Quantifying uncertainty in landslide susceptibility mapping due to sampling randomness

The quality of landslide and non-landslide samples plays a crucial role in landslide susceptibility maps (LSMs) generated using machine learning algorithms. However, uncertainties arising from the collection of non-landslide samples can significantly compromise the reliability of these maps. Current...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of disaster risk reduction Vol. 114; p. 104966
Main Authors Liu, Lei-Lei, Zhao, Shuang-Lin, Yang, Can, Zhang, Wengang
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.11.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The quality of landslide and non-landslide samples plays a crucial role in landslide susceptibility maps (LSMs) generated using machine learning algorithms. However, uncertainties arising from the collection of non-landslide samples can significantly compromise the reliability of these maps. Current methods, such as buffer-controlled sampling (BCS), often fail to address this issue adequately. This study aims to fill that gap by employing Monte Carlo simulations combined with BCS to quantify the uncertainties associated with non-landslide sampling and improve the accuracy of LSMs. A novel framework is proposed by incorporating landslide susceptibility confidence maps (LSCMs) to address the inherent uncertainty in BCS-based LSMs. The framework evaluates inconsistencies in LSMs, showing that maps generated by the same model may differ in over 30 % of the area due to variations in selection of non-landslide samples. The proposed approach outperforms traditional methods by correctly classifying landslide-prone areas, particularly in low and very low susceptibility zones, while providing a more reliable quantification of uncertainty. These findings underscore the limitations of traditional LSM methods and demonstrate that LSCMs offer a more robust tool for landslide hazard assessment. The framework enhances the precision of susceptibility mapping and provides critical insights for better risk mitigation and disaster preparedness. [Display omitted] •A novel framework is developed to quantify uncertainty in landslide susceptibility mapping.•LSCM provides more accurate and reliable insights for landslide risk mitigation.•Increased buffer distances enhance model accuracy and reduce uncertainty in susceptibility zoning.
AbstractList The quality of landslide and non-landslide samples plays a crucial role in landslide susceptibility maps (LSMs) generated using machine learning algorithms. However, uncertainties arising from the collection of non-landslide samples can significantly compromise the reliability of these maps. Current methods, such as buffer-controlled sampling (BCS), often fail to address this issue adequately. This study aims to fill that gap by employing Monte Carlo simulations combined with BCS to quantify the uncertainties associated with non-landslide sampling and improve the accuracy of LSMs. A novel framework is proposed by incorporating landslide susceptibility confidence maps (LSCMs) to address the inherent uncertainty in BCS-based LSMs. The framework evaluates inconsistencies in LSMs, showing that maps generated by the same model may differ in over 30 % of the area due to variations in selection of non-landslide samples. The proposed approach outperforms traditional methods by correctly classifying landslide-prone areas, particularly in low and very low susceptibility zones, while providing a more reliable quantification of uncertainty. These findings underscore the limitations of traditional LSM methods and demonstrate that LSCMs offer a more robust tool for landslide hazard assessment. The framework enhances the precision of susceptibility mapping and provides critical insights for better risk mitigation and disaster preparedness. [Display omitted] •A novel framework is developed to quantify uncertainty in landslide susceptibility mapping.•LSCM provides more accurate and reliable insights for landslide risk mitigation.•Increased buffer distances enhance model accuracy and reduce uncertainty in susceptibility zoning.
ArticleNumber 104966
Author Zhang, Wengang
Zhao, Shuang-Lin
Liu, Lei-Lei
Yang, Can
Author_xml – sequence: 1
  givenname: Lei-Lei
  surname: Liu
  fullname: Liu, Lei-Lei
  email: csulll@foxmail.com
  organization: School of Traffic and Transportation Engineering, Changsha University of Science & Technology, Changsha, 410114, China
– sequence: 2
  givenname: Shuang-Lin
  surname: Zhao
  fullname: Zhao, Shuang-Lin
  email: 122479446@qq.com
  organization: Hunan Institute of Geological Disaster Investigation and Monitoring, Changsha, 410004, China
– sequence: 3
  givenname: Can
  surname: Yang
  fullname: Yang, Can
  email: yangcan@imde.ac.cn
  organization: Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, Ministry of Education, School of Geosciences and Info-Physics, Central South University, Changsha, 410083, China
– sequence: 4
  givenname: Wengang
  surname: Zhang
  fullname: Zhang, Wengang
  email: zhangwg@cqu.edu.cn
  organization: School of Civil Engineering, Chongqing University, Chongqing, 400045, China
BookMark eNqFkMtKxDAUQIOM4DjOF7jpD7Tm0UnbhQsZfMGACOo2ZJJbuaVNS5IK8_e2jgtxoXdzXzkXcs7JwvUOCLlkNGOUyasmw8Z6n3HK82mSV1KekCXnjKc5p9XiR31G1iE0dIpSSl6WS_L2PGoXsT6ge09GZ8BHjS4eEnRJq50NLVpIwhgMDBH32OK06_QwzO_tCEnsk6C7oZ17PwF95yCEC3Ja6zbA-juvyOvd7cv2Id093T9ub3apEVTEtKS6AlOCqQHAMi42FHgpWSlkXVWSW1tYI_dU51AwU9hciEICFFBBzQq9EStSHe8a34fgoVYGo47Yu-g1topRNTtSjfpypGZH6uhoYsUvdvDYaX_4h7o-UjB96wPBq2AQJnEWPZiobI9_8p9mQIZW
CitedBy_id crossref_primary_10_1007_s10064_024_04008_x
Cites_doi 10.1080/19475705.2023.2213807
10.1007/s10346-019-01279-4
10.1016/j.cageo.2021.104826
10.1016/j.rockmb.2024.100144
10.1016/j.gsf.2023.101758
10.3390/ijerph182010971
10.3390/rs14122866
10.1080/10106049.2022.2087753
10.1007/s10346-019-01286-5
10.1080/10106049.2022.2102221
10.1109/TGRS.2024.3424680
10.1080/13658816.2013.770515
10.1016/j.scitotenv.2020.137320
10.3390/w16172414
10.1016/j.geomorph.2018.06.006
10.1016/j.geomorph.2008.02.011
10.1007/s10346-019-01274-9
10.1007/s10346-020-01392-9
10.1016/j.catena.2021.105250
10.1016/j.catena.2019.104188
10.1061/(ASCE)GT.1943-5606.0002267
10.1016/j.catena.2019.104240
10.1016/S0304-3800(01)00396-9
10.1016/j.earscirev.2020.103225
10.1002/nag.3189
10.1016/j.jrmge.2024.04.029
10.1016/j.compgeo.2020.103440
10.1007/s10346-021-01841-z
10.3390/rs12203347
10.1016/j.soildyn.2024.108491
10.1016/j.catena.2020.105067
10.1080/10106049.2023.2256308
10.1007/s11440-022-01730-2
10.1007/s12665-018-7261-5
10.1016/j.earscirev.2018.03.001
10.1016/j.apgeog.2021.102598
10.1007/s10462-021-09967-1
10.1080/19475705.2024.2392778
10.1016/j.ijdrr.2024.104797
10.2307/143141
10.1016/j.jrmge.2023.11.001
10.1016/j.catena.2018.12.035
10.1016/j.jrmge.2023.03.001
10.1029/2024GL108202
10.1016/j.gsf.2021.101211
10.1016/j.ijdrr.2023.104061
10.1007/s11069-022-05252-8
10.1007/s00477-018-1609-y
10.1016/j.gr.2022.05.012
10.1016/j.cageo.2022.105073
10.1016/j.gsf.2019.10.001
10.1016/j.ijplas.2022.103496
10.1016/j.gsf.2021.101317
10.1080/19475705.2021.1950217
10.1007/s10064-022-02672-5
10.1061/(ASCE)GT.1943-5606.0002449
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.ijdrr.2024.104966
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Social Welfare & Social Work
EISSN 2212-4209
ExternalDocumentID 10_1016_j_ijdrr_2024_104966
S2212420924007283
GroupedDBID --M
.~1
0R~
1~.
