Fractional derivatives with no-index law property: Application to chaos and statistics

•Semigroup principle failures to capture natural phenomena.•The future of modeling real world problem relies on fractional differential operators with non-index law property.•Atangana–Baleanu fractional differential operators are convolution of Riemann–Liouville–Caputo derivative with the Mittag–Lef...

Full description

Saved in:
Bibliographic Details
Published inChaos, solitons and fractals Vol. 114; pp. 516 - 535
Main Authors Atangana, Abdon, Gómez-Aguilar, J.F.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.09.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Semigroup principle failures to capture natural phenomena.•The future of modeling real world problem relies on fractional differential operators with non-index law property.•Atangana–Baleanu fractional differential operators are convolution of Riemann–Liouville–Caputo derivative with the Mittag–Leffler function.•Index law is not valid in fractional differentiation. Recently fractional differential operators with non-index law properties have being recognized to have brought new weapons to accurately model real world problems particularly those with non-Markovian processes. This present paper has two double aims, the first was to prove the inadequacy and failure of index law fractional calculus and secondly to show the application of fractional differential operators with no index law properties to statistic and dynamical systems. To achieve this, we presented the historical construction of the concept of fractional differential operators from Leibniz to date. Using a matrix based on the fractional differential operators, we proved that, fractional operators obeying index law cannot model real world problems taking place in two states, more precisely they cannot describe phenomena taking place beyond their boundaries, as they are scaling invariant, more precisely our results show that, mathematical models based on these differential operators are not able to describe the inverse memory, meaning the full history of a physical problem cannot be described accurately using these derivatives with index law properties. On the other hand, we proved that, differential operators with no index-law properties are scaling variant, thus can describe situations taking place in different states and are able to localize the frontiers between two states. We present the renewal process properties included in differential equation build out of the Atangana–Baleanu fractional derivative and counting process, which is connected to its inter-arrival time distribution Mittag–Leffler distribution which is the kernel of these derivatives. We presented the connection of each derivative to a statistical family, for instance Riemann–Liouville–Caputo derivatives are connected to the Pareto statistic, which has no well-defined average when alpha is less than 1 corresponding to the interval where fractional operators mostly defined. We established new properties and theorem for the Atangana–Baleanu derivative of an analytic function, in particular we proved that, they are convolution of the Mittag–Leffler function with the Riemann–Liouville–Caputo derivatives. To see the accuracy of the non-index law derivative to in modeling real chaotic problems, 4 examples were considered, including the nine-term 3-D novel chaotic system, King Cobra chaotic system, the Ikeda delay system and chaotic chameleon system. The numerical simulations show very interesting and novel attractors. The king cobra system with the Atangana–Baleanu presented a very novel attractor where at the earlier time we observed a random walk and latter time we observed the real sharp of the cobra. The Ikeda model with Atangana–Baleanu presented different attractors for each value of fractional order, in particular we obtain a square and circular explosions. The results obtained in this paper show that, the future of modeling real world problem relies on fractional differential operators with non-index law property. Our numerical results showed that, to not model physical problems with fractional differential operators with non-singular kernel and imposing index law in fractional calculus is rightfully living with closed eyes without ever taking a risk to open them.
AbstractList •Semigroup principle failures to capture natural phenomena.•The future of modeling real world problem relies on fractional differential operators with non-index law property.•Atangana–Baleanu fractional differential operators are convolution of Riemann–Liouville–Caputo derivative with the Mittag–Leffler function.•Index law is not valid in fractional differentiation. Recently fractional differential operators with non-index law properties have being recognized to have brought new weapons to accurately model real world problems particularly those with non-Markovian processes. This present paper has two double aims, the first was to prove the inadequacy and failure of index law fractional calculus and secondly to show the application of fractional differential operators with no index law properties to statistic and dynamical systems. To achieve this, we presented the historical construction of the concept of fractional differential operators from Leibniz to date. Using a matrix based on the fractional differential operators, we proved that, fractional operators obeying index law cannot model real world problems taking place in two states, more precisely they cannot describe phenomena taking place beyond their boundaries, as they are scaling invariant, more precisely our results show that, mathematical models based on these differential operators are not able to describe the inverse memory, meaning the full history of a physical problem cannot be described accurately using these derivatives with index law properties. On the other hand, we proved that, differential operators with no index-law properties are scaling variant, thus can describe situations taking place in different states and are able to localize the frontiers between two states. We present the renewal process properties included in differential equation build out of the Atangana–Baleanu fractional derivative and counting process, which is connected to its inter-arrival time distribution Mittag–Leffler distribution which is the kernel of these derivatives. We presented the connection of each derivative to a statistical family, for instance Riemann–Liouville–Caputo derivatives are connected to the Pareto statistic, which has no well-defined average when alpha is less than 1 corresponding to the interval where fractional operators mostly defined. We established new properties and theorem for the Atangana–Baleanu derivative of an analytic function, in particular we proved that, they are convolution of the Mittag–Leffler function with the Riemann–Liouville–Caputo derivatives. To see the accuracy of the non-index law derivative to in modeling real chaotic problems, 4 examples were considered, including the nine-term 3-D novel chaotic system, King Cobra chaotic system, the Ikeda delay system and chaotic chameleon system. The numerical simulations show very interesting and novel attractors. The king cobra system with the Atangana–Baleanu presented a very novel attractor where at the earlier time we observed a random walk and latter time we observed the real sharp of the cobra. The Ikeda model with Atangana–Baleanu presented different attractors for each value of fractional order, in particular we obtain a square and circular explosions. The results obtained in this paper show that, the future of modeling real world problem relies on fractional differential operators with non-index law property. Our numerical results showed that, to not model physical problems with fractional differential operators with non-singular kernel and imposing index law in fractional calculus is rightfully living with closed eyes without ever taking a risk to open them.
Author Gómez-Aguilar, J.F.
Atangana, Abdon
Author_xml – sequence: 1
  givenname: Abdon
  surname: Atangana
  fullname: Atangana, Abdon
  email: AtanganaA@ufs.ac.za
  organization: Faculty of Natural and Agricultural Sciences, Institute for Groundwater Studies, University of the Free State Bloemfontein, 9300, South Africa
– sequence: 2
  givenname: J.F.
  surname: Gómez-Aguilar
  fullname: Gómez-Aguilar, J.F.
