Exploring the phase diagrams of multidimensional Kuramoto models

The multidimensional Kuramoto model describes the synchronization dynamics of particles moving on the surface of D-dimensional spheres, generalizing the original model where they are characterized by a single phase. Particles are represented by D-dimensional unit vectors and the coupling constant ca...

Full description

Saved in:
Bibliographic Details
Published inChaos, solitons and fractals Vol. 179; p. 114431
Main Authors Fariello, Ricardo, de Aguiar, Marcus A.M.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.02.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The multidimensional Kuramoto model describes the synchronization dynamics of particles moving on the surface of D-dimensional spheres, generalizing the original model where they are characterized by a single phase. Particles are represented by D-dimensional unit vectors and the coupling constant can be extended to a coupling matrix acting on the vectors. The system has a large number of independent parameters, given by the characteristic widths of the distributions of natural frequencies and the D2 entries of the coupling matrix. Moreover, as the coupling matrix breaks the rotational symmetry, the average values of the natural frequencies also play a key role in the dynamics. General phase diagrams, indicating regions in parameter space where the system exhibits different behaviors, are hard to derive analytically. Here we obtain the complete phase diagram for D=2, for arbitrary coupling matrices and Lorentzian distributions of natural frequencies. We show that the system exhibits four different phases: disordered and static synchrony (as in the original Kuramoto model), rotation of the synchronized cluster (similar to the Kuramoto-Sakaguchi model with frustration) and active synchrony, a new phase where the module of the order parameter oscillates as it rotates on the sphere. We also explore the diagrams numerically for higher dimensions, D=3 and D=4, for particular choices of coupling matrices and frequency distributions. We find that the system always exhibits the same four phases, but their location in the space of parameters depends strongly on the dimension D being even or odd, on the coupling matrix and on the shape of the distribution of natural frequencies. •We compute phase diagrams of the D-dimensional Kuramoto model, where particles interact via D × D coupling matrices.•For D=2 and Lorenz distribution of natural frequencies the diagram is derived analytically.•Four phases are observed: disordered, static synchrony, rotation and active states.•Diagrams are computed numerically for dimensions D=3 and D=4.•The structure of phase diagrams is different in even and odd dimensions.
AbstractList The multidimensional Kuramoto model describes the synchronization dynamics of particles moving on the surface of D-dimensional spheres, generalizing the original model where they are characterized by a single phase. Particles are represented by D-dimensional unit vectors and the coupling constant can be extended to a coupling matrix acting on the vectors. The system has a large number of independent parameters, given by the characteristic widths of the distributions of natural frequencies and the D2 entries of the coupling matrix. Moreover, as the coupling matrix breaks the rotational symmetry, the average values of the natural frequencies also play a key role in the dynamics. General phase diagrams, indicating regions in parameter space where the system exhibits different behaviors, are hard to derive analytically. Here we obtain the complete phase diagram for D=2, for arbitrary coupling matrices and Lorentzian distributions of natural frequencies. We show that the system exhibits four different phases: disordered and static synchrony (as in the original Kuramoto model), rotation of the synchronized cluster (similar to the Kuramoto-Sakaguchi model with frustration) and active synchrony, a new phase where the module of the order parameter oscillates as it rotates on the sphere. We also explore the diagrams numerically for higher dimensions, D=3 and D=4, for particular choices of coupling matrices and frequency distributions. We find that the system always exhibits the same four phases, but their location in the space of parameters depends strongly on the dimension D being even or odd, on the coupling matrix and on the shape of the distribution of natural frequencies. •We compute phase diagrams of the D-dimensional Kuramoto model, where particles interact via D × D coupling matrices.•For D=2 and Lorenz distribution of natural frequencies the diagram is derived analytically.•Four phases are observed: disordered, static synchrony, rotation and active states.•Diagrams are computed numerically for dimensions D=3 and D=4.•The structure of phase diagrams is different in even and odd dimensions.
ArticleNumber 114431
Author Fariello, Ricardo
de Aguiar, Marcus A.M.
Author_xml – sequence: 1
  givenname: Ricardo
  orcidid: 0000-0002-5868-4068
  surname: Fariello
  fullname: Fariello, Ricardo
  organization: Departamento de Ciências da Computação, Universidade Estadual de Montes Claros, 39401-089, Montes Claros, MG, Brazil
– sequence: 2
  givenname: Marcus A.M.
  orcidid: 0000-0003-1379-7568
  surname: de Aguiar
  fullname: de Aguiar, Marcus A.M.