4.4
457
4G.
5VS
7-5
8P~
AACTN
AAEDT
AAEDW
AAFJI
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ABMMH
ABQEM
ABQYD
ABXDB
ACDAQ
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANKPU
AOMHK
ATOGT
AVARZ
AXJTR
BKOJK
BLECG
BLXMC
EBS
EFJIC
EJD
FDB
FIRID
FNPLU
FYGXN
GBLVA
HZ~
IMUCA
KCYFY
KOM
M41
MO0
O-L
O9-
OAUVE
P-8
P-9
PC.
PRBVW
Q38
RIG
ROL
SDF
SPC
SPCBC
SSB
SSE
SSJ
SSO
SSZ
T5K
~G-
AATTM
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c303t-80a9ec8ecfeeed12350e2861836f9962dd7dc6b0a4e71c7d43376ee7e9ef17a53
IEDL.DBID .~1
ISSN 2212-4209
IngestDate Thu Apr 24 23:09:19 EDT 2025
Tue Jul 01 03:41:04 EDT 2025
Sat Feb 08 15:52:39 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Confidence map
Landslide susceptibility
Monte Carlo simulation
Buffer-controlled sampling
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c303t-80a9ec8ecfeeed12350e2861836f9962dd7dc6b0a4e71c7d43376ee7e9ef17a53
ParticipantIDs crossref_citationtrail_10_1016_j_ijdrr_2024_104966
crossref_primary_10_1016_j_ijdrr_2024_104966
elsevier_sciencedirect_doi_10_1016_j_ijdrr_2024_104966
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2024
2024-11-00
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: November 2024
PublicationDecade 2020
PublicationTitle International journal of disaster risk reduction
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Hirzel, Helfer, Metral (bib33) 2001; 145
Liu, Zhang, Li, Huang, Wang (bib1) 2022; 37
Topaçli, Ozcan, Gokceoglu (bib17) 2024; 25
Shi, Zhao, Gao (bib76) 2021; 45
Huang, Liu, Jiang, Catani, Liu, Fan, Huang (bib50) 2024
Peethambaran, Leshchinsky (bib4) 2023; 97
Reichenbach, Rossi, Malamud, Mihir, Guzzetti (bib15) 2018; 180
Dou, Yunus, Bui, Merghadi, Sahana, Zhu, Chen, Han, Pham (bib9) 2020; 17
Qin, Bao, Zhu, Wang, Hu (bib25) 2013; 27
Zhou, Wen, Zhang, Xu, Zhang (bib59) 2021; 12
Huang, Teng, Yao, Jiang, Catani, Chen, Huang (bib19) 2024; 16
Huang, Ye, Jiang, Huang, Chang, Chen (bib20) 2021; 202
He, Zhang, Dou, Jiang, Xiao, Zhou (bib8) 2024; 3
Zhao, Zhao (bib53) 2021; 2021
Hong, Miao, Liu, Zhu (bib27) 2019; 176
Qin, Zhou (bib71) 2023; 18
Yang, Ma, Ding, Wen, Sun (bib37) 2024; 16
Merghadi, Yunus, Dou, Whiteley, ThaiPham, Bui, Avtar, Abderrahmane (bib7) 2020; 207
Dou, Yunus, Merghadi, Shirzadi, Nguyen, Hussain, Avtar, Chen, Pham, Yamagishi (bib13) 2020; 720
Lucchese, de Oliveira, Pedrollo (bib40) 2021; 198
Xiong, Zhou, Wang, Wang, Wang, Ji, Wang, Zou, You, Qin (bib46) 2022; 14
Zhang, Li, Li, Liu, Chen, Ding (bib12) 2021; 54
Adnan, Rahman, Ahmed, Ahmed, Rabbi, Rahman (bib23) 2020; 12
Huang, Zhang, Zhou, Wang, Huang, Zhu (bib57) 2020; 17
Shi, Zhao (bib72) 2020; 146
Wang, Lin, Wang, Jiang, Su, Wang, Mondal, Huang, Wang (bib61) 2022; 112
Gameiro, Riffel, de Oliveira, Guasselli (bib34) 2021; 137
Song, Li, Lizárraga, Zhao, Buscarnera (bib5) 2021; 154
Wei, Ye, Ge, Li (bib6) 2022; 19
Wang, Wang, Zhang (bib47) 2022
Weiss (bib51) 2001; vol. 200
Domènech, Alvioli, Corominas (bib54) 2020; 17
Dong, Dou, Fu, Zhang, Xing (bib3) 2023; 38
Hua, Wang, Li, Xu, Xia (bib41) 2020; 18
Tobler (bib31) 1970; 46
Zhang, Zhang, Dou, Hou, Xiang, Wang, Yang, Liu (bib2) 2024
Luo, Lin, Chen, Zhu, Xu, Huo, Yu, Peng (bib24) 2019; 9
Kim, Lee, Park, Ahn, Kil, Sung, Biging (bib42) 2018; 32
Huang, Pan, Fan, Jiang, Huang, Zhou (bib60) 2022; 81
Jenks (bib56) 1967; 7
Yao, Tham, Dai (bib39) 2008; 101
Di Napoli, Carotenuto, Cevasco, Confuorto, Di Martire, Firpo, Pepe, Raso, Calcaterra (bib43) 2020; 17
Shi, Nie, Zhao, Gao (bib73) 2020; 121
Geurts, Ernst, Wehenkel (bib58) 2006; 63
Yang, Liu, Huang, Huang, Wang (bib44) 2023; 123
Bragagnolo, da Silva, Grzybowski (bib10) 2020; 184
Karakas, Unal, Cetinkaya, Ozcan, Karakas, Can, Gokceoglu, Kocaman (bib22) 2024; 178
Anshori, Samodra, Mardiatno, Sartohadi (bib30) 2022; 161
Liu, Yang, Huang, Wang (bib11) 2021; 12
Nicu (bib49) 2018; 77
Kuan-Tsung, Merghadi, Yunus, Binh Thai, Dou (bib21) 2019; 9
Zhu, Miao, Liu, Bai, Zeng, Ma, Hong (bib36) 2019; 183
Huang, Yan, Fan, Yao, Huang, Chen, Hong (bib26) 2022; 13
Bruzón, Arrogante-Funes, Arrogante-Funes, Martín-González, Novillo, Fernández, Vázquez-Jiménez, Alarcón-Paredes, Alonso-Silverio, Cantu-Ramirez, Ramos-Bernal (bib45) 2021; 18
Shi, Liu, Yin (bib69) 2021; 147
Huang, Xiong, Yao, Catani, Zhou, Huang (bib18) 2023; 15
Zhang, Liu, Zhu, Shao (bib74) 2023; 160
Liu, Yin, Xiao, Huang, Cheng (bib70) 2024; 15
Sun, Wu, Wen, Gu (bib29) 2023; 14
Sholichin, Othman, Prayogo, Rahardjo (bib16) 2024
Li, Cui, Hu, Lu, Guo, Wang, Wang, Wang, Zhou (bib52) 2024; 51
Aditian, Kubota, Shinohara (bib48) 2018; 318
Dong, Dou, Li, Chen, Ji, Xing, Zhang, Daud (bib14) 2024; 62
