Exploring the phase diagrams of multidimensional Kuramoto models
The multidimensional Kuramoto model describes the synchronization dynamics of particles moving on the surface of D-dimensional spheres, generalizing the original model where they are characterized by a single phase. Particles are represented by D-dimensional unit vectors and the coupling constant ca...
Saved in:
Published in | Chaos, solitons and fractals Vol. 179; p. 114431 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.02.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The multidimensional Kuramoto model describes the synchronization dynamics of particles moving on the surface of D-dimensional spheres, generalizing the original model where they are characterized by a single phase. Particles are represented by D-dimensional unit vectors and the coupling constant can be extended to a coupling matrix acting on the vectors. The system has a large number of independent parameters, given by the characteristic widths of the distributions of natural frequencies and the D2 entries of the coupling matrix. Moreover, as the coupling matrix breaks the rotational symmetry, the average values of the natural frequencies also play a key role in the dynamics. General phase diagrams, indicating regions in parameter space where the system exhibits different behaviors, are hard to derive analytically. Here we obtain the complete phase diagram for D=2, for arbitrary coupling matrices and Lorentzian distributions of natural frequencies. We show that the system exhibits four different phases: disordered and static synchrony (as in the original Kuramoto model), rotation of the synchronized cluster (similar to the Kuramoto-Sakaguchi model with frustration) and active synchrony, a new phase where the module of the order parameter oscillates as it rotates on the sphere. We also explore the diagrams numerically for higher dimensions, D=3 and D=4, for particular choices of coupling matrices and frequency distributions. We find that the system always exhibits the same four phases, but their location in the space of parameters depends strongly on the dimension D being even or odd, on the coupling matrix and on the shape of the distribution of natural frequencies.
•We compute phase diagrams of the D-dimensional Kuramoto model, where particles interact via D × D coupling matrices.•For D=2 and Lorenz distribution of natural frequencies the diagram is derived analytically.•Four phases are observed: disordered, static synchrony, rotation and active states.•Diagrams are computed numerically for dimensions D=3 and D=4.•The structure of phase diagrams is different in even and odd dimensions. |
---|---|
AbstractList | The multidimensional Kuramoto model describes the synchronization dynamics of particles moving on the surface of D-dimensional spheres, generalizing the original model where they are characterized by a single phase. Particles are represented by D-dimensional unit vectors and the coupling constant can be extended to a coupling matrix acting on the vectors. The system has a large number of independent parameters, given by the characteristic widths of the distributions of natural frequencies and the D2 entries of the coupling matrix. Moreover, as the coupling matrix breaks the rotational symmetry, the average values of the natural frequencies also play a key role in the dynamics. General phase diagrams, indicating regions in parameter space where the system exhibits different behaviors, are hard to derive analytically. Here we obtain the complete phase diagram for D=2, for arbitrary coupling matrices and Lorentzian distributions of natural frequencies. We show that the system exhibits four different phases: disordered and static synchrony (as in the original Kuramoto model), rotation of the synchronized cluster (similar to the Kuramoto-Sakaguchi model with frustration) and active synchrony, a new phase where the module of the order parameter oscillates as it rotates on the sphere. We also explore the diagrams numerically for higher dimensions, D=3 and D=4, for particular choices of coupling matrices and frequency distributions. We find that the system always exhibits the same four phases, but their location in the space of parameters depends strongly on the dimension D being even or odd, on the coupling matrix and on the shape of the distribution of natural frequencies.
