A new method for stochastic analysis of structures under limited observations
•An effective framework for stochastic modelling and uncertainty propagation of engineering systems with limited observations is presented.•The developed kernel density based random model can reasonably reconstruct the non-Gaussian feature of system parameters.•The developed sample generator facilit...
Saved in:
Published in | Mechanical systems and signal processing Vol. 185; p. 109730 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.02.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •An effective framework for stochastic modelling and uncertainty propagation of engineering systems with limited observations is presented.•The developed kernel density based random model can reasonably reconstruct the non-Gaussian feature of system parameters.•The developed sample generator facilitates the arbitrary polynomial chaos (aPC) formulation of system analysis as well as aPC-based propagation of uncertainty.•Two numerical examples are investigated to highlight the proposed method.
Reasonable modeling of non-Gaussian system inputs from limited observations and efficient propagation of system response are of great significance in uncertain analysis of real engineering problems. In this paper, we develop a new method for the construction of non-Gaussian random model and associated propagation of response under limited observations. Our method firstly develops a new kernel density estimation-based (KDE-based) random model based on Karhunen-Loeve (KL) expansion of observations of uncertain parameters. By further implementing the arbitrary polynomial chaos (aPC) formulation on KL vector with dependent measure, the associated aPC-based response propagation is then developed. In our method, the developed KDE-based model can accurately represent the input parameters from limited observations as the new KDE of KL vector can incorporate the inherent relation between marginals of input parameters and distribution of univariate KL variables. In addition, the aPC formulation can be effectively determined for uncertain analysis by virtue of the mixture representation of the developed KDE of KL vector. Furthermore, the system response can be propagated in a stable and accurate way with the developed D-optimal weighted regression method by the equivalence between the distribution of underlying aPC variables and that of KL vector. In this way, the current work provides an effective framework for the reasonable stochastic modeling and efficient response propagation of real-life engineering systems with limited observations. Two numerical examples, including the analysis of structures subjected to random seismic ground motion, are presented to highlight the effectiveness of the proposed method. |
---|---|
AbstractList | •An effective framework for stochastic modelling and uncertainty propagation of engineering systems with limited observations is presented.•The developed kernel density based random model can reasonably reconstruct the non-Gaussian feature of system parameters.•The developed sample generator facilitates the arbitrary polynomial chaos (aPC) formulation of system analysis as well as aPC-based propagation of uncertainty.•Two numerical examples are investigated to highlight the proposed method.
Reasonable modeling of non-Gaussian system inputs from limited observations and efficient propagation of system response are of great significance in uncertain analysis of real engineering problems. In this paper, we develop a new method for the construction of non-Gaussian random model and associated propagation of response under limited observations. Our method firstly develops a new kernel density estimation-based (KDE-based) random model based on Karhunen-Loeve (KL) expansion of observations of uncertain parameters. By further implementing the arbitrary polynomial chaos (aPC) formulation on KL vector with dependent measure, the associated aPC-based response propagation is then developed. In our method, the developed KDE-based model can accurately represent the input parameters from limited observations as the new KDE of KL vector can incorporate the inherent relation between marginals of input parameters and distribution of univariate KL variables. In addition, the aPC formulation can be effectively determined for uncertain analysis by virtue of the mixture representation of the developed KDE of KL vector. Furthermore, the system response can be propagated in a stable and accurate way with the developed D-optimal weighted regression method by the equivalence between the distribution of underlying aPC variables and that of KL vector. In this way, the current work provides an effective framework for the reasonable stochastic modeling and efficient response propagation of real-life engineering systems with limited observations. Two numerical examples, including the analysis of structures subjected to random seismic ground motion, are presented to highlight the effectiveness of the proposed method. |