  email: jgomez@cenidet.edu.mx
  organization: CONACyT-Tecnológico Nacional de México/CENIDET, Interior Internado Palmira S/N, Col. Palmira, Cuernavaca, Morelos, C.P. 62490, México
BookMark eNp9kNFKwzAUhoNMcJs-gTd5gdaTpk1TwYsxnAoDb9TbkCanLGM2JQmbe3u7zWuvfvjhO-fnm5FJ73sk5J5BzoCJh21uNtrHvAAmc6hz4PyKTJmseVZIWU_IFBoBGdR1c0NmMW4BgIEopuRrFbRJzvd6Ry0Gt9fJ7THSg0sb2vvM9RZ_6E4f6BD8gCEdH-liGHbO6BNFk6fn11T3lsY0ljE5E2_Jdad3Ee_-ck4-V88fy9ds_f7ytlysM8OBp6wpTSW1aVppeVlJzlpZ6I6ZVqIVINuS16YBbgsrdFOWnS6EwMo2LRcFYsX5nPDLXRN8jAE7NQT3rcNRMVAnNWqrzvvUSY2CWo1qRurpQuE4be8wqGgc9gatC2iSst79y_8Cuo1xMg
CitedBy_id crossref_primary_10_34088_kojose_1050267
crossref_primary_10_1016_j_heliyon_2023_e20792
crossref_primary_10_3390_sym14051067
crossref_primary_10_1142_S0218348X22400369
crossref_primary_10_1108_EC_02_2020_0091
crossref_primary_10_1016_j_aej_2020_02_028
crossref_primary_10_1016_j_physa_2020_124620
crossref_primary_10_1002_mma_7607
crossref_primary_10_3390_app10238316
crossref_primary_10_1016_j_rinp_2020_103326
crossref_primary_10_3390_math9121344
crossref_primary_10_3390_sym14020207
crossref_primary_10_1088_1402_4896_ad1796
crossref_primary_10_1140_epjp_s13360_020_00558_7
crossref_primary_10_1016_j_aej_2020_05_016
crossref_primary_10_1002_mma_7164
crossref_primary_10_1016_j_matcom_2022_06_028
crossref_primary_10_1142_S0218348X20400071
crossref_primary_10_1038_s41598_023_49541_z
crossref_primary_10_1016_j_apm_2023_02_019
crossref_primary_10_1016_j_aej_2020_06_050
crossref_primary_10_1016_j_chaos_2019_07_053
crossref_primary_10_1051_mmnp_2018068
crossref_primary_10_1051_mmnp_2018067
crossref_primary_10_3934_math_2023167
crossref_primary_10_1016_j_chaos_2019_03_038
crossref_primary_10_1155_2023_6123608
crossref_primary_10_1108_HFF_03_2021_0211
crossref_primary_10_1002_mma_7838
crossref_primary_10_1016_j_chaos_2021_111602
crossref_primary_10_1016_j_aej_2020_02_036
crossref_primary_10_1142_S0218348X20400514
crossref_primary_10_1140_epjst_e2020_900238_8
crossref_primary_10_1186_s13662_022_03742_4
crossref_primary_10_1016_j_chaos_2019_07_019
crossref_primary_10_1016_j_aej_2023_03_015
crossref_primary_10_3934_math_2024216
crossref_primary_10_1016_j_chaos_2019_109484
crossref_primary_10_1142_S0218348X22402083
crossref_primary_10_1016_j_rinp_2022_105649
crossref_primary_10_1038_s41598_024_60268_3
crossref_primary_10_1016_j_aej_2020_02_008
crossref_primary_10_1142_S0218348X22400461
crossref_primary_10_1140_epjp_i2019_12765_0
crossref_primary_10_1016_j_rinp_2020_103669
crossref_primary_10_1007_s00366_019_00861_7
crossref_primary_10_1016_j_chaos_2019_07_023
crossref_primary_10_1140_epjp_i2018_12340_3
crossref_primary_10_1016_j_heliyon_2020_e05109
crossref_primary_10_1016_j_chaos_2020_110554
crossref_primary_10_1142_S0218126621502716
crossref_primary_10_1016_j_physa_2019_122578
crossref_primary_10_1186_s13662_020_02709_7
crossref_primary_10_1140_epjp_s13360_020_00183_4
crossref_primary_10_1016_j_aej_2021_04_023
crossref_primary_10_1016_j_rinp_2021_103855
crossref_primary_10_3390_fractalfract8010065
crossref_primary_10_1016_j_chaos_2019_109491
crossref_primary_10_1002_mma_5754
crossref_primary_10_3390_math8060923
crossref_primary_10_1007_s00366_020_01185_7
crossref_primary_10_1016_j_aej_2020_02_010
crossref_primary_10_1007_s10973_020_09700_0
crossref_primary_10_1016_j_chaos_2020_109695
crossref_primary_10_1016_j_rinp_2020_103559
crossref_primary_10_3390_math10173071
crossref_primary_10_1186_s13662_020_2514_5
crossref_primary_10_12677_AAM_2021_1010338
crossref_primary_10_1016_j_aej_2020_02_014
crossref_primary_10_1002_num_22577
crossref_primary_10_1016_j_bspc_2019_101584
crossref_primary_10_1016_j_chaos_2018_10_013
crossref_primary_10_1016_j_chaos_2018_10_014
crossref_primary_10_1080_17455030_2022_2036386
crossref_primary_10_1016_j_chaos_2022_112169
crossref_primary_10_1016_j_chaos_2018_10_010
crossref_primary_10_1016_j_chaos_2019_06_037
crossref_primary_10_1016_j_chaos_2022_112285
crossref_primary_10_1016_j_matcom_2022_09_020
crossref_primary_10_1155_2021_2643572
crossref_primary_10_1186_s13661_019_1194_0
crossref_primary_10_1002_mma_5981
crossref_primary_10_1007_s41066_023_00364_3
crossref_primary_10_1007_s10973_020_10027_z
crossref_primary_10_1007_s00034_019_01211_0
crossref_primary_10_1007_s00366_019_00843_9
crossref_primary_10_1063_5_0137598
crossref_primary_10_1016_j_physa_2019_04_024
crossref_primary_10_1007_s40819_022_01452_9
crossref_primary_10_1080_02286203_2021_2015818
crossref_primary_10_1016_j_chaos_2018_10_007
crossref_primary_10_1007_s11071_021_06951_w
crossref_primary_10_3390_fractalfract2040024
crossref_primary_10_1142_S0218348X22400175
crossref_primary_10_1016_j_chaos_2018_09_021
crossref_primary_10_32604_cmes_2022_023694
crossref_primary_10_1016_j_chaos_2021_110838
crossref_primary_10_2298_FIL2318229A
crossref_primary_10_1016_j_rinp_2021_105139
crossref_primary_10_1016_j_chaos_2018_09_026
crossref_primary_10_1186_s13662_018_1903_5
crossref_primary_10_1002_fld_5296
crossref_primary_10_3934_dcdss_2020171
crossref_primary_10_1016_j_rinp_2021_104074
crossref_primary_10_1016_j_rinp_2021_104075
crossref_primary_10_3934_dcdss_2020295
crossref_primary_10_1007_s10973_019_08992_1
crossref_primary_10_1109_TFUZZ_2022_3214070
crossref_primary_10_1016_j_chaos_2019_05_013
crossref_primary_10_1038_s41598_024_59261_7
crossref_primary_10_1016_j_rinp_2020_103462
crossref_primary_10_1002_mma_7228
crossref_primary_10_1186_s13662_019_2336_5
crossref_primary_10_1016_j_chaos_2018_09_033
crossref_primary_10_1109_TCSII_2019_2952693
crossref_primary_10_1016_j_chaos_2018_09_038
crossref_primary_10_1142_S0218348X23400947
crossref_primary_10_1016_j_chaos_2020_110076
crossref_primary_10_1016_j_chaos_2020_110199
crossref_primary_10_1080_01430750_2021_1939157
crossref_primary_10_1155_2022_7283252
crossref_primary_10_1080_02286203_2023_2273620
crossref_primary_10_1142_S0218348X2240014X
crossref_primary_10_1016_j_aej_2020_03_003
