A Fokker–Planck equation for a piecewise entropy functional defined in different space domains. An application to solute partitioning at the membrane–water interface

A nonlinear Fokker–Planck equation is proposed for a system subject to different statistics (in the present study, the Gibbs–Boltzmann and Fermi–Dirac statistics) defined in different contiguous regions of space. We solved the time-dependent mono-dimensional equation numerically, and solved the time...

Full description

Saved in:
Bibliographic Details
Published inPhysica A Vol. 395; pp. 171 - 182
Main Authors Grassi, Antonio, Raudino, Antonio
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.02.2014
Subjects
Online AccessGet full text
ISSN0378-4371
1873-2119
DOI10.1016/j.physa.2013.09.029

Cover

Abstract A nonlinear Fokker–Planck equation is proposed for a system subject to different statistics (in the present study, the Gibbs–Boltzmann and Fermi–Dirac statistics) defined in different contiguous regions of space. We solved the time-dependent mono-dimensional equation numerically, and solved the time-independent mono-dimensional equation analytically under the effect of a generic external potential equation. These zones are connected by a sharp but continuous transition region. Accurate numerical procedures ensure the convergence of the Fokker–Planck equation in the transition layer. We applied our general procedure to investigate both the stationary and the time-dependent kinetics of solute partitioning between aqueous and membrane phases. Because of the relative volumes of solute, water, and lipid (Vsolute≈Vwater<<Vlipid), the mixing entropy functional in water contains both solute and solvent contributions, while within the membrane only the solute entropy plays a significant role. Also, the potential term differs in space due to the solute interactions with different environments. Lastly, we added the effect of an electrostatic potential (occurring in all membrane systems) localized at the water interface which may deplete or increase the interfacial solute concentration. Rather surprisingly we found a strong coupling between the surface potential and the imposed asymmetric statistics. The effects are relevant when entropic and potential contributions are comparable; otherwise, the standard Boltzmannian behavior is recovered. •A Fokker–Planck equation for two entropy functionals in different space domains has been proposed.•Stationary and transient solutions have been analyzed in terms of particle distribution.•Entropy and enthalpy effects are shown as a function of the potential.
AbstractList A nonlinear Fokker–Planck equation is proposed for a system subject to different statistics (in the present study, the Gibbs–Boltzmann and Fermi–Dirac statistics) defined in different contiguous regions of space. We solved the time-dependent mono-dimensional equation numerically, and solved the time-independent mono-dimensional equation analytically under the effect of a generic external potential equation. These zones are connected by a sharp but continuous transition region. Accurate numerical procedures ensure the convergence of the Fokker–Planck equation in the transition layer. We applied our general procedure to investigate both the stationary and the time-dependent kinetics of solute partitioning between aqueous and membrane phases. Because of the relative volumes of solute, water, and lipid (Vsolute≈Vwater<<Vlipid), the mixing entropy functional in water contains both solute and solvent contributions, while within the membrane only the solute entropy plays a significant role. Also, the potential term differs in space due to the solute interactions with different environments. Lastly, we added the effect of an electrostatic potential (occurring in all membrane systems) localized at the water interface which may deplete or increase the interfacial solute concentration. Rather surprisingly we found a strong coupling between the surface potential and the imposed asymmetric statistics. The effects are relevant when entropic and potential contributions are comparable; otherwise, the standard Boltzmannian behavior is recovered. •A Fokker–Planck equation for two entropy functionals in different space domains has been proposed.•Stationary and transient solutions have been analyzed in terms of particle distribution.•Entropy and enthalpy effects are shown as a function of the potential.
Author Grassi, Antonio
Raudino, Antonio
Author_xml – sequence: 1
  givenname: Antonio
  surname: Grassi
  fullname: Grassi, Antonio
  email: agrassi@unict.it
  organization: Dipartimento di Scienze del Farmaco, v.le A.Doria 6, Università di Catania, 95125 Catania, Italy