ArticleNumber | 109730 |
Author | Beer, Michael Zhang, Ruijing Dai, Hongzhe |
Author_xml | – sequence: 1 givenname: Hongzhe surname: Dai fullname: Dai, Hongzhe email: hzdai@hit.edu.cn organization: School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, PR China – sequence: 2 givenname: Ruijing surname: Zhang fullname: Zhang, Ruijing organization: School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, PR China – sequence: 3 givenname: Michael surname: Beer fullname: Beer, Michael organization: Institute for Risk and Reliability, Leibniz Universität Hannover, Callinstr. 34, Hannover, Germany |
BookMark | eNqFkE1LAzEQhoNUsK3-Ai_5A1snSXebHDyU4hcoXvQcssksTdndlCSt9N-7bT150NMMLzzDO8-EjPrQIyG3DGYMWHW3mR26lLYzDpwPiVoIuCDjYakKxlk1ImOQUhaCL-CKTFLaAICaQzUmb0va4xftMK-Do02INOVg1yZlb6npTXtIPtHQDHHc2byLmOiudxhp6zuf0dFQJ4x7k33o0zW5bEyb8OZnTsnn48PH6rl4fX96WS1fCytA5EJiCQbEUM-VVjpuG1Ur5ZhCZkunqoYLwZkSteBWSVZbrMUcG5DCyHIumZgSdb5rY0gpYqOtz6cKORrfagb66EVv9MmLPnrRZy8DK36x2-g7Ew__UPdnCoe39h6jTtZjb9H5iDZrF_yf_Dd5foEb |
CitedBy_id | crossref_primary_10_1016_j_ijmecsci_2024_109035 crossref_primary_10_1016_j_ymssp_2024_112172 crossref_primary_10_1061_JAEEEZ_ASENG_4672 crossref_primary_10_1016_j_probengmech_2023_103422 crossref_primary_10_1016_j_probengmech_2023_103455 crossref_primary_10_1016_j_cma_2022_115860 crossref_primary_10_1016_j_cma_2023_116576 crossref_primary_10_1155_2023_8234927 crossref_primary_10_1115_1_4064159 crossref_primary_10_3390_su142114363 crossref_primary_10_1016_j_ress_2023_109408 crossref_primary_10_1016_j_ress_2025_110849 crossref_primary_10_1016_j_ymssp_2023_110643 crossref_primary_10_1016_j_ress_2023_109145 crossref_primary_10_1016_j_cma_2023_116613 crossref_primary_10_1016_j_cma_2022_115689 crossref_primary_10_1002_nme_7253 crossref_primary_10_1016_j_cma_2024_117705 crossref_primary_10_1016_j_ymssp_2024_111683 crossref_primary_10_1016_j_ymssp_2023_110781 |
Cites_doi | 10.1137/140968495 10.1137/S1064827501387826 10.1016/j.probengmech.2014.03.005 10.1016/S0045-7949(02)00064-0 10.1016/j.ymssp.2021.108589 10.1137/17M1140960 10.1016/j.strusafe.2019.03.006 10.1016/j.ress.2020.107087 10.1137/S1064827503424505 10.1016/j.probengmech.2018.08.003 10.1016/j.apm.2012.11.021 10.1016/j.strusafe.2006.08.001 10.1016/j.ymssp.2022.109026 10.1016/j.cma.2021.114105 10.1016/j.ymssp.2017.03.048 10.1016/j.ymssp.2019.01.049 10.1016/j.strusafe.2014.02.003 10.1139/cgj-2017-0254 10.1016/j.ress.2022.108323 10.1137/060652105 10.1016/j.cma.2019.112612 10.1016/j.strusafe.2022.102201 10.1002/nme.1576 10.1016/j.strusafe.2014.10.001 10.2514/6.2006-896 10.1016/j.ymssp.2020.107420 10.1016/j.ymssp.2021.108420 10.1016/j.ymssp.2021.107953 10.3166/remn.15.81-92 10.1016/j.probengmech.2005.05.007 10.1016/j.jmaa.2018.04.032 10.1016/j.ymssp.2021.107975 10.1016/j.probengmech.2020.103082 10.1016/j.strusafe.2016.02.005 10.1016/j.jcp.2006.01.037 10.1016/j.ymssp.2018.01.011 10.1002/eqe.2166 10.1016/j.jcp.2010.12.021 10.1016/j.ymssp.2017.03.004 10.1016/j.ymssp.2011.09.001 10.1016/j.jcp.2009.08.025 10.1016/j.probengmech.2015.09.015 10.1137/20M1315774 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ymssp.2022.109730 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1096-1216 |
ExternalDocumentID | 10_1016_j_ymssp_2022_109730 S0888327022008020 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG5 LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SST SSV SSZ T5K XPP ZMT ZU3 ~G- 29M AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABEFU ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADFGL ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CAG CITATION COF EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- RIG SBC SET SEW SSH WUQ |
ID | FETCH-LOGICAL-c303t-8e50a03096d5c8d2cf9b99d19e1c5d96f2332193b32c981bceb34ef083a854813 |
IEDL.DBID | .~1 |
ISSN | 0888-3270 |
IngestDate | Tue Jul 01 04:30:15 EDT 2025 Thu Apr 24 22:59:55 EDT 2025 Fri Feb 23 02:39:39 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Uncertain analysis KL CDF MCMC PC-based response propagation ISDE IQR Random field modelling KDE PC aPC Limited observations DOF Kernel density estimation MCS ED |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c303t-8e50a03096d5c8d2cf9b99d19e1c5d96f2332193b32c981bceb34ef083a854813 |
ParticipantIDs | crossref_citationtrail_10_1016_j_ymssp_2022_109730 crossref_primary_10_1016_j_ymssp_2022_109730 elsevier_sciencedirect_doi_10_1016_j_ymssp_2022_109730 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-15 |