•We compute phase diagrams of the D-dimensional Kuramoto model, where particles interact via D × D coupling matrices.•For D=2 and Lorenz distribution of natural frequencies the diagram is derived analytically.•Four phases are observed: disordered, static synchrony, rotation and active states.•Diagrams are computed numerically for dimensions D=3 and D=4.•The structure of phase diagrams is different in even and odd dimensions. |
ArticleNumber | 114431 |
Author | Fariello, Ricardo de Aguiar, Marcus A.M. |
Author_xml | – sequence: 1 givenname: Ricardo orcidid: 0000-0002-5868-4068 surname: Fariello fullname: Fariello, Ricardo organization: Departamento de Ciências da Computação, Universidade Estadual de Montes Claros, 39401-089, Montes Claros, MG, Brazil – sequence: 2 givenname: Marcus A.M. orcidid: 0000-0003-1379-7568 surname: de Aguiar fullname: de Aguiar, Marcus A.M. email: aguiar@ifi.unicamp.br organization: Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, Unicamp 13083-970, Campinas, SP, Brazil |
BookMark | eNqFkL1OwzAUhS1UJFrgCVjyAgm-duokAxKoKj-iEgvMlmNft66SuLJdBG9PSpkYYDrD0Xek883IZPADEnIFtAAK4npb6I3ysWCU8QKgLDmckCnUFc9ZXVcTMqWNoDmtquaMzGLcUkqBCjYlt8uPXeeDG9ZZ2mC226iImXFqHVQfM2-zft8lZ1yPQ3R-UF32vB8rn3zWe4NdvCCnVnURL3_ynLzdL18Xj_nq5eFpcbfKNac85bUpS8PRVlxTYMxSxJJZ0SIzAiyDtgHNKs41KD5XwgK3bQmlsE07byqB_Jzw464OPsaAVu6C61X4lEDlQYLcym8J8iBBHiWMVPOL0i6pND5JQbnuH_bmyI4v8d1hkFE7HDQaF1Anabz7k_8ClVB7pw |
CitedBy_id | crossref_primary_10_1016_j_chaos_2024_114583 crossref_primary_10_1103_PhysRevE_110_024217 crossref_primary_10_1016_j_chaos_2024_115467 crossref_primary_10_1088_1367_2630_ad4e5a crossref_primary_10_1063_5_0239011 |
Cites_doi | 10.1016/j.physd.2006.12.004 10.1126/science.1110329 10.1063/5.0108672 10.1103/PhysRevLett.106.054102 10.3389/fnhum.2010.00190 10.1016/j.neunet.2015.03.003 10.1016/j.chaos.2023.113981 10.1103/PhysRevLett.106.128701 10.1073/pnas.2206994120 10.1038/nphys2535 10.1126/science.1089287 10.1103/PhysRevLett.82.648 10.1007/s13324-021-00567-4 10.1103/PhysRevE.101.062213 10.1088/1367-2630/16/2/023016 10.1119/1.1501118 10.1103/RevModPhys.77.137 10.1143/PTP.76.576 10.1038/s41467-021-21290-5 10.1016/j.chaos.2020.110395 10.1103/PhysRevE.90.042905 10.1140/epjb/e2008-00098-8 10.1103/PhysRevE.107.044205 10.1063/5.0060233 10.1137/10081530X 10.1063/1.3049136 10.1063/5.0069350 10.1038/s41467-017-01190-3 10.1016/j.physa.2019.122051 10.1186/s13408-020-00086-9 10.1016/j.physrep.2015.10.008 10.1016/j.physa.2018.09.096 10.1016/j.chaos.2021.111090 10.1103/Physics.16.126 10.1088/1367-2630/17/1/015012 10.1063/1.5097847 10.1073/pnas.2000061117 10.1103/PhysRevLett.110.218701 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd |
Copyright_xml | – notice: 2023 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.chaos.2023.114431 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Mathematics |
EISSN | 1873-2887 |
ExternalDocumentID | 10_1016_j_chaos_2023_114431 S0960077923013334 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABMAC ABNEU ABTAH ABXDB ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HLZ HMV HVGLF HZ~ IHE J1W KOM LG9 M38 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SPD SPG SSQ SSZ T5K WUQ XPP ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c303t-8d44d3ef73c0122f0ee42f6be2d61f21b91c2733c1a35a6f13fb4146f9b5976e3 |
IEDL.DBID | .~1 |
ISSN | 0960-0779 |
IngestDate | Thu Apr 24 23:11:07 EDT 2025 Tue Jul 01 02:01:20 EDT 2025 Sat Apr 13 16:35:09 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Kuramoto mode Synchronization Dynamics on the sphere Symmetry breaking |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c303t-8d44d3ef73c0122f0ee42f6be2d61f21b91c2733c1a35a6f13fb4146f9b5976e3 |
ORCID | 0000-0002-5868-4068 0000-0003-1379-7568 |
ParticipantIDs | crossref_primary_10_1016_j_chaos_2023_114431 crossref_citationtrail_10_1016_j_chaos_2023_114431 elsevier_sciencedirect_doi_10_1016_j_chaos_2023_114431 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2024 2024-02-00 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: February 2024 |
PublicationDecade | 2020 |