– sequence: 2
  givenname: Antonio
  surname: Raudino
  fullname: Raudino, Antonio
  email: araudino@dipchi.unict.it
  organization: Dipartimento di Scienze Chimiche, v.le A.Doria 6, Università di Catania, 95125 Catania, Italy
BookMark eNqFkEGOEzEQRS00SGQGTsCmLtCNHXe64wWLaMQA0kjDAtZWtV1mnHTsxnYYZccdOAXX4iTjTFixgE2VVPrvq_6_ZBchBmLsteCt4KJ_s23n-2PGdsmFbLlq-VI9YwuxHmSzFEJdsAWXw7rp5CBesMuct5xzMcjlgv3awE3c7Sj9_vHz04TB7IC-HbD4GMDFBAizJ0MPPhNQKCnOR3CHYE4CnMCS84Es-ADWO0epaiDPaAhs3KMPuYVNAJznyZuza4mQ43QoBDOm4k83H74CFij3BHvajwkD1XcesFCqznW6aviSPXc4ZXr1Z1-xLzfvPl9_aG7v3n-83tw2RnJZGrUS_dhxNfYoLHXOjNagMGKUoqOhV6PoFVYlrVw_DqZDKzl3hHY1iHWNI6-YOvuaFHNO5LTx5en1ktBPWnB96lxv9VPn-tS55krXzisr_2Ln5PeYjv-h3p4pqrG-e0o6G0_BkPWJTNE2-n_yj7L9pm4
CitedBy_id crossref_primary_10_1016_j_cnsns_2023_107131
crossref_primary_10_1103_PhysRevE_102_062105
crossref_primary_10_1007_s10955_014_1031_x
crossref_primary_10_1016_j_physleta_2014_10_046
Cites_doi 10.1103/PhysRevA.42.1875
10.1016/0021-9991(70)90001-X
10.1002/cnm.1458
10.1007/BF01106788
10.1093/imamat/hxm039
10.1016/S0378-4371(01)00184-4
10.1016/S0031-8914(40)90098-2
10.1016/S0378-4371(98)00561-5
10.1002/cpa.3160060204
10.1103/PhysRevA.35.1795
10.1021/j100174a052
10.1016/j.physa.2006.08.076
10.1002/andp.19143480507
10.1007/BF01016429
10.1016/S0375-9601(01)00543-6
10.1590/S0103-97331999000100004
10.1063/1.474674
10.3390/e5020220
10.1063/1.1367327
10.1016/j.jcp.2011.03.020
10.1016/j.physleta.2005.01.016
10.1021/j100182a030
10.1007/BF01899712
10.1016/S0375-9601(98)00500-3
10.1016/S0375-9601(01)00812-X
10.1007/BF01323507
10.1103/PhysRevE.54.931
10.1063/1.3698598
10.1088/0305-4470/31/23/009
10.1103/PhysRevE.68.036108
10.1016/j.aop.2005.04.006
10.1088/0305-4470/32/7/002
10.1016/0378-4371(95)00211-1
10.1007/BF01020331
10.1007/BF01268919
10.1140/epjb/e2009-00172-9
10.1016/0375-9601(79)90088-4
10.1140/epjb/e2008-00142-9
10.1002/9780470142653.ch4
10.1016/S0375-9601(96)00832-8
10.1007/BF01050435
10.1016/0375-9601(90)90717-3
10.1143/PTP.56.786
10.1016/0021-9991(85)90070-1
10.1007/BF01899728
10.1016/S0020-7462(98)00048-1
10.1103/PhysRevE.56.1197
10.1103/PhysRevE.62.3246
10.1016/S0375-9601(98)00572-6
10.1140/epjb/e2002-00412-6
10.1103/PhysRevE.49.5103
10.1016/S0019-9958(71)90065-9
10.1016/j.aop.2011.11.004
ContentType Journal Article
Copyright 2013 Elsevier B.V.
Copyright_xml – notice: 2013 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.physa.2013.09.029
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1873-2119
EndPage 182
ExternalDocumentID 10_1016_j_physa_2013_09_029
S0378437113008832
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAPFB
AAQFI
AAXUO
ABAOU
ABMAC
ABNEU
ABXDB
ABYKQ
ACAZW
ACDAQ
ACFVG
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADFHU
ADGUI
AEBSH
AEKER
AEYQN
AFFNX
AFKWA
AFTJW
AGHFR
AGTHC
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIIAU
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
AXLSJ
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IXIXF
J1W
K-O
KOM
M38
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSB
SSF
SSQ
SSW
SSZ
T5K
TN5
TWZ
WH7
XPP
YNT
ZMT
~02
~G-
29O
6TJ
AAFFL
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABJNI
ABWVN
ACNNM
ACROA
ACRPL
ADMUD
ADNMO
ADVLN
AEIPS
AFJKZ
AFODL
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
AJWLA
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BEHZQ
BEZPJ
BGSCR
BNPGV
BNTGB
BPUDD
BULVW
BZJEE
CITATION
EJD
FEDTE
FGOYB
HMV
HVGLF
HZ~
MVM
NDZJH
R2-
SEW
SPG
SSH
VOH
WUQ
XJT
XOL
YYP
ZY4
ID FETCH-LOGICAL-c303t-9516b409b6a1de4fcbdca1c1b314e769b169a303e5f6b7c4ad300fead5718def3
IEDL.DBID AIKHN
ISSN 0378-4371
IngestDate Tue Jul 01 03:22:36 EDT 2025
Thu Apr 24 22:51:54 EDT 2025
Fri Feb 23 02:31:24 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Membrane interface
Mixing entropy functional
Numerical simulation
Fokker–Planck
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c303t-9516b409b6a1de4fcbdca1c1b314e769b169a303e5f6b7c4ad300fead5718def3
PageCount 12
ParticipantIDs crossref_citationtrail_10_1016_j_physa_2013_09_029
crossref_primary_10_1016_j_physa_2013_09_029
elsevier_sciencedirect_doi_10_1016_j_physa_2013_09_029
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-02-01
2014-2-00
PublicationDateYYYYMMDD 2014-02-01
PublicationDate_xml – month: 02
  year: 2014
  text: 2014-02-01
  day: 01
PublicationDecade 2010
PublicationTitle Physica A
PublicationYear 2014
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Frank (br000025) 2005
Hoffman, Kouri (br000320) 1992; 96
Borges, Roditi (br000075) 1998; 246
Chavanis (br000150) 2008; 62
Zheng, Chen, Wei (br000285) 2011; 230
C.-L. Ho, 3 May 2012.
