Joint learning system based on semi–pseudo–label reliability assessment for weak–fault diagnosis with few labels

•Deep learning method for extracting weak–fault–related features when the labels are insufficient.•Pseudo–label selection mechanism based on reliability assessment.•Joint learning workflow combining the advantages of UL, TL, and SSL.•SSL based on multiple views considering prior knowledge of signal...

Full description

Saved in:
Bibliographic Details
Published inMechanical systems and signal processing Vol. 189; p. 110089
Main Authors Gao, Da-wei, Zhu, Yong-sheng, Yan, Ke, Fu, Hong, Ren, Zhi-jun, Kang, Wei, Guedes Soares, C.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.04.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Deep learning method for extracting weak–fault–related features when the labels are insufficient.•Pseudo–label selection mechanism based on reliability assessment.•Joint learning workflow combining the advantages of UL, TL, and SSL.•SSL based on multiple views considering prior knowledge of signal processing. Deep neural networks exhibit excellent performance in fault feature extraction for considerable amounts of data. However, data labeling is a difficult task in practical engineering, which may lead to problems in fault diagnosis particularly when faults are weak. To resolve the foregoing, a semi–pseudo–labeling diagnosis system is proposed in this paper. The proposed system considers the confidence and reliability of samples to cope with situations where labels are insufficient and faults are weak. By adding pseudo–labels, unlabeled data whose fault information is swamped by a large amount of noise can achieve low–density separation and entropy regularization in the sample space. Consequently, the training of deep learning models for weak–fault diagnosis is supported. Regarding the traditional pseudo–labeling problems in weak–fault–related feature extraction, a series of solutions has been proposed to solve the problems in the field of fault diagnosis. The designed model reduces pseudo–label noise and enhances the capability of weak–fault–related feature extraction. The effectiveness of this method was validated on the datasets collected by simulating faulty bearings and those sustaining actual failure.
AbstractList •Deep learning method for extracting weak–fault–related features when the labels are insufficient.•Pseudo–label selection mechanism based on reliability assessment.•Joint learning workflow combining the advantages of UL, TL, and SSL.•SSL based on multiple views considering prior knowledge of signal processing. Deep neural networks exhibit excellent performance in fault feature extraction for considerable amounts of data. However, data labeling is a difficult task in practical engineering, which may lead to problems in fault diagnosis particularly when faults are weak. To resolve the foregoing, a semi–pseudo–labeling diagnosis system is proposed in this paper. The proposed system considers the confidence and reliability of samples to cope with situations where labels are insufficient and faults are weak. By adding pseudo–labels, unlabeled data whose fault information is swamped by a large amount of noise can achieve low–density separation and entropy regularization in the sample space. Consequently, the training of deep learning models for weak–fault diagnosis is supported. Regarding the traditional pseudo–labeling problems in weak–fault–related feature extraction, a series of solutions has been proposed to solve the problems in the field of fault diagnosis. The designed model reduces pseudo–label noise and enhances the capability of weak–fault–related feature extraction. The effectiveness of this method was validated on the datasets collected by simulating faulty bearings and those sustaining actual failure.
ArticleNumber 110089
Author Zhu, Yong-sheng
Kang, Wei
Fu, Hong
Yan, Ke
Guedes Soares, C.
Gao, Da-wei
Ren, Zhi-jun
Author_xml – sequence: 1
  givenname: Da-wei
  surname: Gao
  fullname: Gao, Da-wei
  organization: Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi’an Jiaotong University, Shaanxi, Xi’an 710049, China
– sequence: 2
  givenname: Yong-sheng
  surname: Zhu
  fullname: Zhu, Yong-sheng
  organization: Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi’an Jiaotong University, Shaanxi, Xi’an 710049, China
– sequence: 3
  givenname: Ke
  surname: Yan
  fullname: Yan, Ke
  organization: Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi’an Jiaotong University, Shaanxi, Xi’an 710049, China
– sequence: 4
  givenname: Hong
  surname: Fu
  fullname: Fu, Hong
  email: yszhu@mail.xjtu.edu.cn, hfu@eduhk.hk
  organization: Department of Mathematics and Information Technology, The Education University of Hong Kong, 10 Lo Ping Road, Tai Po, New Territories, Hong Kong
– sequence: 5
  givenname: Zhi-jun
  surname: Ren
  fullname: Ren, Zhi-jun
  organization: Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi’an Jiaotong University, Shaanxi, Xi’an 710049, China
– sequence: 6
  givenname: Wei
  surname: Kang
  fullname: Kang, Wei
  organization: Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi’an Jiaotong University, Shaanxi, Xi’an 710049, China
– sequence: 7
  givenname: C.
  surname: Guedes Soares
  fullname: Guedes Soares, C.
