Validation in four-point bending tests of a viscoelastic model for laminated glass based on fractional calculus

We present a one-dimensional viscoelastic finite element model for laminated glass, employing fractional calculus to effectively capture the shear-coupling behavior of the polymeric viscoelastic interlayer between glass plies. The polymer relaxation curve is approximated using four power-law branche...

Full description

Saved in:
Bibliographic Details
Published inStructures (Oxford) Vol. 80; p. 109645
Main Authors Santi, Lorenzo, Royer-Carfagni, Gianni
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2025
Subjects
Online AccessGet full text
ISSN2352-0124
2352-0124
DOI10.1016/j.istruc.2025.109645

Cover

Abstract We present a one-dimensional viscoelastic finite element model for laminated glass, employing fractional calculus to effectively capture the shear-coupling behavior of the polymeric viscoelastic interlayer between glass plies. The polymer relaxation curve is approximated using four power-law branches, which are sufficient to represent both the short- and long-term responses of most commercial materials. This ensures that Boltzmann’s integral aligns with Caputo’s definition of a fractional time derivative. The spatial FE discretization is incorporated into the weak formulation of the dynamic viscoelastic problem derived from Hamilton’s principle. Time integration is performed using finite differences, with fractional derivatives approximated through the L1 formula. This allows to use a variable time-step, progressing in logarithmic scale, to balance the representation across the different power-law branches of the relaxation curve. The model is validated through four-point bending experiments on laminated glass specimens, involving loading at various strain rates and relaxation tests at different temperatures. Comparisons between experimental results and model predictions show strong agreement across a wide range of loading conditions, time scales, and temperatures. This demonstrates the model’s ability to accurately simulate the coupled viscoelastic response of laminated glass under bending loads, establishing it as a valuable tool for structural analysis and design in building engineering.
AbstractList We present a one-dimensional viscoelastic finite element model for laminated glass, employing fractional calculus to effectively capture the shear-coupling behavior of the polymeric viscoelastic interlayer between glass plies. The polymer relaxation curve is approximated using four power-law branches, which are sufficient to represent both the short- and long-term responses of most commercial materials. This ensures that Boltzmann’s integral aligns with Caputo’s definition of a fractional time derivative. The spatial FE discretization is incorporated into the weak formulation of the dynamic viscoelastic problem derived from Hamilton’s principle. Time integration is performed using finite differences, with fractional derivatives approximated through the L1 formula. This allows to use a variable time-step, progressing in logarithmic scale, to balance the representation across the different power-law branches of the relaxation curve. The model is validated through four-point bending experiments on laminated glass specimens, involving loading at various strain rates and relaxation tests at different temperatures. Comparisons between experimental results and model predictions show strong agreement across a wide range of loading conditions, time scales, and temperatures. This demonstrates the model’s ability to accurately simulate the coupled viscoelastic response of laminated glass under bending loads, establishing it as a valuable tool for structural analysis and design in building engineering.
