A new method for stochastic analysis of structures under limited observations

•An effective framework for stochastic modelling and uncertainty propagation of engineering systems with limited observations is presented.•The developed kernel density based random model can reasonably reconstruct the non-Gaussian feature of system parameters.•The developed sample generator facilit...

Full description

Saved in:
Bibliographic Details
Published inMechanical systems and signal processing Vol. 185; p. 109730
Main Authors Dai, Hongzhe, Zhang, Ruijing, Beer, Michael
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.02.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •An effective framework for stochastic modelling and uncertainty propagation of engineering systems with limited observations is presented.•The developed kernel density based random model can reasonably reconstruct the non-Gaussian feature of system parameters.•The developed sample generator facilitates the arbitrary polynomial chaos (aPC) formulation of system analysis as well as aPC-based propagation of uncertainty.•Two numerical examples are investigated to highlight the proposed method. Reasonable modeling of non-Gaussian system inputs from limited observations and efficient propagation of system response are of great significance in uncertain analysis of real engineering problems. In this paper, we develop a new method for the construction of non-Gaussian random model and associated propagation of response under limited observations. Our method firstly develops a new kernel density estimation-based (KDE-based) random model based on Karhunen-Loeve (KL) expansion of observations of uncertain parameters. By further implementing the arbitrary polynomial chaos (aPC) formulation on KL vector with dependent measure, the associated aPC-based response propagation is then developed. In our method, the developed KDE-based model can accurately represent the input parameters from limited observations as the new KDE of KL vector can incorporate the inherent relation between marginals of input parameters and distribution of univariate KL variables. In addition, the aPC formulation can be effectively determined for uncertain analysis by virtue of the mixture representation of the developed KDE of KL vector. Furthermore, the system response can be propagated in a stable and accurate way with the developed D-optimal weighted regression method by the equivalence between the distribution of underlying aPC variables and that of KL vector. In this way, the current work provides an effective framework for the reasonable stochastic modeling and efficient response propagation of real-life engineering systems with limited observations. Two numerical examples, including the analysis of structures subjected to random seismic ground motion, are presented to highlight the effectiveness of the proposed method.
AbstractList •An effective framework for stochastic modelling and uncertainty propagation of engineering systems with limited observations is presented.•The developed kernel density based random model can reasonably reconstruct the non-Gaussian feature of system parameters.•The developed sample generator facilitates the arbitrary polynomial chaos (aPC) formulation of system analysis as well as aPC-based propagation of uncertainty.•Two numerical examples are investigated to highlight the proposed method. Reasonable modeling of non-Gaussian system inputs from limited observations and efficient propagation of system response are of great significance in uncertain analysis of real engineering problems. In this paper, we develop a new method for the construction of non-Gaussian random model and associated propagation of response under limited observations. Our method firstly develops a new kernel density estimation-based (KDE-based) random model based on Karhunen-Loeve (KL) expansion of observations of uncertain parameters. By further implementing the arbitrary polynomial chaos (aPC) formulation on KL vector with dependent measure, the associated aPC-based response propagation is then developed. In our method, the developed KDE-based model can accurately represent the input parameters from limited observations as the new KDE of KL vector can incorporate the inherent relation between marginals of input parameters and distribution of univariate KL variables. In addition, the aPC formulation can be effectively determined for uncertain analysis by virtue of the mixture representation of the developed KDE of KL vector. Furthermore, the system response can be propagated in a stable and accurate way with the developed D-optimal weighted regression method by the equivalence between the distribution of underlying aPC variables and that of KL vector. In this way, the current work provides an effective framework for the reasonable stochastic modeling and efficient response propagation of real-life engineering systems with limited observations. Two numerical examples, including the analysis of structures subjected to random seismic ground motion, are presented to highlight the effectiveness of the proposed method.