  email: aguiar@ifi.unicamp.br
  organization: Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, Unicamp 13083-970, Campinas, SP, Brazil
BookMark eNqFkL1OwzAUhS1UJFrgCVjyAgm-duokAxKoKj-iEgvMlmNft66SuLJdBG9PSpkYYDrD0Xek883IZPADEnIFtAAK4npb6I3ysWCU8QKgLDmckCnUFc9ZXVcTMqWNoDmtquaMzGLcUkqBCjYlt8uPXeeDG9ZZ2mC226iImXFqHVQfM2-zft8lZ1yPQ3R-UF32vB8rn3zWe4NdvCCnVnURL3_ynLzdL18Xj_nq5eFpcbfKNac85bUpS8PRVlxTYMxSxJJZ0SIzAiyDtgHNKs41KD5XwgK3bQmlsE07byqB_Jzw464OPsaAVu6C61X4lEDlQYLcym8J8iBBHiWMVPOL0i6pND5JQbnuH_bmyI4v8d1hkFE7HDQaF1Anabz7k_8ClVB7pw
CitedBy_id crossref_primary_10_1016_j_chaos_2024_114583
crossref_primary_10_1103_PhysRevE_110_024217
crossref_primary_10_1016_j_chaos_2024_115467
crossref_primary_10_1088_1367_2630_ad4e5a
crossref_primary_10_1063_5_0239011
Cites_doi 10.1016/j.physd.2006.12.004
10.1126/science.1110329
10.1063/5.0108672
10.1103/PhysRevLett.106.054102
10.3389/fnhum.2010.00190
10.1016/j.neunet.2015.03.003
10.1016/j.chaos.2023.113981
10.1103/PhysRevLett.106.128701
10.1073/pnas.2206994120
10.1038/nphys2535
10.1126/science.1089287
10.1103/PhysRevLett.82.648
10.1007/s13324-021-00567-4
10.1103/PhysRevE.101.062213
10.1088/1367-2630/16/2/023016
10.1119/1.1501118
10.1103/RevModPhys.77.137
10.1143/PTP.76.576
10.1038/s41467-021-21290-5
10.1016/j.chaos.2020.110395
10.1103/PhysRevE.90.042905
10.1140/epjb/e2008-00098-8
10.1103/PhysRevE.107.044205
10.1063/5.0060233
10.1137/10081530X
10.1063/1.3049136
10.1063/5.0069350
10.1038/s41467-017-01190-3
10.1016/j.physa.2019.122051
10.1186/s13408-020-00086-9
10.1016/j.physrep.2015.10.008
10.1016/j.physa.2018.09.096
10.1016/j.chaos.2021.111090
10.1103/Physics.16.126
10.1088/1367-2630/17/1/015012
10.1063/1.5097847
10.1073/pnas.2000061117
10.1103/PhysRevLett.110.218701
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.chaos.2023.114431
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1873-2887
ExternalDocumentID 10_1016_j_chaos_2023_114431
S0960077923013334
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABMAC
ABNEU
ABTAH
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLZ
HMV
HVGLF
HZ~
IHE
J1W
KOM
LG9
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SPG
SSQ
SSZ
T5K
WUQ
XPP
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c303t-8d44d3ef73c0122f0ee42f6be2d61f21b91c2733c1a35a6f13fb4146f9b5976e3
IEDL.DBID .~1
ISSN 0960-0779
IngestDate Thu Apr 24 23:11:07 EDT 2025
Tue Jul 01 02:01:20 EDT 2025
Sat Apr 13 16:35:09 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Kuramoto mode
Synchronization
Dynamics on the sphere
Symmetry breaking
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c303t-8d44d3ef73c0122f0ee42f6be2d61f21b91c2733c1a35a6f13fb4146f9b5976e3
ORCID 0000-0002-5868-4068
0000-0003-1379-7568
ParticipantIDs crossref_primary_10_1016_j_chaos_2023_114431
crossref_citationtrail_10_1016_j_chaos_2023_114431
elsevier_sciencedirect_doi_10_1016_j_chaos_2023_114431
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2024
2024-02-00
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: February 2024
PublicationDecade 2020
PublicationTitle Chaos, solitons and fractals
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Motter, Myers, Anghel, Nishikawa (b6) 2013; 9
Filatrella, Nielsen, Pedersen (b5) 2008; 61
Rodrigues, Peron, Ji, Kurths (b18) 2016; 610
Sakaguchi, Kuramoto (b19) 1986; 76
Supekar, Song, Hastewell, Choi, Mietke, Dunkel (b36) 2023; 120
Wright (b11) 2023; 16
Ferrari, Viana, Lopes, Stoop (b3) 2015; 66
Yamaguchi, Isejima, Matsuo, Okura, Yagita, Kobayashi, Okamura (b13) 2003; 302
Climaco, Saa (b26) 2019; 29
Moreira, de Aguiar (b33) 2019; 533
Crnkić, Jaćimović, Marković (b41) 2021; 11
Yue, Smith, Gottwald (b20) 2020; 101
Kuramoto (b15) 1975
Hong, Strogatz (b23) 2011; 106
O’Keeffe, Hong, Strogatz (b34) 2017; 8
Tanaka (b39) 2014; 16