PublicationTitle | Chaos, solitons and fractals |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Motter, Myers, Anghel, Nishikawa (b6) 2013; 9 Filatrella, Nielsen, Pedersen (b5) 2008; 61 Rodrigues, Peron, Ji, Kurths (b18) 2016; 610 Sakaguchi, Kuramoto (b19) 1986; 76 Supekar, Song, Hastewell, Choi, Mietke, Dunkel (b36) 2023; 120 Wright (b11) 2023; 16 Ferrari, Viana, Lopes, Stoop (b3) 2015; 66 Yamaguchi, Isejima, Matsuo, Okura, Yagita, Kobayashi, Okamura (b13) 2003; 302 Climaco, Saa (b26) 2019; 29 Moreira, de Aguiar (b33) 2019; 533 Crnkić, Jaćimović, Marković (b41) 2021; 11 Yue, Smith, Gottwald (b20) 2020; 101 Kuramoto (b15) 1975 Hong, Strogatz (b23) 2011; 106 O’Keeffe, Hong, Strogatz (b34) 2017; 8 Tanaka (b39) 2014; 16 Han, Kokot, Tovkach, Glatz, Aranson, Snezhko (b9) 2020; 117 Yeung, Strogatz (b24) 1999; 82 Bhowmik, Shanahan (b2) 2012 Gomez-Gardenes, Gomez, Arenas, Moreno (b27) 2011; 106 Childs, Strogatz (b31) 2008; 18 Pantaleone (b12) 2002; 70 Buzanello, Barioni, de Aguiar (b21) 2022; 32 Nishikawa, Motter (b7) 2015; 17 Kuramoto (b16) 1984 Ott, Antonsen (b45) 2008; 18 Lee, Hong, Yeo (b47) 2023; 2023 Moreira, de Aguiar (b32) 2019; 514 Manoranjani, Senthilkumar, Chandrasekar (b42) 2023; 175 Bick, Goodfellow, Laing, Martens (b14) 2020; 10 Barioni, de Aguiar (b38) 2021; 149 Cumin, Unsworth (b1) 2007; 226 Chandra, Girvan, Ott (b37) 2019; 9 Riedel, Kruse, Howard (b10) 2005; 309 Molnar, Nishikawa, Motter (b8) 2021; 12 Breakspear, Heitmann, Daffertshofer (b25) 2010; 4 O’Keeffe, Ceron, Petersen (b35) 2022; 105 Reis, Iarosz, Ferrari, Caldas, Batista, Viana (b4) 2021; 142 Olmi, Navas, Boccaletti, Torcini (b30) 2014; 90 de Aguiar (b22) 2023; 107 Ji, Peron, Menck, Rodrigues, Kurths (b28) 2013; 110 de Aguiar (b46) 2023 Barioni, de Aguiar (b44) 2021; 31 Acebrón, Bonilla, Vicente, Ritort, Spigler (b17) 2005; 77 Dörfler, Bullo (b29) 2011; 10 Lipton, Mirollo, Strogatz (b40) 2021; 31 Lee, Krischer (b43) 2023 O’Keeffe (10.1016/j.chaos.2023.114431_b35) 2022; 105 Moreira (10.1016/j.chaos.2023.114431_b33) 2019; 533 Reis (10.1016/j.chaos.2023.114431_b4) 2021; 142 Pantaleone (10.1016/j.chaos.2023.114431_b12) 2002; 70 Tanaka (10.1016/j.chaos.2023.114431_b39) 2014; 16 Manoranjani (10.1016/j.chaos.2023.114431_b42) 2023; 175 Chandra (10.1016/j.chaos.2023.114431_b37) 2019; 9 Cumin (10.1016/j.chaos.2023.114431_b1) 2007; 226 de Aguiar (10.1016/j.chaos.2023.114431_b46) 2023 Gomez-Gardenes (10.1016/j.chaos.2023.114431_b27) 2011; 106 Kuramoto (10.1016/j.chaos.2023.114431_b15) 1975 Acebrón (10.1016/j.chaos.2023.114431_b17) 2005; 77 Yue (10.1016/j.chaos.2023.114431_b20) 2020; 101 Lee (10.1016/j.chaos.2023.114431_b43) 2023 Barioni (10.1016/j.chaos.2023.114431_b44) 2021; 31 Rodrigues (10.1016/j.chaos.2023.114431_b18) 2016; 610 Lipton (10.1016/j.chaos.2023.114431_b40) 2021; 31 Riedel (10.1016/j.chaos.2023.114431_b10) 2005; 309 Climaco (10.1016/j.chaos.2023.114431_b26) 2019; 29 O’Keeffe (10.1016/j.chaos.2023.114431_b34) 2017; 8 Kuramoto (10.1016/j.chaos.2023.114431_b16) 1984 Han (10.1016/j.chaos.2023.114431_b9) 2020; 117 Olmi (10.1016/j.chaos.2023.114431_b30) 2014; 90 Breakspear (10.1016/j.chaos.2023.114431_b25) 2010; 4 Dörfler (10.1016/j.chaos.2023.114431_b29) 2011; 10 Childs (10.1016/j.chaos.2023.114431_b31) 2008; 18 Lee (10.1016/j.chaos.2023.114431_b47) 2023; 2023 Ji (10.1016/j.chaos.2023.114431_b28) 2013; 110 Molnar (10.1016/j.chaos.2023.114431_b8) 2021; 12 Buzanello (10.1016/j.chaos.2023.114431_b21) 2022; 32 Supekar (10.1016/j.chaos.2023.114431_b36) 2023; 120 de Aguiar (10.1016/j.chaos.2023.114431_b22) 2023; 107 Moreira (10.1016/j.chaos.2023.114431_b32) 2019; 514 Crnkić (10.1016/j.chaos.2023.114431_b41) 2021; 11 Filatrella (10.1016/j.chaos.2023.114431_b5) 2008; 61 Barioni (10.1016/j.chaos.2023.114431_b38) 2021; 149 Bick (10.1016/j.chaos.2023.114431_b14) 2020; 10 Sakaguchi (10.1016/j.chaos.2023.114431_b19) 1986; 76 Ferrari (10.1016/j.chaos.2023.114431_b3) 2015; 66 Hong (10.1016/j.chaos.2023.114431_b23) 2011; 106 Wright (10.1016/j.chaos.2023.114431_b11) 2023; 16 Yeung (10.1016/j.chaos.2023.114431_b24) 1999; 82 Ott (10.1016/j.chaos.2023.114431_b45) 2008; 18 Bhowmik (10.1016/j.chaos.2023.114431_b2) 2012 Motter (10.1016/j.chaos.2023.114431_b6) 2013; 9 Nishikawa (10.1016/j.chaos.2023.114431_b7) 2015; 17 Yamaguchi (10.1016/j.chaos.2023.114431_b13) 2003; 302 |