ArticleNumber 109730
Author Beer, Michael
Zhang, Ruijing
Dai, Hongzhe
Author_xml – sequence: 1
  givenname: Hongzhe
  surname: Dai
  fullname: Dai, Hongzhe
  email: hzdai@hit.edu.cn
  organization: School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, PR China
– sequence: 2
  givenname: Ruijing
  surname: Zhang
  fullname: Zhang, Ruijing
  organization: School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, PR China
– sequence: 3
  givenname: Michael
  surname: Beer
  fullname: Beer, Michael
  organization: Institute for Risk and Reliability, Leibniz Universität Hannover, Callinstr. 34, Hannover, Germany
BookMark eNqFkE1LAzEQhoNUsK3-Ai_5A1snSXebHDyU4hcoXvQcssksTdndlCSt9N-7bT150NMMLzzDO8-EjPrQIyG3DGYMWHW3mR26lLYzDpwPiVoIuCDjYakKxlk1ImOQUhaCL-CKTFLaAICaQzUmb0va4xftMK-Do02INOVg1yZlb6npTXtIPtHQDHHc2byLmOiudxhp6zuf0dFQJ4x7k33o0zW5bEyb8OZnTsnn48PH6rl4fX96WS1fCytA5EJiCQbEUM-VVjpuG1Ur5ZhCZkunqoYLwZkSteBWSVZbrMUcG5DCyHIumZgSdb5rY0gpYqOtz6cKORrfagb66EVv9MmLPnrRZy8DK36x2-g7Ew__UPdnCoe39h6jTtZjb9H5iDZrF_yf_Dd5foEb
CitedBy_id crossref_primary_10_1016_j_ijmecsci_2024_109035
crossref_primary_10_1016_j_ymssp_2024_112172
crossref_primary_10_1061_JAEEEZ_ASENG_4672
crossref_primary_10_1016_j_probengmech_2023_103422
crossref_primary_10_1016_j_probengmech_2023_103455
crossref_primary_10_1016_j_cma_2022_115860
crossref_primary_10_1016_j_cma_2023_116576
crossref_primary_10_1155_2023_8234927
crossref_primary_10_1115_1_4064159
crossref_primary_10_3390_su142114363
crossref_primary_10_1016_j_ress_2023_109408
crossref_primary_10_1016_j_ress_2025_110849
crossref_primary_10_1016_j_ymssp_2023_110643
crossref_primary_10_1016_j_ress_2023_109145
crossref_primary_10_1016_j_cma_2023_116613
crossref_primary_10_1016_j_cma_2022_115689
crossref_primary_10_1002_nme_7253
crossref_primary_10_1016_j_cma_2024_117705
crossref_primary_10_1016_j_ymssp_2024_111683
crossref_primary_10_1016_j_ymssp_2023_110781
Cites_doi 10.1137/140968495
10.1137/S1064827501387826
10.1016/j.probengmech.2014.03.005
10.1016/S0045-7949(02)00064-0
10.1016/j.ymssp.2021.108589
10.1137/17M1140960
10.1016/j.strusafe.2019.03.006
10.1016/j.ress.2020.107087
10.1137/S1064827503424505
10.1016/j.probengmech.2018.08.003
10.1016/j.apm.2012.11.021
10.1016/j.strusafe.2006.08.001
10.1016/j.ymssp.2022.109026
10.1016/j.cma.2021.114105
10.1016/j.ymssp.2017.03.048
10.1016/j.ymssp.2019.01.049
10.1016/j.strusafe.2014.02.003
10.1139/cgj-2017-0254
10.1016/j.ress.2022.108323
10.1137/060652105
10.1016/j.cma.2019.112612
10.1016/j.strusafe.2022.102201
10.1002/nme.1576
10.1016/j.strusafe.2014.10.001
10.2514/6.2006-896
10.1016/j.ymssp.2020.107420
10.1016/j.ymssp.2021.108420
10.1016/j.ymssp.2021.107953
10.3166/remn.15.81-92
10.1016/j.probengmech.2005.05.007
10.1016/j.jmaa.2018.04.032
10.1016/j.ymssp.2021.107975
10.1016/j.probengmech.2020.103082
10.1016/j.strusafe.2016.02.005
10.1016/j.jcp.2006.01.037
10.1016/j.ymssp.2018.01.011
10.1002/eqe.2166
10.1016/j.jcp.2010.12.021
10.1016/j.ymssp.2017.03.004
10.1016/j.ymssp.2011.09.001
10.1016/j.jcp.2009.08.025
10.1016/j.probengmech.2015.09.015
10.1137/20M1315774
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.ymssp.2022.109730
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1096-1216
ExternalDocumentID 10_1016_j_ymssp_2022_109730
S0888327022008020
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG5
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SST
SSV
SSZ
T5K
XPP
ZMT
ZU3
~G-
29M
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CAG
CITATION
COF
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SET
SEW
SSH
WUQ
ID FETCH-LOGICAL-c303t-8e50a03096d5c8d2cf9b99d19e1c5d96f2332193b32c981bceb34ef083a854813
IEDL.DBID .~1
ISSN 0888-3270
IngestDate Tue Jul 01 04:30:15 EDT 2025
Thu Apr 24 22:59:55 EDT 2025
Fri Feb 23 02:39:39 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Uncertain analysis
KL
CDF
MCMC
PC-based response propagation
ISDE
IQR
Random field modelling
KDE
PC
PDF
aPC
Limited observations
DOF
Kernel density estimation
MCS
ED
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c303t-8e50a03096d5c8d2cf9b99d19e1c5d96f2332193b32c981bceb34ef083a854813
ParticipantIDs crossref_citationtrail_10_1016_j_ymssp_2022_109730
crossref_primary_10_1016_j_ymssp_2022_109730
elsevier_sciencedirect_doi_10_1016_j_ymssp_2022_109730
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-15
PublicationDateYYYYMMDD 2023-02-15
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-15
  day: 15
PublicationDecade 2020
PublicationTitle Mechanical systems and signal processing
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Soize, Ghanem (b0200) 2004; 26
Dai, Zhang, Beer (b0015) 2022; 96
Montoya-Noguera, Zhao, Yue, Wang, Phoon (b0125) 2019; 79
Silverman (b0165) 2018
Blatman, Sudret (b0220) 2011; 230
Novák, Vořechovsk‘y, Sadílek, Shields (b0185) 2021; 386
Poirion, Zentner (b0100) 2013; 37
Dai, Zhang, Rasmussen, Wang (b0060) 2015; 52
Wang, Zhao, Phoon (b0070) 2018; 55
Jeroen AS Witteveen and Hester Bijl. Modeling arbitrary uncertainties using Gram-Schmidt polynomial chaos. In
Poirion, Zentner (b0075) 2014; 36
page 896, 2006.