crossref_primary_10_1007_s00034_022_02213_1
crossref_primary_10_3934_math_20231446
crossref_primary_10_1109_ACCESS_2023_3276351
crossref_primary_10_1016_j_chaos_2019_05_008
crossref_primary_10_1016_j_chaos_2019_109456
crossref_primary_10_1016_j_chaos_2021_110931
crossref_primary_10_1016_j_chaos_2018_09_047
crossref_primary_10_1186_s13662_021_03229_8
crossref_primary_10_1142_S0218348X20400101
crossref_primary_10_1016_j_rinp_2020_103719
crossref_primary_10_3934_math_20221000
crossref_primary_10_1016_j_aej_2019_12_027
crossref_primary_10_1016_j_aej_2020_07_014
crossref_primary_10_1088_1402_4896_ac0c58
crossref_primary_10_1016_j_aej_2019_12_023
crossref_primary_10_1063_1_5085490
crossref_primary_10_3934_era_2020030
crossref_primary_10_1007_s00366_021_01367_x
crossref_primary_10_1002_num_22707
crossref_primary_10_1063_1_5084035
crossref_primary_10_1016_j_chaos_2020_109867
crossref_primary_10_1155_2020_8709393
crossref_primary_10_1142_S0218348X22500931
crossref_primary_10_1108_EC_01_2019_0012
crossref_primary_10_1016_j_physa_2019_03_085
crossref_primary_10_1186_s13662_020_02729_3
crossref_primary_10_3390_fractalfract4020015
crossref_primary_10_3390_fractalfract4020012
crossref_primary_10_1063_1_5096159
crossref_primary_10_1142_S0218348X20400472
crossref_primary_10_1080_25765299_2022_2119685
crossref_primary_10_1016_j_energy_2023_127792
crossref_primary_10_1142_S1793524519500591
crossref_primary_10_1016_j_rinp_2020_103610
crossref_primary_10_1016_j_chaos_2018_11_035
crossref_primary_10_3934_math_2020053
crossref_primary_10_1007_s00366_019_00852_8
crossref_primary_10_1016_j_chaos_2019_05_025
crossref_primary_10_1063_5_0185906
crossref_primary_10_1155_2020_3842946
crossref_primary_10_1016_j_chaos_2020_109754
crossref_primary_10_1016_j_rinp_2022_105478
crossref_primary_10_1016_j_chaos_2020_109630
crossref_primary_10_1080_17455030_2022_2147242
crossref_primary_10_1016_j_camwa_2019_03_043
crossref_primary_10_1063_1_5082645
crossref_primary_10_1016_j_chaos_2018_07_036
crossref_primary_10_1016_j_rinp_2021_104402
crossref_primary_10_1016_j_chaos_2022_112822
crossref_primary_10_1016_j_physa_2019_01_102
crossref_primary_10_1142_S0218348X22401831
crossref_primary_10_1002_mma_7430
crossref_primary_10_1063_1_5078738
crossref_primary_10_1016_j_rinp_2021_104559
crossref_primary_10_3390_fractalfract7070559
crossref_primary_10_3390_math7090830
crossref_primary_10_1142_S0218348X22401272
crossref_primary_10_1155_2022_6502598
crossref_primary_10_1002_mma_7305
crossref_primary_10_1016_j_physa_2019_03_069
crossref_primary_10_1016_j_jare_2020_05_005
crossref_primary_10_1016_j_chaos_2019_109402
crossref_primary_10_1016_j_ijheatmasstransfer_2020_119592
crossref_primary_10_3390_math11071634
crossref_primary_10_1063_1_5080139
crossref_primary_10_1016_j_chaos_2019_109405
crossref_primary_10_1142_S0218348X20400010
crossref_primary_10_1016_j_comcom_2020_11_014
crossref_primary_10_1016_j_chaos_2020_110390
crossref_primary_10_1186_s13662_019_2024_5
crossref_primary_10_1016_j_aej_2019_12_034
crossref_primary_10_1016_j_rinp_2020_103158
crossref_primary_10_1002_mma_6568
crossref_primary_10_1140_epjp_i2019_12697_7
crossref_primary_10_1016_j_physa_2019_02_016
crossref_primary_10_1088_1402_4896_acb591
crossref_primary_10_1016_j_physa_2019_02_018
crossref_primary_10_1016_j_chaos_2018_11_017
crossref_primary_10_1016_j_chaos_2022_112812
crossref_primary_10_1016_j_rinam_2021_100142
crossref_primary_10_1016_j_chaos_2022_112204
crossref_primary_10_1016_j_chaos_2022_112325
crossref_primary_10_1016_j_chaos_2020_110021
crossref_primary_10_1016_j_chaos_2021_111633
crossref_primary_10_3934_naco_2023019
crossref_primary_10_1155_2021_4152160
crossref_primary_10_1016_j_chaos_2019_04_029
crossref_primary_10_1016_j_ijmecsci_2020_105902
crossref_primary_10_1016_j_aej_2023_01_027
crossref_primary_10_1142_S0218348X22400448
crossref_primary_10_1002_num_22627
crossref_primary_10_1002_mma_6432
crossref_primary_10_1016_j_chaos_2019_07_003
crossref_primary_10_1016_j_rinp_2021_104210
crossref_primary_10_1142_S0218348X20400423
crossref_primary_10_1140_epjp_i2019_12815_7
crossref_primary_10_1186_s13662_020_2527_0
crossref_primary_10_1016_j_aej_2020_06_007
crossref_primary_10_1002_num_22983
crossref_primary_10_1007_s12190_019_01302_w
crossref_primary_10_1016_j_mejo_2019_01_005
crossref_primary_10_2139_ssrn_4123072
crossref_primary_10_3390_en13215768
crossref_primary_10_1016_j_chaos_2020_110375
crossref_primary_10_1016_j_chaos_2020_110257
crossref_primary_10_1016_j_aej_2019_11_009
crossref_primary_10_1063_5_0085960
crossref_primary_10_1016_j_cnsns_2020_105186
crossref_primary_10_1016_j_physa_2019_122636
crossref_primary_10_1016_j_apnum_2020_11_020
crossref_primary_10_1016_j_chaos_2022_113085
crossref_primary_10_1142_S0218348X22400217
crossref_primary_10_1140_epjp_i2019_12777_8
crossref_primary_10_1016_j_chaos_2020_109835
crossref_primary_10_1155_2023_5891342
crossref_primary_10_1007_s40435_022_00961_1
crossref_primary_10_1016_j_aej_2019_11_017
crossref_primary_10_1016_j_chaos_2019_07_015
crossref_primary_10_1016_j_chaos_2019_07_014
crossref_primary_10_1016_j_chaos_2019_07_017
crossref_primary_10_1155_2021_5557068
crossref_primary_10_1016_j_chaos_2019_07_010
crossref_primary_10_1016_j_chaos_2019_07_013
crossref_primary_10_1016_j_aej_2020_01_008
crossref_primary_10_1142_S0218348X22402605
crossref_primary_10_1142_S0218348X2340042X
crossref_primary_10_1016_j_chaos_2023_113399
crossref_primary_10_3390_fractalfract4020022
crossref_primary_10_1088_1402_4896_ac2f37
crossref_primary_10_3389_fphy_2020_00136
crossref_primary_10_3934_math_2022244
crossref_primary_10_1177_1687814019866540
crossref_primary_10_1140_epjp_i2019_12661_7
crossref_primary_10_1016_j_chaos_2019_03_006
crossref_primary_10_1080_02286203_2022_2086743
crossref_primary_10_1016_j_rinp_2020_103507
crossref_primary_10_1007_s40819_022_01408_z
crossref_primary_10_1016_j_fss_2021_04_012
crossref_primary_10_1140_epjp_i2019_12499_y
