Validation in four-point bending tests of a viscoelastic model for laminated glass based on fractional calculus
We present a one-dimensional viscoelastic finite element model for laminated glass, employing fractional calculus to effectively capture the shear-coupling behavior of the polymeric viscoelastic interlayer between glass plies. The polymer relaxation curve is approximated using four power-law branche...
Saved in:
Published in | Structures (Oxford) Vol. 80; p. 109645 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.10.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2352-0124 2352-0124 |
DOI | 10.1016/j.istruc.2025.109645 |
Cover
Abstract | We present a one-dimensional viscoelastic finite element model for laminated glass, employing fractional calculus to effectively capture the shear-coupling behavior of the polymeric viscoelastic interlayer between glass plies. The polymer relaxation curve is approximated using four power-law branches, which are sufficient to represent both the short- and long-term responses of most commercial materials. This ensures that Boltzmann’s integral aligns with Caputo’s definition of a fractional time derivative. The spatial FE discretization is incorporated into the weak formulation of the dynamic viscoelastic problem derived from Hamilton’s principle. Time integration is performed using finite differences, with fractional derivatives approximated through the L1 formula. This allows to use a variable time-step, progressing in logarithmic scale, to balance the representation across the different power-law branches of the relaxation curve. The model is validated through four-point bending experiments on laminated glass specimens, involving loading at various strain rates and relaxation tests at different temperatures. Comparisons between experimental results and model predictions show strong agreement across a wide range of loading conditions, time scales, and temperatures. This demonstrates the model’s ability to accurately simulate the coupled viscoelastic response of laminated glass under bending loads, establishing it as a valuable tool for structural analysis and design in building engineering. |
---|---|
AbstractList | We present a one-dimensional viscoelastic finite element model for laminated glass, employing fractional calculus to effectively capture the shear-coupling behavior of the polymeric viscoelastic interlayer between glass plies. The polymer relaxation curve is approximated using four power-law branches, which are sufficient to represent both the short- and long-term responses of most commercial materials. This ensures that Boltzmann’s integral aligns with Caputo’s definition of a fractional time derivative. The spatial FE discretization is incorporated into the weak formulation of the dynamic viscoelastic problem derived from Hamilton’s principle. Time integration is performed using finite differences, with fractional derivatives approximated through the L1 formula. This allows to use a variable time-step, progressing in logarithmic scale, to balance the representation across the different power-law branches of the relaxation curve. The model is validated through four-point bending experiments on laminated glass specimens, involving loading at various strain rates and relaxation tests at different temperatures. Comparisons between experimental results and model predictions show strong agreement across a wide range of loading conditions, time scales, and temperatures. This demonstrates the model’s ability to accurately simulate the coupled viscoelastic response of laminated glass under bending loads, establishing it as a valuable tool for structural analysis and design in building engineering. |