  organization: Centre for Marine Technology and Ocean Engineering (CENTEC), Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
BookMark eNqFkLFOHDEQQK0IpByEL6DxD-xl7N3b2y0oIhRCIqQ0SW3N2mPwsWufPIbTdfxD_jBfwsKloiDVTDHvSfNOxFFMkYQ4V7BUoNrPm-V-Yt4uNWi9VAqg6z-IhYK-rZRW7ZFYQNd1Va3X8FGcMG8AoG-gXYjHHynEIkfCHEO8lbznQpMckMnJFCXTFP4-_dkyPbg0LyMONMpMY8AhjKHsJTIT80Szxacsd4T3853Hh7FIF_A2Jg4sd6HcSU87-SrgT-LY48h09m-eit9XX39dXlc3P799v_xyU9ka6lJ12Crba9W1q8F57LRdd46A1EqDa2rt2vXKoUbdNs42fdN7BK_8QH7wRE1dn4r-4LU5MWfyxoaCJaRYMobRKDAvAc3GvAY0LwHNIeDM1m_YbQ4T5v1_qIsDNX9Jj4GyYRsoWnIhky3GpfAu_wysLZR3
CitedBy_id crossref_primary_10_1016_j_aei_2024_103092
crossref_primary_10_1088_1361_6501_ad3668
crossref_primary_10_1002_qre_3314
crossref_primary_10_1007_s13042_024_02199_z
crossref_primary_10_1016_j_eswa_2024_126347
crossref_primary_10_3233_IDA_230994
crossref_primary_10_1016_j_inffus_2024_102271
crossref_primary_10_1088_1361_6501_ace644
crossref_primary_10_1016_j_cie_2024_110292
crossref_primary_10_1016_j_aei_2024_102875
crossref_primary_10_1016_j_aei_2024_102897
crossref_primary_10_1016_j_ress_2023_109746
crossref_primary_10_1177_14759217231217936
crossref_primary_10_1088_1361_6501_adbb08
crossref_primary_10_1016_j_ress_2023_109468
crossref_primary_10_1016_j_engappai_2024_107861
crossref_primary_10_1016_j_ress_2024_110393
crossref_primary_10_1177_09544054241266000
crossref_primary_10_1016_j_aei_2025_103140
crossref_primary_10_1016_j_triboint_2023_108497
crossref_primary_10_1016_j_engappai_2024_109845
crossref_primary_10_1109_JSEN_2024_3356605
crossref_primary_10_1016_j_eswa_2023_121817
crossref_primary_10_1109_TETCI_2024_3369999
crossref_primary_10_1016_j_aei_2023_101974
crossref_primary_10_1109_TIM_2024_3453339
crossref_primary_10_1109_TIM_2025_3544384
crossref_primary_10_26599_TST_2024_9010006
crossref_primary_10_1016_j_aei_2023_102040
crossref_primary_10_1016_j_knosys_2024_112216
crossref_primary_10_3390_machines11020187
crossref_primary_10_1016_j_ymssp_2024_112032
Cites_doi 10.1109/TII.2020.2967822
10.1016/j.measurement.2020.108071
10.1016/j.jsv.2020.115641
10.1016/j.neucom.2018.07.004
10.1109/TIM.2017.2654552
10.1109/CVPR42600.2020.00966
10.1109/TIE.2015.2417501
10.3390/lubricants10010009
10.1016/j.ymssp.2004.09.001
10.1016/j.protcy.2014.08.057
10.1016/j.ymssp.2015.10.025
10.1109/TSMC.2017.2754287
10.1109/TIE.2016.2519325
10.1016/j.ress.2018.02.012
10.1016/j.knosys.2017.10.024
10.1016/j.cirp.2020.04.074
10.1109/CVPR42600.2020.00975
10.1016/S0888-3270(03)00099-2
10.1109/TKDE.2009.191
10.1016/j.neucom.2018.07.034
10.1016/j.compind.2019.05.005
10.1016/j.renene.2019.03.136
10.1016/j.ymssp.2013.03.008
10.1109/ACCESS.2020.2988796
10.1016/j.eswa.2013.01.033
10.1109/TIE.2009.2025288
10.1016/j.patcog.2017.01.035
10.1016/j.ymssp.2019.106608
10.1109/TIE.2017.2762639
10.1016/j.ijhydene.2018.04.163
10.1016/j.neucom.2015.05.076
10.1016/j.inffus.2021.03.008
10.1109/ACCESS.2017.2720965
10.1016/j.ymssp.2010.07.017
10.1016/j.ymssp.2021.108487
10.1109/TIM.2021.3116309
10.1007/s10994-019-05855-6
10.1016/j.knosys.2021.106796
10.1016/j.ymssp.2018.12.051
10.1016/j.ress.2021.107927
10.1016/j.ymssp.2019.05.049
10.1016/j.ress.2018.02.010
10.1201/9781003216582-29
10.1016/j.oceaneng.2021.109261
10.1016/j.knosys.2021.107413
10.1016/j.eswa.2011.02.181
10.1109/ACCESS.2020.2985617
10.1016/j.ymssp.2021.107963
10.1016/j.ress.2018.11.011
10.1109/TII.2020.2991796
10.1016/j.isatra.2019.03.017
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.ymssp.2022.110089
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1096-1216
ExternalDocumentID 10_1016_j_ymssp_2022_110089
S0888327022011578
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG5
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SST
SSV
SSZ
T5K
XPP
ZMT
ZU3
~G-
29M
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CAG
CITATION
COF
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SET
SSH
WUQ
ID FETCH-LOGICAL-c303t-8a61c921865bdfa82c78de0e1520d432d675da2a264dc4949fa0f1fbefbfee433
IEDL.DBID .~1
ISSN 0888-3270
IngestDate Tue Jul 01 04:30:16 EDT 2025
Thu Apr 24 23:01:14 EDT 2025
Fri Feb 23 02:35:32 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Sample reliability
Pseudo–label
Label noise
Weak–fault diagnosis
Semi–supervised learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c303t-8a61c921865bdfa82c78de0e1520d432d675da2a264dc4949fa0f1fbefbfee433
ParticipantIDs crossref_citationtrail_10_1016_j_ymssp_2022_110089
crossref_primary_10_1016_j_ymssp_2022_110089
elsevier_sciencedirect_doi_10_1016_j_ymssp_2022_110089
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-15
PublicationDateYYYYMMDD 2023-04-15
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-15
  day: 15
PublicationDecade 2020
PublicationTitle Mechanical systems and signal processing
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Pan, Yang (b0220) 2009; 22
Wang, Gao (b0230) 2020; 69
Lei, Feng, Jing, Xing, Ding (b0200) 2016; 63
Zhao, Zhang, Yu, Sun, Wang, Yan, Chen (b0305) 2021; 70
Pandya, Upadhyay, Harsha (b0210) 2013; 40
Yang, Lei, Jia, Xing (b0240) 2019; 122
Yin, Shu, Liang (b0165) 2017; 67
Yang, Liao, Meng, Lee (b0185) 2011; 38
Li, Zhang, Ding (b0035) 2019; 182
S.R. Saufi, Z.A.B. Ahmad, M.S. Leong, M.H. Lim, Gearbox fault diagnosis using a deep learning model with limited data sample, IEEE Transactions on Industrial Informatics, 16 (2020), 6263-6271. https://doi.org/0.1109/TII.2020.2967822.
Qiao, Yan, Tang, Xu (b0090) 2020; 8
Li, Wang, Chyu, Tang (b0050) 2015; 168
Yu, Cheng, Yang (b0190) 2005; 19
Chen, Xu, Wang, Wang (b0115) 2018; 314
Sinaga, Yang (b0125) 2020; 8
K. He, H. Fan, Y. Wu, S. Xie, R. Girshick, Momentum contrast for unsupervised visual representation learning, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 9729–9738.
Zhang, Chen, Li, An (b0225) 2020; 165
Gao, Zhu, Ren, Yan, Kang (b0280) 2021; 231
Jia, Lei, Lin, Zhou, Lu (b0110) 2016; 72–73
M. Caron, I. Misra, J. Mairal, P. Goyal, P. Bojanowski, A. Joulin, Unsupervised learning of visual features by contrasting cluster assignments, arXiv preprint arXiv:2006.09882, (2020).
Gao, Cecati, Ding (b0195) 2015; 62
Immovilli, Cocconcelli, Bellini, Rubini (b0075) 2009; 56
Liu, Li, Chen, Cao (b0205) 2018; 43
Bhardwaj, U.; Teixeira, A. P., and Guedes Soares, C. Reliability prediction of an offshore wind turbine gearbox. Renewable Energy. 2019; 141:693-706. https://doi.org/10.1016/j.renene.2019.03.136.