Han, Kokot, Tovkach, Glatz, Aranson, Snezhko (b9) 2020; 117
Yeung, Strogatz (b24) 1999; 82
Bhowmik, Shanahan (b2) 2012
Gomez-Gardenes, Gomez, Arenas, Moreno (b27) 2011; 106
Childs, Strogatz (b31) 2008; 18
Pantaleone (b12) 2002; 70
Buzanello, Barioni, de Aguiar (b21) 2022; 32
Nishikawa, Motter (b7) 2015; 17
Kuramoto (b16) 1984
Ott, Antonsen (b45) 2008; 18
Lee, Hong, Yeo (b47) 2023; 2023
Moreira, de Aguiar (b32) 2019; 514
Manoranjani, Senthilkumar, Chandrasekar (b42) 2023; 175
Bick, Goodfellow, Laing, Martens (b14) 2020; 10
Barioni, de Aguiar (b38) 2021; 149
Cumin, Unsworth (b1) 2007; 226
Chandra, Girvan, Ott (b37) 2019; 9
Riedel, Kruse, Howard (b10) 2005; 309
Molnar, Nishikawa, Motter (b8) 2021; 12
Breakspear, Heitmann, Daffertshofer (b25) 2010; 4
O’Keeffe, Ceron, Petersen (b35) 2022; 105
Reis, Iarosz, Ferrari, Caldas, Batista, Viana (b4) 2021; 142
Olmi, Navas, Boccaletti, Torcini (b30) 2014; 90
de Aguiar (b22) 2023; 107
Ji, Peron, Menck, Rodrigues, Kurths (b28) 2013; 110
de Aguiar (b46) 2023
Barioni, de Aguiar (b44) 2021; 31
Acebrón, Bonilla, Vicente, Ritort, Spigler (b17) 2005; 77
Dörfler, Bullo (b29) 2011; 10
Lipton, Mirollo, Strogatz (b40) 2021; 31
Lee, Krischer (b43) 2023
O’Keeffe (10.1016/j.chaos.2023.114431_b35) 2022; 105
Moreira (10.1016/j.chaos.2023.114431_b33) 2019; 533
Reis (10.1016/j.chaos.2023.114431_b4) 2021; 142
Pantaleone (10.1016/j.chaos.2023.114431_b12) 2002; 70
Tanaka (10.1016/j.chaos.2023.114431_b39) 2014; 16
Manoranjani (10.1016/j.chaos.2023.114431_b42) 2023; 175
Chandra (10.1016/j.chaos.2023.114431_b37) 2019; 9
Cumin (10.1016/j.chaos.2023.114431_b1) 2007; 226
de Aguiar (10.1016/j.chaos.2023.114431_b46) 2023
Gomez-Gardenes (10.1016/j.chaos.2023.114431_b27) 2011; 106
Kuramoto (10.1016/j.chaos.2023.114431_b15) 1975
Acebrón (10.1016/j.chaos.2023.114431_b17) 2005; 77
Yue (10.1016/j.chaos.2023.114431_b20) 2020; 101
Lee (10.1016/j.chaos.2023.114431_b43) 2023
Barioni (10.1016/j.chaos.2023.114431_b44) 2021; 31
Rodrigues (10.1016/j.chaos.2023.114431_b18) 2016; 610
Lipton (10.1016/j.chaos.2023.114431_b40) 2021; 31
Riedel (10.1016/j.chaos.2023.114431_b10) 2005; 309
Climaco (10.1016/j.chaos.2023.114431_b26) 2019; 29
O’Keeffe (10.1016/j.chaos.2023.114431_b34) 2017; 8
Kuramoto (10.1016/j.chaos.2023.114431_b16) 1984
Han (10.1016/j.chaos.2023.114431_b9) 2020; 117
Olmi (10.1016/j.chaos.2023.114431_b30) 2014; 90
Breakspear (10.1016/j.chaos.2023.114431_b25) 2010; 4
Dörfler (10.1016/j.chaos.2023.114431_b29) 2011; 10
Childs (10.1016/j.chaos.2023.114431_b31) 2008; 18
Lee (10.1016/j.chaos.2023.114431_b47) 2023; 2023
Ji (10.1016/j.chaos.2023.114431_b28) 2013; 110
Molnar (10.1016/j.chaos.2023.114431_b8) 2021; 12
Buzanello (10.1016/j.chaos.2023.114431_b21) 2022; 32
Supekar (10.1016/j.chaos.2023.114431_b36) 2023; 120
de Aguiar (10.1016/j.chaos.2023.114431_b22) 2023; 107
Moreira (10.1016/j.chaos.2023.114431_b32) 2019; 514
Crnkić (10.1016/j.chaos.2023.114431_b41) 2021; 11
Filatrella (10.1016/j.chaos.2023.114431_b5) 2008; 61
Barioni (10.1016/j.chaos.2023.114431_b38) 2021; 149
Bick (10.1016/j.chaos.2023.114431_b14) 2020; 10
Sakaguchi (10.1016/j.chaos.2023.114431_b19) 1986; 76
Ferrari (10.1016/j.chaos.2023.114431_b3) 2015; 66
Hong (10.1016/j.chaos.2023.114431_b23) 2011; 106
Wright (10.1016/j.chaos.2023.114431_b11) 2023; 16
Yeung (10.1016/j.chaos.2023.114431_b24) 1999; 82
Ott (10.1016/j.chaos.2023.114431_b45) 2008; 18
Bhowmik (10.1016/j.chaos.2023.114431_b2) 2012
Motter (10.1016/j.chaos.2023.114431_b6) 2013; 9
Nishikawa (10.1016/j.chaos.2023.114431_b7) 2015; 17
Yamaguchi (10.1016/j.chaos.2023.114431_b13) 2003; 302
References_xml – volume: 9
  year: 2019
  ident: b37
  article-title: Continuous versus discontinuous transitions in the d-dimensional generalized kuramoto model: Odd d is different
  publication-title: Phys Rev X