Achour, Pourghasemi (bib28) 2020; 11
Zhu, Lu, Liu, Qin, Zhou (bib35) 2018; 24
Zhu, Sun, Wen, Zhang, Ji, Li, Zhou, Zhao (bib38) 2024; 15
Liu, Zhang, Zhang, Shu, Xiao (bib32) 2022; 37
Pradhan, Sameen (bib55) 2017
Merghadi (10.1016/j.ijdrr.2024.104966_bib7) 2020; 207
Hong (10.1016/j.ijdrr.2024.104966_bib27) 2019; 176
Huang (10.1016/j.ijdrr.2024.104966_bib50) 2024
Sholichin (10.1016/j.ijdrr.2024.104966_bib16) 2024
Xiong (10.1016/j.ijdrr.2024.104966_bib46) 2022; 14
Wang (10.1016/j.ijdrr.2024.104966_bib61) 2022; 112
Liu (10.1016/j.ijdrr.2024.104966_bib1) 2022; 37
Huang (10.1016/j.ijdrr.2024.104966_bib20) 2021; 202
Qin (10.1016/j.ijdrr.2024.104966_bib25) 2013; 27
Kim (10.1016/j.ijdrr.2024.104966_bib42) 2018; 32
Huang (10.1016/j.ijdrr.2024.104966_bib19) 2024; 16
Shi (10.1016/j.ijdrr.2024.104966_bib69) 2021; 147
Bragagnolo (10.1016/j.ijdrr.2024.104966_bib10) 2020; 184
Kuan-Tsung (10.1016/j.ijdrr.2024.104966_bib21) 2019; 9
Hua (10.1016/j.ijdrr.2024.104966_bib41) 2020; 18
Weiss (10.1016/j.ijdrr.2024.104966_bib51) 2001; vol. 200
Zhu (10.1016/j.ijdrr.2024.104966_bib36) 2019; 183
Topaçli (10.1016/j.ijdrr.2024.104966_bib17) 2024; 25
Dong (10.1016/j.ijdrr.2024.104966_bib14) 2024; 62
Yao (10.1016/j.ijdrr.2024.104966_bib39) 2008; 101
Sun (10.1016/j.ijdrr.2024.104966_bib29) 2023; 14
Luo (10.1016/j.ijdrr.2024.104966_bib24) 2019; 9
Yang (10.1016/j.ijdrr.2024.104966_bib37) 2024; 16
Di Napoli (10.1016/j.ijdrr.2024.104966_bib43) 2020; 17
Wang (10.1016/j.ijdrr.2024.104966_bib47) 2022
Huang (10.1016/j.ijdrr.2024.104966_bib60) 2022; 81
Anshori (10.1016/j.ijdrr.2024.104966_bib30) 2022; 161
Peethambaran (10.1016/j.ijdrr.2024.104966_bib4) 2023; 97
Zhao (10.1016/j.ijdrr.2024.104966_bib53) 2021; 2021
Zhang (10.1016/j.ijdrr.2024.104966_bib2)
Song (10.1016/j.ijdrr.2024.104966_bib5) 2021; 154
Liu (10.1016/j.ijdrr.2024.104966_bib32) 2022; 37
Zhou (10.1016/j.ijdrr.2024.104966_bib59) 2021; 12
Yang (10.1016/j.ijdrr.2024.104966_bib44) 2023; 123
He (10.1016/j.ijdrr.2024.104966_bib8) 2024; 3
Jenks (10.1016/j.ijdrr.2024.104966_bib56) 1967; 7
Reichenbach (10.1016/j.ijdrr.2024.104966_bib15) 2018; 180
Zhang (10.1016/j.ijdrr.2024.104966_bib74) 2023; 160
Shi (10.1016/j.ijdrr.2024.104966_bib73) 2020; 121
Pradhan (10.1016/j.ijdrr.2024.104966_bib55) 2017
Huang (10.1016/j.ijdrr.2024.104966_bib26) 2022; 13
Huang (10.1016/j.ijdrr.2024.104966_bib57) 2020; 17
Geurts (10.1016/j.ijdrr.2024.104966_bib58) 2006; 63
Qin (10.1016/j.ijdrr.2024.104966_bib71) 2023; 18
Hirzel (10.1016/j.ijdrr.2024.104966_bib33) 2001; 145
Karakas (10.1016/j.ijdrr.2024.104966_bib22) 2024; 178
Nicu (10.1016/j.ijdrr.2024.104966_bib49) 2018; 77
Dou (10.1016/j.ijdrr.2024.104966_bib13) 2020; 720
Shi (10.1016/j.ijdrr.2024.104966_bib72) 2020; 146
Huang (10.1016/j.ijdrr.2024.104966_bib18) 2023; 15
Tobler (10.1016/j.ijdrr.2024.104966_bib31) 1970; 46
Liu (10.1016/j.ijdrr.2024.104966_bib11) 2021; 12
Lucchese (10.1016/j.ijdrr.2024.104966_bib40) 2021; 198
Dou (10.1016/j.ijdrr.2024.104966_bib9) 2020; 17
Zhu (10.1016/j.ijdrr.2024.104966_bib35) 2018; 24
Domènech (10.1016/j.ijdrr.2024.104966_bib54) 2020; 17
Achour (10.1016/j.ijdrr.2024.104966_bib28) 2020; 11
Adnan (10.1016/j.ijdrr.2024.104966_bib23) 2020; 12
Zhang (10.1016/j.ijdrr.2024.104966_bib12) 2021; 54
Li (10.1016/j.ijdrr.2024.104966_bib52) 2024; 51
Zhu (10.1016/j.ijdrr.2024.104966_bib38) 2024; 15
Liu (10.1016/j.ijdrr.2024.104966_bib70) 2024; 15
Wei (10.1016/j.ijdrr.2024.104966_bib6) 2022; 19
Shi (10.1016/j.ijdrr.2024.104966_bib76) 2021; 45
Dong (10.1016/j.ijdrr.2024.104966_bib3) 2023; 38
Aditian (10.1016/j.ijdrr.2024.104966_bib48) 2018; 318
Bruzón (10.1016/j.ijdrr.2024.104966_bib45) 2021; 18
Gameiro (10.1016/j.ijdrr.2024.104966_bib34) 2021; 137
References_xml – volume: 202
  year: 2021
  ident: bib20
  article-title: Uncertainty study of landslide susceptibility prediction considering the different attribute interval numbers of environmental factors and different data-based models
  publication-title: Catena
– volume: 97
  year: 2023
  ident: bib4
  article-title: Application of landslide susceptibility towards urbanization suitability zonation in mountainous settings
  publication-title: Int. J. Disaster Risk Reduct.
– volume: 15
  start-page: 2954
  year: 2023
  end-page: 2972
  ident: bib18
  article-title: Uncertainties of landslide susceptibility prediction considering different landslide types
  publication-title: J. Rock Mech. Geotech. Eng.
– volume: 46
  start-page: 234
  year: 1970
  end-page: 240
  ident: bib31
  article-title: A computer movie simulating urban growth in the Detroit Region
  publication-title: Econ. Geogr.