Zhang, Tang, Deng, Tan, Yu (b0100) 2021; 161
Shao, Li, Xia, Zhang, Shen, Williams, Kennedy, de Silva (b0070) 2021; 70
Zhang, Tang, Qin, Deng (b0265) 2019; 131
Zhang, Tao, Wu, Guan (b0245) 2017; 5
Zhao, Kang, Tang, Pecht (b0105) 2018; 65
Pham, Dai, Xie, Le (b0175) 2021
Shah, Patel (b0045) 2014; 14
Randall, Antoni (b0055) 2011; 25
Xiang, Qin, Luo, Pu, Tang (b0040) 2021; 216
Wen, Gao, Li (b0250) 2019; 49
R. Li, Q. Jiao, W. Cao, H. Wong, S. Wu, Model adaptation: Unsupervised domain adaptation without source data, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 9641–9650.
Lee (b0285) 2013
Ren, Zhu, Yan, Chen, Kang, Yue, Gao (b0315) 2020; 138
Case Western Reserve University Bearing Data Center Website (http:// csegroups.case.edu/bearingdatacenter/home).
Ge, Chen, Li (b0170) 2020
Shao, Lin, Zhang, Galar, Kumarb (b0005) 2021; 74
Liu, Zhou, Xu, Zheng, Peng, Jiang (b0270) 2018; 315
Cheng, Lin, Wu, Zhu, Shao (b0295) 2021; 216
Li, Huang, Li, Liao, Chen, He, Yan, Gryllias (b0160) 2022; 167
Lee (b0275) 2013; 3
K. Sohn, D. Berthelot, C. Li, Z. Zhang, N. Carlini, E.D. Cubuk, A. Kurakin, H. Zhang, C. Raffel, Fixmatch: Simplifying semi–supervised learning with consistency and confidence, arXiv preprint arXiv:2001.07685, (2020).
Zhang, Huang, Chu, Cui (b0010) 2020; 488
He, Zhang, Ren, Sun (b0290) 2016
J. Liang, D. Hu, J. Feng, Do we really need to access the source data? Source hypothesis transfer for unsupervised domain adaptation, International Conference on Machine Learning, PMLR, 2020, pp. 6028–6039.
Lin (b0300) 1999; 33
Jiao, Zhao, Lin, Liang (b0065) 2019; 184
Jin, Liu (b0255) 2013; 38
Ma, Zhang, Yan, Zhu, Hong (b0015) 2022; 10
Shao, Jiang, Li, Wu (b0215) 2018; 140
Li, Yang, Pan, Cheng, Cheng (b0120) 2019; 110
Van Engelen, Hoos (b0145) 2020; 109
Yan, Zhou, Pang (b0260) 2017; 66
A. Rege, C. Monteleoni. Evaluating the distribution learning capabilities of GANs. arXiv preprint arXiv:1907.02662, 2019.
Han, Liu, Yang, Jiang (b0235) 2019; 93
Li, Díaz, Guedes Soares (b0020) 2021; 234
Sobral, J. and Guedes Soares, C. Reliability analysis of critical systems installed in ships based on degradation mechanisms. Guedes Soares, C. & Santos T. A., (Eds.). Developments in Maritime Technology and Engineering . London, UK: Taylor and Francis; 2021; pp. Vol 1, pp. 261-268.
Ma, Mao (b0095) 2020; 17
Manjurul Islam, Kim (b0060) 2019; 184
Antoni (b0080) 2006; 20
10.1016/j.ymssp.2022.110089_b0135
Zhang (10.1016/j.ymssp.2022.110089_b0265) 2019; 131
Liu (10.1016/j.ymssp.2022.110089_b0205) 2018; 43
10.1016/j.ymssp.2022.110089_b0130
Qiao (10.1016/j.ymssp.2022.110089_b0090) 2020; 8
Immovilli (10.1016/j.ymssp.2022.110089_b0075) 2009; 56
Han (10.1016/j.ymssp.2022.110089_b0235) 2019; 93
Shao (10.1016/j.ymssp.2022.110089_b0005) 2021; 74
Lin (10.1016/j.ymssp.2022.110089_b0300) 1999; 33
Pandya (10.1016/j.ymssp.2022.110089_b0210) 2013; 40
He (10.1016/j.ymssp.2022.110089_b0290) 2016
Cheng (10.1016/j.ymssp.2022.110089_b0295) 2021; 216
Ge (10.1016/j.ymssp.2022.110089_b0170) 2020
Ren (10.1016/j.ymssp.2022.110089_b0315) 2020; 138
Zhang (10.1016/j.ymssp.2022.110089_b0245) 2017; 5
Liu (10.1016/j.ymssp.2022.110089_b0270) 2018; 315
Yang (10.1016/j.ymssp.2022.110089_b0185) 2011; 38
10.1016/j.ymssp.2022.110089_b0140
10.1016/j.ymssp.2022.110089_b0180
10.1016/j.ymssp.2022.110089_b0025
Li (10.1016/j.ymssp.2022.110089_b0120) 2019; 110
Randall (10.1016/j.ymssp.2022.110089_b0055) 2011; 25
Van Engelen (10.1016/j.ymssp.2022.110089_b0145) 2020; 109
Li (10.1016/j.ymssp.2022.110089_b0020) 2021; 234
Zhang (10.1016/j.ymssp.2022.110089_b0100) 2021; 161
Gao (10.1016/j.ymssp.2022.110089_b0195) 2015; 62
Yu (10.1016/j.ymssp.2022.110089_b0190) 2005; 19
Zhang (10.1016/j.ymssp.2022.110089_b0225) 2020; 165
10.1016/j.ymssp.2022.110089_b0030
10.1016/j.ymssp.2022.110089_b0150
Lei (10.1016/j.ymssp.2022.110089_b0200) 2016; 63
Shao (10.1016/j.ymssp.2022.110089_b0215) 2018; 140
Yang (10.1016/j.ymssp.2022.110089_b0240) 2019; 122
Wen (10.1016/j.ymssp.2022.110089_b0250) 2019; 49
10.1016/j.ymssp.2022.110089_b0310
Xiang (10.1016/j.ymssp.2022.110089_b0040) 2021; 216
Manjurul Islam (10.1016/j.ymssp.2022.110089_b0060) 2019; 184
10.1016/j.ymssp.2022.110089_b0155
Shah (10.1016/j.ymssp.2022.110089_b0045) 2014; 14
Ma (10.1016/j.ymssp.2022.110089_b0095) 2020; 17
Jin (10.1016/j.ymssp.2022.110089_b0255) 2013; 38
Chen (10.1016/j.ymssp.2022.110089_b0115) 2018; 314
Li (10.1016/j.ymssp.2022.110089_b0160) 2022; 167
Jiao (10.1016/j.ymssp.2022.110089_b0065) 2019; 184
Yan (10.1016/j.ymssp.2022.110089_b0260) 2017; 66
Yin (10.1016/j.ymssp.2022.110089_b0165) 2017; 67
Ma (10.1016/j.ymssp.2022.110089_b0015) 2022; 10
Wang (10.1016/j.ymssp.2022.110089_b0230) 2020; 69
Li (10.1016/j.ymssp.2022.110089_b0050) 2015; 168
10.1016/j.ymssp.2022.110089_b0085
Gao (10.1016/j.ymssp.2022.110089_b0280) 2021; 231
Jia (10.1016/j.ymssp.2022.110089_b0110) 2016; 72–73
Shao (10.1016/j.ymssp.2022.110089_b0070) 2021; 70
Pan (10.1016/j.ymssp.2022.110089_b0220) 2009; 22
Li (10.1016/j.ymssp.2022.110089_b0035) 2019; 182