– volume: 17
  year: 2015
  ident: b7
  article-title: Comparative analysis of existing models for power-grid synchronization
  publication-title: New J Phys
– volume: 61
  start-page: 485
  year: 2008
  end-page: 491
  ident: b5
  article-title: Analysis of a power grid using a kuramoto-like model
  publication-title: Eur Phys J B
– volume: 117
  start-page: 9706
  year: 2020
  end-page: 9711
  ident: b9
  article-title: Emergence of self-organized multivortex states in flocks of active rollers
  publication-title: Proc Natl Acad Sci
– volume: 76
  start-page: 576
  year: 1986
  end-page: 581
  ident: b19
  article-title: A soluble active rotater model showing phase transitions via mutual entertainment
  publication-title: Progr Theoret Phys
– volume: 4
  start-page: 190
  year: 2010
  ident: b25
  article-title: Generative models of cortical oscillations: neurobiological implications of the kuramoto model
  publication-title: Front Hum Neurosci
– volume: 142
  year: 2021
  ident: b4
  article-title: Bursting synchronization in neuronal assemblies of scale-free networks
  publication-title: Chaos Solitons Fractals
– start-page: 420
  year: 1975
  end-page: 422
  ident: b15
  article-title: Self-entrainment of a population of coupled non-linear oscillators
  publication-title: International symposium on mathematical problems in theoretical physics
– volume: 90
  year: 2014
  ident: b30
  article-title: Hysteretic transitions in the kuramoto model with inertia
  publication-title: Phys Rev E
– volume: 29
  year: 2019
  ident: b26
  article-title: Optimal global synchronization of partially forced kuramoto oscillators
  publication-title: Chaos
– volume: 66
  start-page: 107
  year: 2015
  end-page: 118
  ident: b3
  article-title: Phase synchronization of coupled bursting neurons and the generalized kuramoto model
  publication-title: Neural Netw
– volume: 105
  year: 2022
  ident: b35
  article-title: Collective behavior of swarmalators on a ring
  publication-title: Phys Rev E
– volume: 120
  year: 2023
  ident: b36
  article-title: Learning hydrodynamic equations for active matter from particle simulations and experiments
  publication-title: Proc Natl Acad Sci
– volume: 149
  year: 2021
  ident: b38
  article-title: Complexity reduction in the 3d kuramoto model
  publication-title: Chaos Solitons Fractals
– volume: 70
  start-page: 992
  year: 2002
  end-page: 1000
  ident: b12
  article-title: Synchronization of metronomes
  publication-title: Amer J Phys
– volume: 175
  year: 2023
  ident: b42
  article-title: Diverse phase transitions in kuramoto model with adaptive mean-field coupling breaking the rotational symmetry
  publication-title: Chaos Solitons Fractals
– volume: 101
  year: 2020
  ident: b20
  article-title: Model reduction for the kuramoto-sakaguchi model: The importance of nonentrained rogue oscillators
  publication-title: Phys Rev E
– volume: 226
  start-page: 181
  year: 2007
  end-page: 196
  ident: b1
  article-title: Generalising the kuramoto model for the study of neuronal synchronisation in the brain
  publication-title: Physica D
– volume: 514
  start-page: 487
  year: 2019
  end-page: 496
  ident: b32
  article-title: Global synchronization of partially forced kuramoto oscillators on networks
  publication-title: Physica A
– volume: 309
  start-page: 300
  year: 2005
  end-page: 303
  ident: b10
  article-title: A self-organized vortex array of hydrodynamically entrained sperm cells
  publication-title: Science
– volume: 107
  year: 2023
  ident: b22
  article-title: Generalized frustration in the multidimensional kuramoto model
  publication-title: Phys Rev E
– year: 2023
  ident: b43
  article-title: Chimera dynamics of generalized kuramoto-sakaguchi oscillators in two-population networks