ArticleNumber 109645
Author Santi, Lorenzo
Royer-Carfagni, Gianni
Author_xml – sequence: 1
  givenname: Lorenzo
  orcidid: 0009-0007-1033-9058
  surname: Santi
  fullname: Santi, Lorenzo
  email: lorenzo.santi@unipr.it
  organization: Department of Engineering for Industrial Systems and Technologies, University of Parma, Parco Area delle Scienze 181/A, I-43100 Parma, Italy
– sequence: 2
  givenname: Gianni
  orcidid: 0000-0003-4879-9846
  surname: Royer-Carfagni
  fullname: Royer-Carfagni, Gianni
  email: gianni.royer@unipr.it
  organization: Department of Engineering for Industrial Systems and Technologies, University of Parma, Parco Area delle Scienze 181/A, I-43100 Parma, Italy
BookMark eNp9kMtKAzEUhoMoWGvfwEVeYGpuk85sBCneoOBG3YZMclJSpklJMgXf3pS6cOXq3Pg_Dt8NugwxAEJ3lCwpofJ-t_S5pMksGWFtXfVStBdoxnjLGkKZuPzTX6NFzjtCCKOCMLGaofilR2918TFgH7CLU2oO0YeCBwjWhy0ukEvG0WGNjz6bCKPOxRu8jxbGGkh41HsfdAGLt_WW8aBz7SvQJW1OZD1io0czjVO-RVdOjxkWv3WOPp-fPtavzeb95W39uGkMJ7w0naN8EI4Bl9xK03e9lrSDFlrCOB2cWQnOe2J6aTopOkeMAcvqwFaaWQl8jsSZa1LMOYFTh-T3On0rStTJm9qpszd18qbO3mrs4RyD-tvRQ1LZeAgV7hOYomz0_wN-ACgue-g
Cites_doi 10.1371/journal.pone.0143090
10.1021/ja01619a008
10.1016/j.cpc.2012.07.011
10.1016/j.conbuildmat.2021.122503
10.1007/BF01332922
10.1016/j.engfracmech.2017.10.020
10.1016/j.conbuildmat.2014.04.003
10.1016/j.compstruct.2020.112720
10.1016/j.conbuildmat.2019.116897
10.1115/1.3167615
10.1115/1.4064433
10.1016/j.ijsolstr.2023.112287
10.3390/app8060960
10.1007/s40940-023-00229-w
10.1016/j.ijsolstr.2022.111617
10.1122/1.549887
10.1515/POLYENG.1997.17.1.1
10.1115/1.3167616
10.1016/j.ijmecsci.2012.12.019
10.1016/j.ijmecsci.2021.106274
10.1007/s11075-015-9998-1
10.1016/j.camwa.2011.03.054
10.1016/0020-7403(73)90012-X
10.1016/j.jeurceramsoc.2013.10.032
10.1016/j.compstruct.2023.117505
10.1016/j.compstruct.2015.11.014
10.1016/j.engstruct.2024.117756
10.1016/j.compstruct.2020.112221
ContentType Journal Article
Copyright 2025 The Authors
Copyright_xml – notice: 2025 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.istruc.2025.109645
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2352-0124
ExternalDocumentID 10_1016_j_istruc_2025_109645
S2352012425014602
GroupedDBID --M
0R~
4.4
457
6I.
AAEDT
AAEDW
AAFTH
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ACVFH
ADCNI
ADEZE
AEBSH
AEIPS
AEUPX
AFJKZ
AFPUW
AFTJW
AGCQF
AGHFR
AGUBO
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BJAXD
BKOJK
BLXMC
EBS
EFJIC
EFKBS
EJD
FDB
FIRID
FYGXN
KOM
M41
O9-
OAUVE
RIG
ROL
SPC
SPCBC
SST
SSZ
T5K
~G-
AAYXX
CITATION
EFLBG
ID FETCH-LOGICAL-c303t-8f13b4f2e363d6c989a618e5e50231bfc743390c96c8648f0cced26c827a2d6e3
IEDL.DBID AIKHN
ISSN 2352-0124
IngestDate Wed Sep 03 16:42:22 EDT 2025
Sat Aug 16 17:03:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Viscoelasticity
Finite element method
Laminated glass
Fractional calculus
Four-point bending tests
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c303t-8f13b4f2e363d6c989a618e5e50231bfc743390c96c8648f0cced26c827a2d6e3
ORCID 0009-0007-1033-9058
0000-0003-4879-9846
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S2352012425014602
ParticipantIDs crossref_primary_10_1016_j_istruc_2025_109645
elsevier_sciencedirect_doi_10_1016_j_istruc_2025_109645
PublicationCentury 2000
PublicationDate October 2025
2025-10-00
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: October 2025
PublicationDecade 2020
PublicationTitle Structures (Oxford)
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Jóźwiak, Orczykowska, Dziubiński (bib0105) 2015; 10