Zhang (10.1016/j.ymssp.2022.110089_b0010) 2020; 488
Sinaga (10.1016/j.ymssp.2022.110089_b0125) 2020; 8
Zhao (10.1016/j.ymssp.2022.110089_b0305) 2021; 70
Zhao (10.1016/j.ymssp.2022.110089_b0105) 2018; 65
Lee (10.1016/j.ymssp.2022.110089_b0275) 2013; 3
Pham (10.1016/j.ymssp.2022.110089_b0175) 2021
Antoni (10.1016/j.ymssp.2022.110089_b0080) 2006; 20
Lee (10.1016/j.ymssp.2022.110089_b0285) 2013
References_xml – volume: 216
  year: 2021
  ident: b0040
  article-title: Multicellular LSTM-based deep learning model for aero-engine remaining useful life prediction
  publication-title: Reliab. Eng. Syst. Saf.
– reference: M. Caron, I. Misra, J. Mairal, P. Goyal, P. Bojanowski, A. Joulin, Unsupervised learning of visual features by contrasting cluster assignments, arXiv preprint arXiv:2006.09882, (2020).
– reference: K. Sohn, D. Berthelot, C. Li, Z. Zhang, N. Carlini, E.D. Cubuk, A. Kurakin, H. Zhang, C. Raffel, Fixmatch: Simplifying semi–supervised learning with consistency and confidence, arXiv preprint arXiv:2001.07685, (2020).
– volume: 109
  start-page: 373
  year: 2020
  end-page: 440
  ident: b0145
  article-title: A survey on semi–supervised learning
  publication-title: Mach. Learn.
– reference: Sobral, J. and Guedes Soares, C. Reliability analysis of critical systems installed in ships based on degradation mechanisms. Guedes Soares, C. & Santos T. A., (Eds.). Developments in Maritime Technology and Engineering . London, UK: Taylor and Francis; 2021; pp. Vol 1, pp. 261-268.
– volume: 43
  start-page: 12428
  year: 2018
  end-page: 12441
  ident: b0205
  article-title: A discrete hidden Markov model fault diagnosis strategy based on K-means clustering dedicated to PEM fuel cell systems of tramways
  publication-title: Int. J. Hydrogen Energy
– volume: 8
  start-page: 66257
  year: 2020
  end-page: 66269
  ident: b0090
  article-title: Deep convolutional and LSTM recurrent neural networks for rolling bearing fault diagnosis under strong noises and variable loads
  publication-title: IEEE Access
– reference: R. Li, Q. Jiao, W. Cao, H. Wong, S. Wu, Model adaptation: Unsupervised domain adaptation without source data, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 9641–9650.
– reference: Bhardwaj, U.; Teixeira, A. P., and Guedes Soares, C. Reliability prediction of an offshore wind turbine gearbox. Renewable Energy. 2019; 141:693-706. https://doi.org/10.1016/j.renene.2019.03.136.
– volume: 38
  start-page: 615
  year: 2013
  end-page: 627
  ident: b0255
  article-title: Semi–supervised learning and condition fusion for fault diagnosis
  publication-title: Mech. Syst. Sig. Process.
– year: 2021
  ident: b0175
  article-title: Meta pseudo labels
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 167
  start-page: 108487
  year: 2022
  ident: b0160
  article-title: A perspective survey on deep transfer learning for fault diagnosis in industrial scenarios: theories, applications and challenges
  publication-title: Mech. Syst. Sig. Process.
– volume: 66
  start-page: 723
  year: 2017
  end-page: 733
  ident: b0260
  article-title: Gaussian mixture model using semisupervised learning for probabilistic fault diagnosis under new data categories
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 110
  start-page: 36
  year: 2019
  end-page: 47
  ident: b0120
  article-title: A novel deep stacking least squares support vector machine for rolling bearing fault diagnosis
  publication-title: Comput. Ind.
– volume: 67
  start-page: 313
  year: 2017
  end-page: 327
  ident: b0165
  article-title: Unified subspace learning for incomplete and unlabelled multi–view data
  publication-title: Pattern Recogn.
– volume: 72–73
  start-page: 303
  year: 2016
  end-page: 315
  ident: b0110
  article-title: Deep neural networks: a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data
  publication-title: Mech. Syst. Sig. Process.
– reference: A. Rege, C. Monteleoni. Evaluating the distribution learning capabilities of GANs. arXiv preprint arXiv:1907.02662, 2019.
– volume: 56
  start-page: 4710
  year: 2009
  end-page: 4717
  ident: b0075
  article-title: Detection of generalized-roughness bearing fault by spectral-kurtosis energy of vibration or current signals
  publication-title: IEEE Trans. Ind. Electron.
– volume: 161
  year: 2021
  ident: b0100
  article-title: A fault diagnosis method for wind turbines gearbox based on adaptive loss weighted meta-ResNet under noisy labels
  publication-title: Mech. Syst. Sig. Process.
– volume: 5
  start-page: 14347
  year: 2017
  end-page: 14357
  ident: b0245
  article-title: Transfer learning with neural networks for bearing fault diagnosis in changing working conditions
  publication-title: IEEE Access
– volume: 140
  start-page: 1
  year: 2018
  end-page: 14
  ident: b0215
  article-title: Intelligent fault diagnosis of rolling bearing using deep wavelet auto–encoder with extreme learning machine
  publication-title: Knowl.-Based Syst.