– volume: 14
  start-page: 2866
  year: 2022
  ident: bib46
  article-title: A novel intelligent method based on the Gaussian heatmap sampling technique and convolutional neural network for landslide susceptibility mapping
  publication-title: Remote Sens.-Basel
– volume: 17
  start-page: 249
  year: 2020
  end-page: 265
  ident: bib54
  article-title: Preparing first-time slope failures hazard maps: from pixel-based to slope unit-based
  publication-title: Landslides
– year: 2024
  ident: bib2
  article-title: Advancing reservoir landslide stability assessment via TS-InSAR and airborne LiDAR observations in the Daping landslide group, Three Gorges Reservoir Area, China, Landslides
– volume: 37
  start-page: 14309
  year: 2022
  end-page: 14334
  ident: bib1
  article-title: A bibliometric analysis of the landslide susceptibility research (1999–2021)
  publication-title: Geocarto Int.
– volume: 183
  year: 2019
  ident: bib36
  article-title: A similarity-based approach to sampling absence data for landslide susceptibility mapping using data-driven methods
  publication-title: Catena
– volume: 17
  start-page: 217
  year: 2020
  end-page: 229
  ident: bib57
  article-title: A deep learning algorithm using a fully connected sparse autoencoder neural network for landslide susceptibility prediction
  publication-title: Landslides
– volume: 12
  start-page: 1837
  year: 2021
  end-page: 1861
  ident: bib11
  article-title: Landslide susceptibility mapping by attentional factorization machines considering feature interactions
  publication-title: Geomatics, Nat. Hazards Risk
– volume: 25
  year: 2024
  ident: bib17
  article-title: Performance comparison of landslide susceptibility maps derived from logistic regression and random forest models in the bolaman basin, türkiye
  publication-title: Nat. Hazard. Rev.
– volume: 9
  year: 2019
  ident: bib21
  article-title: Evaluating scale effects of topographic variables in landslide susceptibility models using GIS-based machine learning techniques
  publication-title: Sci. Rep.-UK
– year: 2022
  ident: bib47
  article-title: Transfer learning improves landslide susceptibility assessment
  publication-title: Gondwana Res.
– volume: 9
  year: 2019
  ident: bib24
  article-title: Coupling logistic model tree and random subspace to predict the landslide susceptibility areas with considering the uncertainty of environmental features
  publication-title: Sci. Rep.-UK
– volume: 154
  year: 2021
  ident: bib5
  article-title: Shallow landslide triggering in unsaturated vegetated slopes: efficient computation of susceptibility maps
  publication-title: Comput. Geosci.-UK
– year: 2024
  ident: bib16
  article-title: Assessing landslide susceptibility and formulating adaptation strategies in the konto watershed, east java, Indonesia
  publication-title: Int. J. Disaster Risk Reduct.
– volume: 32
  start-page: 2987
  year: 2018
  end-page: 3019
  ident: bib42
  article-title: Estimating landslide susceptibility areas considering the uncertainty inherent in modeling methods
  publication-title: Stoch. Environ. Res. Risk Assess.
– volume: 77
  start-page: 79
  year: 2018
  ident: bib49
  article-title: Application of analytic hierarchy process, frequency ratio, and statistical index to landslide susceptibility: an approach to endangered cultural heritage
  publication-title: Environ. Earth Sci.
– volume: 81
  start-page: 182
  year: 2022
  ident: bib60
  article-title: The uncertainty of landslide susceptibility prediction modeling: suitability of linear conditioning factors
  publication-title: Bull. Eng. Geol. Environ.
– volume: 720
  year: 2020
  ident: bib13
  article-title: Different sampling strategies for predicting landslide susceptibilities are deemed less consequential with deep learning
  publication-title: Sci. Total Environ.
– volume: 146
  year: 2020
  ident: bib72
  article-title: Practical estimation of compression behavior of clayey/silty sands using equivalent void-ratio concept
  publication-title: J. Geotech. Geoenviron. Eng.
– volume: 54
  start-page: 5633
  year: 2021
  end-page: 5673
  ident: bib12
  article-title: Application of deep learning algorithms in geotechnical engineering: a short critical review
  publication-title: Aritif. Intell. Rev.
– volume: 17
  start-page: 641
  year: 2020
  end-page: 658
  ident: bib9
  article-title: Improved landslide assessment using support vector machine with bagging, boosting, and stacking ensemble machine learning framework in a mountainous watershed, Japan
  publication-title: Landslides
– volume: 184
  year: 2020
  ident: bib10
  article-title: Artificial neural network ensembles applied to the mapping of landslide susceptibility
  publication-title: Catena
– volume: 51
  year: 2024
  ident: bib52
  article-title: Glacier retreat in eastern himalaya drives catastrophic Glacier hazard chain
  publication-title: Geophys. Res. Lett.
– volume: 18
  start-page: 3153
  year: 2023
  end-page: 3175
  ident: bib71
  article-title: On the seismic stability of soil slopes containing dual weak layers: true failure load assessment by finite-element limit-analysis
  publication-title: Acta Geotech.
– start-page: 133
  year: 2017
  end-page: 150
  ident: bib55
  article-title: Effects of the spatial resolution of digital elevation models and their products on landslide susceptibility mapping
  publication-title: Laser Scanning Applications in Landslide Assessment
– volume: 16
  start-page: 2414
  year: 2024
  ident: bib37
  article-title: A novel dataset replenishment strategy integrating time-series InSAR for refined landslide susceptibility mapping in karst regions
  publication-title: Water
– volume: 14
  year: 2023
  ident: bib29
  article-title: A LightGBM-based landslide susceptibility model considering the uncertainty of non-landslide samples
  publication-title: Geomatics, Nat. Hazards Risk
– volume: 15
  year: 2024
  ident: bib38
  article-title: Considering the effect of non-landslide sample selection on landslide susceptibility assessment
  publication-title: Geomatics, Nat. Hazards Risk
– volume: 45
  start-page: 1007
  year: 2021
  end-page: 1028
  ident: bib76
  article-title: A homogenization-based state-dependent model for gap-graded granular materials with fine-dominated structure
  publication-title: Int. J. Numer. Anal. Methods Geomech.
– volume: 121
  start-page: 103440
  year: 2020
  ident: bib73
  article-title: A homogenization equation for the small strain stiffness of gap-graded granular materials
  publication-title: Comput. Geotech.
– volume: 12
  year: 2021
  ident: bib59
  article-title: Landslide susceptibility mapping using hybrid random forest with GeoDetector and RFE for factor optimization
  publication-title: Geosci. Front.
– volume: 160
  start-page: 103496
  year: 2023
  ident: bib74
  article-title: A novel elastic-plastic damage model for rock materials considering micro-structural degradation due to cyclic fatigue
  publication-title: Int. J. Plast.
– volume: 180
  start-page: 60
  year: 2018
  end-page: 91
  ident: bib15
  article-title: A review of statistically-based landslide susceptibility models
  publication-title: Earth Sci. Rev.
– volume: 37
  start-page: 15683
  year: 2022
  end-page: 15713
  ident: bib32
  article-title: Machine learning with a susceptibility index-based sampling strategy for landslide susceptibility assessment
  publication-title: Geocarto Int.
– volume: 2021
  year: 2021
  ident: bib53
  article-title: A comparative study of landslide susceptibility mapping Using SVM and PSO-SVM models based on grid and slope units
  publication-title: Math. Probl Eng.
– volume: 161
  year: 2022
  ident: bib30
  article-title: Volunteered geographic information mobile application for participatory landslide inventory mapping
  publication-title: Comput. Geosci.-UK
– volume: 145
  start-page: 111
  year: 2001
  end-page: 121
  ident: bib33
  article-title: Assessing habitat-suitability models with a virtual species
  publication-title: Ecol. Model.