– year: 2023
  ident: b46
  article-title: On the numerical integration of the multidimensional kuramoto model
– volume: 16
  year: 2014
  ident: b39
  article-title: Solvable model of the collective motion of heterogeneous particles interacting on a sphere
  publication-title: New J Phys
– volume: 16
  start-page: 126
  year: 2023
  ident: b11
  article-title: Thermodynamics reveals coordinated motors in sperm tails
  publication-title: Physics
– volume: 302
  start-page: 1408
  year: 2003
  end-page: 1412
  ident: b13
  article-title: Synchronization of cellular clocks in the suprachiasmatic nucleus
  publication-title: Science
– volume: 10
  start-page: 1
  year: 2020
  end-page: 43
  ident: b14
  article-title: Understanding the dynamics of biological and neural oscillator networks through exact mean-field reductions: a review
  publication-title: J Math Neurosci
– volume: 8
  start-page: 1
  year: 2017
  end-page: 13
  ident: b34
  article-title: Oscillators that sync and swarm
  publication-title: Nat Commun
– volume: 11
  start-page: 1
  year: 2021
  end-page: 13
  ident: b41
  article-title: On synchronization in kuramoto models on spheres
  publication-title: Anal Math Phys
– volume: 9
  start-page: 191
  year: 2013
  end-page: 197
  ident: b6
  article-title: Spontaneous synchrony in power-grid networks
  publication-title: Nat Phys
– volume: 82
  start-page: 648
  year: 1999
  ident: b24
  article-title: Time delay in the kuramoto model of coupled oscillators
  publication-title: Phys Rev Lett
– volume: 32
  year: 2022
  ident: b21
  article-title: Matrix coupling and generalized frustration in kuramoto oscillators
  publication-title: Chaos
– volume: 106
  start-page: 1
  year: 2011
  end-page: 4
  ident: b27
  article-title: Explosive synchronization transitions in scale-free networks
  publication-title: Phys Rev Lett
– volume: 610
  start-page: 1
  year: 2016
  end-page: 98
  ident: b18
  article-title: The kuramoto model in complex networks
  publication-title: Phys Rep
– volume: 31
  year: 2021
  ident: b40
  article-title: The kuramoto model on a sphere: Explaining its low-dimensional dynamics with group theory and hyperbolic geometry
  publication-title: Chaos
– volume: 106
  year: 2011
  ident: b23
  article-title: Kuramoto model of coupled oscillators with positive and negative coupling parameters: an example of conformist and contrarian oscillators
  publication-title: Phys Rev Lett
– volume: 533
  year: 2019
  ident: b33
  article-title: Modular structure in c. elegans neural network and its response to external localized stimuli
  publication-title: Physica A
– volume: 110
  start-page: 1
  year: 2013
  end-page: 5
  ident: b28
  article-title: Cluster explosive synchronization in complex networks
  publication-title: Phys Rev Lett
– volume: 77
  start-page: 137
  year: 2005
  end-page: 185
  ident: b17
  article-title: The kuramoto model: A simple paradigm for synchronization phenomena
  publication-title: Rev Modern Phys
– volume: 31
  year: 2021
  ident: b44
  article-title: Ott–antonsen ansatz for the
  publication-title: Chaos
– start-page: 89
  year: 1984
  end-page: 110
  ident: b16
  article-title: Chemical waves
  publication-title: Chemical oscillations, waves, and turbulence
– volume: 10
  start-page: 1070
  year: 2011
  end-page: 1099
  ident: b29
  article-title: On the critical coupling for kuramoto oscillators
  publication-title: SIAM J Appl Dyn Syst
– volume: 2023
  year: 2023
  ident: b47
  article-title: Improved numerical scheme for the generalized kuramoto model
  publication-title: J Stat Mech Theory Exp
– start-page: 1
  year: 2012
  end-page: 8
  ident: b2
  article-title: How well do oscillator models capture the behaviour of biological neurons?