Magisano, Leonetti, Garcea, Royer-Carfagni (bib0175) 2023; 274
Hooper (bib0005) 1973; 15
Vedrtnam, Pawar (bib0145) 2017; 186
Martin, Centelles, Sole, Barreneche, Fernández, Cabeza (bib0020) 2020; 230
Van Duser, Jagota, Bennison (bib0045) 1999; 125
Luo, Zhou, Yi, Yi (bib0065) 2024; 95
Koeller (bib0010) 1984; 51
Fazio, Jannelli, Agreste (bib0115) 2018; 8
Andreozzi, Briccoli Bati, Fagone, Ranocchiai, Zulli (bib0030) 2014; 65
López-Aenlle, Pelayo, Ismael, García Prieto, Martín Rodríguez, Fernández-Canteli (bib0035) 2016; 137
Scherer, Kalla, Tang, Huang (bib0100) 2011; 62
Santi, Royer-Carfagni (bib0135) 2024; 305
Centelles, Pelayo, Lamela-Rey, Fernández, Salgado-Pizarro, Castro (bib0150) 2021; 279
Viviani, Di Paola, Royer-Carfagni (bib0055) 2022; 248
Galuppi, Royer-Carfagni (bib0040) 2013; 68
Bagley (bib0095) 1986; 30
Baumgaertel, Winter (bib0160) 1989; 28
Zhang, Li, Su, Xu, Sha (bib0080) 2024; 96
Biolzi, Cattaneo, Orlando, Piscitelli, Spinelli (bib0025) 2020; 244
Torvik, Bagley (bib0060) 1984; 51
Schuster, Härth, Thiele, Bennison (bib0140) 2023; 8
Yuste, Quintana-Murillo (bib0125) 2016; 71
Wen, Yan, Liang (bib0070) 2024; 92
Viviani, Di Paola, Royer Carfagni (bib0110) 2023; 324
Santi, Royer-Carfagni (bib0130) 2024; 91
Amabili, Balasubramanian, Garziera, Royer-Carfagni (bib0165) 2020; 252
Di Paola, Galuppi, Royer-Carfagni (bib0085) 2021; 196
Yuste, Quintana-Murillo (bib0120) 2012; 183
Santi, Bennison, Haerth, Royer-Carfagni (bib0090) 2023
Brinson, Brinson (bib0015) 2008
Gant, Bower (bib0050) 1997; 17
Lin, Yu, Tsai, Chang, Peng, Wang (bib0075) 2022; 53
Williams, Landel, Ferry (bib0155) 1955; 77
Collini, Royer-Carfagni (bib0170) 2014; 34
Santi (10.1016/j.istruc.2025.109645_bib0130) 2024; 91
Centelles (10.1016/j.istruc.2025.109645_bib0150) 2021; 279
Bagley (10.1016/j.istruc.2025.109645_bib0095) 1986; 30
Luo (10.1016/j.istruc.2025.109645_bib0065) 2024; 95
Fazio (10.1016/j.istruc.2025.109645_bib0115) 2018; 8
Lin (10.1016/j.istruc.2025.109645_bib0075) 2022; 53
Andreozzi (10.1016/j.istruc.2025.109645_bib0030) 2014; 65
Di Paola (10.1016/j.istruc.2025.109645_bib0085) 2021; 196
Baumgaertel (10.1016/j.istruc.2025.109645_bib0160) 1989; 28
Vedrtnam (10.1016/j.istruc.2025.109645_bib0145) 2017; 186
Koeller (10.1016/j.istruc.2025.109645_bib0010) 1984; 51
Gant (10.1016/j.istruc.2025.109645_bib0050) 1997; 17
Magisano (10.1016/j.istruc.2025.109645_bib0175) 2023; 274
Williams (10.1016/j.istruc.2025.109645_bib0155) 1955; 77
Santi (10.1016/j.istruc.2025.109645_bib0090) 2023
Santi (10.1016/j.istruc.2025.109645_bib0135) 2024; 305
Yuste (10.1016/j.istruc.2025.109645_bib0120) 2012; 183
Martin (10.1016/j.istruc.2025.109645_bib0020) 2020; 230
Galuppi (10.1016/j.istruc.2025.109645_bib0040) 2013; 68
Viviani (10.1016/j.istruc.2025.109645_bib0055) 2022; 248
Viviani (10.1016/j.istruc.2025.109645_bib0110) 2023; 324
Wen (10.1016/j.istruc.2025.109645_bib0070) 2024; 92
Zhang (10.1016/j.istruc.2025.109645_bib0080) 2024; 96
Collini (10.1016/j.istruc.2025.109645_bib0170) 2014; 34
Yuste (10.1016/j.istruc.2025.109645_bib0125) 2016; 71
Brinson (10.1016/j.istruc.2025.109645_bib0015) 2008
López-Aenlle (10.1016/j.istruc.2025.109645_bib0035) 2016; 137
Biolzi (10.1016/j.istruc.2025.109645_bib0025) 2020; 244
Scherer (10.1016/j.istruc.2025.109645_bib0100) 2011; 62
Amabili (10.1016/j.istruc.2025.109645_bib0165) 2020; 252
Van Duser (10.1016/j.istruc.2025.109645_bib0045) 1999; 125
Torvik (10.1016/j.istruc.2025.109645_bib0060) 1984; 51
Schuster (10.1016/j.istruc.2025.109645_bib0140) 2023; 8
Hooper (10.1016/j.istruc.2025.109645_bib0005) 1973; 15
Jóźwiak (10.1016/j.istruc.2025.109645_bib0105) 2015; 10
References_xml – volume: 71
  start-page: 207
  year: 2016
  end-page: 228
  ident: bib0125