References_xml | – volume: 9 year: 2019 ident: b37 article-title: Continuous versus discontinuous transitions in the d-dimensional generalized kuramoto model: Odd d is different publication-title: Phys Rev X – volume: 17 year: 2015 ident: b7 article-title: Comparative analysis of existing models for power-grid synchronization publication-title: New J Phys – volume: 61 start-page: 485 year: 2008 end-page: 491 ident: b5 article-title: Analysis of a power grid using a kuramoto-like model publication-title: Eur Phys J B – volume: 117 start-page: 9706 year: 2020 end-page: 9711 ident: b9 article-title: Emergence of self-organized multivortex states in flocks of active rollers publication-title: Proc Natl Acad Sci – volume: 76 start-page: 576 year: 1986 end-page: 581 ident: b19 article-title: A soluble active rotater model showing phase transitions via mutual entertainment publication-title: Progr Theoret Phys – volume: 4 start-page: 190 year: 2010 ident: b25 article-title: Generative models of cortical oscillations: neurobiological implications of the kuramoto model publication-title: Front Hum Neurosci – volume: 142 year: 2021 ident: b4 article-title: Bursting synchronization in neuronal assemblies of scale-free networks publication-title: Chaos Solitons Fractals – start-page: 420 year: 1975 end-page: 422 ident: b15 article-title: Self-entrainment of a population of coupled non-linear oscillators publication-title: International symposium on mathematical problems in theoretical physics – volume: 90 year: 2014 ident: b30 article-title: Hysteretic transitions in the kuramoto model with inertia publication-title: Phys Rev E – volume: 29 year: 2019 ident: b26 article-title: Optimal global synchronization of partially forced kuramoto oscillators publication-title: Chaos – volume: 66 start-page: 107 year: 2015 end-page: 118 ident: b3 article-title: Phase synchronization of coupled bursting neurons and the generalized kuramoto model publication-title: Neural Netw – volume: 105 year: 2022 ident: b35 article-title: Collective behavior of swarmalators on a ring publication-title: Phys Rev E – volume: 120 year: 2023 ident: b36 article-title: Learning hydrodynamic equations for active matter from particle simulations and experiments publication-title: Proc Natl Acad Sci – volume: 149 year: 2021 ident: b38 article-title: Complexity reduction in the 3d kuramoto model publication-title: Chaos Solitons Fractals – volume: 70 start-page: 992 year: 2002 end-page: 1000 ident: b12 article-title: Synchronization of metronomes publication-title: Amer J Phys – volume: 175 year: 2023 ident: b42 article-title: Diverse phase transitions in kuramoto model with adaptive mean-field coupling breaking the rotational symmetry publication-title: Chaos Solitons Fractals – volume: 101 year: 2020 ident: b20 article-title: Model reduction for the kuramoto-sakaguchi model: The importance of nonentrained rogue oscillators publication-title: Phys Rev E – volume: 226 start-page: 181 year: 2007 end-page: 196 ident: b1 article-title: Generalising the kuramoto model for the study of neuronal synchronisation in the brain publication-title: Physica D – volume: 514 start-page: 487 year: 2019 end-page: 496 ident: b32 article-title: Global synchronization of partially forced kuramoto oscillators on networks publication-title: Physica A – volume: 309 start-page: 300 year: 2005 end-page: 303 ident: b10 article-title: A self-organized vortex array of hydrodynamically entrained sperm cells publication-title: Science – volume: 107 year: 2023 ident: b22 article-title: Generalized frustration in the multidimensional kuramoto model publication-title: Phys Rev E – year: 2023 ident: b43 article-title: Chimera dynamics of generalized kuramoto-sakaguchi oscillators in two-population networks – year: 2023 ident: b46 article-title: On the