Wehner, Wolfer (br000205) 1987; 35
Soler, Martinez, Donoso (br000210) 1992; 69
Hoffman, Nayar, Sharafeddin, Kouri (br000315) 1991; 95
[math-ph].
Chen, Wei (br000300) 2012; 136
Shiino (br000125) 2001; 42
Tomita, Ito, Kidachi (br000240) 1976; 56
Palleschi, Sarri, Marcozzi, Torquari (br000260) 1990; 146
deGennes (br000325) 1979
Anteneodo, Plastino (br000105) 1999; 32
Landsberg, Vedral (br000090) 1998; 247
Aczel, Daroczy (br000050) 1975
Frank, Plastino (br000135) 2002; 30
Shafee (br000145) 2007; 72
Abe (br000070) 1997; 224
Reyni (br000040) 1970
Plastino, Plastino (br000160) 1995; 222
Torvattanabun, Duangpithak (br000225) 2011; 5
Landsberg (br000095) 1999; 29
Arimoto (br000045) 1971; 19
Chang, Cooper (br000245) 1970; 6
Zhang, Wei, Kouri, Hoffman (br000295) 1997; 56
Risken (br000015) 1989
Kaniadakis (br000110) 2000; 66
Lo (br000170) 2005; 336
Lin, Ho (br000175) 2012; 327
Kaniadakis, Quarati (br000030) 1994; 49
He (br000220) 1999; 34
Suzuki (br000190) 1981; 46
Lo (br000180) 2005; 319
Papa (br000080) 1998; 31
Zhang, Wei, Kouri, Hoffman (br000290) 1997; 107
S. Gottlieb, G.W. Wei, S. Zhao, A unified discontinuous Galerkin framework for time integration, 2010.
Chavanis (br000035) 2003; 68
Sharma, Taneja (br000060) 1975; 22
Larsen, Levermore, Pomraning (br000270) 1985; 61
Kramers (br000020) 1940; 7
Casado, Morillo (br000215) 1990; 42
Caroli, Caroli, Roulet (br000195) 1981; 26
Planck (br000010) 1917; 324
Dekker, Van Kampen (br000235) 1979; 73A
Frieden (br000085) 1998
Israelachvili (br000330) 2011
Chen, Chen, Wei (br000305) 2012; 28
Tsallis (br000065) 1988; 52
Drodzov, Morillo (br000275) 1996; 54
Desai, Zwanzig (br000200) 1978; 19
Kaniadakis (br000115) 2001; 296
San Miguel (br000155) 1979; 33
Wang (br000140) 2003; 5
Schwãmmle, Curado, Nobre (br000310) 2009; 70
Forsythe, Wasow (br000255) 1967
Kumar, Narayanan (br000265) 2006; 31
Kaniadakis (br000120) 2001; 288
Mittal (br000055) 1975; 22
Chavanis, Sire (br000165) 2007; 375
Lenzi, Lenzi, Belich, Lucena (br000130) 2002; 292
Lax (br000250) 1953; 6
Di Sisto, Martinez, Orellana, Plastino, Plastino (br000100) 1999; 265
Fokker (br000005) 1914; 43
Van Kampen (br000230) 1977; 17
Arimoto (10.1016/j.physa.2013.09.029_br000045) 1971; 19
Lin (10.1016/j.physa.2013.09.029_br000175) 2012; 327
Fokker (10.1016/j.physa.2013.09.029_br000005) 1914; 43
Mittal (10.1016/j.physa.2013.09.029_br000055) 1975; 22
He (10.1016/j.physa.2013.09.029_br000220) 1999; 34
Papa (10.1016/j.physa.2013.09.029_br000080) 1998; 31
Chavanis (10.1016/j.physa.2013.09.029_br000165) 2007; 375
Tsallis (10.1016/j.physa.2013.09.029_br000065) 1988; 52
Drodzov (10.1016/j.physa.2013.09.029_br000275) 1996; 54
Israelachvili (10.1016/j.physa.2013.09.029_br000330) 2011
Shiino (10.1016/j.physa.2013.09.029_br000125) 2001; 42
Frieden (10.1016/j.physa.2013.09.029_br000085) 1998
Dekker (10.1016/j.physa.2013.09.029_br000235) 1979; 73A
Chen (10.1016/j.physa.2013.09.029_br000300) 2012; 136
Planck (10.1016/j.physa.2013.09.029_br000010) 1917; 324
Hoffman (10.1016/j.physa.2013.09.029_br000320) 1992; 96
Plastino (10.1016/j.physa.2013.09.029_br000160) 1995; 222
Desai (10.1016/j.physa.2013.09.029_br000200) 1978; 19
deGennes (10.1016/j.physa.2013.09.029_br000325) 1979
Chavanis (10.1016/j.physa.2013.09.029_br000150) 2008; 62
Lo (10.1016/j.physa.2013.09.029_br000180) 2005; 319
10.1016/j.physa.2013.09.029_br000185
Lax (10.1016/j.physa.2013.09.029_br000250) 1953; 6
Larsen (10.1016/j.physa.2013.09.029_br000270) 1985; 61
Hoffman (10.1016/j.physa.2013.09.029_br000315) 1991; 95
Kramers (10.1016/j.physa.2013.09.029_br000020) 1940; 7
Kaniadakis (10.1016/j.physa.2013.09.029_br000030) 1994; 49
Risken (10.1016/j.physa.2013.09.029_br000015) 1989
Zhang (10.1016/j.physa.2013.09.029_br000295) 1997; 56
Kumar (10.1016/j.physa.2013.09.029_br000265) 2006; 31