– volume: 18
  start-page: 1
  year: 2020
  end-page: 22
  ident: bib41
  article-title: Dynamic development of landslide susceptibility based on slope unit and deep neural networks
  publication-title: Landslides
– volume: 207
  year: 2020
  ident: bib7
  article-title: Machine learning methods for landslide susceptibility studies: a comparative overview of algorithm performance
  publication-title: Earth Sci. Rev.
– volume: 176
  start-page: 45
  year: 2019
  end-page: 64
  ident: bib27
  article-title: Exploring the effects of the design and quantity of absence data on the performance of random forest-based landslide susceptibility mapping
  publication-title: Catena
– volume: 3
  year: 2024
  ident: bib8
  article-title: Application of artificial intelligence in three aspects of landslide risk assessment: a comprehensive review
  publication-title: Rock Mechanics Bulletin
– volume: 62
  year: 2024
  ident: bib14
  article-title: Accelerating cross-scene Co-seismic landslide detection through progressive transfer learning and lightweight deep learning strategies
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 147
  year: 2021
  ident: bib69
  article-title: Effect of initial density, particle shape, and confining stress on the critical state behavior of weathered gap-graded granular soils
  publication-title: J. Geotech. Geoenviron. Eng.
– volume: 11
  start-page: 871
  year: 2020
  end-page: 883
  ident: bib28
  article-title: How do machine learning techniques help in increasing accuracy of landslide susceptibility maps?
  publication-title: Geosci. Front.
– volume: 63
  start-page: 3
  year: 2006
  end-page: 42
  ident: bib58
  article-title: Extremely randomized trees, Mach
  publication-title: Learn
– volume: 15
  start-page: 101758
  year: 2024
  ident: bib70
  article-title: Dynamic prediction of landslide life expectancy using ensemble system incorporating classical prediction models and machine learning
  publication-title: Geosci. Front.
– volume: 198
  year: 2021
  ident: bib40
  article-title: Investigation of the influence of nonoccurrence sampling on landslide susceptibility assessment using Artificial Neural Networks
  publication-title: Catena
– volume: 16
  start-page: 213
  year: 2024
  end-page: 230
  ident: bib19
  article-title: Uncertainties of landslide susceptibility prediction: influences of random errors in landslide conditioning factors and errors reduction by low pass filter method
  publication-title: J. Rock Mech. Geotech. Eng.
– volume: 12
  start-page: 3347
  year: 2020
  ident: bib23
  article-title: Improving spatial agreement in machine learning-based landslide susceptibility mapping
  publication-title: Remote Sens.-Basel
– volume: 24
  year: 2018
  ident: bib35
  article-title: Spatial prediction based on Third Law of Geography, ann
  publication-title: Geo Inf. Syst.
– volume: 38
  year: 2023
  ident: bib3
  article-title: Unraveling the evolution of landslide susceptibility: a systematic review of 30-years of strategic themes and trends
  publication-title: Geocarto Int.
– volume: 19
  start-page: 1087
  year: 2022
  end-page: 1099
  ident: bib6
  article-title: An attention-constrained neural network with overall cognition for landslide spatial prediction
  publication-title: Landslides
– volume: 13
  year: 2022
  ident: bib26
  article-title: Uncertainty pattern in landslide susceptibility prediction modelling: effects of different landslide boundaries and spatial shape expressions
  publication-title: Geosci. Front.
– year: 2024
  ident: bib50
  article-title: Optimization method of conditioning factors selection and combination for landslide susceptibility prediction
  publication-title: J. Rock Mech. Geotech. Eng.
– volume: 18
  year: 2021
  ident: bib45
  article-title: Landslide susceptibility assessment using an AutoML framework
  publication-title: Int. J. Environ. Res. Public Health
– volume: vol. 200
  year: 2001
  ident: bib51
  article-title: Topographic position and landforms analysis
  publication-title: Poster presentation, ESRI user conference, San Diego, CA
– volume: 101
  start-page: 572
  year: 2008
  end-page: 582
  ident: bib39
  article-title: Landslide susceptibility mapping based on Support Vector Machine: a case study on natural slopes of Hong Kong, China
  publication-title: Geomorphology
– volume: 112
  start-page: 1967
  year: 2022
  end-page: 1988
  ident: bib61
  article-title: The influences of the spatial extent selection for non-landslide samples on statistical-based landslide susceptibility modelling: a case study of Anhui Province in China
  publication-title: Nat. Hazards
– volume: 318
  start-page: 101
  year: 2018
  end-page: 111
  ident: bib48
  article-title: Comparison of GIS-based landslide susceptibility models using frequency ratio, logistic regression, and artificial neural network in a tertiary region of Ambon, Indonesia
  publication-title: Geomorphology
– volume: 17
  start-page: 1897
  year: 2020
  end-page: 1914
  ident: bib43
  article-title: Machine learning ensemble modelling as a tool to improve landslide susceptibility mapping reliability
  publication-title: Landslides
– volume: 123
  start-page: 198
  year: 2023
  end-page: 216
  ident: bib44
  article-title: Machine learning-based landslide susceptibility assessment with optimized ratio of landslide to non-landslide samples
  publication-title: Gondwana Res.
– volume: 7
  start-page: 186
  year: 1967
  end-page: 190
  ident: bib56
  article-title: The data model concept in statistical mapping
  publication-title: Int. Yearb. Cartogr.
– volume: 27
  start-page: 1364
  year: 2013
  end-page: 1380
  ident: bib25
  article-title: Uncertainty due to DEM error in landslide susceptibility mapping
  publication-title: Int. J. Geogr. Inf. Sci.
– volume: 137
  year: 2021
  ident: bib34
  article-title: Artificial neural networks applied to landslide susceptibility: the effect of sampling areas on model capacity for generalization and extrapolation
  publication-title: Appl. Geogr.
– volume: 178
  year: 2024
  ident: bib22
  article-title: Analysis of landslide susceptibility prediction accuracy with an event-based inventory: the 6 February 2023 Turkiye earthquakes
  publication-title: Soil Dyn. Earthquake Eng.
– volume: 24
  issue: 4
  year: 2018
  ident: 10.1016/j.ijdrr.2024.104966_bib35
  article-title: Spatial prediction based on Third Law of Geography, ann
  publication-title: Geo Inf. Syst.
– volume: 14
  issue: 1
  year: 2023
  ident: 10.1016/j.ijdrr.2024.104966_bib29
  article-title: A LightGBM-based landslide susceptibility model considering the uncertainty of non-landslide samples
  publication-title: Geomatics, Nat. Hazards Risk
  doi: 10.1080/19475705.2023.2213807
– volume: 17
  start-page: 249
  issue: 2
  year: 2020
  ident: 10.1016/j.ijdrr.2024.104966_bib54
  article-title: Preparing first-time slope failures hazard maps: from pixel-based to slope unit-based
  publication-title: Landslides
  doi: 10.1007/s10346-019-01279-4
– volume: 154
  year: 2021
  ident: 10.1016/j.ijdrr.2024.104966_bib5
  article-title: Shallow landslide triggering in unsaturated vegetated slopes: efficient computation of susceptibility maps
  publication-title: Comput. Geosci.-UK
  doi: 10.1016/j.cageo.2021.104826
– volume: 3
  issue: 4
  year: 2024
  ident: 10.1016/j.ijdrr.2024.104966_bib8
  article-title: Application of artificial intelligence in three aspects of landslide risk assessment: a comprehensive review
  publication-title: Rock Mechanics Bulletin
  doi: 10.1016/j.rockmb.2024.100144
– volume: 15
  start-page: 101758
  issue: 2
  year: 2024
  ident: 10.1016/j.ijdrr.2024.104966_bib70
  article-title: Dynamic prediction of landslide life expectancy using ensemble system incorporating classical prediction models and machine learning
  publication-title: Geosci. Front.