  article-title: Fast, accurate and robust adaptive finite difference methods for fractional diffusion equations
  publication-title: Numer Algorithms
– volume: 28
  start-page: 511
  year: 1989
  end-page: 519
  ident: bib0160
  article-title: Determination of discrete relaxation and retardation time spectra from dynamic mechanical data
  publication-title: Rheol Acta
– start-page: 14
  year: 2023
  end-page: 16
  ident: bib0090
  article-title: Fractional viscoelastic modelling of polymeric interlayers in laminated glass. comparisons with prony series approach
  publication-title: Proceedings of the glass perfomance days (GPD), Tampere (Fi) June
– volume: 68
  start-page: 67
  year: 2013
  end-page: 75
  ident: bib0040
  article-title: The design of laminated glass under time-dependent loading
  publication-title: Int J Mech Sci
– volume: 91
  year: 2024
  ident: bib0130
  article-title: Variable time steps in the numerical implementation of viscoelastic fractional models for laminated glass
  publication-title: J Appl Mech
– volume: 77
  start-page: 3701
  year: 1955
  end-page: 3707
  ident: bib0155
  article-title: The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids
  publication-title: J Am Chem Soc
– volume: 137
  start-page: 44
  year: 2016
  end-page: 55
  ident: bib0035
  article-title: Buckling of laminated-glass beams using the effective-thickness concept
  publication-title: Compos Struct
– volume: 51
  start-page: 299
  year: 1984
  end-page: 307
  ident: bib0010
  article-title: Applications of fractional calculus to the theory of viscoelasticity
  publication-title: J Appl Mech
– volume: 10
  year: 2015
  ident: bib0105
  article-title: Fractional generalizations of Maxwell and Kelvin–Voigt models for biopolymer characterization
  publication-title: PLoS One
– volume: 8
  start-page: 457
  year: 2023
  end-page: 469
  ident: bib0140
  article-title: Quantification of the linear viscoelastic behavior of multilayer polymer interlayers for laminated glass
  publication-title: Glass Struct Eng
– volume: 125
  start-page: 435
  year: 1999
  end-page: 442
  ident: bib0045
  article-title: Analysis of glass/polyvinyl butyral laminates subjected to uniform pressure
  publication-title: J Eng Mech
– volume: 324
  year: 2023
  ident: bib0110
  article-title: Piecewise power law approximation of the interlayer relaxation curve for the long-term viscoelastic fractional modeling of laminated glass
  publication-title: Compos Struct
– volume: 230
  year: 2020
  ident: bib0020
  article-title: Polymeric interlayer materials for laminated glass: a review
  publication-title: Const Build Mater
– year: 2008
  ident: bib0015
  publication-title: Polymer engineering science and viscoelasticity: an introduction
– volume: 65
  start-page: 1
  year: 2014
  end-page: 13
  ident: bib0030
  article-title: Dynamic torsion tests to characterize the thermo-viscoelastic properties of polymeric interlayers for laminated glass
  publication-title: Const Build Mater
– volume: 95
  year: 2024
  ident: bib0065
  article-title: Modeling time-dependent deformation in concrete: a fractional calculus method with finite element implementation
  publication-title: J Build Eng
– volume: 53
  year: 2022
  ident: bib0075
  article-title: Hysteretic behavior of viscoelastic dampers subjected to damage during seismic loading
  publication-title: J Build Eng
– volume: 8
  start-page: 960
  year: 2018
  ident: bib0115
  article-title: A finite difference method on non-uniform meshes for time-fractional advection–diffusion equations with a source term
  publication-title: Appl Sci
– volume: 186
  start-page: 316
  year: 2017