Lenzi (10.1016/j.physa.2013.09.029_br000130) 2002; 292
Torvattanabun (10.1016/j.physa.2013.09.029_br000225) 2011; 5
Schwãmmle (10.1016/j.physa.2013.09.029_br000310) 2009; 70
Tomita (10.1016/j.physa.2013.09.029_br000240) 1976; 56
Soler (10.1016/j.physa.2013.09.029_br000210) 1992; 69
Di Sisto (10.1016/j.physa.2013.09.029_br000100) 1999; 265
Wehner (10.1016/j.physa.2013.09.029_br000205) 1987; 35
Abe (10.1016/j.physa.2013.09.029_br000070) 1997; 224
Kaniadakis (10.1016/j.physa.2013.09.029_br000120) 2001; 288
Suzuki (10.1016/j.physa.2013.09.029_br000190) 1981; 46
Chen (10.1016/j.physa.2013.09.029_br000305) 2012; 28
Palleschi (10.1016/j.physa.2013.09.029_br000260) 1990; 146
Frank (10.1016/j.physa.2013.09.029_br000025) 2005
Borges (10.1016/j.physa.2013.09.029_br000075) 1998; 246
Chang (10.1016/j.physa.2013.09.029_br000245) 1970; 6
Landsberg (10.1016/j.physa.2013.09.029_br000095) 1999; 29
Wang (10.1016/j.physa.2013.09.029_br000140) 2003; 5
Van Kampen (10.1016/j.physa.2013.09.029_br000230) 1977; 17
Kaniadakis (10.1016/j.physa.2013.09.029_br000115) 2001; 296
Frank (10.1016/j.physa.2013.09.029_br000135) 2002; 30
Landsberg (10.1016/j.physa.2013.09.029_br000090) 1998; 247
San Miguel (10.1016/j.physa.2013.09.029_br000155) 1979; 33
Forsythe (10.1016/j.physa.2013.09.029_br000255) 1967
Sharma (10.1016/j.physa.2013.09.029_br000060) 1975; 22
Shafee (10.1016/j.physa.2013.09.029_br000145) 2007; 72
Zhang (10.1016/j.physa.2013.09.029_br000290) 1997; 107
Caroli (10.1016/j.physa.2013.09.029_br000195) 1981; 26
Anteneodo (10.1016/j.physa.2013.09.029_br000105) 1999; 32
Reyni (10.1016/j.physa.2013.09.029_br000040) 1970
Kaniadakis (10.1016/j.physa.2013.09.029_br000110) 2000; 66
Chavanis (10.1016/j.physa.2013.09.029_br000035) 2003; 68
Lo (10.1016/j.physa.2013.09.029_br000170) 2005; 336
10.1016/j.physa.2013.09.029_br000280
Zheng (10.1016/j.physa.2013.09.029_br000285) 2011; 230
Casado (10.1016/j.physa.2013.09.029_br000215) 1990; 42
Aczel (10.1016/j.physa.2013.09.029_br000050) 1975
References_xml – volume: 66
  start-page: 3246
  year: 2000
  ident: br000110
  publication-title: Phys. Rev. E
– volume: 70
  start-page: 107
  year: 2009
  ident: br000310
  publication-title: Eur. Phys. J. B
– volume: 327
  start-page: 386
  year: 2012
  ident: br000175
  publication-title: Ann. Phys.
– volume: 73A
  start-page: 374
  year: 1979
  ident: br000235
  publication-title: Phys. Lett.
– year: 2005
  ident: br000025
  article-title: Nonlinear Fokker–Planck Equation: Fundamentals and Applications
– year: 1979
  ident: br000325
  article-title: Scaling Concepts in Polymer Physics
– reference:  [math-ph].
– volume: 56
  start-page: 786
  year: 1976
  ident: br000240
  publication-title: Progr. Theoret. Phys.
– year: 2011
  ident: br000330
  article-title: Intermolecular and Surface Forces
– volume: 62
  start-page: 179
  year: 2008
  ident: br000150
  publication-title: Eur. Phys. J. B
– volume: 43
  start-page: 810
  year: 1914
  ident: br000005
  publication-title: Ann. Phys.
– volume: 324
  year: 1917
  ident: br000010
  publication-title: Sitzber. Preuss. Akad. Wiss.
– volume: 107
  start-page: 3239
  year: 1997
  ident: br000290
  publication-title: J. Chem. Phys.
– volume: 146
  start-page: 378
  year: 1990
  ident: br000260
  publication-title: Phys. Lett. A
– volume: 247
  start-page: 211
  year: 1998
  ident: br000090
  publication-title: Phys. Lett. A
– volume: 230
  start-page: 5239
  year: 2011
  ident: br000285
  publication-title: J. Comput. Phys.
– volume: 5
  start-page: 2193
  year: 2011
  ident: br000225
  publication-title: Int. J. Math. Anal.
– volume: 19
  start-page: 181
  year: 1971
  ident: br000045
  publication-title: Inf. Control
– volume: 96
  start-page: 1179
  year: 1992
  ident: br000320
  publication-title: J. Phys. Chem.