  doi: 10.1016/j.gsf.2023.101758
– volume: 18
  issue: 20
  year: 2021
  ident: 10.1016/j.ijdrr.2024.104966_bib45
  article-title: Landslide susceptibility assessment using an AutoML framework
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph182010971
– volume: 14
  start-page: 2866
  issue: 12
  year: 2022
  ident: 10.1016/j.ijdrr.2024.104966_bib46
  article-title: A novel intelligent method based on the Gaussian heatmap sampling technique and convolutional neural network for landslide susceptibility mapping
  publication-title: Remote Sens.-Basel
  doi: 10.3390/rs14122866
– volume: 37
  start-page: 14309
  issue: 26
  year: 2022
  ident: 10.1016/j.ijdrr.2024.104966_bib1
  article-title: A bibliometric analysis of the landslide susceptibility research (1999–2021)
  publication-title: Geocarto Int.
  doi: 10.1080/10106049.2022.2087753
– volume: 17
  start-page: 641
  issue: 3
  year: 2020
  ident: 10.1016/j.ijdrr.2024.104966_bib9
  article-title: Improved landslide assessment using support vector machine with bagging, boosting, and stacking ensemble machine learning framework in a mountainous watershed, Japan
  publication-title: Landslides
  doi: 10.1007/s10346-019-01286-5
– volume: 37
  start-page: 15683
  issue: 27
  year: 2022
  ident: 10.1016/j.ijdrr.2024.104966_bib32
  article-title: Machine learning with a susceptibility index-based sampling strategy for landslide susceptibility assessment
  publication-title: Geocarto Int.
  doi: 10.1080/10106049.2022.2102221
– volume: 62
  year: 2024
  ident: 10.1016/j.ijdrr.2024.104966_bib14
  article-title: Accelerating cross-scene Co-seismic landslide detection through progressive transfer learning and lightweight deep learning strategies
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2024.3424680
– volume: 63
  start-page: 3
  issue: 1
  year: 2006
  ident: 10.1016/j.ijdrr.2024.104966_bib58
  article-title: Extremely randomized trees, Mach
  publication-title: Learn
– volume: 27
  start-page: 1364
  issue: 7
  year: 2013
  ident: 10.1016/j.ijdrr.2024.104966_bib25
  article-title: Uncertainty due to DEM error in landslide susceptibility mapping
  publication-title: Int. J. Geogr. Inf. Sci.
  doi: 10.1080/13658816.2013.770515
– volume: 720
  year: 2020
  ident: 10.1016/j.ijdrr.2024.104966_bib13
  article-title: Different sampling strategies for predicting landslide susceptibilities are deemed less consequential with deep learning
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.137320
– volume: 16
  start-page: 2414
  issue: 17
  year: 2024
  ident: 10.1016/j.ijdrr.2024.104966_bib37
  article-title: A novel dataset replenishment strategy integrating time-series InSAR for refined landslide susceptibility mapping in karst regions
  publication-title: Water
  doi: 10.3390/w16172414
– year: 2022
  ident: 10.1016/j.ijdrr.2024.104966_bib47
  article-title: Transfer learning improves landslide susceptibility assessment
  publication-title: Gondwana Res.
– volume: 318
  start-page: 101
  year: 2018
  ident: 10.1016/j.ijdrr.2024.104966_bib48
  article-title: Comparison of GIS-based landslide susceptibility models using frequency ratio, logistic regression, and artificial neural network in a tertiary region of Ambon, Indonesia
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2018.06.006
– volume: 101
  start-page: 572
  issue: 4
  year: 2008
  ident: 10.1016/j.ijdrr.2024.104966_bib39
  article-title: Landslide susceptibility mapping based on Support Vector Machine: a case study on natural slopes of Hong Kong, China
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2008.02.011
– volume: 17
  start-page: 217
  issue: 1
  year: 2020
  ident: 10.1016/j.ijdrr.2024.104966_bib57
  article-title: A deep learning algorithm using a fully connected sparse autoencoder neural network for landslide susceptibility prediction
  publication-title: Landslides
  doi: 10.1007/s10346-019-01274-9
– volume: 17
  start-page: 1897
  issue: 8
  year: 2020
  ident: 10.1016/j.ijdrr.2024.104966_bib43
  article-title: Machine learning ensemble modelling as a tool to improve landslide susceptibility mapping reliability
  publication-title: Landslides
  doi: 10.1007/s10346-020-01392-9
– volume: 202
  year: 2021
  ident: 10.1016/j.ijdrr.2024.104966_bib20
  article-title: Uncertainty study of landslide susceptibility prediction considering the different attribute interval numbers of environmental factors and different data-based models
  publication-title: Catena
  doi: 10.1016/j.catena.2021.105250
– volume: 183
  year: 2019
  ident: 10.1016/j.ijdrr.2024.104966_bib36
  article-title: A similarity-based approach to sampling absence data for landslide susceptibility mapping using data-driven methods
  publication-title: Catena
  doi: 10.1016/j.catena.2019.104188
– volume: 146
  issue: 6
  year: 2020
  ident: 10.1016/j.ijdrr.2024.104966_bib72
  article-title: Practical estimation of compression behavior of clayey/silty sands using equivalent void-ratio concept
  publication-title: J. Geotech. Geoenviron. Eng.
  doi: 10.1061/(ASCE)GT.1943-5606.0002267
– volume: 184
  year: 2020
  ident: 10.1016/j.ijdrr.2024.104966_bib10
  article-title: Artificial neural network ensembles applied to the mapping of landslide susceptibility
  publication-title: Catena
  doi: 10.1016/j.catena.2019.104240
– volume: 145
  start-page: 111
  issue: 2
  year: 2001
  ident: 10.1016/j.ijdrr.2024.104966_bib33
  article-title: Assessing habitat-suitability models with a virtual species
  publication-title: Ecol. Model.
  doi: 10.1016/S0304-3800(01)00396-9
– volume: 25
  issue: 1
  year: 2024
  ident: 10.1016/j.ijdrr.2024.104966_bib17
  article-title: Performance comparison of landslide susceptibility maps derived from logistic regression and random forest models in the bolaman basin, türkiye
  publication-title: Nat. Hazard. Rev.