– year: 2020
  ident: b0170
  article-title: Mutual mean-teaching: Pseudo label refinery for unsupervised domain adaptation on person re-identification
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 122
  start-page: 692
  year: 2019
  end-page: 706
  ident: b0240
  article-title: An intelligent fault diagnosis approach based on transfer learning from laboratory bearings to locomotive bearings
  publication-title: Mech. Syst. Sig. Process.
– volume: 49
  start-page: 136
  year: 2019
  end-page: 144
  ident: b0250
  article-title: A new deep transfer learning based on sparse auto-encoder for fault diagnosis
  publication-title: IEEE Trans. Syst. Man Cyber. Syst.
– year: 2013
  ident: b0285
  article-title: Pseudo-label: the simple and efficient semi-supervised learning method for deep neural networks
  publication-title: ICML 2013 Workshop : Challenges in Representation Learning (WREPL)
– volume: 234
  year: 2021
  ident: b0020
  article-title: A failure analysis of floating offshore wind turbines using AHP-FMEA methodology
  publication-title: Ocean Eng.
– volume: 14
  start-page: 447
  year: 2014
  end-page: 456
  ident: b0045
  article-title: A review of dynamic modeling and fault identifications methods for rolling element bearing
  publication-title: Proc. Technol.
– volume: 74
  start-page: 65
  year: 2021
  end-page: 76
  ident: b0005
  article-title: A novel approach of multisensory fusion to collaborative fault diagnosis in maintenance
  publication-title: Inform. Fusion
– reference: S.R. Saufi, Z.A.B. Ahmad, M.S. Leong, M.H. Lim, Gearbox fault diagnosis using a deep learning model with limited data sample, IEEE Transactions on Industrial Informatics, 16 (2020), 6263-6271. https://doi.org/0.1109/TII.2020.2967822.
– volume: 184
  start-page: 55
  year: 2019
  end-page: 66
  ident: b0060
  article-title: Reliable multiple combined fault diagnosis of bearings using heterogeneous feature models and multiclass support vector machines
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 70
  start-page: 1
  year: 2021
  end-page: 11
  ident: b0070
  article-title: Fault diagnosis of a rotor-bearing system under variable rotating speeds using two-stage parameter transfer and infrared thermal images
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 131
  start-page: 243
  year: 2019
  end-page: 260
  ident: b0265
  article-title: Fault diagnosis of planetary gearbox using a novel semi–supervised method of multiple association layers networks
  publication-title: Mech. Syst. Sig. Process.
– volume: 40
  start-page: 4137
  year: 2013
  end-page: 4145
  ident: b0210
  article-title: Fault diagnosis of rolling element bearing with intrinsic mode function of acoustic emission data using APF-KNN
  publication-title: Expert Syst. Appl.
– volume: 25
  start-page: 485
  year: 2011
  end-page: 520
  ident: b0055
  article-title: Rolling element bearing diagnostics—a tutorial
  publication-title: Mech. Syst. Sig. Process.
– volume: 165
  year: 2020
  ident: b0225
  article-title: Unsupervised domain adaptation via enhanced transfer joint matching for bearing fault diagnosis
  publication-title: Measurement
– reference: Case Western Reserve University Bearing Data Center Website (http:// csegroups.case.edu/bearingdatacenter/home).
– volume: 17
  start-page: 1658
  year: 2020
  end-page: 1667
  ident: b0095
  article-title: Deep-convolution-based LSTM network for remaining useful life prediction
  publication-title: IEEE Trans. Ind. Inf.
– volume: 20
  start-page: 282
  year: 2006
  end-page: 307
  ident: b0080
  article-title: The spectral kurtosis: a useful tool for characterising non-stationary signals
  publication-title: Mech. Syst. Sig. Process.
– volume: 182
  start-page: 208
  year: 2019
  end-page: 218
  ident: b0035
  article-title: Deep learning-based remaining useful life estimation of bearings using multi-scale feature extraction
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 314
  start-page: 445
  year: 2018
  end-page: 457
  ident: b0115
  article-title: Detection of weak transient signals based on unsupervised learning for bearing fault diagnosis
  publication-title: Neurocomputing
– volume: 22
  start-page: 1345
  year: 2009
  end-page: 1359
  ident: b0220
  article-title: A survey on transfer learning
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 231
  year: 2021
  ident: b0280
  article-title: A novel weak fault diagnosis method for rolling bearings based on LSTM considering quasi-periodicity
  publication-title: Knowl.-Based Syst.
– volume: 93
  start-page: 341
  year: 2019
  end-page: 353
  ident: b0235
  article-title: Learning transferable features in deep convolutional neural networks for diagnosing unseen machine conditions
  publication-title: ISA Trans.
– volume: 216
  year: 2021
  ident: b0295
  article-title: Intelligent fault diagnosis of rotating machinery based on continuous wavelet transform-local binary convolutional neural network
  publication-title: Knowl.-Based Syst.
– reference: K. He, H. Fan, Y. Wu, S. Xie, R. Girshick, Momentum contrast for unsupervised visual representation learning, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 9729–9738.
– volume: 70
  start-page: 3525828
  year: 2021
  ident: b0305
  article-title: Applications of unsupervised deep transfer learning to intelligent fault diagnosis: a survey and comparative study
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 488
  year: 2020
  ident: b0010
  article-title: Mechanism and method for the full-scale quantitative diagnosis of ball bearings with an inner race Fault
  publication-title: J. Sound Vib.
– volume: 65
  start-page: 4290
  year: 2018
  end-page: 4300
  ident: b0105
  article-title: Deep residual networks with dynamically weighted wavelet coefficients for fault diagnosis of planetary gearboxes
  publication-title: IEEE Trans. Ind. Electron.
– volume: 8
  start-page: 80716
  year: 2020
  end-page: 80727
  ident: b0125
  article-title: Unsupervised K–means clustering algorithm
  publication-title: IEEE Access
– volume: 19
  start-page: 259
  year: 2005
  end-page: 270
  ident: b0190
  article-title: Application of EMD method and Hilbert spectrum to the fault diagnosis of roller bearings
  publication-title: Mech. Syst. Sig. Process.
– volume: 62
  start-page: 3757
  year: 2015
  end-page: 3767
  ident: b0195
  article-title: A survey of fault diagnosis and fault-tolerant techniques—Part I: Fault diagnosis with model-based and signal-based approaches
  publication-title: IEEE Trans. Ind. Electron.
– volume: 315
  start-page: 412
  year: 2018
  end-page: 424
  ident: b0270
  article-title: Unsupervised fault diagnosis of rolling bearings using a deep neural network based on generative adversarial networks
  publication-title: Neurocomputing
– volume: 138
  year: 2020
  ident: b0315
  article-title: A novel model with the ability of few-shot learning and quick updating for intelligent fault diagnosis
  publication-title: Mech. Syst. Sig. Process.