  publication-title: The 2012 international joint conference on neural networks (IJCNN)
– volume: 18
  start-page: 1
  year: 2008
  end-page: 9
  ident: b31
  article-title: Stability diagram for the forced kuramoto model
  publication-title: Chaos
– volume: 18
  start-page: 1
  year: 2008
  end-page: 6
  ident: b45
  article-title: Low dimensional behavior of large systems of globally coupled oscillators
  publication-title: Chaos
– volume: 12
  start-page: 1457
  year: 2021
  ident: b8
  article-title: Asymmetry underlies stability in power grids
  publication-title: Nat Commun
– volume: 226
  start-page: 181
  issue: 2
  year: 2007
  ident: 10.1016/j.chaos.2023.114431_b1
  article-title: Generalising the kuramoto model for the study of neuronal synchronisation in the brain
  publication-title: Physica D
  doi: 10.1016/j.physd.2006.12.004
– volume: 309
  start-page: 300
  issue: 5732
  year: 2005
  ident: 10.1016/j.chaos.2023.114431_b10
  article-title: A self-organized vortex array of hydrodynamically entrained sperm cells
  publication-title: Science
  doi: 10.1126/science.1110329
– volume: 32
  issue: 9
  year: 2022
  ident: 10.1016/j.chaos.2023.114431_b21
  article-title: Matrix coupling and generalized frustration in kuramoto oscillators
  publication-title: Chaos
  doi: 10.1063/5.0108672
– start-page: 1
  year: 2012
  ident: 10.1016/j.chaos.2023.114431_b2
  article-title: How well do oscillator models capture the behaviour of biological neurons?
– start-page: 89
  year: 1984
  ident: 10.1016/j.chaos.2023.114431_b16
  article-title: Chemical waves
– volume: 106
  issue: 5
  year: 2011
  ident: 10.1016/j.chaos.2023.114431_b23
  article-title: Kuramoto model of coupled oscillators with positive and negative coupling parameters: an example of conformist and contrarian oscillators
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.106.054102
– volume: 4
  start-page: 190
  year: 2010
  ident: 10.1016/j.chaos.2023.114431_b25
  article-title: Generative models of cortical oscillations: neurobiological implications of the kuramoto model
  publication-title: Front Hum Neurosci
  doi: 10.3389/fnhum.2010.00190
– volume: 66
  start-page: 107
  year: 2015
  ident: 10.1016/j.chaos.2023.114431_b3
  article-title: Phase synchronization of coupled bursting neurons and the generalized kuramoto model
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2015.03.003
– volume: 175
  year: 2023
  ident: 10.1016/j.chaos.2023.114431_b42
  article-title: Diverse phase transitions in kuramoto model with adaptive mean-field coupling breaking the rotational symmetry
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2023.113981
– volume: 18
  start-page: 1
  issue: 3
  year: 2008
  ident: 10.1016/j.chaos.2023.114431_b45
  article-title: Low dimensional behavior of large systems of globally coupled oscillators
  publication-title: Chaos
– volume: 2023
  issue: 4
  year: 2023
  ident: 10.1016/j.chaos.2023.114431_b47
  article-title: Improved numerical scheme for the generalized kuramoto model
  publication-title: J Stat Mech Theory Exp
– volume: 106
  start-page: 1
  issue: 12
  year: 2011
  ident: 10.1016/j.chaos.2023.114431_b27
  article-title: Explosive synchronization transitions in scale-free networks
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.106.128701
– volume: 120
  issue: 7
  year: 2023
  ident: 10.1016/j.chaos.2023.114431_b36
  article-title: Learning hydrodynamic equations for active matter from particle simulations and experiments
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.2206994120
– volume: 9
  start-page: 191
  issue: 3
  year: 2013
  ident: 10.1016/j.chaos.2023.114431_b6
  article-title: Spontaneous synchrony in power-grid networks
  publication-title: Nat Phys
  doi: 10.1038/nphys2535
– volume: 302
  start-page: 1408
  issue: 5649
  year: 2003
  ident: 10.1016/j.chaos.2023.114431_b13
  article-title: Synchronization of cellular clocks in the suprachiasmatic nucleus
  publication-title: Science
  doi: 10.1126/science.1089287
– volume: 82
  start-page: 648
  issue: 3
  year: 1999
  ident: 10.1016/j.chaos.2023.114431_b24
  article-title: Time delay in the kuramoto model of coupled oscillators
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.82.648
– volume: 11
  start-page: 1
  issue: 3
  year: 2021
  ident: 10.1016/j.chaos.2023.114431_b41
  article-title: On synchronization in kuramoto models on spheres