numerical integration of the multidimensional kuramoto model – volume: 16 year: 2014 ident: b39 article-title: Solvable model of the collective motion of heterogeneous particles interacting on a sphere publication-title: New J Phys – volume: 16 start-page: 126 year: 2023 ident: b11 article-title: Thermodynamics reveals coordinated motors in sperm tails publication-title: Physics – volume: 302 start-page: 1408 year: 2003 end-page: 1412 ident: b13 article-title: Synchronization of cellular clocks in the suprachiasmatic nucleus publication-title: Science – volume: 10 start-page: 1 year: 2020 end-page: 43 ident: b14 article-title: Understanding the dynamics of biological and neural oscillator networks through exact mean-field reductions: a review publication-title: J Math Neurosci – volume: 8 start-page: 1 year: 2017 end-page: 13 ident: b34 article-title: Oscillators that sync and swarm publication-title: Nat Commun – volume: 11 start-page: 1 year: 2021 end-page: 13 ident: b41 article-title: On synchronization in kuramoto models on spheres publication-title: Anal Math Phys – volume: 9 start-page: 191 year: 2013 end-page: 197 ident: b6 article-title: Spontaneous synchrony in power-grid networks publication-title: Nat Phys – volume: 82 start-page: 648 year: 1999 ident: b24 article-title: Time delay in the kuramoto model of coupled oscillators publication-title: Phys Rev Lett – volume: 32 year: 2022 ident: b21 article-title: Matrix coupling and generalized frustration in kuramoto oscillators publication-title: Chaos – volume: 106 start-page: 1 year: 2011 end-page: 4 ident: b27 article-title: Explosive synchronization transitions in scale-free networks publication-title: Phys Rev Lett – volume: 610 start-page: 1 year: 2016 end-page: 98 ident: b18 article-title: The kuramoto model in complex networks publication-title: Phys Rep – volume: 31 year: 2021 ident: b40 article-title: The kuramoto model on a sphere: Explaining its low-dimensional dynamics with group theory and hyperbolic geometry publication-title: Chaos – volume: 106 year: 2011 ident: b23 article-title: Kuramoto model of coupled oscillators with positive and negative coupling parameters: an example of conformist and contrarian oscillators publication-title: Phys Rev Lett – volume: 533 year: 2019 ident: b33 article-title: Modular structure in c. elegans neural network and its response to external localized stimuli publication-title: Physica A – volume: 110 start-page: 1 year: 2013 end-page: 5 ident: b28 article-title: Cluster explosive synchronization in complex networks publication-title: Phys Rev Lett – volume: 77 start-page: 137 year: 2005 end-page: 185 ident: b17 article-title: The kuramoto model: A simple paradigm for synchronization phenomena publication-title: Rev Modern Phys – volume: 31 year: 2021 ident: b44 article-title: Ott–antonsen ansatz for the publication-title: Chaos – start-page: 89 year: 1984 end-page: 110 ident: b16 article-title: Chemical waves publication-title: Chemical oscillations, waves, and turbulence – volume: 10 start-page: 1070 year: 2011 end-page: 1099 ident: b29 article-title: On the critical coupling for kuramoto oscillators publication-title: SIAM J Appl Dyn Syst – volume: 2023 year: 2023 ident: b47 article-title: Improved numerical scheme for the generalized kuramoto model publication-title: J Stat Mech Theory Exp – start-page: 1 year: 2012 end-page: 8 ident: b2 article-title: How well do oscillator models capture the behaviour of biological neurons? publication-title: The 2012 international joint conference on neural networks (IJCNN) – volume: 18 start-page: 1 year: 2008 end-page: 9 ident: b31 article-title: Stability diagram for the forced kuramoto model publication-title: Chaos – volume: 18 start-page: 1 year: 2008 end-page: 6 ident: b45 article-title: Low dimensional behavior of large systems of globally coupled oscillators publication-title: Chaos – volume: 12 start-page: 1457 year: 2021 ident: b8 article-title: Asymmetry underlies stability in power grids publication-title: Nat Commun – volume: 226 start-page: 181 