– volume: 33
  start-page: 108
  year: 1999
  end-page: 110
  ident: b0300
  article-title: Coutinuous wavelet transform and its application for bearing diagnosis
  publication-title: J. Xi'an Jiaotong Univ.
– volume: 38
  start-page: 11311
  year: 2011
  end-page: 11320
  ident: b0185
  article-title: A hybrid feature selection scheme for unsupervised learning and its application in bearing fault diagnosis
  publication-title: Expert Syst. Appl.
– volume: 3
  start-page: 896
  year: 2013
  ident: b0275
  article-title: Pseudo-label: the simple and efficient semi-supervised learning method for deep neural networks
  publication-title: Workshop on challenges in representation learning, ICML
– volume: 63
  start-page: 3137
  year: 2016
  end-page: 3147
  ident: b0200
  article-title: An intelligent fault diagnosis method using unsupervised feature learning towards mechanical big data
  publication-title: IEEE Trans. Ind. Electron.
– volume: 184
  start-page: 41
  year: 2019
  end-page: 54
  ident: b0065
  article-title: Hierarchical discriminating sparse coding for weak fault feature extraction of rolling bearings
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 10
  start-page: 9
  year: 2022
  ident: b0015
  article-title: A study on bearing dynamic features under the condition of multiball-cage collision
  publication-title: Lubricants
– start-page: 770
  year: 2016
  end-page: 778
  ident: b0290
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 168
  start-page: 505
  year: 2015
  end-page: 519
  ident: b0050
  article-title: Weak fault diagnosis of rotating machinery based on feature reduction with Supervised Orthogonal Local Fisher Discriminant Analysis
  publication-title: Neurocomputing
– reference: J. Liang, D. Hu, J. Feng, Do we really need to access the source data? Source hypothesis transfer for unsupervised domain adaptation, International Conference on Machine Learning, PMLR, 2020, pp. 6028–6039.
– volume: 69
  start-page: 413
  year: 2020
  end-page: 416
  ident: b0230
  article-title: Transfer learning for enhanced machine fault diagnosis in manufacturing
  publication-title: CIRP Ann.
– ident: 10.1016/j.ymssp.2022.110089_b0085
  doi: 10.1109/TII.2020.2967822
– volume: 165
  year: 2020
  ident: 10.1016/j.ymssp.2022.110089_b0225
  article-title: Unsupervised domain adaptation via enhanced transfer joint matching for bearing fault diagnosis
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108071
– volume: 488
  year: 2020
  ident: 10.1016/j.ymssp.2022.110089_b0010
  article-title: Mechanism and method for the full-scale quantitative diagnosis of ball bearings with an inner race Fault
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2020.115641
– volume: 314
  start-page: 445
  year: 2018
  ident: 10.1016/j.ymssp.2022.110089_b0115
  article-title: Detection of weak transient signals based on unsupervised learning for bearing fault diagnosis
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.07.004
– volume: 66
  start-page: 723
  year: 2017
  ident: 10.1016/j.ymssp.2022.110089_b0260
  article-title: Gaussian mixture model using semisupervised learning for probabilistic fault diagnosis under new data categories
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2017.2654552
– ident: 10.1016/j.ymssp.2022.110089_b0140
  doi: 10.1109/CVPR42600.2020.00966
– volume: 62
  start-page: 3757
  year: 2015
  ident: 10.1016/j.ymssp.2022.110089_b0195
  article-title: A survey of fault diagnosis and fault-tolerant techniques—Part I: Fault diagnosis with model-based and signal-based approaches
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2015.2417501
– volume: 10
  start-page: 9
  year: 2022
  ident: 10.1016/j.ymssp.2022.110089_b0015
  article-title: A study on bearing dynamic features under the condition of multiball-cage collision
  publication-title: Lubricants
  doi: 10.3390/lubricants10010009
– volume: 20
  start-page: 282
  year: 2006
  ident: 10.1016/j.ymssp.2022.110089_b0080
  article-title: The spectral kurtosis: a useful tool for characterising non-stationary signals
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2004.09.001
– volume: 14
  start-page: 447
  year: 2014
  ident: 10.1016/j.ymssp.2022.110089_b0045
  article-title: A review of dynamic modeling and fault identifications methods for rolling element bearing
  publication-title: Proc. Technol.
  doi: 10.1016/j.protcy.2014.08.057
– volume: 72–73
  start-page: 303
  year: 2016
  ident: 10.1016/j.ymssp.2022.110089_b0110
  article-title: Deep neural networks: a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2015.10.025
– volume: 49
  start-page: 136
  year: 2019
  ident: 10.1016/j.ymssp.2022.110089_b0250
  article-title: A new deep transfer learning based on sparse auto-encoder for fault diagnosis
  publication-title: IEEE Trans. Syst. Man Cyber. Syst.
  doi: 10.1109/TSMC.2017.2754287
– volume: 63
  start-page: 3137
  year: 2016
  ident: 10.1016/j.ymssp.2022.110089_b0200
  article-title: An intelligent fault diagnosis method using unsupervised feature learning towards mechanical big data
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2016.2519325
– volume: 184
  start-page: 55
  year: 2019
  ident: 10.1016/j.ymssp.2022.110089_b0060
  article-title: Reliable multiple combined fault diagnosis of bearings using heterogeneous feature models and multiclass support vector machines
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2018.02.012
– ident: 10.1016/j.ymssp.2022.110089_b0180
– volume: 140
  start-page: 1
  year: 2018
  ident: 10.1016/j.ymssp.2022.110089_b0215
  article-title: Intelligent fault diagnosis of rolling bearing using deep wavelet auto–encoder with extreme learning machine
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2017.10.024
– volume: 69
  start-page: 413
  issue: 1
  year: 2020
  ident: 10.1016/j.ymssp.2022.110089_b0230
  article-title: Transfer learning for enhanced machine fault diagnosis in manufacturing
  publication-title: CIRP Ann.