Chen, Yang (b0030) 2019; 357
Desceliers, Ghanem, Soize (b0140) 2006; 66
Das, Ghanem, Finette (b0155) 2009; 228
Chen, Kong, Peng (b0005) 2017; 96
Li, Chen (b0025) 2008; 30
Comerford, Kougioumtzoglou, Beer (b0110) 2016; 44
Kougioumtzoglou, Petromichelakis, Psaros (b0105) 2020; 61
Robert, Casella, Casella (b0170) 1999; vol. 2
Comerford, Kougioumtzoglou, Beer (b0115) 2015; 52
Luthen, Marelli, Sudret (b0180) 2021; 9
Das, Ghanem, Spall (b0150) 2008; 30
Zhang, Liu, Huang (b0085) 2019; 55
Kong, Han, Li, He (b0045) 2022; 166
Wang, Zhao, Phoon (b0035) 2019; 124
Pasparakis, dos Santos, Kougioumtzoglou, Beer (b0055) 2022; 162
Kougioumtzoglou, dos Santos, Comerford (b0065) 2017; 94
Zentner, Poirion (b0135) 2012; 41
Mehrez, Doostan, Moens, Vandepitte (b0145) 2012; 27
Phoon, Huang, Quek (b0190) 2002; 80
Rahman (b0210) 2018; 464
Zheng, Dai, Wang, Wang (b0095) 2021; 151
Ghanem, Doostan (b0130) 2006; 217
Xu (b0230) 2016; 60
Zhao, Wang (b0120) 2020; 203
Soize (b0160) 2015; 3
Tong, Zhao, Zhao (b0090) 2021; 160
Zhang, Dai (b0040) 2022; 173
Liu, Liu (b0010) 2018; 106
Xu, Wu, Lu (b0050) 2022; 169
Zhang, Dai (b0080) 2022; 221
Xiu, Karniadakis (b0175) 2002; 24
Phoon, Huang, Quek (b0195) April 2005; 20
Ghanem, Spanos (b0020) 2003
Guo, AkilNarayan, Zhou (b0225) 2018; 40
Berveiller, Sudret, Lemaire (b0215) 2006; 15
Zhang (10.1016/j.ymssp.2022.109730_b0080) 2022; 221
Chen (10.1016/j.ymssp.2022.109730_b0005) 2017; 96
Phoon (10.1016/j.ymssp.2022.109730_b0190) 2002; 80
Pasparakis (10.1016/j.ymssp.2022.109730_b0055) 2022; 162
Mehrez (10.1016/j.ymssp.2022.109730_b0145) 2012; 27
Liu (10.1016/j.ymssp.2022.109730_b0010) 2018; 106
Kong (10.1016/j.ymssp.2022.109730_b0045) 2022; 166
Kougioumtzoglou (10.1016/j.ymssp.2022.109730_b0065) 2017; 94
Chen (10.1016/j.ymssp.2022.109730_b0030) 2019; 357
Berveiller (10.1016/j.ymssp.2022.109730_b0215) 2006; 15
Novák (10.1016/j.ymssp.2022.109730_b0185) 2021; 386
Zhang (10.1016/j.ymssp.2022.109730_b0085) 2019; 55
Das (10.1016/j.ymssp.2022.109730_b0155) 2009; 228
Montoya-Noguera (10.1016/j.ymssp.2022.109730_b0125) 2019; 79
Desceliers (10.1016/j.ymssp.2022.109730_b0140) 2006; 66
Kougioumtzoglou (10.1016/j.ymssp.2022.109730_b0105) 2020; 61
Dai (10.1016/j.ymssp.2022.109730_b0015) 2022; 96
Luthen (10.1016/j.ymssp.2022.109730_b0180) 2021; 9
Dai (10.1016/j.ymssp.2022.109730_b0060) 2015; 52
Comerford (10.1016/j.ymssp.2022.109730_b0115) 2015; 52
Guo (10.1016/j.ymssp.2022.109730_b0225) 2018; 40
Soize (10.1016/j.ymssp.2022.109730_b0200) 2004; 26
Comerford (10.1016/j.ymssp.2022.109730_b0110) 2016; 44
Xiu (10.1016/j.ymssp.2022.109730_b0175) 2002; 24
Soize (10.1016/j.ymssp.2022.109730_b0160) 2015; 3
Ghanem (10.1016/j.ymssp.2022.109730_b0020) 2003
Ghanem (10.1016/j.ymssp.2022.109730_b0130) 2006; 217
Li (10.1016/j.ymssp.2022.109730_b0025) 2008; 30
Poirion (10.1016/j.ymssp.2022.109730_b0075) 2014; 36
Zheng (10.1016/j.ymssp.2022.109730_b0095) 2021; 151
Xu (10.1016/j.ymssp.2022.109730_b0050) 2022; 169
Zhao (10.1016/j.ymssp.2022.109730_b0120) 2020; 203
Das (10.1016/j.ymssp.2022.109730_b0150) 2008; 30
10.1016/j.ymssp.2022.109730_b0205
Blatman (10.1016/j.ymssp.2022.109730_b0220) 2011; 230
Poirion (10.1016/j.ymssp.2022.109730_b0100) 2013; 37
Wang (10.1016/j.ymssp.2022.109730_b0070) 2018; 55
Robert (10.1016/j.ymssp.2022.109730_b0170) 1999; vol. 2
Silverman (10.1016/j.ymssp.2022.109730_b0165) 2018
Rahman (10.1016/j.ymssp.2022.109730_b0210) 2018; 464
Phoon (10.1016/j.ymssp.2022.109730_b0195) 2005; 20
Xu (10.1016/j.ymssp.2022.109730_b0230) 2016; 60
Zhang (10.1016/j.ymssp.2022.109730_b0040) 2022; 173
Zentner (10.1016/j.ymssp.2022.109730_b0135) 2012; 41
Wang (10.1016/j.ymssp.2022.109730_b0035) 2019; 124
Tong (10.1016/j.ymssp.2022.109730_b0090) 2021; 160
References_xml – volume: 30
  start-page: 65
  year: 2008
  end-page: 77
  ident: b0025
  article-title: The principle of preservation of probability and the generalized density evolution equation
  publication-title: Struct. Saf.