ArticleNumber | 109645 |
Author | Santi, Lorenzo Royer-Carfagni, Gianni |
Author_xml | – sequence: 1 givenname: Lorenzo orcidid: 0009-0007-1033-9058 surname: Santi fullname: Santi, Lorenzo email: lorenzo.santi@unipr.it organization: Department of Engineering for Industrial Systems and Technologies, University of Parma, Parco Area delle Scienze 181/A, I-43100 Parma, Italy – sequence: 2 givenname: Gianni orcidid: 0000-0003-4879-9846 surname: Royer-Carfagni fullname: Royer-Carfagni, Gianni email: gianni.royer@unipr.it organization: Department of Engineering for Industrial Systems and Technologies, University of Parma, Parco Area delle Scienze 181/A, I-43100 Parma, Italy |
BookMark | eNp9kMtKAzEUhoMoWGvfwEVeYGpuk85sBCneoOBG3YZMclJSpklJMgXf3pS6cOXq3Pg_Dt8NugwxAEJ3lCwpofJ-t_S5pMksGWFtXfVStBdoxnjLGkKZuPzTX6NFzjtCCKOCMLGaofilR2918TFgH7CLU2oO0YeCBwjWhy0ukEvG0WGNjz6bCKPOxRu8jxbGGkh41HsfdAGLt_WW8aBz7SvQJW1OZD1io0czjVO-RVdOjxkWv3WOPp-fPtavzeb95W39uGkMJ7w0naN8EI4Bl9xK03e9lrSDFlrCOB2cWQnOe2J6aTopOkeMAcvqwFaaWQl8jsSZa1LMOYFTh-T3On0rStTJm9qpszd18qbO3mrs4RyD-tvRQ1LZeAgV7hOYomz0_wN-ACgue-g |
Cites_doi | 10.1371/journal.pone.0143090 10.1021/ja01619a008 10.1016/j.cpc.2012.07.011 10.1016/j.conbuildmat.2021.122503 10.1007/BF01332922 10.1016/j.engfracmech.2017.10.020 10.1016/j.conbuildmat.2014.04.003 10.1016/j.compstruct.2020.112720 10.1016/j.conbuildmat.2019.116897 10.1115/1.3167615 10.1115/1.4064433 10.1016/j.ijsolstr.2023.112287 10.3390/app8060960 10.1007/s40940-023-00229-w 10.1016/j.ijsolstr.2022.111617 10.1122/1.549887 10.1515/POLYENG.1997.17.1.1 10.1115/1.3167616 10.1016/j.ijmecsci.2012.12.019 10.1016/j.ijmecsci.2021.106274 10.1007/s11075-015-9998-1 10.1016/j.camwa.2011.03.054 10.1016/0020-7403(73)90012-X 10.1016/j.jeurceramsoc.2013.10.032 10.1016/j.compstruct.2023.117505 10.1016/j.compstruct.2015.11.014 10.1016/j.engstruct.2024.117756 10.1016/j.compstruct.2020.112221 |
ContentType | Journal Article |
Copyright | 2025 The Authors |
Copyright_xml | – notice: 2025 The Authors |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.istruc.2025.109645 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2352-0124 |
ExternalDocumentID | 10_1016_j_istruc_2025_109645 S2352012425014602 |
GroupedDBID | --M 0R~ 4.4 457 6I. AAEDT AAEDW AAFTH AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABJNI ABMAC ACDAQ ACGFS ACRLP ACVFH ADCNI ADEZE AEBSH AEIPS AEUPX AFJKZ AFPUW AFTJW AGCQF AGHFR AGUBO AHJVU AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BJAXD BKOJK BLXMC EBS EFJIC EFKBS EJD FDB FIRID FYGXN KOM M41 O9- OAUVE RIG ROL SPC SPCBC SST SSZ T5K ~G- AAYXX CITATION EFLBG |
ID | FETCH-LOGICAL-c303t-8f13b4f2e363d6c989a618e5e50231bfc743390c96c8648f0cced26c827a2d6e3 |
IEDL.DBID | AIKHN |
ISSN | 2352-0124 |
IngestDate | Wed Sep 03 16:42:22 EDT 2025 Sat Aug 16 17:03:26 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Viscoelasticity Finite element method Laminated glass Fractional calculus Four-point bending tests |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c303t-8f13b4f2e363d6c989a618e5e50231bfc743390c96c8648f0cced26c827a2d6e3 |
ORCID | 0009-0007-1033-9058 0000-0003-4879-9846 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2352012425014602 |
ParticipantIDs | crossref_primary_10_1016_j_istruc_2025_109645 elsevier_sciencedirect_doi_10_1016_j_istruc_2025_109645 |
PublicationCentury | 2000 |
PublicationDate | October 2025 2025-10-00 |
PublicationDateYYYYMMDD | 2025-10-01 |
PublicationDate_xml | – month: 10 year: 2025 text: October 2025 |