  doi: 10.1016/j.cirp.2020.04.074
– start-page: 770
  year: 2016
  ident: 10.1016/j.ymssp.2022.110089_b0290
  article-title: Deep residual learning for image recognition
– ident: 10.1016/j.ymssp.2022.110089_b0130
  doi: 10.1109/CVPR42600.2020.00975
– volume: 70
  start-page: 1
  year: 2021
  ident: 10.1016/j.ymssp.2022.110089_b0070
  article-title: Fault diagnosis of a rotor-bearing system under variable rotating speeds using two-stage parameter transfer and infrared thermal images
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 19
  start-page: 259
  year: 2005
  ident: 10.1016/j.ymssp.2022.110089_b0190
  article-title: Application of EMD method and Hilbert spectrum to the fault diagnosis of roller bearings
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/S0888-3270(03)00099-2
– volume: 22
  start-page: 1345
  year: 2009
  ident: 10.1016/j.ymssp.2022.110089_b0220
  article-title: A survey on transfer learning
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2009.191
– volume: 315
  start-page: 412
  year: 2018
  ident: 10.1016/j.ymssp.2022.110089_b0270
  article-title: Unsupervised fault diagnosis of rolling bearings using a deep neural network based on generative adversarial networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.07.034
– volume: 110
  start-page: 36
  year: 2019
  ident: 10.1016/j.ymssp.2022.110089_b0120
  article-title: A novel deep stacking least squares support vector machine for rolling bearing fault diagnosis
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2019.05.005
– ident: 10.1016/j.ymssp.2022.110089_b0025
  doi: 10.1016/j.renene.2019.03.136
– volume: 38
  start-page: 615
  year: 2013
  ident: 10.1016/j.ymssp.2022.110089_b0255
  article-title: Semi–supervised learning and condition fusion for fault diagnosis
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2013.03.008
– volume: 8
  start-page: 80716
  year: 2020
  ident: 10.1016/j.ymssp.2022.110089_b0125
  article-title: Unsupervised K–means clustering algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2988796
– volume: 3
  start-page: 896
  year: 2013
  ident: 10.1016/j.ymssp.2022.110089_b0275
  article-title: Pseudo-label: the simple and efficient semi-supervised learning method for deep neural networks
  publication-title: Workshop on challenges in representation learning, ICML
– volume: 40
  start-page: 4137
  year: 2013
  ident: 10.1016/j.ymssp.2022.110089_b0210
  article-title: Fault diagnosis of rolling element bearing with intrinsic mode function of acoustic emission data using APF-KNN
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2013.01.033
– volume: 56
  start-page: 4710
  year: 2009
  ident: 10.1016/j.ymssp.2022.110089_b0075
  article-title: Detection of generalized-roughness bearing fault by spectral-kurtosis energy of vibration or current signals
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2009.2025288
– year: 2020
  ident: 10.1016/j.ymssp.2022.110089_b0170
  article-title: Mutual mean-teaching: Pseudo label refinery for unsupervised domain adaptation on person re-identification
– volume: 67
  start-page: 313
  year: 2017
  ident: 10.1016/j.ymssp.2022.110089_b0165
  article-title: Unified subspace learning for incomplete and unlabelled multi–view data
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2017.01.035
– volume: 138
  year: 2020
  ident: 10.1016/j.ymssp.2022.110089_b0315
  article-title: A novel model with the ability of few-shot learning and quick updating for intelligent fault diagnosis
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2019.106608
– volume: 65
  start-page: 4290
  year: 2018
  ident: 10.1016/j.ymssp.2022.110089_b0105
  article-title: Deep residual networks with dynamically weighted wavelet coefficients for fault diagnosis of planetary gearboxes
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2017.2762639
– volume: 43
  start-page: 12428
  year: 2018
  ident: 10.1016/j.ymssp.2022.110089_b0205
  article-title: A discrete hidden Markov model fault diagnosis strategy based on K-means clustering dedicated to PEM fuel cell systems of tramways
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.04.163
– volume: 168
  start-page: 505
  year: 2015
  ident: 10.1016/j.ymssp.2022.110089_b0050
  article-title: Weak fault diagnosis of rotating machinery based on feature reduction with Supervised Orthogonal Local Fisher Discriminant Analysis
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.05.076
– volume: 74
  start-page: 65
  year: 2021
  ident: 10.1016/j.ymssp.2022.110089_b0005
  article-title: A novel approach of multisensory fusion to collaborative fault diagnosis in maintenance
  publication-title: Inform. Fusion
  doi: 10.1016/j.inffus.2021.03.008
– volume: 5
  start-page: 14347
  year: 2017
  ident: 10.1016/j.ymssp.2022.110089_b0245
  article-title: Transfer learning with neural networks for bearing fault diagnosis in changing working conditions
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2720965
– volume: 25
  start-page: 485
  year: 2011
  ident: 10.1016/j.ymssp.2022.110089_b0055
  article-title: Rolling element bearing diagnostics—a tutorial
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2010.07.017
– ident: 10.1016/j.ymssp.2022.110089_b0150
– volume: 167
  start-page: 108487
  year: 2022
  ident: 10.1016/j.ymssp.2022.110089_b0160
  article-title: A perspective survey on deep transfer learning for fault diagnosis in industrial scenarios: theories, applications and challenges
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2021.108487
– volume: 70
  start-page: 3525828
  year: 2021
  ident: 10.1016/j.ymssp.2022.110089_b0305
  article-title: Applications of unsupervised deep transfer learning to intelligent fault diagnosis: a survey and comparative study
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2021.3116309
– volume: 109
  start-page: 373
  year: 2020
  ident: 10.1016/j.ymssp.2022.110089_b0145
  article-title: A survey on semi–supervised learning
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-019-05855-6
– volume: 216
  year: 2021
  ident: 10.1016/j.ymssp.2022.110089_b0295
  article-title: Intelligent fault diagnosis of rotating machinery based on continuous wavelet transform-local binary convolutional neural network
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2021.106796
– volume: 122
  start-page: 692
  year: 2019
  ident: 10.1016/j.ymssp.2022.110089_b0240
  article-title: An intelligent fault diagnosis approach based on transfer learning from laboratory bearings to locomotive bearings
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2018.12.051
– volume: 216
  year: 2021
  ident: 10.1016/j.ymssp.2022.110089_b0040
  article-title: Multicellular LSTM-based deep learning model for aero-engine remaining useful life prediction
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2021.107927
– volume: 131
  start-page: 243
  year: 2019
  ident: 10.1016/j.ymssp.2022.110089_b0265
  article-title: Fault diagnosis of planetary gearbox using a novel semi–supervised method of multiple association layers networks
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2019.05.049
– volume: 184
  start-page: 41
  year: 2019
  ident: 10.1016/j.ymssp.2022.110089_b0065
  article-title: Hierarchical discriminating sparse coding for weak fault feature extraction of rolling bearings
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2018.02.010
– year: 2013
  ident: 10.1016/j.ymssp.2022.110089_b0285
  article-title: Pseudo-label: the simple and efficient semi-supervised learning method for deep neural networks
– ident: 10.1016/j.ymssp.2022.110089_b0030
  doi: 10.1201/9781003216582-29
– year: 2021
  ident: 10.1016/j.ymssp.2022.110089_b0175
  article-title: Meta pseudo labels
– ident: 10.1016/j.ymssp.2022.110089_b0310
– volume: 33
  start-page: 108
  issue: 11
  year: 1999
  ident: 10.1016/j.ymssp.2022.110089_b0300
  article-title: Coutinuous wavelet transform and its application for bearing diagnosis
  publication-title: J. Xi'an Jiaotong Univ.