– volume: 217
  start-page: 63
  year: 2006
  end-page: 81
  ident: b0130
  article-title: On the construction and analysis of stochastic models: characterization and propagation of the errors associated with limited data
  publication-title: J. Comput. Phys.
– volume: 203
  start-page: 107087
  year: 2020
  ident: b0120
  article-title: Non-parametric simulation of non-stationary non-Gaussian 3D random field samples directly from sparse measurements using signal decomposition and Markov Chain Monte Carlo (MCMC) simulation
  publication-title: Reliab. Eng. Syst. Saf.
– volume: vol. 2
  year: 1999
  ident: b0170
  publication-title: Monte Carlo statistical methods
– volume: 228
  start-page: 8726
  year: 2009
  end-page: 8751
  ident: b0155
  article-title: Polynomial chaos representation of spatio-temporal random fields from experimental measurements
  publication-title: J. Comput. Phys.
– volume: 96
  start-page: 31
  year: 2017
  end-page: 44
  ident: b0005
  article-title: A stochastic harmonic function representation for non-stationary stochastic processes
  publication-title: Mech. Syst. Sig. Process.
– reference: , page 896, 2006.
– volume: 66
  start-page: 978
  year: 2006
  end-page: 1001
  ident: b0140
  article-title: Maximum likelihood estimation of stochastic chaos representations from experimental data
  publication-title: Int. J. Numer. Meth. Eng.
– volume: 30
  start-page: 2207
  year: 2008
  end-page: 2234
  ident: b0150
  article-title: Asymptotic sampling distribution for polynomial chaos representation from data: a maximum entropy and fisher information approach
  publication-title: SIAM J. Sci. Comput.
– volume: 357
  start-page: 112612
  year: 2019
  ident: b0030
  article-title: Direct probability integral method for stochastic response analysis of static and dynamic structural systems
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 36
  start-page: 63
  year: 2014
  end-page: 71
  ident: b0075
  article-title: Stochastic model construction of observed random phenomena
  publication-title: Probab. Eng. Mech.
– volume: 169
  start-page: 108589
  year: 2022
  ident: b0050
  article-title: An adaptive polynomial skewed-normal transformation model for distribution reconstruction and reliability evaluation with rare events
  publication-title: Mech. Syst. Sig. Process.
– volume: 162
  start-page: 107975
  year: 2022
  ident: b0055
  article-title: Wind data extrapolation and stochastic field statistics estimation via compressive sampling and low rank matrix recovery methods
  publication-title: Mech. Syst. Sig. Process.
– volume: 60
  start-page: 130
  year: 2016
  end-page: 143
  ident: b0230
  article-title: A new method for reliability assessment of structural dynamic systems with random parameters
  publication-title: Struct. Saf.
– volume: 464
  start-page: 749
  year: 2018
  end-page: 775
  ident: b0210
  article-title: A polynomial chaos expansion in dependent random variables
  publication-title: J. Mathem. Anal. Appl.
– volume: 40
  start-page: A366
  year: 2018
  end-page: A387
  ident: b0225
  article-title: Weighted approximate fekete points: sampling for least-squares polynomial approximation
  publication-title: SIAM J. Sci. Comp.
– volume: 221
  start-page: 108323
  year: 2022
  ident: b0080
  article-title: A non-Gaussian stochastic model from limited observations using polynomial chaos and fractional moments
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 15
  start-page: 81
  year: 2006
  end-page: 92
  ident: b0215
  article-title: Stochastic finite element: a non-intrusive approach by regression
  publication-title: Eur. J. Comput. Mech./Rev. Europ. Mécanique Numérique
– volume: 61
  year: 2020
  ident: b0105
  article-title: Sparse representations and compressive sampling approaches in engineering mechanics: A review of theoretical concepts and diverse applications
  publication-title: Probab. Eng. Mech.
– volume: 55
  start-page: 862
  year: 2018
  end-page: 880
  ident: b0070
  article-title: Direct simulation of random field samples from sparsely measured geotechnical data with consideration of uncertainty in interpretation
  publication-title: Can. Geotech. J.
– volume: 124
  start-page: 217
  year: 2019
  end-page: 236
  ident: b0035
  article-title: Statistical inference of random field auto-correlation structure from multiple sets of incomplete and sparse measurements using Bayesian compressive sampling-based bootstrapping
  publication-title: Mech. Syst. Sig. Process.
– volume: 20
  start-page: 188
  year: April 2005
  end-page: 198
  ident: b0195
  article-title: Simulation of strongly non-Gaussian processes using Karhunen-Loève expansion
  publication-title: Probab. Eng. Mech.