issue: 2 year: 2007 ident: 10.1016/j.chaos.2023.114431_b1 article-title: Generalising the kuramoto model for the study of neuronal synchronisation in the brain publication-title: Physica D doi: 10.1016/j.physd.2006.12.004 – volume: 309 start-page: 300 issue: 5732 year: 2005 ident: 10.1016/j.chaos.2023.114431_b10 article-title: A self-organized vortex array of hydrodynamically entrained sperm cells publication-title: Science doi: 10.1126/science.1110329 – volume: 32 issue: 9 year: 2022 ident: 10.1016/j.chaos.2023.114431_b21 article-title: Matrix coupling and generalized frustration in kuramoto oscillators publication-title: Chaos doi: 10.1063/5.0108672 – start-page: 1 year: 2012 ident: 10.1016/j.chaos.2023.114431_b2 article-title: How well do oscillator models capture the behaviour of biological neurons? – start-page: 89 year: 1984 ident: 10.1016/j.chaos.2023.114431_b16 article-title: Chemical waves – volume: 106 issue: 5 year: 2011 ident: 10.1016/j.chaos.2023.114431_b23 article-title: Kuramoto model of coupled oscillators with positive and negative coupling parameters: an example of conformist and contrarian oscillators publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.106.054102 – volume: 4 start-page: 190 year: 2010 ident: 10.1016/j.chaos.2023.114431_b25 article-title: Generative models of cortical oscillations: neurobiological implications of the kuramoto model publication-title: Front Hum Neurosci doi: 10.3389/fnhum.2010.00190 – volume: 66 start-page: 107 year: 2015 ident: 10.1016/j.chaos.2023.114431_b3 article-title: Phase synchronization of coupled bursting neurons and the generalized kuramoto model publication-title: Neural Netw doi: 10.1016/j.neunet.2015.03.003 – volume: 175 year: 2023 ident: 10.1016/j.chaos.2023.114431_b42 article-title: Diverse phase transitions in kuramoto model with adaptive mean-field coupling breaking the rotational symmetry publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2023.113981 – volume: 18 start-page: 1 issue: 3 year: 2008 ident: 10.1016/j.chaos.2023.114431_b45 article-title: Low dimensional behavior of large systems of globally coupled oscillators publication-title: Chaos – volume: 2023 issue: 4 year: 2023 ident: 10.1016/j.chaos.2023.114431_b47 article-title: Improved numerical scheme for the generalized kuramoto model publication-title: J Stat Mech Theory Exp – volume: 106 start-page: 1 issue: 12 year: 2011 ident: 10.1016/j.chaos.2023.114431_b27 article-title: Explosive synchronization transitions in scale-free networks publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.106.128701 – volume: 120 issue: 7 year: 2023 ident: 10.1016/j.chaos.2023.114431_b36 article-title: Learning hydrodynamic equations for active matter from particle simulations and experiments publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.2206994120 – volume: 9 start-page: 191 issue: 3 year: 2013 ident: 10.1016/j.chaos.2023.114431_b6 article-title: Spontaneous synchrony in power-grid networks publication-title: Nat Phys doi: 10.1038/nphys2535 – volume: 302 start-page: 1408 issue: 5649 year: 2003 ident: 10.1016/j.chaos.2023.114431_b13 article-title: Synchronization of cellular clocks in the suprachiasmatic nucleus publication-title: Science doi: 10.1126/science.1089287 – volume: 82 start-page: 648 issue: 3 year: 1999 ident: 10.1016/j.chaos.2023.114431_b24 article-title: Time delay in the kuramoto model of coupled oscillators publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.82.648 – volume: 11 start-page: 1 issue: 3 year: 2021 ident: 10.1016/j.chaos.2023.114431_b41 article-title: On synchronization in kuramoto models on spheres publication-title: Anal Math Phys doi: 10.1007/s13324-021-00567-4 – year: 2023 ident: 10.1016/j.chaos.2023.114431_b43 – volume: 101 issue: 6 year: 2020 ident: 10.1016/j.chaos.2023.114431_b20 article-title: Model reduction for the kuramoto-sakaguchi model: The importance of nonentrained rogue oscillators publication-title: Phys Rev E doi: 10.1103/PhysRevE.101.062213 – volume: 16 year: 2014 ident: 10.1016/j.chaos.2023.114431_b39 