crossref_primary_10_1016_j_chaos_2021_110891
crossref_primary_10_1016_j_chaos_2020_110233
crossref_primary_10_1016_j_chaos_2020_110475
crossref_primary_10_1140_epjp_s13360_021_02136_x
crossref_primary_10_1016_j_physa_2019_122896
crossref_primary_10_1515_phys_2023_0153
crossref_primary_10_1016_j_chaos_2018_12_015
crossref_primary_10_1140_epjp_i2019_13003_7
crossref_primary_10_1016_j_chaos_2018_12_019
crossref_primary_10_1142_S0218348X22401405
crossref_primary_10_1016_j_jare_2020_04_021
crossref_primary_10_1016_j_rinp_2020_103510
crossref_primary_10_1007_s00521_019_04562_6
crossref_primary_10_1155_2022_9693005
crossref_primary_10_46481_jnsps_2023_1368
crossref_primary_10_1002_mma_6886
crossref_primary_10_1002_cta_2640
crossref_primary_10_1007_s12346_023_00849_1
crossref_primary_10_1088_1402_4896_ac1218
Cites_doi 10.1016/j.cnsns.2018.02.019
10.1063/1.4886355
10.1007/s11071-018-4289-8
10.1016/j.amc.2011.03.062
10.1016/j.jspi.2010.04.016
10.1515/fca-2015-0031
10.1016/j.chaos.2017.07.007
10.18576/pfda/040101
10.1016/S0377-0427(00)00294-6
10.1140/epjp/i2017-11717-0
10.1007/BFb0067096
10.1111/j.1365-246X.1967.tb02303.x
10.1016/j.cnsns.2017.12.003
10.1088/1009-1963/15/2/011
10.1016/0378-4371(96)00209-9
10.2298/TSCI160111018A
10.22436/mns.01.01.01
10.1007/BF01883623
10.1016/j.physa.2018.03.056
10.1007/BF00050786
10.1140/epjp/i2018-12021-3
10.1007/BF01023645
10.3389/fphy.2017.00052
10.18576/pfda/030402
10.1016/j.physa.2017.02.016
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright_xml – notice: 2018 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.chaos.2018.07.033
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1873-2887
EndPage 535
ExternalDocumentID 10_1016_j_chaos_2018_07_033
S0960077918304156
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABMAC
ABNEU
ABTAH
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLZ
HMV
HVGLF
HZ~
IHE
J1W
KOM
LG9
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SPG
SSQ
SSZ
T5K
WUQ
XPP
ZY4
~G-
AAXKI
AAYXX
AKRWK
CITATION
ID FETCH-LOGICAL-c303t-94c58ac9b8d345831b82af1cb8ed608b437c903d2d6a944fa266e5d9b362ee533
IEDL.DBID .~1
ISSN 0960-0779
IngestDate Thu Sep 12 16:55:21 EDT 2024
Fri Feb 23 02:47:17 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Non-validity of index law
Numerical simulations
Fractional calculus
Chaotic systems
Mittag–Leffler distribution
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c303t-94c58ac9b8d345831b82af1cb8ed608b437c903d2d6a944fa266e5d9b362ee533
PageCount 20
ParticipantIDs crossref_primary_10_1016_j_chaos_2018_07_033
elsevier_sciencedirect_doi_10_1016_j_chaos_2018_07_033
PublicationCentury 2000
PublicationDate September 2018
2018-09-00
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: September 2018
PublicationDecade 2010
PublicationTitle Chaos, solitons and fractals
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Hristov (bib0022) 2017; 1
Labora, Nieto, Rodríguez-López (bib0009) 2018; 4
Atangana, Aguilar (bib0013) 2018; 133
Mainardi, Gorenflo, Vivoli (bib0031) 2005; 8
Tateishi, Ribeiro, Lenzi (bib0010) 2017; 5
Jun-Guo (bib0039) 2006; 15
Pillai (bib0032) 1990; 42
Caputo, Fabrizio (bib0004) 2015; 1
Srivastava (bib0018) 2014
Baleanu, Fernandez (bib0029) 2018; 59
Anil (bib0033) 2001; 1
Caputo (bib0002) 1967; 13
Atangana, Baleanu (bib0005) 2016; 20
Machado, Mainardi, Kiryakova (bib0015) 2015; 18
Giusti (bib0028) 2018; 93
Hristov (bib0021) 2017; 3
Weissman, George, Halvin (bib0034) 1989; 57
Hristov (bib0024) 2017; 1
Atangana, Gómez-Aguilar (bib0006) 2017; 476
Uchaikin (bib0007) 2013
Tarasov (bib0027) 2018; 62
Katugampola (bib0003) 2011; 218
Solem, Biedenharn (bib0019) 1993; 23
Djida, Mophou, Area (bib0012) 2017; 1
Cahoy, Uchaikin, Woyczynski (bib0026) 2010; 140
Hadamard (bib0001) 1892; 4
Hristov (bib0023) 2017; 3
Weron, Kotulski (bib0035) 1996; 232
Caputo, Fabrizio (bib0011) 2017; 13
Toufik, Atangana (bib0037) 2017; 132
Pareto (bib0025) 1965
Kilbas, Srivastava, Trujillo (bib0016) 2006
Rajagopal, Akgul, Jafari, Karthikeyan, Koyuncu (bib0040) 2017; 103
Dirac (bib0020) 1958
Samko, Kilbas, Marichev (bib0017) 1993
Vaidyanathan, Azar (bib0036) 2015
Atangana (bib0014) 2018; 505
Ross (bib0008) 1975; 457
Mainardi, Gorenflo (bib0030) 2000; 118
Muthukumar, Balasubramaniam, Ratnavelu (bib0038) 2014; 24
Caputo (10.1016/j.chaos.2018.07.033_bib0002) 1967; 13
Hristov (10.1016/j.chaos.2018.07.033_bib0021) 2017; 3
Hristov (10.1016/j.chaos.2018.07.033_bib0024) 2017; 1
Weron (10.1016/j.chaos.2018.07.033_bib0035) 1996; 232
Srivastava (10.1016/j.chaos.2018.07.033_bib0018) 2014
Labora (10.1016/j.chaos.2018.07.033_bib0009) 2018; 4
Muthukumar (10.1016/j.chaos.2018.07.033_bib0038) 2014; 24
Weissman (10.1016/j.chaos.2018.07.033_bib0034) 1989; 57
Caputo (10.1016/j.chaos.2018.07.033_bib0011) 2017; 13
Toufik (10.1016/j.chaos.2018.07.033_bib0037) 2017; 132
Jun-Guo (10.1016/j.chaos.2018.07.033_bib0039) 2006; 15
Katugampola (10.1016/j.chaos.2018.07.033_bib0003) 2011; 218
Hristov (10.1016/j.chaos.2018.07.033_bib0023) 2017; 3
Pillai (10.1016/j.chaos.2018.07.033_bib0032) 1990; 42
Cahoy (10.1016/j.chaos.2018.07.033_bib0026) 2010; 140
Atangana (10.1016/j.chaos.2018.07.033_bib0014) 2018; 505
Mainardi (10.1016/j.chaos.2018.07.033_bib0031) 2005; 8
Atangana (10.1016/j.chaos.2018.07.033_bib0005) 2016; 20
Giusti (10.1016/j.chaos.2018.07.033_bib0028) 2018; 93
Atangana (10.1016/j.chaos.2018.07.033_bib0013) 2018; 133
Samko (10.1016/j.chaos.2018.07.033_bib0017) 1993
Ross (10.1016/j.chaos.2018.07.033_bib0008) 1975; 457
Djida (10.1016/j.chaos.2018.07.033_bib0012) 2017; 1
Kilbas (10.1016/j.chaos.2018.07.033_bib0016) 2006
Machado (10.1016/j.chaos.2018.07.033_bib0015) 2015; 18
Tarasov (10.1016/j.chaos.2018.07.033_bib0027) 2018; 62
Rajagopal (10.1016/j.chaos.2018.07.033_bib0040) 2017; 103
Hristov (10.1016/j.chaos.2018.07.033_bib0022) 2017; 1
Anil (10.1016/j.chaos.2018.07.033_bib0033) 2001; 1
Baleanu (10.1016/j.chaos.2018.07.033_bib0029) 2018; 59