– volume: 42
  start-page: 2540
  year: 2001
  ident: br000125
  publication-title: J. Math. Phys.
– volume: 46
  start-page: 195
  year: 1981
  ident: br000190
  publication-title: Adv. Chem. Phys.
– volume: 336
  start-page: 141
  year: 2005
  ident: br000170
  publication-title: Phys. Lett. A
– volume: 54
  start-page: 931
  year: 1996
  ident: br000275
  publication-title: Phys. Rev. E
– volume: 22
  start-page: 205
  year: 1975
  ident: br000060
  publication-title: Metrika
– volume: 7
  start-page: 284
  year: 1940
  ident: br000020
  publication-title: Physica
– volume: 69
  start-page: 813
  year: 1992
  ident: br000210
  publication-title: J. Stat. Phys.
– volume: 95
  start-page: 8299
  year: 1991
  ident: br000315
  publication-title: J. Phys. Chem.
– volume: 61
  start-page: 359
  year: 1985
  ident: br000270
  publication-title: J. Comput. Phys.
– year: 1970
  ident: br000040
  article-title: Probability Theory
– volume: 5
  start-page: 220
  year: 2003
  ident: br000140
  publication-title: Entropy
– volume: 35
  start-page: 1795
  year: 1987
  ident: br000205
  publication-title: Phys. Rev. A
– year: 1975
  ident: br000050
  article-title: On Measures of Information and Their Characterizations
– volume: 32
  start-page: 1089
  year: 1999
  ident: br000105
  publication-title: J. Phys. A: Math. Gen.
– volume: 375
  start-page: 140
  year: 2007
  ident: br000165
  publication-title: Physica A
– volume: 72
  start-page: 785
  year: 2007
  ident: br000145
  publication-title: IMA J. Appl. Math.
– reference: C.-L. Ho, 3 May 2012.
– volume: 33
  start-page: 307
  year: 1979
  ident: br000155
  publication-title: Z. Phys. B
– volume: 6
  start-page: 1
  year: 1970
  ident: br000245
  publication-title: J. Comput. Phys.
– volume: 224
  start-page: 326
  year: 1997
  ident: br000070
  publication-title: Phys. Lett. A
– volume: 296
  start-page: 405
  year: 2001
  ident: br000115
  publication-title: Physica A
– volume: 19
  start-page: 1
  year: 1978
  ident: br000200
  publication-title: J. Stat. Phys.
– volume: 292
  start-page: 315
  year: 2002
  ident: br000130
  publication-title: Phys. Lett. A
– volume: 30
  start-page: 543
  year: 2002
  ident: br000135
  publication-title: Eur. Phys. J. B
– volume: 29
  start-page: 46
  year: 1999
  ident: br000095
  publication-title: Braz. J. Phys.
– volume: 49
  start-page: 5103
  year: 1994
  ident: br000030
  publication-title: Phys. Rev. E
– volume: 56
  start-page: 1197
  year: 1997
  ident: br000295
  publication-title: Phys. Rev. E
– volume: 68
  start-page: 036108
  year: 2003
  ident: br000035
  publication-title: Phys. Rev. E
– volume: 42
  start-page: 1875
  year: 1990
  ident: br000215
  publication-title: Phys. Rev. A
– volume: 222
  start-page: 347
  year: 1995
  ident: br000160
  publication-title: Physica A
– volume: 34
  start-page: 699
  year: 1999
  ident: br000220
  publication-title: Int. J. Non-Linear Mech.
– volume: 22
  start-page: 35
  year: 1975
  ident: br000055
  publication-title: Metrika
– year: 1967
  ident: br000255
  article-title: Finite Difference Methods for Partial Differential Equations
– reference: S. Gottlieb, G.W. Wei, S. Zhao, A unified discontinuous Galerkin framework for time integration, 2010.
– volume: 288
  start-page: 283
  year: 2001
  ident: br000120
  publication-title: Phys. Lett. A
– volume: 136
  start-page: 134109
  year: 2012
  ident: br000300
  publication-title: J. Chem. Phys.
– volume: 31
  start-page: 445
  year: 2006
  ident: br000265
  publication-title: Sãdhanã
– volume: 17
  start-page: 71
  year: 1977
  ident: br000230
  publication-title: J. Stat. Phys.
– volume: 31
  start-page: 5271
  year: 1998
  ident: br000080
  publication-title: J. Phys. A: Math. Gen.
– year: 1998
  ident: br000085
  article-title: Physics from Fisher Information
– volume: 26
  start-page: 83
  year: 1981
  ident: br000195
  publication-title: J. Stat. Phys.
– volume: 6
  start-page: 231
  year: 1953
  ident: br000250
  publication-title: Comm. Pure Appl. Math.
– year: 1989
  ident: br000015
  article-title: The Fokker–Planck Equation
– volume: 265
  start-page: 590
  year: 1999
  ident: br000100
  publication-title: Physica A
– volume: 28
  start-page: 2551
  year: 2012
  ident: br000305
  publication-title: Int. J. Numer. Methods Biomed. Eng.
– volume: 246
  start-page: 399
  year: 1998
  ident: br000075
  publication-title: Phys. Lett. A
– volume: 52
  start-page: 479
  year: 1988
  ident: br000065
  publication-title: J. Stat. Phys.