  end-page: 330
  ident: bib0145
  article-title: Laminated plate theories and fracture of laminated glass plate–a review
  publication-title: Eng Fract Mech
– volume: 96
  year: 2024
  ident: bib0080
  article-title: Viscoelastic dampers for civil engineering structures: a systematic review of constructions, materials, and applications
  publication-title: J Build Eng
– volume: 183
  start-page: 2594
  year: 2012
  end-page: 2600
  ident: bib0120
  article-title: A finite difference method with non-uniform timesteps for fractional diffusion equations
  publication-title: Comput Phys Commun
– volume: 51
  start-page: 294
  year: 1984
  end-page: 298
  ident: bib0060
  article-title: On the appearance of the fractional derivative in the behavior of real materials
  publication-title: J Appl Mech
– volume: 15
  start-page: 309
  year: 1973
  end-page: 323
  ident: bib0005
  article-title: On the bending of architectural laminated glass
  publication-title: Int J Mech Sci
– volume: 62
  start-page: 902
  year: 2011
  end-page: 917
  ident: bib0100
  article-title: The Grünwald–Letnikov method for fractional differential equations
  publication-title: Comput Math Appl
– volume: 274
  year: 2023
  ident: bib0175
  article-title: A constrained solid-shell model for the geometric nonlinear finite-element analysis of laminates with alternating stiff/soft layers. applications to laminated glass
  publication-title: Int J Solids Struct
– volume: 252
  year: 2020
  ident: bib0165
  article-title: Blast loads and nonlinear vibrations of laminated glass plates in an enhanced shear deformation theory
  publication-title: Compos Struct
– volume: 92
  year: 2024
  ident: bib0070
  article-title: Non-local Maxwell model for ultraslow relaxation of concrete under different normal stress levels
  publication-title: J Build Eng
– volume: 34
  start-page: 2675
  year: 2014
  end-page: 2685
  ident: bib0170
  article-title: Flexural strength of glass-ceramic for structural applications
  publication-title: J Eur Ceram Soc
– volume: 305
  year: 2024
  ident: bib0135
  article-title: Viscoelastic modeling via fractional calculus of the cold bending of laminated glass
  publication-title: Eng Struct
– volume: 244
  year: 2020
  ident: bib0025
  article-title: Constitutive relationships of different interlayer materials for laminated glass
  publication-title: Compos Struct
– volume: 196
  year: 2021
  ident: bib0085
  article-title: Fractional viscoelastic characterization of laminated glass beams under time-varying loading
  publication-title: Int J Mech Sci
– volume: 30
  start-page: 133
  year: 1986
  end-page: 155
  ident: bib0095
  article-title: On the fractional calculus model of viscoelastic behavior
  publication-title: J Rheol
– volume: 248
  year: 2022
  ident: bib0055
  article-title: Fractional viscoelastic modeling of laminated glass beams in the pre-crack state under explosive loads
  publication-title: Int J Solids Struct
– volume: 17
  start-page: 1
  year: 1997
  end-page: 22
  ident: bib0050
  article-title: Domain of influence method: a new method for approximating prony series coefficients and exponents for viscoelastic materials
  publication-title: J Polym Eng
– volume: 279
  year: 2021
  ident: bib0150
  article-title: Viscoelastic characterization of seven laminated glass interlayer materials from static tests
  publication-title: Const Build Mater
– volume: 10
  issue: 11
  year: 2015
  ident: 10.1016/j.istruc.2025.109645_bib0105
  article-title: Fractional generalizations of Maxwell and Kelvin–Voigt models for biopolymer characterization
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0143090