– volume: 207
  year: 2020
  ident: 10.1016/j.ijdrr.2024.104966_bib7
  article-title: Machine learning methods for landslide susceptibility studies: a comparative overview of algorithm performance
  publication-title: Earth Sci. Rev.
  doi: 10.1016/j.earscirev.2020.103225
– volume: 9
  year: 2019
  ident: 10.1016/j.ijdrr.2024.104966_bib21
  article-title: Evaluating scale effects of topographic variables in landslide susceptibility models using GIS-based machine learning techniques
  publication-title: Sci. Rep.-UK
– volume: 45
  start-page: 1007
  issue: 8
  year: 2021
  ident: 10.1016/j.ijdrr.2024.104966_bib76
  article-title: A homogenization-based state-dependent model for gap-graded granular materials with fine-dominated structure
  publication-title: Int. J. Numer. Anal. Methods Geomech.
  doi: 10.1002/nag.3189
– year: 2024
  ident: 10.1016/j.ijdrr.2024.104966_bib50
  article-title: Optimization method of conditioning factors selection and combination for landslide susceptibility prediction
  publication-title: J. Rock Mech. Geotech. Eng.
  doi: 10.1016/j.jrmge.2024.04.029
– volume: 121
  start-page: 103440
  year: 2020
  ident: 10.1016/j.ijdrr.2024.104966_bib73
  article-title: A homogenization equation for the small strain stiffness of gap-graded granular materials
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2020.103440
– volume: 19
  start-page: 1087
  issue: 5
  year: 2022
  ident: 10.1016/j.ijdrr.2024.104966_bib6
  article-title: An attention-constrained neural network with overall cognition for landslide spatial prediction
  publication-title: Landslides
  doi: 10.1007/s10346-021-01841-z
– volume: 7
  start-page: 186
  year: 1967
  ident: 10.1016/j.ijdrr.2024.104966_bib56
  article-title: The data model concept in statistical mapping
  publication-title: Int. Yearb. Cartogr.
– volume: 12
  start-page: 3347
  issue: 20
  year: 2020
  ident: 10.1016/j.ijdrr.2024.104966_bib23
  article-title: Improving spatial agreement in machine learning-based landslide susceptibility mapping
  publication-title: Remote Sens.-Basel
  doi: 10.3390/rs12203347
– volume: 18
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.ijdrr.2024.104966_bib41
  article-title: Dynamic development of landslide susceptibility based on slope unit and deep neural networks
  publication-title: Landslides
– volume: 178
  year: 2024
  ident: 10.1016/j.ijdrr.2024.104966_bib22
  article-title: Analysis of landslide susceptibility prediction accuracy with an event-based inventory: the 6 February 2023 Turkiye earthquakes
  publication-title: Soil Dyn. Earthquake Eng.
  doi: 10.1016/j.soildyn.2024.108491
– volume: 198
  year: 2021
  ident: 10.1016/j.ijdrr.2024.104966_bib40
  article-title: Investigation of the influence of nonoccurrence sampling on landslide susceptibility assessment using Artificial Neural Networks
  publication-title: Catena
  doi: 10.1016/j.catena.2020.105067
– volume: 38
  issue: 1
  year: 2023
  ident: 10.1016/j.ijdrr.2024.104966_bib3
  article-title: Unraveling the evolution of landslide susceptibility: a systematic review of 30-years of strategic themes and trends
  publication-title: Geocarto Int.
  doi: 10.1080/10106049.2023.2256308
– volume: 18
  start-page: 3153
  issue: 6
  year: 2023
  ident: 10.1016/j.ijdrr.2024.104966_bib71
  article-title: On the seismic stability of soil slopes containing dual weak layers: true failure load assessment by finite-element limit-analysis
  publication-title: Acta Geotech.
  doi: 10.1007/s11440-022-01730-2
– volume: 77
  start-page: 79
  issue: 3
  year: 2018
  ident: 10.1016/j.ijdrr.2024.104966_bib49
  article-title: Application of analytic hierarchy process, frequency ratio, and statistical index to landslide susceptibility: an approach to endangered cultural heritage
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-018-7261-5
– volume: 180
  start-page: 60
  year: 2018
  ident: 10.1016/j.ijdrr.2024.104966_bib15
  article-title: A review of statistically-based landslide susceptibility models
  publication-title: Earth Sci. Rev.
  doi: 10.1016/j.earscirev.2018.03.001
– volume: 137
  year: 2021
  ident: 10.1016/j.ijdrr.2024.104966_bib34
  article-title: Artificial neural networks applied to landslide susceptibility: the effect of sampling areas on model capacity for generalization and extrapolation
  publication-title: Appl. Geogr.
  doi: 10.1016/j.apgeog.2021.102598
– volume: 54
  start-page: 5633
  issue: 8
  year: 2021
  ident: 10.1016/j.ijdrr.2024.104966_bib12
  article-title: Application of deep learning algorithms in geotechnical engineering: a short critical review
  publication-title: Aritif. Intell. Rev.
  doi: 10.1007/s10462-021-09967-1
– volume: 15
  issue: 1
  year: 2024
  ident: 10.1016/j.ijdrr.2024.104966_bib38
  article-title: Considering the effect of non-landslide sample selection on landslide susceptibility assessment
  publication-title: Geomatics, Nat. Hazards Risk
  doi: 10.1080/19475705.2024.2392778
– start-page: 133
  year: 2017
  ident: 10.1016/j.ijdrr.2024.104966_bib55
  article-title: Effects of the spatial resolution of digital elevation models and their products on landslide susceptibility mapping
– year: 2024
  ident: 10.1016/j.ijdrr.2024.104966_bib16
  article-title: Assessing landslide susceptibility and formulating adaptation strategies in the konto watershed, east java, Indonesia
  publication-title: Int. J. Disaster Risk Reduct.
  doi: 10.1016/j.ijdrr.2024.104797
– volume: 46
  start-page: 234
  year: 1970
  ident: 10.1016/j.ijdrr.2024.104966_bib31
  article-title: A computer movie simulating urban growth in the Detroit Region
  publication-title: Econ. Geogr.
  doi: 10.2307/143141
– volume: 16
  start-page: 213
  issue: 1
  year: 2024
  ident: 10.1016/j.ijdrr.2024.104966_bib19
  article-title: Uncertainties of landslide susceptibility prediction: influences of random errors in landslide conditioning factors and errors reduction by low pass filter method
  publication-title: J. Rock Mech. Geotech. Eng.
  doi: 10.1016/j.jrmge.2023.11.001
– volume: 176
  start-page: 45
  year: 2019
  ident: 10.1016/j.ijdrr.2024.104966_bib27
  article-title: Exploring the effects of the design and quantity of absence data on the performance of random forest-based landslide susceptibility mapping
  publication-title: Catena
  doi: 10.1016/j.catena.2018.12.035
– volume: 15
  start-page: 2954
  issue: 11
  year: 2023
  ident: 10.1016/j.ijdrr.2024.104966_bib18
  article-title: Uncertainties of landslide susceptibility prediction considering different landslide types
  publication-title: J. Rock Mech. Geotech. Eng.
  doi: 10.1016/j.jrmge.2023.03.001
– volume: 51
  issue: 8
  year: 2024
  ident: 10.1016/j.ijdrr.2024.104966_bib52
  article-title: Glacier retreat in eastern himalaya drives catastrophic Glacier hazard chain
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2024GL108202
– volume: 12
  issue: 5
  year: 2021
  ident: 10.1016/j.ijdrr.2024.104966_bib59
  article-title: Landslide susceptibility mapping using hybrid random forest with GeoDetector and RFE for factor optimization
  publication-title: Geosci. Front.
  doi: 10.1016/j.gsf.2021.101211
– volume: 97
  year: 2023
  ident: 10.1016/j.ijdrr.2024.104966_bib4
  article-title: Application of landslide susceptibility towards urbanization suitability zonation in mountainous settings
  publication-title: Int. J. Disaster Risk Reduct.
  doi: 10.1016/j.ijdrr.2023.104061
– volume: 112
  start-page: 1967
  issue: 3
  year: 2022
  ident: 10.1016/j.ijdrr.2024.104966_bib61
  article-title: The influences of the spatial extent selection for non-landslide samples on statistical-based landslide susceptibility modelling: a case study of Anhui Province in China
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-022-05252-8
– ident: 10.1016/j.ijdrr.2024.104966_bib2
– volume: 32
  start-page: 2987
  issue: 11
  year: 2018
  ident: 10.1016/j.ijdrr.2024.104966_bib42
  article-title: Estimating landslide susceptibility areas considering the uncertainty inherent in modeling methods
  publication-title: Stoch. Environ. Res. Risk Assess.