Vaidyanathan (10.1016/j.chaos.2018.07.033_bib0036) 2015
Caputo (10.1016/j.chaos.2018.07.033_bib0004) 2015; 1
Tateishi (10.1016/j.chaos.2018.07.033_bib0010) 2017; 5
Solem (10.1016/j.chaos.2018.07.033_bib0019) 1993; 23
Pareto (10.1016/j.chaos.2018.07.033_sbref0024) 1965
Mainardi (10.1016/j.chaos.2018.07.033_bib0030) 2000; 118
Uchaikin (10.1016/j.chaos.2018.07.033_bib0007) 2013
Hadamard (10.1016/j.chaos.2018.07.033_bib0001) 1892; 4
Atangana (10.1016/j.chaos.2018.07.033_bib0006) 2017; 476
Dirac (10.1016/j.chaos.2018.07.033_bib0020) 1958
References_xml – volume: 218
  start-page: 860
  year: 2011
  end-page: 865
  ident: bib0003
  article-title: New approach to a generalized fractional integral
  publication-title: Appl Math Comput
  contributor:
    fullname: Katugampola
– volume: 20
  start-page: 763
  year: 2016
  end-page: 769
  ident: bib0005
  article-title: New fractional derivatives with non-local and non-singular kernel: theory and application to heat transfer model
  publication-title: Therm Sci
  contributor:
    fullname: Baleanu
– volume: 133
  start-page: 1
  year: 2018
  end-page: 23
  ident: bib0013
  article-title: Decolonisation of fractional calculus rules: breaking commutativity and associativity to capture more natural phenomena
  publication-title: Eur Phys J Plus
  contributor:
    fullname: Aguilar
– volume: 3
  start-page: 1
  year: 2017
  end-page: 16
  ident: bib0021
  article-title: Derivation of the fractional Dodson equation and beyond: transient diffusion with a non-singular memory and exponentially fading-out diffusivity
  publication-title: Progr Fract Differ Appl,
  contributor:
    fullname: Hristov
– start-page: 19
  year: 2015
  end-page: 38
  ident: bib0036
  article-title: Analysis, control and synchronization of a nine-term 3-d novel chaotic system
  publication-title: Chaos modeling and control systems design
  contributor:
    fullname: Azar
– volume: 140
  start-page: 3106
  year: 2010
  end-page: 3120
  ident: bib0026
  article-title: Parameter estimation for fractional poisson processes
  publication-title: J Stat Plan Inference,
  contributor:
    fullname: Woyczynski
– volume: 3
  start-page: 72
  year: 2017
  end-page: 86
  ident: bib0023
  article-title: Emerging issues in the stokes first problem for a Casson fluid: from integer to fractional models by the integral? balance approach
  publication-title: J Comput Complex Appl
  contributor:
    fullname: Hristov
– volume: 4
  start-page: 101
  year: 1892
  end-page: 186
  ident: bib0001
  article-title: Essai sur l’étude des fonctions donn’ées par leur développement de taylor
  publication-title: J Pure Appl Math
  contributor:
    fullname: Hadamard
– volume: 476
  start-page: 1
  year: 2017
  end-page: 14
  ident: bib0006
  article-title: A new derivative with normal distribution kernel: theory, methods and applications
  publication-title: Physica A
  contributor:
    fullname: Gómez-Aguilar
– volume: 505
  start-page: 688
  year: 2018
  end-page: 706
  ident: bib0014
  article-title: Non validity of index law in fractional calculus: a fractional differential operator with Markovian and non-Markovian properties
  publication-title: Physica A
  contributor:
    fullname: Atangana
– year: 1958
  ident: bib0020
  article-title: The principles of quantum mechanics
  contributor:
    fullname: Dirac
– volume: 232
  start-page: 180
  year: 1996
  end-page: 188
  ident: bib0035
  article-title: On the cole-cole relaxation function and related Mittag–Leffler distribution
  publication-title: Physica A
  contributor:
    fullname: Kotulski
– volume: 1
  start-page: 1
  year: 2017
  end-page: 17
  ident: bib0022
  article-title: The non-linear dodson diffusion equation: approximate solutions and beyond with formalistic fractionalization
  publication-title: Math Nat Sci,
  contributor:
    fullname: Hristov
– volume: 103
  start-page: 476
  year: 2017
  end-page: 487
  ident: bib0040
  article-title: Chaotic chameleon: dynamic analyses, circuit implementation, FPGA design and fractional-order form with basic analyses
  publication-title: Chaos Solitons Fract
  contributor:
    fullname: Koyuncu
– volume: 93
  start-page: 1757
  year: 2018
  end-page: 1763
  ident: bib0028
  article-title: A comment on some new definitions of fractional derivative
  publication-title: Nonlinear Dynamics
  contributor:
    fullname: Giusti
– volume: 8
  start-page: 7
  year: 2005
  end-page: 38
  ident: bib0031
  article-title: Renewal processes of Mittag–Leffler and wright type
  publication-title: Fract Calc Appl Anal
  contributor:
    fullname: Vivoli
– volume: 62
  start-page: 157
  year: 2018
  end-page: 163
  ident: bib0027
  article-title: No nonlocality. No fractional derivative
  publication-title: Commun Nonlinear Sci Numer Simul
  contributor:
    fullname: Tarasov
– start-page: 1
  year: 1965
  end-page: 5
  ident: bib0025
  article-title: La courbe de la repartition de la richesse
  publication-title: Oevres completes de vilfredo pareto
  contributor:
    fullname: Pareto
– volume: 57
  start-page: 301
  year: 1989
  end-page: 317
  ident: bib0034
  article-title: Transport properties of continuous time random walk with long-tailed waiting-time density
  publication-title: J Stat Phys
  contributor:
    fullname: Halvin
– volume: 5
  start-page: 1
  year: 2017
  end-page: 9
  ident: bib0010
  article-title: The role of fractional time-derivative operators on anomalous diffusion
  publication-title: Front Phys
  contributor:
    fullname: Lenzi
– volume: 15
  start-page: 1
  year: 2006
  end-page: 5
  ident: bib0039
  article-title: Chaotic dynamics of the fractional-order Ikeda delay system and its synchronization
  publication-title: Chin Phys
  contributor:
    fullname: Jun-Guo
– volume: 18
  start-page: 495
  year: 2015
  end-page: 526
  ident: bib0015
  article-title: Fractional calculus: quo vadimus? (where are we going?)