– volume: 77
  start-page: 3701
  issue: 14
  year: 1955
  ident: 10.1016/j.istruc.2025.109645_bib0155
  article-title: The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids
  publication-title: J Am Chem Soc
  doi: 10.1021/ja01619a008
– volume: 183
  start-page: 2594
  issue: 12
  year: 2012
  ident: 10.1016/j.istruc.2025.109645_bib0120
  article-title: A finite difference method with non-uniform timesteps for fractional diffusion equations
  publication-title: Comput Phys Commun
  doi: 10.1016/j.cpc.2012.07.011
– volume: 279
  year: 2021
  ident: 10.1016/j.istruc.2025.109645_bib0150
  article-title: Viscoelastic characterization of seven laminated glass interlayer materials from static tests
  publication-title: Const Build Mater
  doi: 10.1016/j.conbuildmat.2021.122503
– volume: 28
  start-page: 511
  issue: 6
  year: 1989
  ident: 10.1016/j.istruc.2025.109645_bib0160
  article-title: Determination of discrete relaxation and retardation time spectra from dynamic mechanical data
  publication-title: Rheol Acta
  doi: 10.1007/BF01332922
– volume: 186
  start-page: 316
  year: 2017
  ident: 10.1016/j.istruc.2025.109645_bib0145
  article-title: Laminated plate theories and fracture of laminated glass plate–a review
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2017.10.020
– volume: 65
  start-page: 1
  year: 2014
  ident: 10.1016/j.istruc.2025.109645_bib0030
  article-title: Dynamic torsion tests to characterize the thermo-viscoelastic properties of polymeric interlayers for laminated glass
  publication-title: Const Build Mater
  doi: 10.1016/j.conbuildmat.2014.04.003
– year: 2008
  ident: 10.1016/j.istruc.2025.109645_bib0015
– volume: 252
  year: 2020
  ident: 10.1016/j.istruc.2025.109645_bib0165
  article-title: Blast loads and nonlinear vibrations of laminated glass plates in an enhanced shear deformation theory
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2020.112720
– volume: 230
  year: 2020
  ident: 10.1016/j.istruc.2025.109645_bib0020
  article-title: Polymeric interlayer materials for laminated glass: a review
  publication-title: Const Build Mater
  doi: 10.1016/j.conbuildmat.2019.116897
– volume: 51
  start-page: 294
  issue: 2
  year: 1984
  ident: 10.1016/j.istruc.2025.109645_bib0060
  article-title: On the appearance of the fractional derivative in the behavior of real materials
  publication-title: J Appl Mech
  doi: 10.1115/1.3167615
– volume: 91
  issue: 9
  year: 2024
  ident: 10.1016/j.istruc.2025.109645_bib0130
  article-title: Variable time steps in the numerical implementation of viscoelastic fractional models for laminated glass
  publication-title: J Appl Mech
  doi: 10.1115/1.4064433
– volume: 274
  year: 2023
  ident: 10.1016/j.istruc.2025.109645_bib0175
  article-title: A constrained solid-shell model for the geometric nonlinear finite-element analysis of laminates with alternating stiff/soft layers. applications to laminated glass
  publication-title: Int J Solids Struct
  doi: 10.1016/j.ijsolstr.2023.112287
– volume: 8
  start-page: 960
  issue: 6
  year: 2018
  ident: 10.1016/j.istruc.2025.109645_bib0115
  article-title: A finite difference method on non-uniform meshes for time-fractional advection–diffusion equations with a source term
  publication-title: Appl Sci
  doi: 10.3390/app8060960
– volume: 8
  start-page: 457
  issue: 4
  year: 2023
  ident: 10.1016/j.istruc.2025.109645_bib0140
  article-title: Quantification of the linear viscoelastic behavior of multilayer polymer interlayers for laminated glass
  publication-title: Glass Struct Eng
  doi: 10.1007/s40940-023-00229-w
– volume: 248
  year: 2022
  ident: 10.1016/j.istruc.2025.109645_bib0055