– volume: 319
  start-page: 326
  year: 2005
  ident: br000180
  publication-title: Ann. Phys.
– volume: 42
  start-page: 1875
  year: 1990
  ident: 10.1016/j.physa.2013.09.029_br000215
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.42.1875
– volume: 6
  start-page: 1
  year: 1970
  ident: 10.1016/j.physa.2013.09.029_br000245
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(70)90001-X
– ident: 10.1016/j.physa.2013.09.029_br000280
– volume: 28
  start-page: 2551
  year: 2012
  ident: 10.1016/j.physa.2013.09.029_br000305
  publication-title: Int. J. Numer. Methods Biomed. Eng.
  doi: 10.1002/cnm.1458
– volume: 26
  start-page: 83
  year: 1981
  ident: 10.1016/j.physa.2013.09.029_br000195
  publication-title: J. Stat. Phys.
  doi: 10.1007/BF01106788
– volume: 72
  start-page: 785
  year: 2007
  ident: 10.1016/j.physa.2013.09.029_br000145
  publication-title: IMA J. Appl. Math.
  doi: 10.1093/imamat/hxm039
– volume: 324
  year: 1917
  ident: 10.1016/j.physa.2013.09.029_br000010
  publication-title: Sitzber. Preuss. Akad. Wiss.
– volume: 296
  start-page: 405
  year: 2001
  ident: 10.1016/j.physa.2013.09.029_br000115
  publication-title: Physica A
  doi: 10.1016/S0378-4371(01)00184-4
– volume: 7
  start-page: 284
  year: 1940
  ident: 10.1016/j.physa.2013.09.029_br000020
  publication-title: Physica
  doi: 10.1016/S0031-8914(40)90098-2
– volume: 265
  start-page: 590
  year: 1999
  ident: 10.1016/j.physa.2013.09.029_br000100
  publication-title: Physica A
  doi: 10.1016/S0378-4371(98)00561-5
– ident: 10.1016/j.physa.2013.09.029_br000185
– volume: 6
  start-page: 231
  year: 1953
  ident: 10.1016/j.physa.2013.09.029_br000250
  publication-title: Comm. Pure Appl. Math.
  doi: 10.1002/cpa.3160060204
– volume: 35
  start-page: 1795
  year: 1987
  ident: 10.1016/j.physa.2013.09.029_br000205
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.35.1795
– volume: 95
  start-page: 8299
  year: 1991
  ident: 10.1016/j.physa.2013.09.029_br000315
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100174a052
– volume: 375
  start-page: 140
  year: 2007
  ident: 10.1016/j.physa.2013.09.029_br000165
  publication-title: Physica A
  doi: 10.1016/j.physa.2006.08.076
– year: 1979
  ident: 10.1016/j.physa.2013.09.029_br000325
– volume: 43
  start-page: 810
  year: 1914
  ident: 10.1016/j.physa.2013.09.029_br000005
  publication-title: Ann. Phys.
  doi: 10.1002/andp.19143480507
– volume: 52
  start-page: 479
  year: 1988
  ident: 10.1016/j.physa.2013.09.029_br000065
  publication-title: J. Stat. Phys.
  doi: 10.1007/BF01016429
– volume: 288
  start-page: 283
  year: 2001
  ident: 10.1016/j.physa.2013.09.029_br000120
  publication-title: Phys. Lett. A
  doi: 10.1016/S0375-9601(01)00543-6
– volume: 31
  start-page: 445
  year: 2006
  ident: 10.1016/j.physa.2013.09.029_br000265
  publication-title: Sãdhanã
– volume: 29
  start-page: 46
  year: 1999
  ident: 10.1016/j.physa.2013.09.029_br000095
  publication-title: Braz. J. Phys.
  doi: 10.1590/S0103-97331999000100004
– volume: 107
  start-page: 3239
  year: 1997
  ident: 10.1016/j.physa.2013.09.029_br000290
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.474674
– volume: 5
  start-page: 220
  year: 2003
  ident: 10.1016/j.physa.2013.09.029_br000140
  publication-title: Entropy
  doi: 10.3390/e5020220
– volume: 42
  start-page: 2540
  year: 2001
  ident: 10.1016/j.physa.2013.09.029_br000125
  publication-title: J. Math. Phys.