article-title: Solvable model of the collective motion of heterogeneous particles interacting on a sphere publication-title: New J Phys doi: 10.1088/1367-2630/16/2/023016 – volume: 70 start-page: 992 issue: 10 year: 2002 ident: 10.1016/j.chaos.2023.114431_b12 article-title: Synchronization of metronomes publication-title: Amer J Phys doi: 10.1119/1.1501118 – volume: 9 issue: 1 year: 2019 ident: 10.1016/j.chaos.2023.114431_b37 article-title: Continuous versus discontinuous transitions in the d-dimensional generalized kuramoto model: Odd d is different publication-title: Phys Rev X – volume: 77 start-page: 137 issue: 1 year: 2005 ident: 10.1016/j.chaos.2023.114431_b17 article-title: The kuramoto model: A simple paradigm for synchronization phenomena publication-title: Rev Modern Phys doi: 10.1103/RevModPhys.77.137 – volume: 76 start-page: 576 issue: 3 year: 1986 ident: 10.1016/j.chaos.2023.114431_b19 article-title: A soluble active rotater model showing phase transitions via mutual entertainment publication-title: Progr Theoret Phys doi: 10.1143/PTP.76.576 – volume: 12 start-page: 1457 issue: 1 year: 2021 ident: 10.1016/j.chaos.2023.114431_b8 article-title: Asymmetry underlies stability in power grids publication-title: Nat Commun doi: 10.1038/s41467-021-21290-5 – year: 2023 ident: 10.1016/j.chaos.2023.114431_b46 – volume: 142 year: 2021 ident: 10.1016/j.chaos.2023.114431_b4 article-title: Bursting synchronization in neuronal assemblies of scale-free networks publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2020.110395 – volume: 90 issue: 4 year: 2014 ident: 10.1016/j.chaos.2023.114431_b30 article-title: Hysteretic transitions in the kuramoto model with inertia publication-title: Phys Rev E doi: 10.1103/PhysRevE.90.042905 – volume: 61 start-page: 485 issue: 4 year: 2008 ident: 10.1016/j.chaos.2023.114431_b5 article-title: Analysis of a power grid using a kuramoto-like model publication-title: Eur Phys J B doi: 10.1140/epjb/e2008-00098-8 – volume: 107 year: 2023 ident: 10.1016/j.chaos.2023.114431_b22 article-title: Generalized frustration in the multidimensional kuramoto model publication-title: Phys Rev E doi: 10.1103/PhysRevE.107.044205 – volume: 31 issue: 9 year: 2021 ident: 10.1016/j.chaos.2023.114431_b40 article-title: The kuramoto model on a sphere: Explaining its low-dimensional dynamics with group theory and hyperbolic geometry publication-title: Chaos doi: 10.1063/5.0060233 – volume: 105 issue: 1 year: 2022 ident: 10.1016/j.chaos.2023.114431_b35 article-title: Collective behavior of swarmalators on a ring publication-title: Phys Rev E – start-page: 420 year: 1975 ident: 10.1016/j.chaos.2023.114431_b15 article-title: Self-entrainment of a population of coupled non-linear oscillators – volume: 10 start-page: 1070 issue: 3 year: 2011 ident: 10.1016/j.chaos.2023.114431_b29 article-title: On the critical coupling for kuramoto oscillators publication-title: SIAM J Appl Dyn Syst doi: 10.1137/10081530X – volume: 18 start-page: 1 issue: 4 year: 2008 ident: 10.1016/j.chaos.2023.114431_b31 article-title: Stability diagram for the forced kuramoto model publication-title: Chaos doi: 10.1063/1.3049136 – volume: 31 issue: 11 year: 2021 ident: 10.1016/j.chaos.2023.114431_b44 article-title: Ott–antonsen ansatz for the D-dimensional kuramoto model: A constructive approach publication-title: Chaos doi: 10.1063/5.0069350 – volume: 8 start-page: 1 issue: 1 year: 2017 ident: 10.1016/j.chaos.2023.114431_b34 article-title: Oscillators that sync and swarm publication-title: Nat Commun doi: 10.1038/s41467-017-01190-3 – volume: 533 year: 2019 ident: 10.1016/j.chaos.2023.114431_b33 article-title: Modular structure in c. elegans neural network and its response to external localized stimuli publication-title: Physica A doi: 10.1016/j.physa.2019.122051 – volume: 10 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.chaos.2023.114431_b14 article-title: Understanding the dynamics of biological and neural oscillator networks through exact mean-field reductions: a review publication-title: J Math Neurosci doi: 