PublicationDecade | 2020 |
PublicationTitle | Structures (Oxford) |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Jóźwiak, Orczykowska, Dziubiński (bib0105) 2015; 10 Magisano, Leonetti, Garcea, Royer-Carfagni (bib0175) 2023; 274 Hooper (bib0005) 1973; 15 Vedrtnam, Pawar (bib0145) 2017; 186 Martin, Centelles, Sole, Barreneche, Fernández, Cabeza (bib0020) 2020; 230 Van Duser, Jagota, Bennison (bib0045) 1999; 125 Luo, Zhou, Yi, Yi (bib0065) 2024; 95 Koeller (bib0010) 1984; 51 Fazio, Jannelli, Agreste (bib0115) 2018; 8 Andreozzi, Briccoli Bati, Fagone, Ranocchiai, Zulli (bib0030) 2014; 65 López-Aenlle, Pelayo, Ismael, García Prieto, Martín Rodríguez, Fernández-Canteli (bib0035) 2016; 137 Scherer, Kalla, Tang, Huang (bib0100) 2011; 62 Santi, Royer-Carfagni (bib0135) 2024; 305 Centelles, Pelayo, Lamela-Rey, Fernández, Salgado-Pizarro, Castro (bib0150) 2021; 279 Viviani, Di Paola, Royer-Carfagni (bib0055) 2022; 248 Galuppi, Royer-Carfagni (bib0040) 2013; 68 Bagley (bib0095) 1986; 30 Baumgaertel, Winter (bib0160) 1989; 28 Zhang, Li, Su, Xu, Sha (bib0080) 2024; 96 Biolzi, Cattaneo, Orlando, Piscitelli, Spinelli (bib0025) 2020; 244 Torvik, Bagley (bib0060) 1984; 51 Schuster, Härth, Thiele, Bennison (bib0140) 2023; 8 Yuste, Quintana-Murillo (bib0125) 2016; 71 Wen, Yan, Liang (bib0070) 2024; 92 Viviani, Di Paola, Royer Carfagni (bib0110) 2023; 324 Santi, Royer-Carfagni (bib0130) 2024; 91 Amabili, Balasubramanian, Garziera, Royer-Carfagni (bib0165) 2020; 252 Di Paola, Galuppi, Royer-Carfagni (bib0085) 2021; 196 Yuste, Quintana-Murillo (bib0120) 2012; 183 Santi, Bennison, Haerth, Royer-Carfagni (bib0090) 2023 Brinson, Brinson (bib0015) 2008 Gant, Bower (bib0050) 1997; 17 Lin, Yu, Tsai, Chang, Peng, Wang (bib0075) 2022; 53 Williams, Landel, Ferry (bib0155) 1955; 77 Collini, Royer-Carfagni (bib0170) 2014; 34 Santi (10.1016/j.istruc.2025.109645_bib0130) 2024; 91 Centelles (10.1016/j.istruc.2025.109645_bib0150) 2021; 279 Bagley (10.1016/j.istruc.2025.109645_bib0095) 1986; 30 Luo (10.1016/j.istruc.2025.109645_bib0065) 2024; 95 Fazio (10.1016/j.istruc.2025.109645_bib0115) 2018; 8 Lin (10.1016/j.istruc.2025.109645_bib0075) 2022; 53 Andreozzi (10.1016/j.istruc.2025.109645_bib0030) 2014; 65 Di Paola (10.1016/j.istruc.2025.109645_bib0085) 2021; 196 Baumgaertel (10.1016/j.istruc.2025.109645_bib0160) 1989; 28 Vedrtnam (10.1016/j.istruc.2025.109645_bib0145) 2017; 186 Koeller (10.1016/j.istruc.2025.109645_bib0010) 1984; 51 Gant (10.1016/j.istruc.2025.109645_bib0050) 1997; 17 Magisano (10.1016/j.istruc.2025.109645_bib0175) 2023; 274 Williams (10.1016/j.istruc.2025.109645_bib0155) 1955; 77 Santi (10.1016/j.istruc.2025.109645_bib0090) 2023 Santi (10.1016/j.istruc.2025.109645_bib0135) 2024; 305 Yuste (10.1016/j.istruc.2025.109645_bib0120) 2012; 183 Martin (10.1016/j.istruc.2025.109645_bib0020) 2020; 230 Galuppi (10.1016/j.istruc.2025.109645_bib0040) 2013; 68 Viviani (10.1016/j.istruc.2025.109645_bib0055) 2022; 248 Viviani (10.1016/j.istruc.2025.109645_bib0110) 2023; 324 Wen (10.1016/j.istruc.2025.109645_bib0070) 2024; 92 Zhang (10.1016/j.istruc.2025.109645_bib0080) 2024; 96 Collini (10.1016/j.istruc.2025.109645_bib0170) 2014; 34 Yuste (10.1016/j.istruc.2025.109645_bib0125) 2016; 71 Brinson (10.1016/j.istruc.2025.109645_bib0015) 2008 López-Aenlle (10.1016/j.istruc.2025.109645_bib0035) 2016; 137 Biolzi (10.1016/j.istruc.2025.109645_bib0025) 2020; 244 Scherer (10.1016/j.istruc.2025.109645_bib0100) 2011; 62 Amabili (10.1016/j.istruc.2025.109645_bib0165) 2020; 252 Van Duser (10.1016/j.istruc.2025.109645_bib0045) 1999; 125 Torvik (10.1016/j.istruc.2025.109645_bib0060) 1984; 51 Schuster (10.1016/j.istruc.2025.109645_bib0140) 2023; 8 Hooper (10.1016/j.istruc.2025.109645_bib0005) 1973; 15 Jóźwiak (10.1016/j.istruc.2025.109645_bib0105) 2015; 10 |