  doi: 10.1063/1.1367327
– year: 2011
  ident: 10.1016/j.physa.2013.09.029_br000330
– volume: 230
  start-page: 5239
  year: 2011
  ident: 10.1016/j.physa.2013.09.029_br000285
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2011.03.020
– volume: 336
  start-page: 141
  year: 2005
  ident: 10.1016/j.physa.2013.09.029_br000170
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2005.01.016
– volume: 96
  start-page: 1179
  year: 1992
  ident: 10.1016/j.physa.2013.09.029_br000320
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100182a030
– year: 1970
  ident: 10.1016/j.physa.2013.09.029_br000040
– volume: 22
  start-page: 35
  year: 1975
  ident: 10.1016/j.physa.2013.09.029_br000055
  publication-title: Metrika
  doi: 10.1007/BF01899712
– volume: 247
  start-page: 211
  year: 1998
  ident: 10.1016/j.physa.2013.09.029_br000090
  publication-title: Phys. Lett. A
  doi: 10.1016/S0375-9601(98)00500-3
– volume: 292
  start-page: 315
  year: 2002
  ident: 10.1016/j.physa.2013.09.029_br000130
  publication-title: Phys. Lett. A
  doi: 10.1016/S0375-9601(01)00812-X
– volume: 33
  start-page: 307
  year: 1979
  ident: 10.1016/j.physa.2013.09.029_br000155
  publication-title: Z. Phys. B
  doi: 10.1007/BF01323507
– volume: 54
  start-page: 931
  year: 1996
  ident: 10.1016/j.physa.2013.09.029_br000275
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.54.931
– volume: 136
  start-page: 134109
  year: 2012
  ident: 10.1016/j.physa.2013.09.029_br000300
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3698598
– volume: 31
  start-page: 5271
  year: 1998
  ident: 10.1016/j.physa.2013.09.029_br000080
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/31/23/009
– volume: 68
  start-page: 036108
  year: 2003
  ident: 10.1016/j.physa.2013.09.029_br000035
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.68.036108
– volume: 319
  start-page: 326
  year: 2005
  ident: 10.1016/j.physa.2013.09.029_br000180
  publication-title: Ann. Phys.
  doi: 10.1016/j.aop.2005.04.006
– volume: 32
  start-page: 1089
  year: 1999
  ident: 10.1016/j.physa.2013.09.029_br000105
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/32/7/002
– volume: 222
  start-page: 347
  year: 1995
  ident: 10.1016/j.physa.2013.09.029_br000160
  publication-title: Physica A
  doi: 10.1016/0378-4371(95)00211-1
– volume: 19
  start-page: 1
  year: 1978
  ident: 10.1016/j.physa.2013.09.029_br000200
  publication-title: J. Stat. Phys.
  doi: 10.1007/BF01020331
– volume: 17
  start-page: 71
  year: 1977
  ident: 10.1016/j.physa.2013.09.029_br000230
  publication-title: J. Stat. Phys.
  doi: 10.1007/BF01268919
– volume: 70
  start-page: 107
  year: 2009
  ident: 10.1016/j.physa.2013.09.029_br000310
  publication-title: Eur. Phys. J. B
  doi: 10.1140/epjb/e2009-00172-9
– volume: 73A
  start-page: 374
  year: 1979
  ident: 10.1016/j.physa.2013.09.029_br000235
  publication-title: Phys. Lett.
  doi: 10.1016/0375-9601(79)90088-4
– year: 1998
  ident: 10.1016/j.physa.2013.09.029_br000085
– year: 1989
  ident: 10.1016/j.physa.2013.09.029_br000015
– volume: 62
  start-page: 179
  year: 2008
  ident: 10.1016/j.physa.2013.09.029_br000150
  publication-title: Eur. Phys. J. B
  doi: 10.1140/epjb/e2008-00142-9
– volume: 46
  start-page: 195
  year: 1981
  ident: 10.1016/j.physa.2013.09.029_br000190
  publication-title: Adv. Chem. Phys.
  doi: 10.1002/9780470142653.ch4
– year: 1967
  ident: 10.1016/j.physa.2013.09.029_br000255
– year: 1975
  ident: 10.1016/j.physa.2013.09.029_br000050
– volume: 224
  start-page: 326
  year: 1997
  ident: 10.1016/j.physa.2013.09.029_br000070
  publication-title: Phys. Lett. A
  doi: 10.1016/S0375-9601(96)00832-8
– volume: 69
  start-page: 813
  year: 1992
  ident: 10.1016/j.physa.2013.09.029_br000210
  publication-title: J. Stat. Phys.
  doi: 10.1007/BF01050435
– volume: 146
  start-page: 378
  year: 1990
  ident: 10.1016/j.physa.2013.09.029_br000260
  publication-title: Phys. Lett. A
  doi: 10.1016/0375-9601(90)90717-3
– volume: 56
  start-page: 786
  year: 1976
  ident: 10.1016/j.physa.2013.09.029_br000240
  publication-title: Progr. Theoret. Phys.
  doi: 10.1143/PTP.56.786
– volume: 61
  start-page: 359
  year: 1985
  ident: 10.1016/j.physa.2013.09.029_br000270
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(85)90070-1
– volume: 22
  start-page: 205
  year: 1975
  ident: 10.1016/j.physa.2013.09.029_br000060
  publication-title: Metrika
  doi: 10.1007/BF01899728
– volume: 34
  start-page: 699
  year: 1999
  ident: 10.1016/j.physa.2013.09.029_br000220
  publication-title: Int. J. Non-Linear Mech.