10.1186/s13408-020-00086-9 – volume: 610 start-page: 1 year: 2016 ident: 10.1016/j.chaos.2023.114431_b18 article-title: The kuramoto model in complex networks publication-title: Phys Rep doi: 10.1016/j.physrep.2015.10.008 – volume: 514 start-page: 487 year: 2019 ident: 10.1016/j.chaos.2023.114431_b32 article-title: Global synchronization of partially forced kuramoto oscillators on networks publication-title: Physica A doi: 10.1016/j.physa.2018.09.096 – volume: 149 year: 2021 ident: 10.1016/j.chaos.2023.114431_b38 article-title: Complexity reduction in the 3d kuramoto model publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2021.111090 – volume: 16 start-page: 126 year: 2023 ident: 10.1016/j.chaos.2023.114431_b11 article-title: Thermodynamics reveals coordinated motors in sperm tails publication-title: Physics doi: 10.1103/Physics.16.126 – volume: 17 year: 2015 ident: 10.1016/j.chaos.2023.114431_b7 article-title: Comparative analysis of existing models for power-grid synchronization publication-title: New J Phys doi: 10.1088/1367-2630/17/1/015012 – volume: 29 issue: 7 year: 2019 ident: 10.1016/j.chaos.2023.114431_b26 article-title: Optimal global synchronization of partially forced kuramoto oscillators publication-title: Chaos doi: 10.1063/1.5097847 – volume: 117 start-page: 9706 issue: 18 year: 2020 ident: 10.1016/j.chaos.2023.114431_b9 article-title: Emergence of self-organized multivortex states in flocks of active rollers publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.2000061117 – volume: 110 start-page: 1 issue: 21 year: 2013 ident: 10.1016/j.chaos.2023.114431_b28 article-title: Cluster explosive synchronization in complex networks publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.110.218701 |
SSID | ssj0001062 |
Score | 2.4502249 |
Snippet | The multidimensional Kuramoto model describes the synchronization dynamics of particles moving on the surface of D-dimensional spheres, generalizing the... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 114431 |
SubjectTerms | Dynamics on the sphere Kuramoto mode Symmetry breaking Synchronization |
Title | Exploring the phase diagrams of multidimensional Kuramoto models |
URI | https://dx.doi.org/10.1016/j.chaos.2023.114431 |
Volume | 179 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4QvOjBCGrEB9mDB01cYbtLW24SIkEJXJSEW9N9BYyhxMLV3-5sH6iJ4eCx7UzSTGZnvsl--y3ANesqGSvlU43Ng-L8FdA41CHVngqFZ6S20h0UHk_84VQ8zzqzCvTLszCOVlnU_rymZ9W6eNMqotlaLRatFwe-24HTv0MYw7nTBBUicFl-__lN88CRJ9tJQGPqrEvloYzjpeZx4jS7Pe40cwVnf3enHx1ncASHBVQkvfxvalAxyzocjLc6q2kdasXSTMlNoR99ewwPW14dQVOymmOjIpgGjoeVksSSjESonax_LslBRhv8lKwTkt2Lk57AdPD42h_S4qIEqrADrWmohdDc2IArt1Nm28YIz_rSeNpn1mOyyxTCFK5YzDuxbxm3UmCJtF2J84Rv-ClUl8nSnAEJcPxigbRWWKeMZ0PNESVIK2ONngFrgFcGKFKFiri7zOI9Kulib1EW1chFNcqj2oC7rdMqF9HYbe6XkY9-5UKEZX6X4_l_HS9gH59Ezsa-hOr6Y2OuEGysZTPLpibs9Z5Gw8kX_ajTWw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB50PagH8Ylvc1BQsK55bNs9CIoPVtf1ooK32rxQke1iV8SLf8o_6KRNVwXxIHhtMiX9OsxMyJdvANZpU8lUqTDQmDwC3H9FQRrrONBMxYIZqa10F4U7F2HrWpzdNG6G4L26C-NolT72lzG9iNb-Sd2jWe_d39cvXfG9Gzn9OyxjOBeeWdk2ry-4b8v3To_wJ28wdnJ8ddgKfGuBQGHM7gexFkJzYyOu3NmS3TVGMBtKw3RILaOySRUmdq5oyhtpaCm3UmBQsU2JFXhoOL53GEYEhgvXNmHn7ZNXgnus4ugCVxe45VVSRwWpTN2lmRMJZ9yJ9ApOf06HX1LcySRM-NqUHJSfPwVDpjsN452BsGs-DVM-FuRk0wtWb83A_oDIR3Aq6d1hZiTod474lZPMkoK1qF0fgVIDhLSfcSjrZ6RoxJPPwvW_wDcHtW7WNfNAItzv0UhaK6yT4rOx5liWSCtTjZYRXQBWAZQoL1vuumc8JhU_7SEpUE0cqkmJ6gJsD4x6pWrH79PDCvnkm_MlmFd-M1z8q-EajLauOufJ-elFewnGcESUVPBlqPWfns0KVjp9uVp4FoHb_3blD_w4DrA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+the+phase+diagrams+of+multidimensional+Kuramoto+models&rft.jtitle=Chaos%2C+solitons+and+fractals&rft.au=Fariello%2C+Ricardo&rft.au=de+Aguiar%2C+Marcus+A.M.&rft.date=2024-02-01&rft.pub=Elsevier+Ltd&rft.issn=0960-0779&rft.eissn=1873-2887&rft.volume=179&rft_id=info:doi/10.1016%2Fj.chaos.2023.114431&rft.externalDocID=S0960077923013334 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-0779&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-0779&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-0779&client=summon |