References_xml | – volume: 71 start-page: 207 year: 2016 end-page: 228 ident: bib0125 article-title: Fast, accurate and robust adaptive finite difference methods for fractional diffusion equations publication-title: Numer Algorithms – volume: 28 start-page: 511 year: 1989 end-page: 519 ident: bib0160 article-title: Determination of discrete relaxation and retardation time spectra from dynamic mechanical data publication-title: Rheol Acta – start-page: 14 year: 2023 end-page: 16 ident: bib0090 article-title: Fractional viscoelastic modelling of polymeric interlayers in laminated glass. comparisons with prony series approach publication-title: Proceedings of the glass perfomance days (GPD), Tampere (Fi) June – volume: 68 start-page: 67 year: 2013 end-page: 75 ident: bib0040 article-title: The design of laminated glass under time-dependent loading publication-title: Int J Mech Sci – volume: 91 year: 2024 ident: bib0130 article-title: Variable time steps in the numerical implementation of viscoelastic fractional models for laminated glass publication-title: J Appl Mech – volume: 77 start-page: 3701 year: 1955 end-page: 3707 ident: bib0155 article-title: The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids publication-title: J Am Chem Soc – volume: 137 start-page: 44 year: 2016 end-page: 55 ident: bib0035 article-title: Buckling of laminated-glass beams using the effective-thickness concept publication-title: Compos Struct – volume: 51 start-page: 299 year: 1984 end-page: 307 ident: bib0010 article-title: Applications of fractional calculus to the theory of viscoelasticity publication-title: J Appl Mech – volume: 10 year: 2015 ident: bib0105 article-title: Fractional generalizations of Maxwell and Kelvin–Voigt models for biopolymer characterization publication-title: PLoS One – volume: 8 start-page: 457 year: 2023 end-page: 469 ident: bib0140 article-title: Quantification of the linear viscoelastic behavior of multilayer polymer interlayers for laminated glass publication-title: Glass Struct Eng – volume: 125 start-page: 435 year: 1999 end-page: 442 ident: bib0045 article-title: Analysis of glass/polyvinyl butyral laminates subjected to uniform pressure publication-title: J Eng Mech – volume: 324 year: 2023 ident: bib0110 article-title: Piecewise power law approximation of the interlayer relaxation curve for the long-term viscoelastic fractional modeling of laminated glass publication-title: Compos Struct – volume: 230 year: 2020 ident: bib0020 article-title: Polymeric interlayer materials for laminated glass: a review publication-title: Const Build Mater – year: 2008 ident: bib0015 publication-title: Polymer engineering science and viscoelasticity: an introduction – volume: 65 start-page: 1 year: 2014 end-page: 13 ident: bib0030 article-title: Dynamic torsion tests to characterize the thermo-viscoelastic properties of polymeric interlayers for laminated glass publication-title: Const Build Mater – volume: 95 year: 2024 ident: bib0065 article-title: Modeling time-dependent deformation in concrete: a fractional calculus method with finite element implementation publication-title: J Build Eng – volume: 53 year: 2022 ident: bib0075 article-title: Hysteretic behavior of viscoelastic dampers subjected to damage during seismic loading publication-title: J Build Eng – volume: 8 start-page: 960 year: 2018 ident: bib0115 article-title: A finite difference method on non-uniform meshes for time-fractional advection–diffusion equations with a source term publication-title: Appl Sci – volume: 186 start-page: 316 year: 2017 end-page: 330 ident: bib0145 article-title: Laminated plate theories and fracture of laminated glass plate–a review publication-title: Eng Fract Mech – volume: 96 year: 2024 ident: bib0080 article-title: Viscoelastic dampers for civil engineering structures: a systematic review of constructions, materials, and applications publication-title: J Build Eng – volume: 183 start-page: 2594 year: 2012 end-page: 2600 ident: bib0120 article-title: A finite difference method with non-uniform timesteps for fractional diffusion equations publication-title: Comput Phys Commun – volume: 51 start-page: 294 year: 1984 end-page: 298 ident: bib0060 article-title: On the appearance of the fractional derivative in the behavior of real materials publication-title: J Appl Mech – volume: 15 start-page: 309 year: 1973 end-page: 323 ident: bib0005 article-title: On the bending of architectural laminated glass publication-title: Int J Mech Sci – volume: 62 start-page: 902 year: 2011 end-page: 917 ident: bib0100 article-title: The Grünwald–Letnikov method for fractional differential equations publication-title: Comput Math Appl – volume: 274 year: 2023 ident: bib0175 article-title: A constrained solid-shell model for the geometric nonlinear finite-element analysis of laminates with alternating stiff/soft layers. applications to laminated glass publication-title: Int J Solids Struct – volume: 252 year: 2020 ident: bib0165 article-title: Blast loads and nonlinear vibrations of laminated glass plates in an enhanced shear deformation theory publication-title: Compos Struct – volume: 92 year: 2024 ident: bib0070 article-title: Non-local Maxwell model for ultraslow relaxation of concrete under different normal stress levels publication-title: J Build Eng – volume: 34 start-page: 2675 year: 2014 end-page: 2685 ident: bib0170 article-title: Flexural strength of glass-ceramic for structural applications publication-title: J Eur Ceram Soc – volume: 305 year: 2024 ident: bib0135 article-title: Viscoelastic modeling via fractional calculus of the cold bending of laminated glass publication-title: Eng Struct – volume: 244 year: 2020 ident: bib0025 article-title: Constitutive relationships of different interlayer materials for laminated glass publication-title: Compos Struct – volume: 196 year: 2021 ident: bib0085 article-title: Fractional viscoelastic characterization of laminated glass beams under time-varying loading publication-title: Int J Mech Sci – volume: 30 start-page: 133 year: 1986 end-page: 155 ident: bib0095 article-title: On the fractional calculus model of viscoelastic behavior publication-title: J Rheol – volume: 248 year: 2022 ident: bib0055 article-title: Fractional viscoelastic modeling of laminated glass beams in the pre-crack state under explosive loads publication-title: Int J Solids Struct – volume: 17 start-page: 1 year: 1997 end-page: 22 ident: bib0050 article-title: Domain of influence method: a new method for approximating prony series coefficients and exponents for viscoelastic materials publication-title: J Polym Eng – volume: 279 year: 2021 ident: bib0150 article-title: Viscoelastic characterization of seven laminated glass interlayer materials from static tests publication-title: Const Build Mater – volume: 10 issue: 11 year: 2015 ident: 10.1016/j.istruc.2025.109645_bib0105 article-title: Fractional generalizations of Maxwell and Kelvin–Voigt models for