  doi: 10.1016/S0020-7462(98)00048-1
– volume: 56
  start-page: 1197
  year: 1997
  ident: 10.1016/j.physa.2013.09.029_br000295
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.56.1197
– volume: 66
  start-page: 3246
  year: 2000
  ident: 10.1016/j.physa.2013.09.029_br000110
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.62.3246
– volume: 246
  start-page: 399
  year: 1998
  ident: 10.1016/j.physa.2013.09.029_br000075
  publication-title: Phys. Lett. A
  doi: 10.1016/S0375-9601(98)00572-6
– year: 2005
  ident: 10.1016/j.physa.2013.09.029_br000025
– volume: 30
  start-page: 543
  year: 2002
  ident: 10.1016/j.physa.2013.09.029_br000135
  publication-title: Eur. Phys. J. B
  doi: 10.1140/epjb/e2002-00412-6
– volume: 49
  start-page: 5103
  year: 1994
  ident: 10.1016/j.physa.2013.09.029_br000030
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.49.5103
– volume: 19
  start-page: 181
  year: 1971
  ident: 10.1016/j.physa.2013.09.029_br000045
  publication-title: Inf. Control
  doi: 10.1016/S0019-9958(71)90065-9
– volume: 327
  start-page: 386
  year: 2012
  ident: 10.1016/j.physa.2013.09.029_br000175
  publication-title: Ann. Phys.
  doi: 10.1016/j.aop.2011.11.004
– volume: 5
  start-page: 2193
  year: 2011
  ident: 10.1016/j.physa.2013.09.029_br000225
  publication-title: Int. J. Math. Anal.
SSID ssj0001732
Score 2.0994549
Snippet A nonlinear Fokker–Planck equation is proposed for a system subject to different statistics (in the present study, the Gibbs–Boltzmann and Fermi–Dirac...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 171
SubjectTerms Fokker–Planck
Membrane interface
Mixing entropy functional
Numerical simulation
Title A Fokker–Planck equation for a piecewise entropy functional defined in different space domains. An application to solute partitioning at the membrane–water interface
URI https://dx.doi.org/10.1016/j.physa.2013.09.029
Volume 395
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9xADBbJhkIvoU-aPoIOPdZdz3o8Yx-X0GXbQi5tIDczDxnc7drOxiXkUvof-iv6t_pLqvEjpFBy6NFmZIaRkD5p5E8Ar2Nl03QRm0gnykTSUxpl-UJH2nAK5JXwme-7LU7V-kx-OE_P9-Bk-hcmtFWOvn_w6b23Ht_Mx9Oct1U1_xQnOpOJFuFCJmPD3IeDRZKrdAYHy_cf16c3DlnoZLhM4IQpCEzkQ32bVyggBP4hkfR8pz3U_EeAuhV0Vg_gcESLuBw29BD2qH4E9_quTXf5GH4tcdVsNrT7_eNnmD7kNkgXA3c3MhhFg21Fjq6qS8JQxW3aawyBbKj_oaeSMabHqsZpTkqH7GEcoW-2pmJ7xGWNt-64sWuwN1bCNpzSWM1F0yEDSdzSlpPvmng7V4xhdxjIKHYlf_AJnK3efT5ZR-PshchxUOsiBl7Kcu5nlRGeZOmsd0Y4YRMhSavcCpUbXklpqax20njWQslmmXKw4-0nT2FWNzU9A0y14RwnI9LeS-9EzpjMGqOV17KMlT-CxXTghRuJycN8jK_F1IH2pei1VAQtFXFesJaO4M2NUDvwcty9XE2aLP4yr4Ijx12Cz_9X8AXc5yc5NHi_hFm3-0avGL909hj2334Xx6OV_gHkOvYN
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbKVgguFU9RymMOHIk23jh2clxVXW1p2Qut1Jvlx0QK203CNqjixn_gV_C3-CUd51EVCfXANfFElmc088148g1jH2Jp03QWm0gl0kTCYxpl-UxFylAK5CX3me-6LVZyeS4-XaQXO-xw_BcmtFUOvr_36Z23Hp5Mh9OcNmU5_RInKhOJ4uFCJiPDfMB2RUrZ3oTtzo9Plqtbh8xV0l8mUMIUBEbyoa7NKxQQAv8QTzq-0w5q_iNA3Qk6iydsb0CLMO839JTtYPWMPey6Nt3Vc_Z7Dot6vcbtn5-_wvQhtwb81nN3A4FRMNCU6PC6vEIIVdy6-QEhkPX1P_BYEMb0UFYwzklpgTyMQ_D1xpRkjzCv4M4dN7Q1dMaK0IRTGqq5YFogIAkb3FDyXSFt55ow7BYCGcW2oA--YOeLo7PDZTTMXogcBbU2IuAlLeV-VhruURTOeme44zbhApXMLZe5oZWYFtIqJ4wnLRRklikFO9p-8pJNqrrCVwxSZSjHyRCV98I7nhMms8Yo6ZUoYun32Ww8cO0GYvIwH-NSjx1oX3WnJR20pONck5b22cdboabn5bh_uRw1qf8yL02R4z7B1_8r-J49Wp59PtWnx6uTA_aY3oi-2fsNm7Tb7_iWsExr3w22egPKIPf8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Fokker%E2%80%93Planck+equation+for+a+piecewise+entropy+functional+defined+in+different+space+domains.+An+application+to+solute+partitioning+at+the+membrane%E2%80%93water+interface&rft.jtitle=Physica+A&rft.au=Grassi%2C+Antonio&rft.au=Raudino%2C+Antonio&rft.date=2014-02-01&rft.pub=Elsevier+B.V&rft.issn=0378-4371&rft.eissn=1873-2119&rft.volume=395&rft.spage=171&rft.epage=182&rft_id=info:doi/10.1016%2Fj.physa.2013.09.029&rft.externalDocID=S0378437113008832
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4371&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4371&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4371&client=summon