  publication-title: Fract Calc Appl Anal
  contributor:
    fullname: Kiryakova
– volume: 42
  start-page: 157
  year: 1990
  end-page: 161
  ident: bib0032
  article-title: On Mittag–Leffler functions and related distributions
  publication-title: Ann Inst Statist Math
  contributor:
    fullname: Pillai
– volume: 132
  start-page: 1
  year: 2017
  end-page: 16
  ident: bib0037
  article-title: New numerical approximation of fractional derivative with non-local and non-singular kernel: application to chaotic models
  publication-title: Eur Phys J Plus
  contributor:
    fullname: Atangana
– volume: 1
  start-page: 11
  year: 2001
  end-page: 22
  ident: bib0033
  article-title: A generalized poisson distribution and its applications
  publication-title: J Kerala Stat Assoc
  contributor:
    fullname: Anil
– volume: 1
  start-page: 1
  year: 2017
  end-page: 18
  ident: bib0012
  article-title: Optimal control of diffusion equation with fractional time derivative with nonlocal and nonsingular Mittag-Leffler kernel
  publication-title: Journal of Optimization Theory and Applications
  contributor:
    fullname: Area
– year: 2006
  ident: bib0016
  article-title: Theory and applications of fractional differential equations
  contributor:
    fullname: Trujillo
– volume: 457
  start-page: 1
  year: 1975
  end-page: 36
  ident: bib0008
  article-title: A brief history and exposition of the fundamental theory of fractional calculus
  publication-title: Fract Calc Appl Lect Notes Math
  contributor:
    fullname: Ross
– year: 1993
  ident: bib0017
  publication-title: Fractional integrals and derivatives: theory and applications
  contributor:
    fullname: Marichev
– year: 2013
  ident: bib0007
  publication-title: Fractional derivatives for physicists and engineers
  contributor:
    fullname: Uchaikin
– volume: 4
  start-page: 1
  year: 2018
  end-page: 3
  ident: bib0009
  article-title: Is it possible to construct a fractional derivative such that the index law holds?
  publication-title: Progr Fract Differ Appl
  contributor:
    fullname: Rodríguez-López
– volume: 13
  start-page: 529
  year: 1967
  end-page: 539
  ident: bib0002
  article-title: Linear model of dissipation whose q is almost frequency independent-II
  publication-title: Geophys J Int
  contributor:
    fullname: Caputo
– year: 2014
  ident: bib0018
  article-title: Special functions in fractional calculus and related fractional differintegral equations
  contributor:
    fullname: Srivastava
– volume: 59
  start-page: 444
  year: 2018
  end-page: 462
  ident: bib0029
  article-title: On some new properties of fractional derivatives with Mittag–Leffler kernel
  publication-title: Commun Nonlinear Sci Numer Simul
  contributor:
    fullname: Fernandez
– volume: 1
  start-page: 270
  year: 2017
  end-page: 342
  ident: bib0024
  publication-title: Derivatives with non-singular kernels from the Caputo–Fabrizio definition and beyond: appraising analysis with emphasis on diffusion models
  contributor:
    fullname: Hristov
– volume: 24
  start-page: 1
  year: 2014
  end-page: 11
  ident: bib0038
  article-title: Synchronization and an application of a novel fractional order king cobra chaotic system
  publication-title: Chaos Interdiscip J Nonlinear Sci
  contributor:
    fullname: Ratnavelu
– volume: 13
  start-page: 1
  year: 2017
  end-page: 10
  ident: bib0011
  article-title: On the notion of fractional derivative and application to the hysteresis phenomena
  publication-title: Meccanica
  contributor:
    fullname: Fabrizio
– volume: 1
  start-page: 73
  year: 2015
  end-page: 85
  ident: bib0004
  article-title: A new definition of fractional derivative without singular kernel
  publication-title: Progr Fract Differ Appl
  contributor:
    fullname: Fabrizio
– volume: 23
  start-page: 185
  year: 1993
  end-page: 195
  ident: bib0019
  article-title: Understanding geometrical phases in quantum mechanics: an elementary example
  publication-title: Found Phys
  contributor:
    fullname: Biedenharn
– volume: 118
  start-page: 283
  year: 2000
  end-page: 299
  ident: bib0030
  article-title: On Mittag–Leffler-type functions in fractional evolution processes
  publication-title: J Comput Appl Math
  contributor:
    fullname: Gorenflo
– volume: 3
  start-page: 72
  issue: 2
  year: 2017
  ident: 10.1016/j.chaos.2018.07.033_bib0023
  article-title: Emerging issues in the stokes first problem for a Casson fluid: from integer to fractional models by the integral? balance approach
  publication-title: J Comput Complex Appl
  contributor:
    fullname: Hristov
– volume: 62
  start-page: 157
  year: 2018
  ident: 10.1016/j.chaos.2018.07.033_bib0027
  article-title: No nonlocality. No fractional derivative
  publication-title: Commun Nonlinear Sci Numer Simul
  doi: 10.1016/j.cnsns.2018.02.019
  contributor:
    fullname: Tarasov
– volume: 24
  start-page: 1
  issue: 3
  year: 2014
  ident: 10.1016/j.chaos.2018.07.033_bib0038
  article-title: Synchronization and an application of a novel fractional order king cobra chaotic system
  publication-title: Chaos Interdiscip J Nonlinear Sci
  doi: 10.1063/1.4886355
  contributor:
    fullname: Muthukumar
– year: 1958
  ident: 10.1016/j.chaos.2018.07.033_bib0020
  contributor:
    fullname: Dirac
– volume: 1
  start-page: 1
  year: 2017
  ident: 10.1016/j.chaos.2018.07.033_bib0012
  article-title: Optimal control of diffusion equation with fractional time derivative with nonlocal and nonsingular Mittag-Leffler kernel
  publication-title: Journal of Optimization Theory and Applications
  contributor:
    fullname: Djida
– year: 1993
  ident: 10.1016/j.chaos.2018.07.033_bib0017
  contributor:
    fullname: Samko
– volume: 93
  start-page: 1757