– volume: 52
  start-page: 150
  year: 2015
  end-page: 160
  ident: b0115
  article-title: An artificial neural network approach for stochastic process power spectrum estimation subject to missing data
  publication-title: Struct. Saf.
– volume: 3
  start-page: 34
  year: 2015
  end-page: 60
  ident: b0160
  article-title: Polynomial chaos expansion of a multimodal random vector
  publication-title: SIAM/ASA J. Uncertainty Quantif.
– volume: 37
  start-page: 5938
  year: 2013
  end-page: 5950
  ident: b0100
  article-title: Non-Gaussian non-stationary models for natural hazard modeling
  publication-title: Appl. Math. Model.
– volume: 106
  start-page: 511
  year: 2018
  end-page: 525
  ident: b0010
  article-title: Random function representation of stationary stochastic vector processes for probability density evolution analysis of wind-induced structures
  publication-title: Mech. Syst. Sig. Process.
– volume: 24
  start-page: 619
  year: 2002
  end-page: 644
  ident: b0175
  article-title: The Wiener-Askey polynomial chaos for stochastic differential equations
  publication-title: SIAM J. Sci. Comp.
– volume: 26
  start-page: 395
  year: 2004
  end-page: 410
  ident: b0200
  article-title: Physical systems with random uncertainties: chaos representations with arbitrary probability measure
  publication-title: SIAM J. Sci. Comp.
– volume: 52
  start-page: 161
  year: 2015
  end-page: 169
  ident: b0060
  article-title: Wavelet density-based adaptive importance sampling method
  publication-title: Structural Safety
– volume: 173
  start-page: 109026
  year: 2022
  ident: b0040
  article-title: Independent component analysis-based arbitrary polynomial chaos method for stochastic analysis of structures under limited observations
  publication-title: Mech. Syst. Sig. Process.
– volume: 44
  start-page: 66
  year: 2016
  end-page: 76
  ident: b0110
  article-title: Compressive sensing based stochastic process power spectrum estimation subject to missing data
  publication-title: Probab. Eng. Mech.
– volume: 79
  start-page: 66
  year: 2019
  end-page: 79
  ident: b0125
  article-title: Simulation of non-stationary non-Gaussian random fields from sparse measurements using bayesian compressive sampling and Karhunen-Loève expansion
  publication-title: Struct. Saf.
– volume: 9
  start-page: 593
  year: 2021
  end-page: 649
  ident: b0180
  article-title: Sparse polynomial chaos expansions: Literature survey and benchmark
  publication-title: SIAM/ASA J. Uncertainty Quantif.
– volume: 94
  start-page: 279
  year: 2017
  end-page: 296
  ident: b0065
  article-title: Incomplete data based parameter identification of nonlinear and time-variant oscillators with fractional derivative elements
  publication-title: Mech. Syst. Sig. Process.
– volume: 27
  start-page: 484
  year: 2012
  end-page: 498
  ident: b0145
  article-title: Stochastic identification of composite material properties from limited experimental databases, part ii: Uncertainty modelling
  publication-title: Mech. Syst. Sig. Process.
– volume: 55
  start-page: 17
  year: 2019
  end-page: 27
  ident: b0085
  article-title: Numerical simulation of random fields with a high-order polynomial based Ritz-Galerkin approach
  publication-title: Probab. Eng. Mech.
– volume: 80
  start-page: 1049
  year: 2002
  end-page: 1060
  ident: b0190
  article-title: Simulation of second-order processes using Karhunen-Loève expansion
  publication-title: Comput. Struct.
– volume: 96
  start-page: 102201
  year: 2022
  ident: b0015
  article-title: A new perspective on the simulation of cross-correlated random fields
  publication-title: Struct. Saf.
– volume: 166
  start-page: 108420
  year: 2022
  ident: b0045
  article-title: Non-stationary approximate response of non-linear multi-degree-of-freedom systems subjected to combined periodic and stochastic excitation
  publication-title: Mech. Syst. Sig. Process.
– volume: 160
  start-page: 107953
  year: 2021
  ident: b0090
  article-title: Simulating strongly non-Gaussian and non-stationary processes using Karhunen-Loève expansion and L-moments-based Hermite polynomial model
  publication-title: Mech. Syst. Sig. Process.
– year: 2003
  ident: b0020
  article-title: Stochastic finite elements: a spectral approach
– volume: 230
  start-page: 2345
  year: 2011
  end-page: 2367
  ident: b0220
  article-title: Adaptive sparse polynomial chaos expansion based on least angle regression
  publication-title: J. Comput. Phys.
– reference: Jeroen AS Witteveen and Hester Bijl. Modeling arbitrary uncertainties using Gram-Schmidt polynomial chaos. In
– year: 2018
  ident: b0165
  article-title: Density estimation for statistics and data analysis
  publication-title: Routledge
– volume: 386
  year: 2021
  ident: b0185
  article-title: Variance-based adaptive sequential sampling for polynomial chaos expansion
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 151
  start-page: 107420
  year: 2021
  ident: b0095
  article-title: A sample-based iterative scheme for simulating non-stationary non-Gaussian stochastic processes
  publication-title: Mech. Syst. Sig. Process.
– volume: 41
  start-page: 1945
  year: 2012
  end-page: 1957
  ident: b0135
  article-title: Enrichment of seismic ground motion databases using Karhunen-Loève expansion
  publication-title: Earthquake Eng. Struct. Dyn.