  article-title: Fractional viscoelastic modeling of laminated glass beams in the pre-crack state under explosive loads
  publication-title: Int J Solids Struct
  doi: 10.1016/j.ijsolstr.2022.111617
– volume: 30
  start-page: 133
  issue: 1
  year: 1986
  ident: 10.1016/j.istruc.2025.109645_bib0095
  article-title: On the fractional calculus model of viscoelastic behavior
  publication-title: J Rheol
  doi: 10.1122/1.549887
– volume: 17
  start-page: 1
  issue: 1
  year: 1997
  ident: 10.1016/j.istruc.2025.109645_bib0050
  article-title: Domain of influence method: a new method for approximating prony series coefficients and exponents for viscoelastic materials
  publication-title: J Polym Eng
  doi: 10.1515/POLYENG.1997.17.1.1
– volume: 95
  year: 2024
  ident: 10.1016/j.istruc.2025.109645_bib0065
  article-title: Modeling time-dependent deformation in concrete: a fractional calculus method with finite element implementation
  publication-title: J Build Eng
– volume: 51
  start-page: 299
  issue: 2
  year: 1984
  ident: 10.1016/j.istruc.2025.109645_bib0010
  article-title: Applications of fractional calculus to the theory of viscoelasticity
  publication-title: J Appl Mech
  doi: 10.1115/1.3167616
– volume: 53
  year: 2022
  ident: 10.1016/j.istruc.2025.109645_bib0075
  article-title: Hysteretic behavior of viscoelastic dampers subjected to damage during seismic loading
  publication-title: J Build Eng
– volume: 68
  start-page: 67
  year: 2013
  ident: 10.1016/j.istruc.2025.109645_bib0040
  article-title: The design of laminated glass under time-dependent loading
  publication-title: Int J Mech Sci
  doi: 10.1016/j.ijmecsci.2012.12.019
– volume: 196
  year: 2021
  ident: 10.1016/j.istruc.2025.109645_bib0085
  article-title: Fractional viscoelastic characterization of laminated glass beams under time-varying loading
  publication-title: Int J Mech Sci
  doi: 10.1016/j.ijmecsci.2021.106274
– volume: 96
  year: 2024
  ident: 10.1016/j.istruc.2025.109645_bib0080
  article-title: Viscoelastic dampers for civil engineering structures: a systematic review of constructions, materials, and applications
  publication-title: J Build Eng
– volume: 71
  start-page: 207
  issue: 1
  year: 2016
  ident: 10.1016/j.istruc.2025.109645_bib0125
  article-title: Fast, accurate and robust adaptive finite difference methods for fractional diffusion equations
  publication-title: Numer Algorithms
  doi: 10.1007/s11075-015-9998-1
– volume: 62
  start-page: 902
  issue: 3
  year: 2011
  ident: 10.1016/j.istruc.2025.109645_bib0100
  article-title: The Grünwald–Letnikov method for fractional differential equations
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2011.03.054
– volume: 15
  start-page: 309
  issue: 4
  year: 1973
  ident: 10.1016/j.istruc.2025.109645_bib0005
  article-title: On the bending of architectural laminated glass
  publication-title: Int J Mech Sci
  doi: 10.1016/0020-7403(73)90012-X
– volume: 34
  start-page: 2675
  issue: 11
  year: 2014
  ident: 10.1016/j.istruc.2025.109645_bib0170
  article-title: Flexural strength of glass-ceramic for structural applications
  publication-title: J Eur Ceram Soc
  doi: 10.1016/j.jeurceramsoc.2013.10.032
– volume: 324
  year: 2023
  ident: 10.1016/j.istruc.2025.109645_bib0110
  article-title: Piecewise power law approximation of the interlayer relaxation curve for the long-term viscoelastic fractional modeling of laminated glass
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2023.117505
– volume: 137
  start-page: 44
  year: 2016
  ident: 10.1016/j.istruc.2025.109645_bib0035
  article-title: Buckling of laminated-glass beams using the effective-thickness concept