biopolymer characterization publication-title: PLoS One doi: 10.1371/journal.pone.0143090 – volume: 77 start-page: 3701 issue: 14 year: 1955 ident: 10.1016/j.istruc.2025.109645_bib0155 article-title: The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids publication-title: J Am Chem Soc doi: 10.1021/ja01619a008 – volume: 183 start-page: 2594 issue: 12 year: 2012 ident: 10.1016/j.istruc.2025.109645_bib0120 article-title: A finite difference method with non-uniform timesteps for fractional diffusion equations publication-title: Comput Phys Commun doi: 10.1016/j.cpc.2012.07.011 – volume: 279 year: 2021 ident: 10.1016/j.istruc.2025.109645_bib0150 article-title: Viscoelastic characterization of seven laminated glass interlayer materials from static tests publication-title: Const Build Mater doi: 10.1016/j.conbuildmat.2021.122503 – volume: 28 start-page: 511 issue: 6 year: 1989 ident: 10.1016/j.istruc.2025.109645_bib0160 article-title: Determination of discrete relaxation and retardation time spectra from dynamic mechanical data publication-title: Rheol Acta doi: 10.1007/BF01332922 – volume: 186 start-page: 316 year: 2017 ident: 10.1016/j.istruc.2025.109645_bib0145 article-title: Laminated plate theories and fracture of laminated glass plate–a review publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2017.10.020 – volume: 65 start-page: 1 year: 2014 ident: 10.1016/j.istruc.2025.109645_bib0030 article-title: Dynamic torsion tests to characterize the thermo-viscoelastic properties of polymeric interlayers for laminated glass publication-title: Const Build Mater doi: 10.1016/j.conbuildmat.2014.04.003 – year: 2008 ident: 10.1016/j.istruc.2025.109645_bib0015 – volume: 252 year: 2020 ident: 10.1016/j.istruc.2025.109645_bib0165 article-title: Blast loads and nonlinear vibrations of laminated glass plates in an enhanced shear deformation theory publication-title: Compos Struct doi: 10.1016/j.compstruct.2020.112720 – volume: 230 year: 2020 ident: 10.1016/j.istruc.2025.109645_bib0020 article-title: Polymeric interlayer materials for laminated glass: a review publication-title: Const Build Mater doi: 10.1016/j.conbuildmat.2019.116897 – volume: 51 start-page: 294 issue: 2 year: 1984 ident: 10.1016/j.istruc.2025.109645_bib0060 article-title: On the appearance of the fractional derivative in the behavior of real materials publication-title: J Appl Mech doi: 10.1115/1.3167615 – volume: 91 issue: 9 year: 2024 ident: 10.1016/j.istruc.2025.109645_bib0130 article-title: Variable time steps in the numerical implementation of viscoelastic fractional models for laminated glass publication-title: J Appl Mech doi: 10.1115/1.4064433 – volume: 274 year: 2023 ident: 10.1016/j.istruc.2025.109645_bib0175 article-title: A constrained solid-shell model for the geometric nonlinear finite-element analysis of laminates with alternating stiff/soft layers. applications to laminated glass publication-title: Int J Solids Struct doi: 10.1016/j.ijsolstr.2023.112287 – volume: 8 start-page: 960 issue: 6 year: 2018 ident: 10.1016/j.istruc.2025.109645_bib0115 article-title: A finite difference method on non-uniform meshes for time-fractional advection–diffusion equations with a source term publication-title: Appl Sci doi: 10.3390/app8060960 – volume: 8 start-page: 457 issue: 4 year: 2023 ident: 10.1016/j.istruc.2025.109645_bib0140 article-title: Quantification of the linear viscoelastic behavior of multilayer polymer interlayers for laminated glass publication-title: Glass Struct Eng doi: 10.1007/s40940-023-00229-w – volume: 248 year: 2022 ident: 10.1016/j.istruc.2025.109645_bib0055 