PublicationDateYYYYMMDD | 2023-02-15 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Mechanical systems and signal processing |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Soize, Ghanem (b0200) 2004; 26 Dai, Zhang, Beer (b0015) 2022; 96 Montoya-Noguera, Zhao, Yue, Wang, Phoon (b0125) 2019; 79 Silverman (b0165) 2018 Blatman, Sudret (b0220) 2011; 230 Novák, Vořechovsk‘y, Sadílek, Shields (b0185) 2021; 386 Poirion, Zentner (b0100) 2013; 37 Dai, Zhang, Rasmussen, Wang (b0060) 2015; 52 Wang, Zhao, Phoon (b0070) 2018; 55 Jeroen AS Witteveen and Hester Bijl. Modeling arbitrary uncertainties using Gram-Schmidt polynomial chaos. In Poirion, Zentner (b0075) 2014; 36 page 896, 2006. Chen, Yang (b0030) 2019; 357 Desceliers, Ghanem, Soize (b0140) 2006; 66 Das, Ghanem, Finette (b0155) 2009; 228 Chen, Kong, Peng (b0005) 2017; 96 Li, Chen (b0025) 2008; 30 Comerford, Kougioumtzoglou, Beer (b0110) 2016; 44 Kougioumtzoglou, Petromichelakis, Psaros (b0105) 2020; 61 Robert, Casella, Casella (b0170) 1999; vol. 2 Comerford, Kougioumtzoglou, Beer (b0115) 2015; 52 Luthen, Marelli, Sudret (b0180) 2021; 9 Das, Ghanem, Spall (b0150) 2008; 30 Zhang, Liu, Huang (b0085) 2019; 55 Kong, Han, Li, He (b0045) 2022; 166 Wang, Zhao, Phoon (b0035) 2019; 124 Pasparakis, dos Santos, Kougioumtzoglou, Beer (b0055) 2022; 162 Kougioumtzoglou, dos Santos, Comerford (b0065) 2017; 94 Zentner, Poirion (b0135) 2012; 41 Mehrez, Doostan, Moens, Vandepitte (b0145) 2012; 27 Phoon, Huang, Quek (b0190) 2002; 80 Rahman (b0210) 2018; 464 Zheng, Dai, Wang, Wang (b0095) 2021; 151 Ghanem, Doostan (b0130) 2006; 217 Xu (b0230) 2016; 60 Zhao, Wang (b0120) 2020; 203 Soize (b0160) 2015; 3 Tong, Zhao, Zhao (b0090) 2021; 160 Zhang, Dai (b0040) 2022; 173 Liu, Liu (b0010) 2018; 106 Xu, Wu, Lu (b0050) 2022; 169 Zhang, Dai (b0080) 2022; 221 Xiu, Karniadakis (b0175) 2002; 24 Phoon, Huang, Quek (b0195) April 2005; 20 Ghanem, Spanos (b0020) 2003 Guo, AkilNarayan, Zhou (b0225) 2018; 40 Berveiller, Sudret, Lemaire (b0215) 2006; 15 Zhang (10.1016/j.ymssp.2022.109730_b0080) 2022; 221 Chen (10.1016/j.ymssp.2022.109730_b0005) 2017; 96 Phoon (10.1016/j.ymssp.2022.109730_b0190) 2002; 80 Pasparakis (10.1016/j.ymssp.2022.109730_b0055) 2022; 162 Mehrez (10.1016/j.ymssp.2022.109730_b0145) 2012; 27 Liu (10.1016/j.ymssp.2022.109730_b0010) 2018; 106 Kong (10.1016/j.ymssp.2022.109730_b0045) 2022; 166 Kougioumtzoglou (10.1016/j.ymssp.2022.109730_b0065) 2017; 94 Chen (10.1016/j.ymssp.2022.109730_b0030) 2019; 357 Berveiller (10.1016/j.ymssp.2022.109730_b0215) 2006; 15 Novák (10.1016/j.ymssp.2022.109730_b0185) 2021; 386 Zhang (10.1016/j.ymssp.2022.109730_b0085) 2019; 55 Das (10.1016/j.ymssp.2022.109730_b0155) 2009; 228 Montoya-Noguera (10.1016/j.ymssp.2022.109730_b0125) 2019; 79 Desceliers (10.1016/j.ymssp.2022.109730_b0140) 2006; 66 Kougioumtzoglou (10.1016/j.ymssp.2022.109730_b0105) 2020; 61 Dai (10.1016/j.ymssp.2022.109730_b0015) 2022; 96 Luthen (10.1016/j.ymssp.2022.109730_b0180) 2021; 9 Dai (10.1016/j.ymssp.2022.109730_b0060) 2015; 52 Comerford (10.1016/j.ymssp.2022.109730_b0115) 2015; 52 Guo (10.1016/j.ymssp.2022.109730_b0225) 2018; 40 Soize (10.1016/j.ymssp.2022.109730_b0200) 2004; 26 Comerford (10.1016/j.ymssp.2022.109730_b0110) 2016; 44 Xiu (10.1016/j.ymssp.2022.109730_b0175) 2002; 24 Soize (10.1016/j.ymssp.2022.109730_b0160) 2015; 3 Ghanem (10.1016/j.ymssp.2022.109730_b0020) 2003 Ghanem (10.1016/j.ymssp.2022.109730_b0130) 2006; 217 Li (10.1016/j.ymssp.2022.109730_b0025) 2008; 30 Poirion (10.1016/j.ymssp.2022.109730_b0075) 2014; 36 Zheng (10.1016/j.ymssp.2022.109730_b0095) 2021; 151 Xu (10.1016/j.ymssp.2022.109730_b0050) 2022; 169 Zhao (10.1016/j.ymssp.2022.109730_b0120) 2020; 203 Das (10.1016/j.ymssp.2022.109730_b0150) 2008; 30 10.1016/j.ymssp.2022.109730_b0205 Blatman (10.1016/j.ymssp.2022.109730_b0220) 2011; 230 Poirion (10.1016/j.ymssp.2022.109730_b0100) 2013; 37 Wang (10.1016/j.ymssp.2022.109730_b0070) 2018; 55 Robert (10.1016/j.ymssp.2022.109730_b0170) 1999; vol. 2 Silverman (10.1016/j.ymssp.2022.109730_b0165) 2018 Rahman (10.1016/j.ymssp.2022.109730_b0210) 2018; 464 Phoon (10.1016/j.ymssp.2022.109730_b0195) 2005; 20 Xu (10.1016/j.ymssp.2022.109730_b0230) 2016; 60 Zhang (10.1016/j.ymssp.2022.109730_b0040) 2022; 173 Zentner (10.1016/j.ymssp.2022.109730_b0135) 2012; 41 Wang (10.1016/j.ymssp.2022.109730_b0035) 2019; 124 Tong (10.1016/j.ymssp.2022.109730_b0090) 2021; 160 |