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2015.11.014
– volume: 125
  start-page: 435
  issue: 4
  year: 1999
  ident: 10.1016/j.istruc.2025.109645_bib0045
  article-title: Analysis of glass/polyvinyl butyral laminates subjected to uniform pressure
  publication-title: J Eng Mech
– volume: 305
  year: 2024
  ident: 10.1016/j.istruc.2025.109645_bib0135
  article-title: Viscoelastic modeling via fractional calculus of the cold bending of laminated glass
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2024.117756
– volume: 92
  year: 2024
  ident: 10.1016/j.istruc.2025.109645_bib0070
  article-title: Non-local Maxwell model for ultraslow relaxation of concrete under different normal stress levels
  publication-title: J Build Eng
– volume: 244
  year: 2020
  ident: 10.1016/j.istruc.2025.109645_bib0025
  article-title: Constitutive relationships of different interlayer materials for laminated glass
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2020.112221
– start-page: 14
  year: 2023
  ident: 10.1016/j.istruc.2025.109645_bib0090
  article-title: Fractional viscoelastic modelling of polymeric interlayers in laminated glass. comparisons with prony series approach
SSID ssj0002140247
Score 2.3176577
Snippet We present a one-dimensional viscoelastic finite element model for laminated glass, employing fractional calculus to effectively capture the shear-coupling...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 109645
SubjectTerms Finite element method
Four-point bending tests
Fractional calculus
Laminated glass
Viscoelasticity
Title Validation in four-point bending tests of a viscoelastic model for laminated glass based on fractional calculus
URI https://dx.doi.org/10.1016/j.istruc.2025.109645
Volume 80
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07a8MwEBYhWdqh9EnTFxq6ijiSpUhjCA1pS7O0KdmMJEvgDnZITH9_T5ZdUigdOsrmE-J03H0n7oHQvXWJMWOXEu8nlKSpzolJnCJCGGFtzqS04R3yZSkWq_Rpzdc9NOtqYUJaZWv7o01vrHX7ZdRKc7QpitErBe4A5hWULjRACQ0lB5QpwftoMH18Xiy_n1ooBBG0GTUWICRguiK6JtOraFq1QqxIeeiuJEJp029Oas_xzI_RUcsY8TQe6gT1XHmKDvf6CJ6h6h3YdByOhIsSe4CQTVWUNTauqVrBQCjrHa481viz2NnKAWmG_XAzCAcAWwyaUZRAPHPcEGoc3FuOYUO_jbUPcAa4z_BauDtHq_nD22xB2kkKxIKLqon0Y2ZSTx0TLBdWSaXFWDrueGj_ZrwFHsFUYpWwUqTSJxbET2FBJ5rmwrEL1C-r0l0iDECtNYfAUKvUOWa4Vy4XEHmYhHNJh4h0oss2sWFG1mWSfWRR1FkQdRZFPUSTTr7Zj4vPwKb_ibz6N_IaHYRVzMm7QX34726BW9TmrtWdL4Jfzyc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07a8MwEBYhGdoOpU-aPjV0FXFkS7HHEBqc5rE0KdmEJEvgDnZIQn9_T5ZdUigdOvpxQpyOu-_E3XcIPWsTKNU3EbF2QEkUyYyowCSEc8W1zsI41u4ecr7g6Sp6XbN1C42aXhhXVln7fu_TK29dv-nV2uxt8rz3RgE7gHsFo3MEKI5QshMxyPbaqDOcTNPF91ULhSSCVqPGnAhxMk0TXVXplVdUrZArUubYlbhrbfotSB0EnvEZOq0RIx76TZ2jliku0MkBj-AlKt8BTfvhSDgvsAURsinzYo-VqbpWMADK_Q6XFkv8me90aQA0w3q4GoQDAlsMlpEXADwzXAFq7MJbhmFBu_W9D7AHOE93W7i7Qqvxy3KUknqSAtEQovYktv1QRZaakIcZ10mcSN6PDTPM0b8pqwFHhEmgE65jHsU20KB-Cg90IGnGTXiN2kVZmBuEQVBKySAxlElkTKiYTUzGIfNQAWMx7SLSqE5sPGGGaCrJPoRXtXCqFl7VXTRo9Ct-HLwAn_6n5O2_JZ_QUbqcz8RsspjeoWP3xdfn3aM2_GseAGfs1WNtR19f1tIU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Validation+in+four-point+bending+tests+of+a+viscoelastic+model+for+laminated+glass+based+on+fractional+calculus&rft.jtitle=Structures+%28Oxford%29&rft.au=Santi%2C+Lorenzo&rft.au=Royer-Carfagni%2C+Gianni&rft.date=2025-10-01&rft.issn=2352-0124&rft.eissn=2352-0124&rft.volume=80&rft.spage=109645&rft_id=info:doi/10.1016%2Fj.istruc.2025.109645&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_istruc_2025_109645
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-0124&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-0124&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-0124&client=summon