  publication-title: Anal Math Phys
  doi: 10.1007/s13324-021-00567-4
– year: 2023
  ident: 10.1016/j.chaos.2023.114431_b43
– volume: 101
  issue: 6
  year: 2020
  ident: 10.1016/j.chaos.2023.114431_b20
  article-title: Model reduction for the kuramoto-sakaguchi model: The importance of nonentrained rogue oscillators
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.101.062213
– volume: 16
  year: 2014
  ident: 10.1016/j.chaos.2023.114431_b39
  article-title: Solvable model of the collective motion of heterogeneous particles interacting on a sphere
  publication-title: New J Phys
  doi: 10.1088/1367-2630/16/2/023016
– volume: 70
  start-page: 992
  issue: 10
  year: 2002
  ident: 10.1016/j.chaos.2023.114431_b12
  article-title: Synchronization of metronomes
  publication-title: Amer J Phys
  doi: 10.1119/1.1501118
– volume: 9
  issue: 1
  year: 2019
  ident: 10.1016/j.chaos.2023.114431_b37
  article-title: Continuous versus discontinuous transitions in the d-dimensional generalized kuramoto model: Odd d is different
  publication-title: Phys Rev X
– volume: 77
  start-page: 137
  issue: 1
  year: 2005
  ident: 10.1016/j.chaos.2023.114431_b17
  article-title: The kuramoto model: A simple paradigm for synchronization phenomena
  publication-title: Rev Modern Phys
  doi: 10.1103/RevModPhys.77.137
– volume: 76
  start-page: 576
  issue: 3
  year: 1986
  ident: 10.1016/j.chaos.2023.114431_b19
  article-title: A soluble active rotater model showing phase transitions via mutual entertainment
  publication-title: Progr Theoret Phys
  doi: 10.1143/PTP.76.576
– volume: 12
  start-page: 1457
  issue: 1
  year: 2021
  ident: 10.1016/j.chaos.2023.114431_b8
  article-title: Asymmetry underlies stability in power grids
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-21290-5
– year: 2023
  ident: 10.1016/j.chaos.2023.114431_b46
– volume: 142
  year: 2021
  ident: 10.1016/j.chaos.2023.114431_b4
  article-title: Bursting synchronization in neuronal assemblies of scale-free networks
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2020.110395
– volume: 90
  issue: 4
  year: 2014
  ident: 10.1016/j.chaos.2023.114431_b30
  article-title: Hysteretic transitions in the kuramoto model with inertia
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.90.042905
– volume: 61
  start-page: 485
  issue: 4
  year: 2008
  ident: 10.1016/j.chaos.2023.114431_b5
  article-title: Analysis of a power grid using a kuramoto-like model
  publication-title: Eur Phys J B
  doi: 10.1140/epjb/e2008-00098-8
– volume: 107
  year: 2023
  ident: 10.1016/j.chaos.2023.114431_b22
  article-title: Generalized frustration in the multidimensional kuramoto model
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.107.044205
– volume: 31
  issue: 9
  year: 2021
  ident: 10.1016/j.chaos.2023.114431_b40
  article-title: The kuramoto model on a sphere: Explaining its low-dimensional dynamics with group theory and hyperbolic geometry
  publication-title: Chaos
  doi: 10.1063/5.0060233
– volume: 105
  issue: 1
  year: 2022
  ident: 10.1016/j.chaos.2023.114431_b35
  article-title: Collective behavior of swarmalators on a ring
  publication-title: Phys Rev E
– start-page: 420
  year: 1975
  ident: 10.1016/j.chaos.2023.114431_b15
  article-title: Self-entrainment of a population of coupled non-linear oscillators
– volume: 10
  start-page: 1070
  issue: 3
  year: 2011
  ident: 10.1016/j.chaos.2023.114431_b29
  article-title: On the critical coupling for kuramoto oscillators
  publication-title: SIAM J Appl Dyn Syst
  doi: 10.1137/10081530X
– volume: 18
  start-page: 1
  issue: 4
  year: 2008
  ident: 10.1016/j.chaos.2023.114431_b31
  article-title: Stability diagram for the forced kuramoto model
  publication-title: Chaos
  doi: 10.1063/1.3049136
– volume: 31
  issue: 11
  year: 2021
  ident: 10.1016/j.chaos.2023.114431_b44
  article-title: Ott–antonsen ansatz for the D-dimensional kuramoto model: A constructive approach
  publication-title: Chaos
  doi: 10.1063/5.0069350
– volume: 8
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.chaos.2023.114431_b34
  article-title: Oscillators that sync and swarm
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-01190-3
– volume: 533
  year: 2019
  ident: 10.1016/j.chaos.2023.114431_b33
  article-title: Modular structure in c. elegans neural network and its response to external localized stimuli
  publication-title: Physica A