  doi: 10.1007/s00477-018-1609-y
– volume: 123
  start-page: 198
  year: 2023
  ident: 10.1016/j.ijdrr.2024.104966_bib44
  article-title: Machine learning-based landslide susceptibility assessment with optimized ratio of landslide to non-landslide samples
  publication-title: Gondwana Res.
  doi: 10.1016/j.gr.2022.05.012
– volume: 161
  year: 2022
  ident: 10.1016/j.ijdrr.2024.104966_bib30
  article-title: Volunteered geographic information mobile application for participatory landslide inventory mapping
  publication-title: Comput. Geosci.-UK
  doi: 10.1016/j.cageo.2022.105073
– volume: 11
  start-page: 871
  issue: 3
  year: 2020
  ident: 10.1016/j.ijdrr.2024.104966_bib28
  article-title: How do machine learning techniques help in increasing accuracy of landslide susceptibility maps?
  publication-title: Geosci. Front.
  doi: 10.1016/j.gsf.2019.10.001
– volume: 2021
  year: 2021
  ident: 10.1016/j.ijdrr.2024.104966_bib53
  article-title: A comparative study of landslide susceptibility mapping Using SVM and PSO-SVM models based on grid and slope units
  publication-title: Math. Probl Eng.
– volume: vol. 200
  year: 2001
  ident: 10.1016/j.ijdrr.2024.104966_bib51
  article-title: Topographic position and landforms analysis
– volume: 160
  start-page: 103496
  year: 2023
  ident: 10.1016/j.ijdrr.2024.104966_bib74
  article-title: A novel elastic-plastic damage model for rock materials considering micro-structural degradation due to cyclic fatigue
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2022.103496
– volume: 13
  issue: 2
  year: 2022
  ident: 10.1016/j.ijdrr.2024.104966_bib26
  article-title: Uncertainty pattern in landslide susceptibility prediction modelling: effects of different landslide boundaries and spatial shape expressions
  publication-title: Geosci. Front.
  doi: 10.1016/j.gsf.2021.101317
– volume: 9
  year: 2019
  ident: 10.1016/j.ijdrr.2024.104966_bib24
  article-title: Coupling logistic model tree and random subspace to predict the landslide susceptibility areas with considering the uncertainty of environmental features
  publication-title: Sci. Rep.-UK
– volume: 12
  start-page: 1837
  issue: 1
  year: 2021
  ident: 10.1016/j.ijdrr.2024.104966_bib11
  article-title: Landslide susceptibility mapping by attentional factorization machines considering feature interactions
  publication-title: Geomatics, Nat. Hazards Risk
  doi: 10.1080/19475705.2021.1950217
– volume: 81
  start-page: 182
  issue: 5
  year: 2022
  ident: 10.1016/j.ijdrr.2024.104966_bib60
  article-title: The uncertainty of landslide susceptibility prediction modeling: suitability of linear conditioning factors
  publication-title: Bull. Eng. Geol. Environ.
  doi: 10.1007/s10064-022-02672-5
– volume: 147
  issue: 2
  year: 2021
  ident: 10.1016/j.ijdrr.2024.104966_bib69
  article-title: Effect of initial density, particle shape, and confining stress on the critical state behavior of weathered gap-graded granular soils
  publication-title: J. Geotech. Geoenviron. Eng.
  doi: 10.1061/(ASCE)GT.1943-5606.0002449
SSID ssj0000866288
Score 2.3415012
Snippet The quality of landslide and non-landslide samples plays a crucial role in landslide susceptibility maps (LSMs) generated using machine learning algorithms....
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104966
SubjectTerms Buffer-controlled sampling
Confidence map
Landslide susceptibility
Machine learning
Monte Carlo simulation
Title Quantifying uncertainty in landslide susceptibility mapping due to sampling randomness
URI https://dx.doi.org/10.1016/j.ijdrr.2024.104966
Volume 114
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8JAEN0QvHgxfkYUyR6MJyulXfpxJESCmpAYRbk1292pKQIlpRy4-Nud6QfRxHDw1m12kma6fW-3--YtY9cmIqPylDAs4WiD1l-GD9o2vNB3_VB0yeCF1BYjZzgWj5PupMb6VS0MySpL7C8wPUfr8k67zGZ7GcftFwtRV1imTypIF1mSKtiFS6P87quz_c-CU3Y6UZfOmMP-BgVU5kO5zCue6pR8QS1B251-7pb4B0H9IJ3BITsoZ4u8VzzQEavB4pg1i5Ja_g6zSKbAb3h1I0k_T9jb81qSAojqlziyVrHnn214vOB5Ye8s1sBX61UuaMm1sRs-l-TT8MH1GniW8JUkoTm2kcl0Mic4PGXjwf1rf2iUpycYCmkpQ-qRPigPVATIg1QSa4LlOfgJOxEuciytXa2c0JQC3I5ytbARawBc8CHquLJrn7H6IlnAOePkKeh4nk17NkLhijC0vcjDaylVx5aiwawqZYEqrcXphItZUGnIpkGe54DyHBR5brDbbdCycNbY3d2p3kXwa4AEiP27Ai_-G3jJ9qlVFB42WT1L13CFM5AsbOVDrMX2eg9Pw9E32Mracw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2VcoALYhU7PiBORG0TN8uxQlQtSyUEhd4ix56gQDe16aF_z0wWBBLqgVviZKRo4rxnx2-eAS7rhIza19KypWssnn9ZARrH8qPACyLZZIMXVlv03E5f3g2agwrclLUwLKsssD_H9Ayti5Zakc3aNElqzzahrrTrAasgPWLJNVhnd6pmFdZb3ftO7_tXC43aeVNd3maOQiyOKf2HMqVX8mFmbA1qS17xDDLDxD846gfvtLdhqxgwilb-TDtQwfEunOZVteINh7GaobgSZcNk9rkHr08LxSIgLmESRFz5sn-6FMlYZLW9w8SgmC_mmaYlk8cuxUixVcO7MAsU6UTMFWvN6ZzIzExGjIj70G_fvtx0rGIDBUsTM6XEPipA7aOOkaiQq2LraPsufcVuTPMc2xjPaDeqK4leQ3tGOgQ3iB4GGDc81XQOoDqejPEQBNsKur7v8LKN1DQpjBw_9ulYKd1wlDwCu0xZqAt3cd7kYhiWMrKPMMtzyHkO8zwfwfV30DQ311h9u1u-i_BXHwkJ_lcFHv838AI2Oi-PD-FDt3d_Apt8Ja9DPIVqOlvgGQ1I0ui86HBfX5DdJA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantifying+uncertainty+in+landslide+susceptibility+mapping+due+to+sampling+randomness&rft.jtitle=International+journal+of+disaster+risk+reduction&rft.au=Liu%2C+Lei-Lei&rft.au=Zhao%2C+Shuang-Lin&rft.au=Yang%2C+Can&rft.au=Zhang%2C+Wengang&rft.date=2024-11-01&rft.pub=Elsevier+Ltd&rft.issn=2212-4209&rft.eissn=2212-4209&rft.volume=114&rft_id=info:doi/10.1016%2Fj.ijdrr.2024.104966&rft.externalDocID=S2212420924007283
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2212-4209&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2212-4209&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2212-4209&client=summon