– volume: 3
  start-page: 34
  issue: 1
  year: 2015
  ident: 10.1016/j.ymssp.2022.109730_b0160
  article-title: Polynomial chaos expansion of a multimodal random vector
  publication-title: SIAM/ASA J. Uncertainty Quantif.
  doi: 10.1137/140968495
– volume: 24
  start-page: 619
  issue: 2
  year: 2002
  ident: 10.1016/j.ymssp.2022.109730_b0175
  article-title: The Wiener-Askey polynomial chaos for stochastic differential equations
  publication-title: SIAM J. Sci. Comp.
  doi: 10.1137/S1064827501387826
– volume: 36
  start-page: 63
  year: 2014
  ident: 10.1016/j.ymssp.2022.109730_b0075
  article-title: Stochastic model construction of observed random phenomena
  publication-title: Probab. Eng. Mech.
  doi: 10.1016/j.probengmech.2014.03.005
– year: 2018
  ident: 10.1016/j.ymssp.2022.109730_b0165
  article-title: Density estimation for statistics and data analysis
  publication-title: Routledge
– volume: 80
  start-page: 1049
  issue: 12
  year: 2002
  ident: 10.1016/j.ymssp.2022.109730_b0190
  article-title: Simulation of second-order processes using Karhunen-Loève expansion
  publication-title: Comput. Struct.
  doi: 10.1016/S0045-7949(02)00064-0
– volume: 169
  start-page: 108589
  year: 2022
  ident: 10.1016/j.ymssp.2022.109730_b0050
  article-title: An adaptive polynomial skewed-normal transformation model for distribution reconstruction and reliability evaluation with rare events
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2021.108589
– volume: 40
  start-page: A366
  issue: 1
  year: 2018
  ident: 10.1016/j.ymssp.2022.109730_b0225
  article-title: Weighted approximate fekete points: sampling for least-squares polynomial approximation
  publication-title: SIAM J. Sci. Comp.
  doi: 10.1137/17M1140960
– volume: 79
  start-page: 66
  year: 2019
  ident: 10.1016/j.ymssp.2022.109730_b0125
  article-title: Simulation of non-stationary non-Gaussian random fields from sparse measurements using bayesian compressive sampling and Karhunen-Loève expansion
  publication-title: Struct. Saf.
  doi: 10.1016/j.strusafe.2019.03.006
– volume: 203
  start-page: 107087
  year: 2020
  ident: 10.1016/j.ymssp.2022.109730_b0120
  article-title: Non-parametric simulation of non-stationary non-Gaussian 3D random field samples directly from sparse measurements using signal decomposition and Markov Chain Monte Carlo (MCMC) simulation
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2020.107087
– volume: 26
  start-page: 395
  issue: 2
  year: 2004
  ident: 10.1016/j.ymssp.2022.109730_b0200
  article-title: Physical systems with random uncertainties: chaos representations with arbitrary probability measure
  publication-title: SIAM J. Sci. Comp.
  doi: 10.1137/S1064827503424505
– volume: 55
  start-page: 17
  year: 2019
  ident: 10.1016/j.ymssp.2022.109730_b0085
  article-title: Numerical simulation of random fields with a high-order polynomial based Ritz-Galerkin approach
  publication-title: Probab. Eng. Mech.
  doi: 10.1016/j.probengmech.2018.08.003
– year: 2003
  ident: 10.1016/j.ymssp.2022.109730_b0020
– volume: 37
  start-page: 5938
  issue: 8
  year: 2013
  ident: 10.1016/j.ymssp.2022.109730_b0100
  article-title: Non-Gaussian non-stationary models for natural hazard modeling
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2012.11.021
– volume: 30
  start-page: 65
  issue: 1
  year: 2008
  ident: 10.1016/j.ymssp.2022.109730_b0025
  article-title: The principle of preservation of probability and the generalized density evolution equation
  publication-title: Struct. Saf.
  doi: 10.1016/j.strusafe.2006.08.001
– volume: 173
  start-page: 109026
  year: 2022
  ident: 10.1016/j.ymssp.2022.109730_b0040
  article-title: Independent component analysis-based arbitrary polynomial chaos method for stochastic analysis of structures under limited observations
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2022.109026
– volume: 386
  year: 2021
  ident: 10.1016/j.ymssp.2022.109730_b0185
  article-title: Variance-based adaptive sequential sampling for polynomial chaos expansion
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2021.114105
– volume: 96
  start-page: 31
  year: 2017
  ident: 10.1016/j.ymssp.2022.109730_b0005
  article-title: A stochastic harmonic function representation for non-stationary stochastic processes
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2017.03.048
– volume: 124
  start-page: 217
  year: 2019
  ident: 10.1016/j.ymssp.2022.109730_b0035
  article-title: Statistical inference of random field auto-correlation structure from multiple sets of incomplete and sparse measurements using Bayesian compressive sampling-based bootstrapping
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2019.01.049
– volume: 52
  start-page: 161
  year: 2015
  ident: 10.1016/j.ymssp.2022.109730_b0060
  article-title: Wavelet density-based adaptive importance sampling method
  publication-title: Structural Safety
  doi: 10.1016/j.strusafe.2014.02.003
– volume: 55
  start-page: 862
  issue: 6
  year: 2018
  ident: 10.1016/j.ymssp.2022.109730_b0070
  article-title: Direct simulation of random field samples from sparsely measured geotechnical data with consideration of uncertainty in interpretation
  publication-title: Can. Geotech. J.