  issue: 3
  year: 2018
  ident: 10.1016/j.chaos.2018.07.033_bib0028
  article-title: A comment on some new definitions of fractional derivative
  publication-title: Nonlinear Dynamics
  doi: 10.1007/s11071-018-4289-8
  contributor:
    fullname: Giusti
– volume: 218
  start-page: 860
  issue: 3
  year: 2011
  ident: 10.1016/j.chaos.2018.07.033_bib0003
  article-title: New approach to a generalized fractional integral
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2011.03.062
  contributor:
    fullname: Katugampola
– volume: 140
  start-page: 3106
  issue: 11
  year: 2010
  ident: 10.1016/j.chaos.2018.07.033_bib0026
  article-title: Parameter estimation for fractional poisson processes
  publication-title: J Stat Plan Inference,
  doi: 10.1016/j.jspi.2010.04.016
  contributor:
    fullname: Cahoy
– start-page: 1
  year: 1965
  ident: 10.1016/j.chaos.2018.07.033_sbref0024
  article-title: La courbe de la repartition de la richesse
  contributor:
    fullname: Pareto
– volume: 13
  start-page: 1
  year: 2017
  ident: 10.1016/j.chaos.2018.07.033_bib0011
  article-title: On the notion of fractional derivative and application to the hysteresis phenomena
  publication-title: Meccanica
  contributor:
    fullname: Caputo
– volume: 4
  start-page: 101
  issue: 8
  year: 1892
  ident: 10.1016/j.chaos.2018.07.033_bib0001
  article-title: Essai sur l’étude des fonctions donn’ées par leur développement de taylor
  publication-title: J Pure Appl Math
  contributor:
    fullname: Hadamard
– volume: 18
  start-page: 495
  issue: 2
  year: 2015
  ident: 10.1016/j.chaos.2018.07.033_bib0015
  article-title: Fractional calculus: quo vadimus? (where are we going?)
  publication-title: Fract Calc Appl Anal
  doi: 10.1515/fca-2015-0031
  contributor:
    fullname: Machado
– volume: 103
  start-page: 476
  year: 2017
  ident: 10.1016/j.chaos.2018.07.033_bib0040
  article-title: Chaotic chameleon: dynamic analyses, circuit implementation, FPGA design and fractional-order form with basic analyses
  publication-title: Chaos Solitons Fract
  doi: 10.1016/j.chaos.2017.07.007
  contributor:
    fullname: Rajagopal
– volume: 4
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.chaos.2018.07.033_bib0009
  article-title: Is it possible to construct a fractional derivative such that the index law holds?
  publication-title: Progr Fract Differ Appl
  doi: 10.18576/pfda/040101
  contributor:
    fullname: Labora
– volume: 1
  start-page: 270
  year: 2017
  ident: 10.1016/j.chaos.2018.07.033_bib0024
  contributor:
    fullname: Hristov
– volume: 118
  start-page: 283
  issue: 1–2
  year: 2000
  ident: 10.1016/j.chaos.2018.07.033_bib0030
  article-title: On Mittag–Leffler-type functions in fractional evolution processes
  publication-title: J Comput Appl Math
  doi: 10.1016/S0377-0427(00)00294-6
  contributor:
    fullname: Mainardi
– volume: 132
  start-page: 1
  issue: 10
  year: 2017
  ident: 10.1016/j.chaos.2018.07.033_bib0037
  article-title: New numerical approximation of fractional derivative with non-local and non-singular kernel: application to chaotic models
  publication-title: Eur Phys J Plus
  doi: 10.1140/epjp/i2017-11717-0
  contributor:
    fullname: Toufik
– volume: 457
  start-page: 1
  year: 1975
  ident: 10.1016/j.chaos.2018.07.033_bib0008
  article-title: A brief history and exposition of the fundamental theory of fractional calculus
  publication-title: Fract Calc Appl Lect Notes Math
  doi: 10.1007/BFb0067096
  contributor:
    fullname: Ross
– volume: 13
  start-page: 529
  issue: 5
  year: 1967
  ident: 10.1016/j.chaos.2018.07.033_bib0002
  article-title: Linear model of dissipation whose q is almost frequency independent-II
  publication-title: Geophys J Int
  doi: 10.1111/j.1365-246X.1967.tb02303.x
  contributor:
    fullname: Caputo
– start-page: 19
  year: 2015
  ident: 10.1016/j.chaos.2018.07.033_bib0036
  article-title: Analysis, control and synchronization of a nine-term 3-d novel chaotic system
  contributor:
    fullname: Vaidyanathan
– volume: 59
  start-page: 444
  year: 2018
  ident: 10.1016/j.chaos.2018.07.033_bib0029
  article-title: On some new properties of fractional derivatives with Mittag–Leffler kernel
  publication-title: Commun Nonlinear Sci Numer Simul
  doi: 10.1016/j.cnsns.2017.12.003
  contributor:
    fullname: Baleanu
– volume: 15
  start-page: 1
  issue: 2
  year: 2006
  ident: 10.1016/j.chaos.2018.07.033_bib0039
  article-title: Chaotic dynamics of the fractional-order Ikeda delay system and its synchronization
  publication-title: Chin Phys
  doi: 10.1088/1009-1963/15/2/011
  contributor:
    fullname: Jun-Guo
– volume: 1
  start-page: 11
  year: 2001
  ident: 10.1016/j.chaos.2018.07.033_bib0033
  article-title: A generalized poisson distribution and its applications
  publication-title: J Kerala Stat Assoc
  contributor:
    fullname: Anil
– volume: 232
  start-page: 180
  year: 1996
  ident: 10.1016/j.chaos.2018.07.033_bib0035
  article-title: On the cole-cole relaxation function and related Mittag–Leffler distribution
  publication-title: Physica A
  doi: 10.1016/0378-4371(96)00209-9
  contributor:
    fullname: Weron
– volume: 20
  start-page: 763
  issue: 2
  year: 2016
  ident: 10.1016/j.chaos.2018.07.033_bib0005
  article-title: New fractional derivatives with non-local and non-singular kernel: theory and application to heat transfer model
  publication-title: Therm Sci
  doi: 10.2298/TSCI160111018A
  contributor:
    fullname: Atangana
– volume: 1
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.chaos.2018.07.033_bib0022
  article-title: The non-linear dodson diffusion equation: approximate solutions and beyond with formalistic fractionalization
  publication-title: Math Nat Sci,