References_xml | – volume: 30 start-page: 65 year: 2008 end-page: 77 ident: b0025 article-title: The principle of preservation of probability and the generalized density evolution equation publication-title: Struct. Saf. – volume: 217 start-page: 63 year: 2006 end-page: 81 ident: b0130 article-title: On the construction and analysis of stochastic models: characterization and propagation of the errors associated with limited data publication-title: J. Comput. Phys. – volume: 203 start-page: 107087 year: 2020 ident: b0120 article-title: Non-parametric simulation of non-stationary non-Gaussian 3D random field samples directly from sparse measurements using signal decomposition and Markov Chain Monte Carlo (MCMC) simulation publication-title: Reliab. Eng. Syst. Saf. – volume: vol. 2 year: 1999 ident: b0170 publication-title: Monte Carlo statistical methods – volume: 228 start-page: 8726 year: 2009 end-page: 8751 ident: b0155 article-title: Polynomial chaos representation of spatio-temporal random fields from experimental measurements publication-title: J. Comput. Phys. – volume: 96 start-page: 31 year: 2017 end-page: 44 ident: b0005 article-title: A stochastic harmonic function representation for non-stationary stochastic processes publication-title: Mech. Syst. Sig. Process. – reference: , page 896, 2006. – volume: 66 start-page: 978 year: 2006 end-page: 1001 ident: b0140 article-title: Maximum likelihood estimation of stochastic chaos representations from experimental data publication-title: Int. J. Numer. Meth. Eng. – volume: 30 start-page: 2207 year: 2008 end-page: 2234 ident: b0150 article-title: Asymptotic sampling distribution for polynomial chaos representation from data: a maximum entropy and fisher information approach publication-title: SIAM J. Sci. Comput. – volume: 357 start-page: 112612 year: 2019 ident: b0030 article-title: Direct probability integral method for stochastic response analysis of static and dynamic structural systems publication-title: Comput. Methods Appl. Mech. Eng. – volume: 36 start-page: 63 year: 2014 end-page: 71 ident: b0075 article-title: Stochastic model construction of observed random phenomena publication-title: Probab. Eng. Mech. – volume: 169 start-page: 108589 year: 2022 ident: b0050 article-title: An adaptive polynomial skewed-normal transformation model for distribution reconstruction and reliability evaluation with rare events publication-title: Mech. Syst. Sig. Process. – volume: 162 start-page: 107975 year: 2022 ident: b0055 article-title: Wind data extrapolation and stochastic field statistics estimation via compressive sampling and low rank matrix recovery methods publication-title: Mech. Syst. Sig. Process. – volume: 60 start-page: 130 year: 2016 end-page: 143 ident: b0230 article-title: A new method for reliability assessment of structural dynamic systems with random parameters publication-title: Struct. Saf. – volume: 464 start-page: 749 year: 2018 end-page: 775 ident: b0210 article-title: A polynomial chaos expansion in dependent random variables publication-title: J. Mathem. Anal. Appl. – volume: 40 start-page: A366 year: 2018 end-page: A387 ident: b0225 article-title: Weighted approximate fekete points: sampling for least-squares polynomial approximation publication-title: SIAM J. Sci. Comp. – volume: 221 start-page: 108323 year: 2022 ident: b0080 article-title: A non-Gaussian stochastic model from limited observations using polynomial chaos and fractional moments publication-title: Reliab. Eng. Syst. Saf. – volume: 15 start-page: 81 year: 2006 end-page: 92 ident: b0215 article-title: Stochastic finite element: a non-intrusive approach by regression publication-title: Eur. J. Comput. Mech./Rev. Europ. Mécanique Numérique – volume: 61 year: 2020 ident: b0105 article-title: Sparse representations and compressive sampling approaches in engineering mechanics: A review of theoretical concepts and diverse applications publication-title: Probab. Eng. Mech. – volume: 55 start-page: 862 year: 2018 end-page: 880 ident: b0070 article-title: Direct simulation of random field samples from sparsely measured geotechnical data with consideration of uncertainty in interpretation publication-title: Can. Geotech. J. – volume: 124 start-page: 217 year: 2019 end-page: 236 ident: b0035 article-title: Statistical inference of random field auto-correlation structure from multiple sets of incomplete and sparse measurements using Bayesian compressive sampling-based bootstrapping publication-title: Mech. Syst. Sig. Process. – volume: 20 start-page: 188 year: April 2005 end-page: 198 ident: b0195 article-title: Simulation of strongly non-Gaussian processes using Karhunen-Loève expansion publication-title: Probab. Eng. Mech. – volume: 52 start-page: 150 year: 2015 end-page: 160 ident: b0115 article-title: An artificial neural network approach for stochastic process power spectrum estimation subject to missing data publication-title: Struct. Saf. – volume: 3 start-page: 34 year: 2015 end-page: 60 ident: b0160 article-title: Polynomial chaos expansion of a multimodal