  doi: 10.1139/cgj-2017-0254
– volume: 221
  start-page: 108323
  year: 2022
  ident: 10.1016/j.ymssp.2022.109730_b0080
  article-title: A non-Gaussian stochastic model from limited observations using polynomial chaos and fractional moments
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2022.108323
– volume: 30
  start-page: 2207
  issue: 5
  year: 2008
  ident: 10.1016/j.ymssp.2022.109730_b0150
  article-title: Asymptotic sampling distribution for polynomial chaos representation from data: a maximum entropy and fisher information approach
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/060652105
– volume: 357
  start-page: 112612
  year: 2019
  ident: 10.1016/j.ymssp.2022.109730_b0030
  article-title: Direct probability integral method for stochastic response analysis of static and dynamic structural systems
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2019.112612
– volume: 96
  start-page: 102201
  year: 2022
  ident: 10.1016/j.ymssp.2022.109730_b0015
  article-title: A new perspective on the simulation of cross-correlated random fields
  publication-title: Struct. Saf.
  doi: 10.1016/j.strusafe.2022.102201
– volume: 66
  start-page: 978
  issue: 6
  year: 2006
  ident: 10.1016/j.ymssp.2022.109730_b0140
  article-title: Maximum likelihood estimation of stochastic chaos representations from experimental data
  publication-title: Int. J. Numer. Meth. Eng.
  doi: 10.1002/nme.1576
– volume: 52
  start-page: 150
  year: 2015
  ident: 10.1016/j.ymssp.2022.109730_b0115
  article-title: An artificial neural network approach for stochastic process power spectrum estimation subject to missing data
  publication-title: Struct. Saf.
  doi: 10.1016/j.strusafe.2014.10.001
– ident: 10.1016/j.ymssp.2022.109730_b0205
  doi: 10.2514/6.2006-896
– volume: 151
  start-page: 107420
  year: 2021
  ident: 10.1016/j.ymssp.2022.109730_b0095
  article-title: A sample-based iterative scheme for simulating non-stationary non-Gaussian stochastic processes
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2020.107420
– volume: 166
  start-page: 108420
  year: 2022
  ident: 10.1016/j.ymssp.2022.109730_b0045
  article-title: Non-stationary approximate response of non-linear multi-degree-of-freedom systems subjected to combined periodic and stochastic excitation
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2021.108420
– volume: 160
  start-page: 107953
  year: 2021
  ident: 10.1016/j.ymssp.2022.109730_b0090
  article-title: Simulating strongly non-Gaussian and non-stationary processes using Karhunen-Loève expansion and L-moments-based Hermite polynomial model
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2021.107953
– volume: 15
  start-page: 81
  issue: 1–3
  year: 2006
  ident: 10.1016/j.ymssp.2022.109730_b0215
  article-title: Stochastic finite element: a non-intrusive approach by regression
  publication-title: Eur. J. Comput. Mech./Rev. Europ. Mécanique Numérique
  doi: 10.3166/remn.15.81-92
– volume: 20
  start-page: 188
  issue: 2
  year: 2005
  ident: 10.1016/j.ymssp.2022.109730_b0195
  article-title: Simulation of strongly non-Gaussian processes using Karhunen-Loève expansion
  publication-title: Probab. Eng. Mech.
  doi: 10.1016/j.probengmech.2005.05.007
– volume: 464
  start-page: 749
  issue: 1
  year: 2018
  ident: 10.1016/j.ymssp.2022.109730_b0210
  article-title: A polynomial chaos expansion in dependent random variables
  publication-title: J. Mathem. Anal. Appl.
  doi: 10.1016/j.jmaa.2018.04.032
– volume: 162
  start-page: 107975
  year: 2022
  ident: 10.1016/j.ymssp.2022.109730_b0055
  article-title: Wind data extrapolation and stochastic field statistics estimation via compressive sampling and low rank matrix recovery methods
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2021.107975
– volume: 61
  year: 2020
  ident: 10.1016/j.ymssp.2022.109730_b0105
  article-title: Sparse representations and compressive sampling approaches in engineering mechanics: A review of theoretical concepts and diverse applications
  publication-title: Probab. Eng. Mech.
  doi: 10.1016/j.probengmech.2020.103082
– volume: 60
  start-page: 130
  year: 2016
  ident: 10.1016/j.ymssp.2022.109730_b0230
  article-title: A new method for reliability assessment of structural dynamic systems with random parameters
  publication-title: Struct. Saf.
  doi: 10.1016/j.strusafe.2016.02.005
– volume: 217
  start-page: 63
  issue: 1
  year: 2006
  ident: 10.1016/j.ymssp.2022.109730_b0130
  article-title: On the construction and analysis of stochastic models: characterization and propagation of the errors associated with limited data
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2006.01.037
– volume: 106
  start-page: 511
  year: 2018
  ident: 10.1016/j.ymssp.2022.109730_b0010
  article-title: Random function representation of stationary stochastic vector processes for probability density evolution analysis of wind-induced structures
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2018.01.011
– volume: 41
  start-page: 1945
  issue: 14
  year: 2012
  ident: 10.1016/j.ymssp.2022.109730_b0135
  article-title: Enrichment of seismic ground motion databases using Karhunen-Loève expansion
  publication-title: Earthquake Eng. Struct. Dyn.