– volume: 234
  year: 2021
  ident: 10.1016/j.ymssp.2022.110089_b0020
  article-title: A failure analysis of floating offshore wind turbines using AHP-FMEA methodology
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2021.109261
– volume: 231
  year: 2021
  ident: 10.1016/j.ymssp.2022.110089_b0280
  article-title: A novel weak fault diagnosis method for rolling bearings based on LSTM considering quasi-periodicity
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2021.107413
– volume: 38
  start-page: 11311
  year: 2011
  ident: 10.1016/j.ymssp.2022.110089_b0185
  article-title: A hybrid feature selection scheme for unsupervised learning and its application in bearing fault diagnosis
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.02.181
– volume: 8
  start-page: 66257
  year: 2020
  ident: 10.1016/j.ymssp.2022.110089_b0090
  article-title: Deep convolutional and LSTM recurrent neural networks for rolling bearing fault diagnosis under strong noises and variable loads
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2985617
– volume: 161
  year: 2021
  ident: 10.1016/j.ymssp.2022.110089_b0100
  article-title: A fault diagnosis method for wind turbines gearbox based on adaptive loss weighted meta-ResNet under noisy labels
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2021.107963
– ident: 10.1016/j.ymssp.2022.110089_b0155
– volume: 182
  start-page: 208
  year: 2019
  ident: 10.1016/j.ymssp.2022.110089_b0035
  article-title: Deep learning-based remaining useful life estimation of bearings using multi-scale feature extraction
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2018.11.011
– ident: 10.1016/j.ymssp.2022.110089_b0135
– volume: 17
  start-page: 1658
  year: 2020
  ident: 10.1016/j.ymssp.2022.110089_b0095
  article-title: Deep-convolution-based LSTM network for remaining useful life prediction
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2020.2991796
– volume: 93
  start-page: 341
  year: 2019
  ident: 10.1016/j.ymssp.2022.110089_b0235
  article-title: Learning transferable features in deep convolutional neural networks for diagnosing unseen machine conditions
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2019.03.017
SSID ssj0009406
Score 2.542398
Snippet •Deep learning method for extracting weak–fault–related features when the labels are insufficient.•Pseudo–label selection mechanism based on reliability...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 110089
SubjectTerms Label noise
Pseudo–label
Sample reliability
Semi–supervised learning
Weak–fault diagnosis
Title Joint learning system based on semi–pseudo–label reliability assessment for weak–fault diagnosis with few labels
URI https://dx.doi.org/10.1016/j.ymssp.2022.110089
Volume 189
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KXvQgPvFZ9uDR2CS7TbLHUiy1ohcVvIV9SrQmpUkVL-J_8B_6S9zJoypID95CmAlhZjIzSWa-D6FjGzM6dD3pCCFChwaB7zAlqcOIJIGgkqkSu_PyKhje0tFd966F-s0uDIxV1rm_yulltq7PdGprdiZJ0rm2z4cNxxBWRQExBhZ-KQ0hyk_fvsc8GC35NUHYAekGeaic8Xp9ynMArfR9GId3gev9r-r0o-IM1tFa3SriXnU3G6il0020-gNAcAs9j7IkLXBN_XCPK1xmDKVJ4SzFuX5KPt8_JrmeqcweWJfrMZ7qcVLBc79iPkfmxLZ9xS-aP1o5w2fjAqtqDC_JMXytxUa_4PIC-Ta6HZzd9IdOzaTgSFuiCifigScZ0E91hTI88mUYKe1qW7xdRYmv7GuD4j633ZF1FKPMcNd4RmgjjNaUkB20lGap3kVYMJdJYOfwte0MPMJJFDKXEBOZIJAh2UN-Y8FY1jDjwHYxjpt5soe4NHsMZo8rs--hk7nSpELZWCweNK6JfwVLbOvAIsX9_yoeoBXgmYffSF73EC0V05k-st1IIdpluLXRcu_8Ynj1BS-m5Ac
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELaqcigcEBQQpUB9gBthE8ebxAcOFbTa_l5opd6Cf8ZVYJtdNdmu9oJ4hz4Kb8STMJOftkhVD0i9RZEdOePJzMT-_H2MvUOfgTSMbGCMSQOZJCJQzspAxTZOjLTKNdydB4fJ6FjungxPltjv_iwMwSq72N_G9CZad3cGnTUH06IYfMXvA90xpaOixBiTdcjKPVjM8b-t-rTzBSf5vRDbW0efR0EnLRBYjNl1kOkksor0mIbGeZ0Jm2YOQsBsFjoZC4d1tNNCY7mAI1dSeR36yBvwxgNIWgXFuP9AYrgg2YSPP69xJUo2gp40uoCG11MdNaCyxVlVEUumEIS_D0lc_rZ0eCPFbT9hj7valG-2r_-ULUG5yh7dYCx8xi52J0VZ805r4pS3RNCccqHjk5JXcFb8-XU5rWDmJniBPgZjfg7jouUDX3B9RQXKsV7mc9A_sJ3Xs3HNXYv7KypOy8Pcw5w3D6ies-N7se8LtlxOSnjJuFGhsiQHIgBLkSjWcZaqMI595pPEpvEaE70Fc9vxmpO8xjjvAWzf88bsOZk9b82-xj5cdZq2tB53N0_6qcn_8c4cE89dHV_9b8cNtjI6OtjP93cO99bZQxK5pz2saPiaLdfnM3iDpVBt3jaux9m3-_b1v-RvIOw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+learning+system+based+on+semi%E2%80%93pseudo%E2%80%93label+reliability+assessment+for+weak%E2%80%93fault+diagnosis+with+few+labels&rft.jtitle=Mechanical+systems+and+signal+processing&rft.au=Gao%2C+Da-wei&rft.au=Zhu%2C+Yong-sheng&rft.au=Yan%2C+Ke&rft.au=Fu%2C+Hong&rft.date=2023-04-15&rft.pub=Elsevier+Ltd&rft.issn=0888-3270&rft.eissn=1096-1216&rft.volume=189&rft_id=info:doi/10.1016%2Fj.ymssp.2022.110089&rft.externalDocID=S0888327022011578
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-3270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-3270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-3270&client=summon