  doi: 10.1016/j.physa.2019.122051
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.chaos.2023.114431_b14
  article-title: Understanding the dynamics of biological and neural oscillator networks through exact mean-field reductions: a review
  publication-title: J Math Neurosci
  doi: 10.1186/s13408-020-00086-9
– volume: 610
  start-page: 1
  year: 2016
  ident: 10.1016/j.chaos.2023.114431_b18
  article-title: The kuramoto model in complex networks
  publication-title: Phys Rep
  doi: 10.1016/j.physrep.2015.10.008
– volume: 514
  start-page: 487
  year: 2019
  ident: 10.1016/j.chaos.2023.114431_b32
  article-title: Global synchronization of partially forced kuramoto oscillators on networks
  publication-title: Physica A
  doi: 10.1016/j.physa.2018.09.096
– volume: 149
  year: 2021
  ident: 10.1016/j.chaos.2023.114431_b38
  article-title: Complexity reduction in the 3d kuramoto model
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2021.111090
– volume: 16
  start-page: 126
  year: 2023
  ident: 10.1016/j.chaos.2023.114431_b11
  article-title: Thermodynamics reveals coordinated motors in sperm tails
  publication-title: Physics
  doi: 10.1103/Physics.16.126
– volume: 17
  year: 2015
  ident: 10.1016/j.chaos.2023.114431_b7
  article-title: Comparative analysis of existing models for power-grid synchronization
  publication-title: New J Phys
  doi: 10.1088/1367-2630/17/1/015012
– volume: 29
  issue: 7
  year: 2019
  ident: 10.1016/j.chaos.2023.114431_b26
  article-title: Optimal global synchronization of partially forced kuramoto oscillators
  publication-title: Chaos
  doi: 10.1063/1.5097847
– volume: 117
  start-page: 9706
  issue: 18
  year: 2020
  ident: 10.1016/j.chaos.2023.114431_b9
  article-title: Emergence of self-organized multivortex states in flocks of active rollers
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.2000061117
– volume: 110
  start-page: 1
  issue: 21
  year: 2013
  ident: 10.1016/j.chaos.2023.114431_b28
  article-title: Cluster explosive synchronization in complex networks
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.110.218701
SSID ssj0001062
Score 2.4502249
Snippet The multidimensional Kuramoto model describes the synchronization dynamics of particles moving on the surface of D-dimensional spheres, generalizing the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 114431
SubjectTerms Dynamics on the sphere
Kuramoto mode
Symmetry breaking
Synchronization
Title Exploring the phase diagrams of multidimensional Kuramoto models
URI https://dx.doi.org/10.1016/j.chaos.2023.114431
Volume 179
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4QvOjBCGrEB9mDB01cYbtLW24SIkEJXJSEW9N9BYyhxMLV3-5sH6iJ4eCx7UzSTGZnvsl--y3ANesqGSvlU43Ng-L8FdA41CHVngqFZ6S20h0UHk_84VQ8zzqzCvTLszCOVlnU_rymZ9W6eNMqotlaLRatFwe-24HTv0MYw7nTBBUicFl-__lN88CRJ9tJQGPqrEvloYzjpeZx4jS7Pe40cwVnf3enHx1ncASHBVQkvfxvalAxyzocjLc6q2kdasXSTMlNoR99ewwPW14dQVOymmOjIpgGjoeVksSSjESonax_LslBRhv8lKwTkt2Lk57AdPD42h_S4qIEqrADrWmohdDc2IArt1Nm28YIz_rSeNpn1mOyyxTCFK5YzDuxbxm3UmCJtF2J84Rv-ClUl8nSnAEJcPxigbRWWKeMZ0PNESVIK2ONngFrgFcGKFKFiri7zOI9Kulib1EW1chFNcqj2oC7rdMqF9HYbe6XkY9-5UKEZX6X4_l_HS9gH59Ezsa-hOr6Y2OuEGysZTPLpibs9Z5Gw8kX_ajTWw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB50PagH8Ylvc1BQsK55bNs9CIoPVtf1ooK32rxQke1iV8SLf8o_6KRNVwXxIHhtMiX9OsxMyJdvANZpU8lUqTDQmDwC3H9FQRrrONBMxYIZqa10F4U7F2HrWpzdNG6G4L26C-NolT72lzG9iNb-Sd2jWe_d39cvXfG9Gzn9OyxjOBeeWdk2ry-4b8v3To_wJ28wdnJ8ddgKfGuBQGHM7gexFkJzYyOu3NmS3TVGMBtKw3RILaOySRUmdq5oyhtpaCm3UmBQsU2JFXhoOL53GEYEhgvXNmHn7ZNXgnus4ugCVxe45VVSRwWpTN2lmRMJZ9yJ9ApOf06HX1LcySRM-NqUHJSfPwVDpjsN452BsGs-DVM-FuRk0wtWb83A_oDIR3Aq6d1hZiTod474lZPMkoK1qF0fgVIDhLSfcSjrZ6RoxJPPwvW_wDcHtW7WNfNAItzv0UhaK6yT4rOx5liWSCtTjZYRXQBWAZQoL1vuumc8JhU_7SEpUE0cqkmJ6gJsD4x6pWrH79PDCvnkm_MlmFd-M1z8q-EajLauOufJ-elFewnGcESUVPBlqPWfns0KVjp9uVp4FoHb_3blD_w4DrA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+the+phase+diagrams+of+multidimensional+Kuramoto+models&rft.jtitle=Chaos%2C+solitons+and+fractals&rft.au=Fariello%2C+Ricardo&rft.au=de+Aguiar%2C+Marcus+A.M.&rft.date=2024-02-01&rft.pub=Elsevier+Ltd&rft.issn=0960-0779&rft.eissn=1873-2887&rft.volume=179&rft_id=info:doi/10.1016%2Fj.chaos.2023.114431&rft.externalDocID=S0960077923013334
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-0779&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-0779&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-0779&client=summon