  doi: 10.1002/eqe.2166
– volume: 230
  start-page: 2345
  issue: 6
  year: 2011
  ident: 10.1016/j.ymssp.2022.109730_b0220
  article-title: Adaptive sparse polynomial chaos expansion based on least angle regression
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2010.12.021
– volume: 94
  start-page: 279
  year: 2017
  ident: 10.1016/j.ymssp.2022.109730_b0065
  article-title: Incomplete data based parameter identification of nonlinear and time-variant oscillators with fractional derivative elements
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2017.03.004
– volume: 27
  start-page: 484
  year: 2012
  ident: 10.1016/j.ymssp.2022.109730_b0145
  article-title: Stochastic identification of composite material properties from limited experimental databases, part ii: Uncertainty modelling
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2011.09.001
– volume: 228
  start-page: 8726
  issue: 23
  year: 2009
  ident: 10.1016/j.ymssp.2022.109730_b0155
  article-title: Polynomial chaos representation of spatio-temporal random fields from experimental measurements
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2009.08.025
– volume: 44
  start-page: 66
  year: 2016
  ident: 10.1016/j.ymssp.2022.109730_b0110
  article-title: Compressive sensing based stochastic process power spectrum estimation subject to missing data
  publication-title: Probab. Eng. Mech.
  doi: 10.1016/j.probengmech.2015.09.015
– volume: vol. 2
  year: 1999
  ident: 10.1016/j.ymssp.2022.109730_b0170
– volume: 9
  start-page: 593
  issue: 2
  year: 2021
  ident: 10.1016/j.ymssp.2022.109730_b0180
  article-title: Sparse polynomial chaos expansions: Literature survey and benchmark
  publication-title: SIAM/ASA J. Uncertainty Quantif.
  doi: 10.1137/20M1315774
SSID ssj0009406
Score 2.4946313
Snippet •An effective framework for stochastic modelling and uncertainty propagation of engineering systems with limited observations is presented.•The developed...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109730
SubjectTerms Kernel density estimation
Limited observations
PC-based response propagation
Random field modelling
Uncertain analysis
Title A new method for stochastic analysis of structures under limited observations
URI https://dx.doi.org/10.1016/j.ymssp.2022.109730
Volume 185
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4QvOjB-Iz4IHvwaMXubh97JESCGrgoCbdmu7uNGAQCePDib3emD8TEcPDazCbN1-nMN-3MNwDXlivOI0MLTWTmSW2dp0ymPK2jVGgXW21pdrg_CHtD-TgKRjXoVLMw1FZZxv4ipufRurzSKtFszcfj1jO-H-iOEY2K0sAo1e1SRuTlt18_bR5K5vs1ydgj60p5KO_x-nxfLkm0kvNcypFaof_KThsZp3sA-yVVZO3ibg6h5qZHsLchIHgM_TZDWsyKNdAM-SdDLmdeNYkvM13qjbBZxgqZ2A-srRlNjS3YpBhsYrN0_Vl2eQLD7v1Lp-eVCxI8g5ln5cUuuNP0jyS0gYktR5BTpayvnG8Cq8KMC4ERSaSCG4X81GDlLF2GrEvHWKn44hTq09nUnQHjMrU6zDTSLydtJlJSuQmQOwqt4ljpBvAKmMSU6uG0xGKSVG1ib0mOZkJoJgWaDbhZH5oX4hnbzcMK8eSXDyQY3rcdPP_vwQvYpfXx1IXtB5dQx2fhrpBkrNJm7kVN2Gk_PPUG35nU0no
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QOKgH4zPicw8ebbC7bekeCZEUeVyEhNtmu7uNGAQiePDfO9NuERPDwWuzkzRfpzPftDPfEHJvmGCsqXGhSZB5gTLWEzoTnlLNlCsbG2VwdngwjJJx8DwJJxXSLmdhsK3Sxf4ipufR2l1pODQby-m08QLvB7hjE0dFcWAU6vYaqlOFVVJrdXvJ8Ed7N8hXbOJ5Dw1K8aG8zevrfbVC3UrGcjVH7Ib-K0FtJZ3OETl0bJG2ihs6JhU7PyEHWxqCp2TQosCMabEJmgIFpUDn9KtC_WWqnOQIXWS0UIr9hPKa4uDYB50Vs010kW6-zK7OyLjzNGonntuR4GlIPmsvtuGjwt8kkQl1bBjgnAphfGF9HRoRZYxzCEo85UwLoKgaiufAZkC8VAzFis_PSXW-mNsLQlmQGhVlChiYDUzGUxS6CYE-ciXiWKg6YSUwUjsBcdxjMZNlp9ibzNGUiKYs0KyTh43RstDP2H08KhGXv9xAQoTfZXj5X8M7speMBn3Z7w57V2Qft8ljU7YfXpMqPBd7A5xjnd46n_oG37DVKw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+method+for+stochastic+analysis+of+structures+under+limited+observations&rft.jtitle=Mechanical+systems+and+signal+processing&rft.au=Dai%2C+Hongzhe&rft.au=Zhang%2C+Ruijing&rft.au=Beer%2C+Michael&rft.date=2023-02-15&rft.issn=0888-3270&rft.volume=185&rft.spage=109730&rft_id=info:doi/10.1016%2Fj.ymssp.2022.109730&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ymssp_2022_109730
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-3270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-3270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-3270&client=summon