article-title: Fractional viscoelastic modeling of laminated glass beams in the pre-crack state under explosive loads publication-title: Int J Solids Struct doi: 10.1016/j.ijsolstr.2022.111617 – volume: 30 start-page: 133 issue: 1 year: 1986 ident: 10.1016/j.istruc.2025.109645_bib0095 article-title: On the fractional calculus model of viscoelastic behavior publication-title: J Rheol doi: 10.1122/1.549887 – volume: 17 start-page: 1 issue: 1 year: 1997 ident: 10.1016/j.istruc.2025.109645_bib0050 article-title: Domain of influence method: a new method for approximating prony series coefficients and exponents for viscoelastic materials publication-title: J Polym Eng doi: 10.1515/POLYENG.1997.17.1.1 – volume: 95 year: 2024 ident: 10.1016/j.istruc.2025.109645_bib0065 article-title: Modeling time-dependent deformation in concrete: a fractional calculus method with finite element implementation publication-title: J Build Eng – volume: 51 start-page: 299 issue: 2 year: 1984 ident: 10.1016/j.istruc.2025.109645_bib0010 article-title: Applications of fractional calculus to the theory of viscoelasticity publication-title: J Appl Mech doi: 10.1115/1.3167616 – volume: 53 year: 2022 ident: 10.1016/j.istruc.2025.109645_bib0075 article-title: Hysteretic behavior of viscoelastic dampers subjected to damage during seismic loading publication-title: J Build Eng – volume: 68 start-page: 67 year: 2013 ident: 10.1016/j.istruc.2025.109645_bib0040 article-title: The design of laminated glass under time-dependent loading publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2012.12.019 – volume: 196 year: 2021 ident: 10.1016/j.istruc.2025.109645_bib0085 article-title: Fractional viscoelastic characterization of laminated glass beams under time-varying loading publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2021.106274 – volume: 96 year: 2024 ident: 10.1016/j.istruc.2025.109645_bib0080 article-title: Viscoelastic dampers for civil engineering structures: a systematic review of constructions, materials, and applications publication-title: J Build Eng – volume: 71 start-page: 207 issue: 1 year: 2016 ident: 10.1016/j.istruc.2025.109645_bib0125 article-title: Fast, accurate and robust adaptive finite difference methods for fractional diffusion equations publication-title: Numer Algorithms doi: 10.1007/s11075-015-9998-1 – volume: 62 start-page: 902 issue: 3 year: 2011 ident: 10.1016/j.istruc.2025.109645_bib0100 article-title: The Grünwald–Letnikov method for fractional differential equations publication-title: Comput Math Appl doi: 10.1016/j.camwa.2011.03.054 – volume: 15 start-page: 309 issue: 4 year: 1973 ident: 10.1016/j.istruc.2025.109645_bib0005 article-title: On the bending of architectural laminated glass publication-title: Int J Mech Sci doi: 10.1016/0020-7403(73)90012-X – volume: 34 start-page: 2675 issue: 11 year: 2014 ident: 10.1016/j.istruc.2025.109645_bib0170 article-title: Flexural strength of glass-ceramic for structural applications publication-title: J Eur Ceram Soc doi: 10.1016/j.jeurceramsoc.2013.10.032 – volume: 324 year: 2023 ident: 10.1016/j.istruc.2025.109645_bib0110 article-title: Piecewise power law approximation of the interlayer relaxation curve for the long-term viscoelastic fractional modeling of laminated glass publication-title: Compos Struct doi: 10.1016/j.compstruct.2023.117505 – volume: 137 start-page: 44 year: 2016 ident: 10.1016/j.istruc.2025.109645_bib0035 article-title: Buckling of laminated-glass beams using the effective-thickness concept publication-title: Compos Struct doi: 10.1016/j.compstruct.2015.11.014 – volume: 125 start-page: 435 issue: 4 year: 1999 ident: 10.1016/j.istruc.2025.109645_bib0045 article-title: Analysis of glass/polyvinyl butyral laminates subjected to uniform pressure publication-title: J Eng Mech – volume: 305 year: 2024 ident: 10.1016/j.istruc.2025.109645_bib0135 article-title: Viscoelastic modeling via fractional calculus of the cold bending of laminated glass publication-title: Eng Struct doi: 10.1016/j.engstruct.2024.117756 – volume: 92 year: 2024 ident: 10.1016/j.istruc.2025.109645_bib0070 article-title: Non-local Maxwell model for ultraslow relaxation of concrete under different normal stress levels publication-title: J Build Eng – volume: 244 year: 2020 ident: 10.1016/j.istruc.2025.109645_bib0025 article-title: Constitutive relationships of different interlayer materials for laminated glass publication-title: Compos Struct doi: 10.1016/j.compstruct.2020.112221 – start-page: 14 year: 2023 ident: 10.1016/j.istruc.2025.109645_bib0090 article-title: Fractional viscoelastic modelling of polymeric interlayers in laminated glass. comparisons with prony series approach |
SSID | ssj0002140247 |
Score | 2.3176577 |
Snippet | We present a one-dimensional viscoelastic finite element model for laminated glass, employing fractional calculus to effectively capture the shear-coupling... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 109645 |
SubjectTerms | Finite element method Four-point bending tests Fractional calculus Laminated glass Viscoelasticity |
Title | Validation in four-point bending tests of a viscoelastic model for laminated glass based on fractional calculus |
URI | https://dx.doi.org/10.1016/j.istruc.2025.109645 |
Volume | 80 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07a8MwEBYhWdqh9EnTFxq6ijiSpUhjCA1pS7O0KdmMJEvgDnZITH9_T5ZdUigdOsrmE-J03H0n7oHQvXWJMWOXEu8nlKSpzolJnCJCGGFtzqS04R3yZSkWq_Rpzdc9NOtqYUJaZWv7o01vrHX7ZdRKc7QpitErBe4A5hWULjRACQ0lB5QpwftoMH18Xiy_n1ooBBG0GTUWICRguiK6JtOraFq1QqxIeeiuJEJp029Oas_xzI_RUcsY8TQe6gT1XHmKDvf6CJ6h6h3YdByOhIsSe4CQTVWUNTauqVrBQCjrHa481viz2NnKAWmG_XAzCAcAWwyaUZRAPHPcEGoc3FuOYUO_jbUPcAa4z_BauDtHq_nD22xB2kkKxIKLqon0Y2ZSTx0TLBdWSaXFWDrueGj_ZrwFHsFUYpWwUqTSJxbET2FBJ5rmwrEL1C-r0l0iDECtNYfAUKvUOWa4Vy4XEHmYhHNJh4h0oss2sWFG1mWSfWRR1FkQdRZFPUSTTr7Zj4vPwKb_ibz6N_IaHYRVzMm7QX34726BW9TmrtWdL4Jfzyc |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07a8MwEBYhGdoOpU-aPjV0FXFkS7HHEBqc5rE0KdmEJEvgDnZIQn9_T5ZdUigdOvpxQpyOu-_E3XcIPWsTKNU3EbF2QEkUyYyowCSEc8W1zsI41u4ecr7g6Sp6XbN1C42aXhhXVln7fu_TK29dv-nV2uxt8rz3RgE7gHsFo3MEKI5QshMxyPbaqDOcTNPF91ULhSSCVqPGnAhxMk0TXVXplVdUrZArUubYlbhrbfotSB0EnvEZOq0RIx76TZ2jliku0MkBj-AlKt8BTfvhSDgvsAURsinzYo-VqbpWMADK_Q6XFkv8me90aQA0w3q4GoQDAlsMlpEXADwzXAFq7MJbhmFBu_W9D7AHOE93W7i7Qqvxy3KUknqSAtEQovYktv1QRZaakIcZ10mcSN6PDTPM0b8pqwFHhEmgE65jHsU20KB-Cg90IGnGTXiN2kVZmBuEQVBKySAxlElkTKiYTUzGIfNQAWMx7SLSqE5sPGGGaCrJPoRXtXCqFl7VXTRo9Ct-HLwAn_6n5O2_JZ_QUbqcz8RsspjeoWP3xdfn3aM2_GseAGfs1WNtR19f1tIU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Validation+in+four-point+bending+tests+of+a+viscoelastic+model+for+laminated+glass+based+on+fractional+calculus&rft.jtitle=Structures+%28Oxford%29&rft.au=Santi%2C+Lorenzo&rft.au=Royer-Carfagni%2C+Gianni&rft.date=2025-10-01&rft.issn=2352-0124&rft.eissn=2352-0124&rft.volume=80&rft.spage=109645&rft_id=info:doi/10.1016%2Fj.istruc.2025.109645&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_istruc_2025_109645 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-0124&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-0124&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-0124&client=summon |