random vector publication-title: SIAM/ASA J. Uncertainty Quantif. – volume: 37 start-page: 5938 year: 2013 end-page: 5950 ident: b0100 article-title: Non-Gaussian non-stationary models for natural hazard modeling publication-title: Appl. Math. Model. – volume: 106 start-page: 511 year: 2018 end-page: 525 ident: b0010 article-title: Random function representation of stationary stochastic vector processes for probability density evolution analysis of wind-induced structures publication-title: Mech. Syst. Sig. Process. – volume: 24 start-page: 619 year: 2002 end-page: 644 ident: b0175 article-title: The Wiener-Askey polynomial chaos for stochastic differential equations publication-title: SIAM J. Sci. Comp. – volume: 26 start-page: 395 year: 2004 end-page: 410 ident: b0200 article-title: Physical systems with random uncertainties: chaos representations with arbitrary probability measure publication-title: SIAM J. Sci. Comp. – volume: 52 start-page: 161 year: 2015 end-page: 169 ident: b0060 article-title: Wavelet density-based adaptive importance sampling method publication-title: Structural Safety – volume: 173 start-page: 109026 year: 2022 ident: b0040 article-title: Independent component analysis-based arbitrary polynomial chaos method for stochastic analysis of structures under limited observations publication-title: Mech. Syst. Sig. Process. – volume: 44 start-page: 66 year: 2016 end-page: 76 ident: b0110 article-title: Compressive sensing based stochastic process power spectrum estimation subject to missing data publication-title: Probab. Eng. Mech. – volume: 79 start-page: 66 year: 2019 end-page: 79 ident: b0125 article-title: Simulation of non-stationary non-Gaussian random fields from sparse measurements using bayesian compressive sampling and Karhunen-Loève expansion publication-title: Struct. Saf. – volume: 9 start-page: 593 year: 2021 end-page: 649 ident: b0180 article-title: Sparse polynomial chaos expansions: Literature survey and benchmark publication-title: SIAM/ASA J. Uncertainty Quantif. – volume: 94 start-page: 279 year: 2017 end-page: 296 ident: b0065 article-title: Incomplete data based parameter identification of nonlinear and time-variant oscillators with fractional derivative elements publication-title: Mech. Syst. Sig. Process. – volume: 27 start-page: 484 year: 2012 end-page: 498 ident: b0145 article-title: Stochastic identification of composite material properties from limited experimental databases, part ii: Uncertainty modelling publication-title: Mech. Syst. Sig. Process. – volume: 55 start-page: 17 year: 2019 end-page: 27 ident: b0085 article-title: Numerical simulation of random fields with a high-order polynomial based Ritz-Galerkin approach publication-title: Probab. Eng. Mech. – volume: 80 start-page: 1049 year: 2002 end-page: 1060 ident: b0190 article-title: Simulation of second-order processes using Karhunen-Loève expansion publication-title: Comput. Struct. – volume: 96 start-page: 102201 year: 2022 ident: b0015 article-title: A new perspective on the simulation of cross-correlated random fields publication-title: Struct. Saf. – volume: 166 start-page: 108420 year: 2022 ident: b0045 article-title: Non-stationary approximate response of non-linear multi-degree-of-freedom systems subjected to combined periodic and stochastic excitation publication-title: Mech. Syst. Sig. Process. – volume: 160 start-page: 107953 year: 2021 ident: b0090 article-title: Simulating strongly non-Gaussian and non-stationary processes using Karhunen-Loève expansion and L-moments-based Hermite polynomial model publication-title: Mech. Syst. Sig. Process. – year: 2003 ident: b0020 article-title: Stochastic finite elements: a spectral approach – volume: 230 start-page: 2345 year: 2011 end-page: 2367 ident: b0220 article-title: Adaptive sparse polynomial chaos expansion based on least angle regression publication-title: J. Comput. Phys. – reference: Jeroen AS Witteveen and Hester Bijl. Modeling arbitrary uncertainties using Gram-Schmidt polynomial chaos. In – year: 2018 ident: b0165 article-title: Density estimation for statistics and data analysis publication-title: Routledge – volume: 386 year: 2021 ident: b0185 article-title: Variance-based adaptive sequential sampling for polynomial chaos expansion publication-title: Comput. Methods Appl. Mech. Eng. – volume: 151 start-page: 107420 year: 2021 ident: b0095 article-title: A sample-based iterative scheme for simulating non-stationary non-Gaussian stochastic processes publication-title: Mech. Syst. Sig. Process. – volume: 41 start-page: 1945 year: 2012 end-page: 1957 ident: b0135 article-title: Enrichment of seismic ground motion databases using Karhunen-Loève expansion publication-title: Earthquake