  doi: 10.22436/mns.01.01.01
  contributor:
    fullname: Hristov
– year: 2013
  ident: 10.1016/j.chaos.2018.07.033_bib0007
  contributor:
    fullname: Uchaikin
– volume: 23
  start-page: 185
  issue: 2
  year: 1993
  ident: 10.1016/j.chaos.2018.07.033_bib0019
  article-title: Understanding geometrical phases in quantum mechanics: an elementary example
  publication-title: Found Phys
  doi: 10.1007/BF01883623
  contributor:
    fullname: Solem
– volume: 8
  start-page: 7
  year: 2005
  ident: 10.1016/j.chaos.2018.07.033_bib0031
  article-title: Renewal processes of Mittag–Leffler and wright type
  publication-title: Fract Calc Appl Anal
  contributor:
    fullname: Mainardi
– volume: 505
  start-page: 688
  year: 2018
  ident: 10.1016/j.chaos.2018.07.033_bib0014
  article-title: Non validity of index law in fractional calculus: a fractional differential operator with Markovian and non-Markovian properties
  publication-title: Physica A
  doi: 10.1016/j.physa.2018.03.056
  contributor:
    fullname: Atangana
– volume: 42
  start-page: 157
  year: 1990
  ident: 10.1016/j.chaos.2018.07.033_bib0032
  article-title: On Mittag–Leffler functions and related distributions
  publication-title: Ann Inst Statist Math
  doi: 10.1007/BF00050786
  contributor:
    fullname: Pillai
– year: 2014
  ident: 10.1016/j.chaos.2018.07.033_bib0018
  contributor:
    fullname: Srivastava
– volume: 1
  start-page: 73
  year: 2015
  ident: 10.1016/j.chaos.2018.07.033_bib0004
  article-title: A new definition of fractional derivative without singular kernel
  publication-title: Progr Fract Differ Appl
  contributor:
    fullname: Caputo
– year: 2006
  ident: 10.1016/j.chaos.2018.07.033_bib0016
  contributor:
    fullname: Kilbas
– volume: 133
  start-page: 1
  year: 2018
  ident: 10.1016/j.chaos.2018.07.033_bib0013
  article-title: Decolonisation of fractional calculus rules: breaking commutativity and associativity to capture more natural phenomena
  publication-title: Eur Phys J Plus
  doi: 10.1140/epjp/i2018-12021-3
  contributor:
    fullname: Atangana
– volume: 57
  start-page: 301
  year: 1989
  ident: 10.1016/j.chaos.2018.07.033_bib0034
  article-title: Transport properties of continuous time random walk with long-tailed waiting-time density
  publication-title: J Stat Phys
  doi: 10.1007/BF01023645
  contributor:
    fullname: Weissman
– volume: 5
  start-page: 1
  year: 2017
  ident: 10.1016/j.chaos.2018.07.033_bib0010
  article-title: The role of fractional time-derivative operators on anomalous diffusion
  publication-title: Front Phys
  doi: 10.3389/fphy.2017.00052
  contributor:
    fullname: Tateishi
– volume: 3
  start-page: 1
  issue: 4
  year: 2017
  ident: 10.1016/j.chaos.2018.07.033_bib0021
  article-title: Derivation of the fractional Dodson equation and beyond: transient diffusion with a non-singular memory and exponentially fading-out diffusivity
  publication-title: Progr Fract Differ Appl,
  doi: 10.18576/pfda/030402
  contributor:
    fullname: Hristov
– volume: 476
  start-page: 1
  issue: 15
  year: 2017
  ident: 10.1016/j.chaos.2018.07.033_bib0006
  article-title: A new derivative with normal distribution kernel: theory, methods and applications
  publication-title: Physica A
  doi: 10.1016/j.physa.2017.02.016
  contributor:
    fullname: Atangana
SSID ssj0001062
Score 2.6692064
Snippet •Semigroup principle failures to capture natural phenomena.•The future of modeling real world problem relies on fractional differential operators with...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 516
SubjectTerms Chaotic systems
Fractional calculus
Mittag–Leffler distribution
Non-validity of index law
Numerical simulations
Title Fractional derivatives with no-index law property: Application to chaos and statistics
URI https://dx.doi.org/10.1016/j.chaos.2018.07.033
Volume 114
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KXvQgtirWR9mDBwXX5rnJeivFUpX2opXels3uBiuSlDYqXvztzm4SqyAePCbswDCZzDeZxxeETjxPUEUjSSi4EwmYExImdUDSGABW6JQKS8cwGtPhJLiZhtMG6te7MGassor9ZUy30bq6062s2Z3PZt07k3w7UcTAKc2euaHdDgCMwKcvPlZjHvDJYzsJcJiY0zXzkJ3xko8iN5zdbmwZPH3_d3T6hjiDbbRVpYq4V2rTRA2dtdDm6ItnddlCzerVXOLTij_6bAc9DBbltgIIK3CwV8vtvcSm5IqznFiCRPws3vDcVOIXxfsl7q362LjIsdUYi0xhs3BUcjnvosng6r4_JNXvE4gEXCoIC2QYC8mSWPmmO-omsSdSVyaxVtSJk8CPJHN85SkqWBCkArBah4olgGlaQxq4h9ayPNP7CPteoj0ZMukKamtGkTK5ZCrDUEOAStvovDYbn5csGbweH3viVmdurMydiIOV24jWpuU_HjaHOP6X4MF_BQ_Rhrkqh8OO0FqxeNHHkE0USce6Swet965vh-NPOmjJUQ
link.rule.ids 315,786,790,4521,24144,27957,27958,45620,45714
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1BOQAHRFlEWX3gABJWszhOzK1CVGVpL7SIm-XYjihCadUGEH-P7SQsEuLANclIo8lk3mSWZ4DjIBBU0VhiatwJE-ZFmElNcJYYgBU6o8LRMfQHtDci1w_RwwJc1Lswdqyyiv1lTHfRurrSrqzZno7H7TubfHtxzIxT2j1zughLJIp90oClztVNb_AZkM1fj2smmOexFajJh9yYl3wUE0vb7SeOxDMMfweob6DTXYe1KltEnVKhJizofANW-59Uq_MNaFZf5xydVBTSp5tw352VCwtGWBkfe3X03nNkq64on2DHkYiexRua2mL8rHg_R52vVjYqJshpjESukN05Kumct2DUvRxe9HB1ggKWBpoKzIiMEiFZmqjQNkj9NAlE5ss00Yp6SUrCWDIvVIGighGSCQPXOlIsNbCmtckEt6GRT3K9AygMUh3IiElfUFc2ipVNJzMZRdrEqKwFZ7XZ-LQkyuD1BNkTdzpza2XuxdxYuQW0Ni3_8b65CeV_Ce7-V_AIlnvD_i2_vRrc7MGKvVPOiu1Do5i96AOTXBTpYeU8Hz8PzAc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fractional+derivatives+with+no-index+law+property%3A+Application+to+chaos+and+statistics&rft.jtitle=Chaos%2C+solitons+and+fractals&rft.au=Atangana%2C+Abdon&rft.au=G%C3%B3mez-Aguilar%2C+J.F.&rft.date=2018-09-01&rft.pub=Elsevier+Ltd&rft.issn=0960-0779&rft.eissn=1873-2887&rft.volume=114&rft.spage=516&rft.epage=535&rft_id=info:doi/10.1016%2Fj.chaos.2018.07.033&rft.externalDocID=S0960077918304156
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-0779&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-0779&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-0779&client=summon