.physa.2013.09.029_br000020 publication-title: Physica doi: 10.1016/S0031-8914(40)90098-2 – volume: 265 start-page: 590 year: 1999 ident: 10.1016/j.physa.2013.09.029_br000100 publication-title: Physica A doi: 10.1016/S0378-4371(98)00561-5 – ident: 10.1016/j.physa.2013.09.029_br000185 – volume: 6 start-page: 231 year: 1953 ident: 10.1016/j.physa.2013.09.029_br000250 publication-title: Comm. Pure Appl. Math. doi: 10.1002/cpa.3160060204 – volume: 35 start-page: 1795 year: 1987 ident: 10.1016/j.physa.2013.09.029_br000205 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.35.1795 – volume: 95 start-page: 8299 year: 1991 ident: 10.1016/j.physa.2013.09.029_br000315 publication-title: J. Phys. Chem. doi: 10.1021/j100174a052 – volume: 375 start-page: 140 year: 2007 ident: 10.1016/j.physa.2013.09.029_br000165 publication-title: Physica A doi: 10.1016/j.physa.2006.08.076 – year: 1979 ident: 10.1016/j.physa.2013.09.029_br000325 – volume: 43 start-page: 810 year: 1914 ident: 10.1016/j.physa.2013.09.029_br000005 publication-title: Ann. Phys. doi: 10.1002/andp.19143480507 – volume: 52 start-page: 479 year: 1988 ident: 10.1016/j.physa.2013.09.029_br000065 publication-title: J. Stat. Phys. doi: 10.1007/BF01016429 – volume: 288 start-page: 283 year: 2001 ident: 10.1016/j.physa.2013.09.029_br000120 publication-title: Phys. Lett. A doi: 10.1016/S0375-9601(01)00543-6 – volume: 31 start-page: 445 year: 2006 ident: 10.1016/j.physa.2013.09.029_br000265 publication-title: Sãdhanã – volume: 29 start-page: 46 year: 1999 ident: 10.1016/j.physa.2013.09.029_br000095 publication-title: Braz. J. Phys. doi: 10.1590/S0103-97331999000100004 – volume: 107 start-page: 3239 year: 1997 ident: 10.1016/j.physa.2013.09.029_br000290 publication-title: J. Chem. Phys. doi: 10.1063/1.474674 – volume: 5 start-page: 220 year: 2003 ident: 10.1016/j.physa.2013.09.029_br000140 publication-title: Entropy doi: 10.3390/e5020220 – volume: 42 start-page: 2540 year: 2001 ident: 10.1016/j.physa.2013.09.029_br000125 publication-title: J. Math. Phys. doi: 10.1063/1.1367327 – year: 2011 ident: 10.1016/j.physa.2013.09.029_br000330 – volume: 230 start-page: 5239 year: 2011 ident: 10.1016/j.physa.2013.09.029_br000285 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2011.03.020 – volume: 336 start-page: 141 year: 2005 ident: 10.1016/j.physa.2013.09.029_br000170 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2005.01.016 – volume: 96 start-page: 1179 year: 1992 ident: 10.1016/j.physa.2013.09.029_br000320 publication-title: J. Phys. Chem. doi: 10.1021/j100182a030 – year: 1970 ident: 10.1016/j.physa.2013.09.029_br000040 – volume: 22 start-page: 35 year: 1975 ident: 10.1016/j.physa.2013.09.029_br000055 publication-title: Metrika doi: 10.1007/BF01899712 – volume: 247 start-page: 211 year: 1998 ident: 10.1016/j.physa.2013.09.029_br000090 publication-title: Phys. Lett. A doi: 10.1016/S0375-9601(98)00500-3 – volume: 292 start-page: 315 year: 2002 ident: 10.1016/j.physa.2013.09.029_br000130 publication-title: Phys. Lett. A doi: 10.1016/S0375-9601(01)00812-X – volume: 33 start-page: 307 year: 1979 ident: 10.1016/j.physa.2013.09.029_br000155 publication-title: Z. Phys. B doi: 10.1007/BF01323507 – volume: 54 start-page: 931 year: 1996 ident: 10.1016/j.physa.2013.09.029_br000275 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.54.931 – volume: 136 start-page: 134109 year: 2012 ident: 10.1016/j.physa.2013.09.029_br000300 publication-title: J. Chem. Phys. doi: 10.1063/1.3698598 – volume: 31 start-page: 5271 year: 1998 ident: 10.1016/j.physa.2013.09.029_br000080 publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/31/23/009 – volume: 68 start-page: 036108 year: 2003 ident: 10.1016/j.physa.2013.09.029_br000035 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.68.036108 – volume: 319 start-page: 326 year: 2005 ident: 10.1016/j.physa.2013.09.029_br000180 publication-title: Ann. Phys. doi: 10.1016/j.aop.2005.04.006 – volume: 32 start-page: 1089 year: 1999 ident: 10.1016/j.physa.2013.09.029_br000105 publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/32/7/002 – volume: 222 start-page: 347 year: 1995 ident: 10.1016/j.physa.2013.09.029_br000160 publication-title: Physica A doi: 10.1016/0378-4371(95)00211-1 – volume: 19 start-page: 1 year: 1978 ident: 10.1016/j.physa.2013.09.029_br000200 publication-title: J. Stat. Phys. doi: 10.1007/BF01020331 – volume: 17 start-page: 71 year: 1977 ident: 10.1016/j.physa.2013.09.029_br000230 publication-title: J. Stat. Phys. doi: 10.1007/BF01268919 – volume: 70 start-page: 107 year: 2009 ident: 10.1016/j.physa.2013.09.029_br000310 publication-title: Eur. Phys. J. B doi: 10.1140/epjb/e2009-00172-9 – volume: 73A start-page: 374 year: 1979 ident: 10.1016/j.physa.2013.09.029_br000235 publication-title: Phys. Lett. doi: 10.1016/0375-9601(79)90088-4 – year: 1998 ident: 10.1016/j.physa.2013.09.029_br000085 – year: 1989 ident: 10.1016/j.physa.2013.09.029_br000015 – volume: 62 start-page: 179 year: 2008 ident: 10.1016/j.physa.2013.09.029_br000150 publication-title: Eur. Phys. J. B doi: 10.1140/epjb/e2008-00142-9 – volume: 46 start-page: 195 year: 1981 ident: 10.1016/j.physa.2013.09.029_br000190 publication-title: Adv. Chem. Phys. doi: 10.1002/9780470142653.ch4 – year: 1967 ident: 10.1016/j.physa.2013.09.029_br000255 – year: 1975 ident: 10.1016/j.physa.2013.09.029_br000050 – volume: 224 start-page: 326 year: 1997 ident: 10.1016/j.physa.2013.09.029_br000070 publication-title: Phys. Lett. A doi: 10.1016/S0375-9601(96)00832-8 – volume: 69 start-page: 813 year: 1992 ident: 10.1016/j.physa.2013.09.029_br000210 publication-title: J. Stat. Phys. doi: 10.1007/BF01050435 – volume: 146 start-page: 378 year: 1990 ident: 10.1016/j.physa.2013.09.029_br000260 publication-title: Phys. Lett. A doi: 10.1016/0375-9601(90)90717-3 – volume: 56 start-page: 786 year: 1976 ident: 10.1016/j.physa.2013.09.029_br000240 publication-title: Progr. Theoret. Phys. doi: 10.1143/PTP.56.786 – volume: 61 start-page: 359 year: 1985 ident: 10.1016/j.physa.2013.09.029_br000270 publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(85)90070-1 – volume: 22 start-page: 205 year: 1975 ident: 10.1016/j.physa.2013.09.029_br000060 publication-title: Metrika doi: 10.1007/BF01899728 – volume: 34 start-page: 699 year: 1999 ident: 10.1016/j.physa.2013.09.029_br000220 publication-title: Int. J. Non-Linear Mech. doi: 10.1016/S0020-7462(98)00048-1 – volume: 56 start-page: 1197 year: 1997 ident: 10.1016/j.physa.2013.09.029_br000295 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.56.1197 – volume: 66 start-page: 3246 year: 2000 ident: 10.1016/j.physa.2013.09.029_br000110 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.62.3246 – volume: 246 start-page: 399 year: 1998 ident: 10.1016/j.physa.2013.09.029_br000075 publication-title: Phys. Lett. A doi: 10.1016/S0375-9601(98)00572-6 – year: 2005 ident: 10.1016/j.physa.2013.09.029_br000025 – volume: 30 start-page: 543 year: 2002 ident: 10.1016/j.physa.2013.09.029_br000135 publication-title: Eur. Phys. J. B doi: 10.1140/epjb/e2002-00412-6 – volume: 49 start-page: 5103 year: 1994 ident: 10.1016/j.physa.2013.09.029_br000030 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.49.5103 – volume: 19 start-page: 181 year: 1971 ident: 10.1016/j.physa.2013.09.029_br000045 publication-title: Inf. Control doi: 10.1016/S0019-9958(71)90065-9 – volume: 327 start-page: 386 year: 2012 ident: 10.1016/j.physa.2013.09.029_br000175 publication-title: Ann. Phys. doi: 10.1016/j.aop.2011.11.004 – volume: 5 start-page: 2193 year: 2011 ident: 10.1016/j.physa.2013.09.029_br000225 publication-title: Int. J. Math. Anal. |
SSID | ssj0001732 |
Score | 2.0994549 |
Snippet | A nonlinear Fokker–Planck equation is proposed for a system subject to different statistics (in the present study, the Gibbs–Boltzmann and Fermi–Dirac... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 171 |
SubjectTerms | Fokker–Planck Membrane interface Mixing entropy functional Numerical simulation |
Title | A Fokker–Planck equation for a piecewise entropy functional defined in different space domains. An application to solute partitioning at the membrane–water interface |
URI | https://dx.doi.org/10.1016/j.physa.2013.09.029 |
Volume | 395 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9xADBbJhkIvoU-aPoIOPdZdz3o8Yx-X0GXbQi5tIDczDxnc7drOxiXkUvof-iv6t_pLqvEjpFBy6NFmZIaRkD5p5E8Ar2Nl03QRm0gnykTSUxpl-UJH2nAK5JXwme-7LU7V-kx-OE_P9-Bk-hcmtFWOvn_w6b23Ht_Mx9Oct1U1_xQnOpOJFuFCJmPD3IeDRZKrdAYHy_cf16c3DlnoZLhM4IQpCEzkQ32bVyggBP4hkfR8pz3U_EeAuhV0Vg_gcESLuBw29BD2qH4E9_quTXf5GH4tcdVsNrT7_eNnmD7kNkgXA3c3MhhFg21Fjq6qS8JQxW3aawyBbKj_oaeSMabHqsZpTkqH7GEcoW-2pmJ7xGWNt-64sWuwN1bCNpzSWM1F0yEDSdzSlpPvmng7V4xhdxjIKHYlf_AJnK3efT5ZR-PshchxUOsiBl7Kcu5nlRGeZOmsd0Y4YRMhSavcCpUbXklpqax20njWQslmmXKw4-0nT2FWNzU9A0y14RwnI9LeS-9EzpjMGqOV17KMlT-CxXTghRuJycN8jK_F1IH2pei1VAQtFXFesJaO4M2NUDvwcty9XE2aLP4yr4Ijx12Cz_9X8AXc5yc5NHi_hFm3-0avGL909hj2334Xx6OV_gHkOvYN |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbKVgguFU9RymMOHIk23jh2clxVXW1p2Qut1Jvlx0QK203CNqjixn_gV_C3-CUd51EVCfXANfFElmc088148g1jH2Jp03QWm0gl0kTCYxpl-UxFylAK5CX3me-6LVZyeS4-XaQXO-xw_BcmtFUOvr_36Z23Hp5Mh9OcNmU5_RInKhOJ4uFCJiPDfMB2RUrZ3oTtzo9Plqtbh8xV0l8mUMIUBEbyoa7NKxQQAv8QTzq-0w5q_iNA3Qk6iydsb0CLMO839JTtYPWMPey6Nt3Vc_Z7Dot6vcbtn5-_wvQhtwb81nN3A4FRMNCU6PC6vEIIVdy6-QEhkPX1P_BYEMb0UFYwzklpgTyMQ_D1xpRkjzCv4M4dN7Q1dMaK0IRTGqq5YFogIAkb3FDyXSFt55ow7BYCGcW2oA--YOeLo7PDZTTMXogcBbU2IuAlLeV-VhruURTOeme44zbhApXMLZe5oZWYFtIqJ4wnLRRklikFO9p-8pJNqrrCVwxSZSjHyRCV98I7nhMms8Yo6ZUoYun32Ww8cO0GYvIwH-NSjx1oX3WnJR20pONck5b22cdboabn5bh_uRw1qf8yL02R4z7B1_8r-J49Wp59PtWnx6uTA_aY3oi-2fsNm7Tb7_iWsExr3w22egPKIPf8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Fokker%E2%80%93Planck+equation+for+a+piecewise+entropy+functional+defined+in+different+space+domains.+An+application+to+solute+partitioning+at+the+membrane%E2%80%93water+interface&rft.jtitle=Physica+A&rft.au=Grassi%2C+Antonio&rft.au=Raudino%2C+Antonio&rft.date=2014-02-01&rft.pub=Elsevier+B.V&rft.issn=0378-4371&rft.eissn=1873-2119&rft.volume=395&rft.spage=171&rft.epage=182&rft_id=info:doi/10.1016%2Fj.physa.2013.09.029&rft.externalDocID=S0378437113008832 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4371&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4371&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4371&client=summon |