Eng. Struct. Dyn. – volume: 3 start-page: 34 issue: 1 year: 2015 ident: 10.1016/j.ymssp.2022.109730_b0160 article-title: Polynomial chaos expansion of a multimodal random vector publication-title: SIAM/ASA J. Uncertainty Quantif. doi: 10.1137/140968495 – volume: 24 start-page: 619 issue: 2 year: 2002 ident: 10.1016/j.ymssp.2022.109730_b0175 article-title: The Wiener-Askey polynomial chaos for stochastic differential equations publication-title: SIAM J. Sci. Comp. doi: 10.1137/S1064827501387826 – volume: 36 start-page: 63 year: 2014 ident: 10.1016/j.ymssp.2022.109730_b0075 article-title: Stochastic model construction of observed random phenomena publication-title: Probab. Eng. Mech. doi: 10.1016/j.probengmech.2014.03.005 – year: 2018 ident: 10.1016/j.ymssp.2022.109730_b0165 article-title: Density estimation for statistics and data analysis publication-title: Routledge – volume: 80 start-page: 1049 issue: 12 year: 2002 ident: 10.1016/j.ymssp.2022.109730_b0190 article-title: Simulation of second-order processes using Karhunen-Loève expansion publication-title: Comput. Struct. doi: 10.1016/S0045-7949(02)00064-0 – volume: 169 start-page: 108589 year: 2022 ident: 10.1016/j.ymssp.2022.109730_b0050 article-title: An adaptive polynomial skewed-normal transformation model for distribution reconstruction and reliability evaluation with rare events publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2021.108589 – volume: 40 start-page: A366 issue: 1 year: 2018 ident: 10.1016/j.ymssp.2022.109730_b0225 article-title: Weighted approximate fekete points: sampling for least-squares polynomial approximation publication-title: SIAM J. Sci. Comp. doi: 10.1137/17M1140960 – volume: 79 start-page: 66 year: 2019 ident: 10.1016/j.ymssp.2022.109730_b0125 article-title: Simulation of non-stationary non-Gaussian random fields from sparse measurements using bayesian compressive sampling and Karhunen-Loève expansion publication-title: Struct. Saf. doi: 10.1016/j.strusafe.2019.03.006 – volume: 203 start-page: 107087 year: 2020 ident: 10.1016/j.ymssp.2022.109730_b0120 article-title: Non-parametric simulation of non-stationary non-Gaussian 3D random field samples directly from sparse measurements using signal decomposition and Markov Chain Monte Carlo (MCMC) simulation publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2020.107087 – volume: 26 start-page: 395 issue: 2 year: 2004 ident: 10.1016/j.ymssp.2022.109730_b0200 article-title: Physical systems with random uncertainties: chaos representations with arbitrary probability measure publication-title: SIAM J. Sci. Comp. doi: 10.1137/S1064827503424505 – volume: 55 start-page: 17 year: 2019 ident: 10.1016/j.ymssp.2022.109730_b0085 article-title: Numerical simulation of random fields with a high-order polynomial based Ritz-Galerkin approach publication-title: Probab. Eng. Mech. doi: 10.1016/j.probengmech.2018.08.003 – year: 2003 ident: 10.1016/j.ymssp.2022.109730_b0020 – volume: 37 start-page: 5938 issue: 8 year: 2013 ident: 10.1016/j.ymssp.2022.109730_b0100 article-title: Non-Gaussian non-stationary models for natural hazard modeling publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2012.11.021 – volume: 30 start-page: 65 issue: 1 year: 2008 ident: 10.1016/j.ymssp.2022.109730_b0025 article-title: The principle of preservation of probability and the generalized density evolution equation publication-title: Struct. Saf. doi: 10.1016/j.strusafe.2006.08.001 – volume: 173 start-page: 109026 year: 2022 ident: 10.1016/j.ymssp.2022.109730_b0040 article-title: Independent component analysis-based arbitrary polynomial chaos method for stochastic analysis of structures under limited observations publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2022.109026 – volume: 386 year: 2021 ident: 10.1016/j.ymssp.2022.109730_b0185 article-title: Variance-based adaptive sequential sampling for polynomial chaos expansion publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2021.114105 – volume: 96 start-page: 31 year: 2017 ident: 10.1016/j.ymssp.2022.109730_b0005 article-title: A stochastic harmonic function representation for non-stationary stochastic processes publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2017.03.048 – volume: 124 start-page: 217 year: 2019 ident: 10.1016/j.ymssp.2022.109730_b0035 article-title: Statistical inference of random field auto-correlation structure from multiple sets of incomplete and sparse measurements using Bayesian compressive sampling-based bootstrapping publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2019.01.049 – volume: 52 start-page: 161 year: 2015 ident: 10.1016/j.ymssp.2022.109730_b0060 article-title: Wavelet density-based adaptive importance sampling method publication-title: Structural Safety doi: 10.1016/j.strusafe.2014.02.003 – volume: 55 start-page: 862 issue: 6 year: 2018 ident: 10.1016/j.ymssp.2022.109730_b0070 article-title: Direct simulation of random field samples from sparsely measured geotechnical data with consideration of uncertainty in interpretation publication-title: Can. Geotech. J. doi: 10.1139/cgj-2017-0254 – volume: 221 start-page: 108323 year: 2022 ident: 10.1016/j.ymssp.2022.109730_b0080 article-title: A non-Gaussian stochastic model from limited observations using polynomial chaos and fractional moments publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2022.108323 – volume: 30 start-page: 2207 issue: 5 year: 2008 ident: 10.1016/j.ymssp.2022.109730_b0150 article-title: Asymptotic sampling distribution for polynomial chaos representation from data: a maximum entropy and fisher information approach publication-title: SIAM J. Sci. Comput. doi: 10.1137/060652105 – volume: 357 start-page: 112612 year: 2019 ident: 10.1016/j.ymssp.2022.109730_b0030 article-title: Direct probability integral method for stochastic response analysis of static and dynamic structural systems publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2019.112612 – volume: 96 start-page: 102201 year: 2022 ident: 10.1016/j.ymssp.2022.109730_b0015 article-title: A new perspective on the simulation of cross-correlated random fields publication-title: Struct. Saf. doi: 10.1016/j.strusafe.2022.102201 – volume: 66 start-page: 978 issue: 6 year: 2006 ident: 10.1016/j.ymssp.2022.109730_b0140 article-title: Maximum likelihood estimation of stochastic chaos representations from experimental data publication-title: Int. J. Numer. Meth. Eng. doi: 10.1002/nme.1576 – volume: 52 start-page: 150 year: 2015 ident: 10.1016/j.ymssp.2022.109730_b0115 article-title: An artificial neural network approach for stochastic process power spectrum estimation subject to missing data publication-title: Struct. Saf. doi: 10.1016/j.strusafe.2014.10.001 – ident: 10.1016/j.ymssp.2022.109730_b0205 doi: 10.2514/6.2006-896 – volume: 151 start-page: 107420 year: 2021 ident: 10.1016/j.ymssp.2022.109730_b0095 article-title: A sample-based iterative scheme for simulating non-stationary non-Gaussian stochastic processes publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2020.107420 – volume: 166 start-page: 108420 year: 2022 ident: 10.1016/j.ymssp.2022.109730_b0045 article-title: Non-stationary approximate response of non-linear multi-degree-of-freedom systems subjected to combined periodic and stochastic excitation publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2021.108420 – volume: 160 start-page: 107953 year: 2021 ident: 10.1016/j.ymssp.2022.109730_b0090 article-title: Simulating strongly non-Gaussian and non-stationary processes using Karhunen-Loève expansion and L-moments-based Hermite polynomial model publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2021.107953 – volume: 15 start-page: 81 issue: 1–3 year: 2006 ident: 10.1016/j.ymssp.2022.109730_b0215 article-title: Stochastic finite element: a non-intrusive approach by regression publication-title: Eur. J. Comput. Mech./Rev. Europ. Mécanique Numérique doi: 10.3166/remn.15.81-92 – volume: 20 start-page: 188 issue: 2 year: 2005 ident: 10.1016/j.ymssp.2022.109730_b0195 article-title: Simulation of strongly non-Gaussian processes using Karhunen-Loève expansion publication-title: Probab. Eng. Mech. doi: 10.1016/j.probengmech.2005.05.007 – volume: 464 start-page: 749 issue: 1 year: 2018 ident: 10.1016/j.ymssp.2022.109730_b0210 article-title: A polynomial chaos expansion in dependent random variables publication-title: J. Mathem. Anal. Appl. doi: 10.1016/j.jmaa.2018.04.032 – volume: 162 start-page: 107975 year: 2022 ident: 10.1016/j.ymssp.2022.109730_b0055 article-title: Wind data extrapolation and stochastic field statistics estimation via compressive sampling and low rank matrix recovery methods publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2021.107975 – volume: 61 year: 2020 ident: 10.1016/j.ymssp.2022.109730_b0105 article-title: Sparse representations and compressive sampling approaches in engineering mechanics: A review of theoretical concepts and diverse applications publication-title: Probab. Eng. Mech. doi: 10.1016/j.probengmech.2020.103082 – volume: 60 start-page: 130 year: 2016 ident: 10.1016/j.ymssp.2022.109730_b0230 article-title: A new method for reliability assessment of structural dynamic systems with random parameters publication-title: Struct. Saf. doi: 10.1016/j.strusafe.2016.02.005 – volume: 217 start-page: 63 issue: 1 year: 2006 ident: 10.1016/j.ymssp.2022.109730_b0130 article-title: On the construction and analysis of stochastic models: characterization and propagation of the errors associated with limited data publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2006.01.037 – volume: 106 start-page: 511 year: 2018 ident: 10.1016/j.ymssp.2022.109730_b0010 article-title: Random function representation of stationary stochastic vector processes for probability density evolution analysis of wind-induced structures publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2018.01.011 – volume: 41 start-page: 1945 issue: 14 year: 2012 ident: 10.1016/j.ymssp.2022.109730_b0135 article-title: Enrichment of seismic ground motion databases using Karhunen-Loève expansion publication-title: Earthquake Eng. Struct. Dyn. doi: 10.1002/eqe.2166 – volume: 230 start-page: 2345 issue: 6 year: 2011 ident: 10.1016/j.ymssp.2022.109730_b0220 article-title: Adaptive sparse polynomial chaos expansion based on least angle regression publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2010.12.021 – volume: 94 start-page: 279 year: 2017 ident: 10.1016/j.ymssp.2022.109730_b0065 article-title: Incomplete data based parameter identification of nonlinear and time-variant oscillators with fractional derivative elements publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2017.03.004 – volume: 27 start-page: 484 year: 2012 ident: 10.1016/j.ymssp.2022.109730_b0145 article-title: Stochastic identification of composite material properties from limited experimental databases, part ii: Uncertainty modelling publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2011.09.001 – volume: 228 start-page: 8726 issue: 23 year: 2009 ident: 10.1016/j.ymssp.2022.109730_b0155 article-title: Polynomial chaos representation of spatio-temporal random fields from experimental measurements publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2009.08.025 – volume: 44 start-page: 66 year: 2016 ident: 10.1016/j.ymssp.2022.109730_b0110 article-title: Compressive sensing based stochastic process power spectrum estimation subject to missing data publication-title: Probab. Eng. Mech. doi: 10.1016/j.probengmech.2015.09.015 – volume: vol. 2 year: 1999 ident: 10.1016/j.ymssp.2022.109730_b0170 – volume: 9 start-page: 593 issue: 2 year: 2021 ident: 10.1016/j.ymssp.2022.109730_b0180 article-title: Sparse polynomial chaos expansions: Literature survey and benchmark publication-title: SIAM/ASA J. Uncertainty Quantif. doi: 10.1137/20M1315774 |
SSID | ssj0009406 |
Score | 2.4946313 |
Snippet | •An effective framework for stochastic modelling and uncertainty propagation of engineering systems with limited observations is presented.•The developed... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 109730 |
SubjectTerms | Kernel density estimation Limited observations PC-based response propagation Random field modelling Uncertain analysis |
Title | A new method for stochastic analysis of structures under limited observations |
URI | https://dx.doi.org/10.1016/j.ymssp.2022.109730 |
Volume | 185 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4QvOjB-Iz4IHvwaMXubh97JESCGrgoCbdmu7uNGAQCePDib3emD8TEcPDazCbN1-nMN-3MNwDXlivOI0MLTWTmSW2dp0ymPK2jVGgXW21pdrg_CHtD-TgKRjXoVLMw1FZZxv4ipufRurzSKtFszcfj1jO-H-iOEY2K0sAo1e1SRuTlt18_bR5K5vs1ydgj60p5KO_x-nxfLkm0kvNcypFaof_KThsZp3sA-yVVZO3ibg6h5qZHsLchIHgM_TZDWsyKNdAM-SdDLmdeNYkvM13qjbBZxgqZ2A-srRlNjS3YpBhsYrN0_Vl2eQLD7v1Lp-eVCxI8g5ln5cUuuNP0jyS0gYktR5BTpayvnG8Cq8KMC4ERSaSCG4X81GDlLF2GrEvHWKn44hTq09nUnQHjMrU6zDTSLydtJlJSuQmQOwqt4ljpBvAKmMSU6uG0xGKSVG1ib0mOZkJoJgWaDbhZH5oX4hnbzcMK8eSXDyQY3rcdPP_vwQvYpfXx1IXtB5dQx2fhrpBkrNJm7kVN2Gk_PPUG35nU0no |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QOKgH4zPicw8ebbC7bekeCZEUeVyEhNtmu7uNGAQiePDfO9NuERPDwWuzkzRfpzPftDPfEHJvmGCsqXGhSZB5gTLWEzoTnlLNlCsbG2VwdngwjJJx8DwJJxXSLmdhsK3Sxf4ipufR2l1pODQby-m08QLvB7hjE0dFcWAU6vYaqlOFVVJrdXvJ8Ed7N8hXbOJ5Dw1K8aG8zevrfbVC3UrGcjVH7Ib-K0FtJZ3OETl0bJG2ihs6JhU7PyEHWxqCp2TQosCMabEJmgIFpUDn9KtC_WWqnOQIXWS0UIr9hPKa4uDYB50Vs010kW6-zK7OyLjzNGonntuR4GlIPmsvtuGjwt8kkQl1bBjgnAphfGF9HRoRZYxzCEo85UwLoKgaiufAZkC8VAzFis_PSXW-mNsLQlmQGhVlChiYDUzGUxS6CYE-ciXiWKg6YSUwUjsBcdxjMZNlp9ibzNGUiKYs0KyTh43RstDP2H08KhGXv9xAQoTfZXj5X8M7speMBn3Z7w57V2Qft8ljU7YfXpMqPBd7A5xjnd46n_oG37DVKw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+method+for+stochastic+analysis+of+structures+under+limited+observations&rft.jtitle=Mechanical+systems+and+signal+processing&rft.au=Dai%2C+Hongzhe&rft.au=Zhang%2C+Ruijing&rft.au=Beer%2C+Michael&rft.date=2023-02-15&rft.issn=0888-3270&rft.volume=185&rft.spage=109730&rft_id=info:doi/10.1016%2Fj.ymssp.2022.109730&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ymssp_2022_109730 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-3270&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-3270&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-3270&client=summon |