Quantifying uncertainty in landslide susceptibility mapping due to sampling randomness
The quality of landslide and non-landslide samples plays a crucial role in landslide susceptibility maps (LSMs) generated using machine learning algorithms. However, uncertainties arising from the collection of non-landslide samples can significantly compromise the reliability of these maps. Current...
Saved in:
Published in | International journal of disaster risk reduction Vol. 114; p. 104966 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.11.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The quality of landslide and non-landslide samples plays a crucial role in landslide susceptibility maps (LSMs) generated using machine learning algorithms. However, uncertainties arising from the collection of non-landslide samples can significantly compromise the reliability of these maps. Current methods, such as buffer-controlled sampling (BCS), often fail to address this issue adequately. This study aims to fill that gap by employing Monte Carlo simulations combined with BCS to quantify the uncertainties associated with non-landslide sampling and improve the accuracy of LSMs. A novel framework is proposed by incorporating landslide susceptibility confidence maps (LSCMs) to address the inherent uncertainty in BCS-based LSMs. The framework evaluates inconsistencies in LSMs, showing that maps generated by the same model may differ in over 30 % of the area due to variations in selection of non-landslide samples. The proposed approach outperforms traditional methods by correctly classifying landslide-prone areas, particularly in low and very low susceptibility zones, while providing a more reliable quantification of uncertainty. These findings underscore the limitations of traditional LSM methods and demonstrate that LSCMs offer a more robust tool for landslide hazard assessment. The framework enhances the precision of susceptibility mapping and provides critical insights for better risk mitigation and disaster preparedness.
[Display omitted]
•A novel framework is developed to quantify uncertainty in landslide susceptibility mapping.•LSCM provides more accurate and reliable insights for landslide risk mitigation.•Increased buffer distances enhance model accuracy and reduce uncertainty in susceptibility zoning. |
---|---|
AbstractList | The quality of landslide and non-landslide samples plays a crucial role in landslide susceptibility maps (LSMs) generated using machine learning algorithms. However, uncertainties arising from the collection of non-landslide samples can significantly compromise the reliability of these maps. Current methods, such as buffer-controlled sampling (BCS), often fail to address this issue adequately. This study aims to fill that gap by employing Monte Carlo simulations combined with BCS to quantify the uncertainties associated with non-landslide sampling and improve the accuracy of LSMs. A novel framework is proposed by incorporating landslide susceptibility confidence maps (LSCMs) to address the inherent uncertainty in BCS-based LSMs. The framework evaluates inconsistencies in LSMs, showing that maps generated by the same model may differ in over 30 % of the area due to variations in selection of non-landslide samples. The proposed approach outperforms traditional methods by correctly classifying landslide-prone areas, particularly in low and very low susceptibility zones, while providing a more reliable quantification of uncertainty. These findings underscore the limitations of traditional LSM methods and demonstrate that LSCMs offer a more robust tool for landslide hazard assessment. The framework enhances the precision of susceptibility mapping and provides critical insights for better risk mitigation and disaster preparedness.
[Display omitted]
•A novel framework is developed to quantify uncertainty in landslide susceptibility mapping.•LSCM provides more accurate and reliable insights for landslide risk mitigation.•Increased buffer distances enhance model accuracy and reduce uncertainty in susceptibility zoning. |
ArticleNumber | 104966 |
Author | Zhang, Wengang Zhao, Shuang-Lin Liu, Lei-Lei Yang, Can |
Author_xml | – sequence: 1 givenname: Lei-Lei surname: Liu fullname: Liu, Lei-Lei email: csulll@foxmail.com organization: School of Traffic and Transportation Engineering, Changsha University of Science & Technology, Changsha, 410114, China – sequence: 2 givenname: Shuang-Lin surname: Zhao fullname: Zhao, Shuang-Lin email: 122479446@qq.com organization: Hunan Institute of Geological Disaster Investigation and Monitoring, Changsha, 410004, China – sequence: 3 givenname: Can surname: Yang fullname: Yang, Can email: yangcan@imde.ac.cn organization: Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, Ministry of Education, School of Geosciences and Info-Physics, Central South University, Changsha, 410083, China – sequence: 4 givenname: Wengang surname: Zhang fullname: Zhang, Wengang email: zhangwg@cqu.edu.cn organization: School of Civil Engineering, Chongqing University, Chongqing, 400045, China |
BookMark | eNqFkMtKxDAUQIOM4DjOF7jpD7Tm0UnbhQsZfMGACOo2ZJJbuaVNS5IK8_e2jgtxoXdzXzkXcs7JwvUOCLlkNGOUyasmw8Z6n3HK82mSV1KekCXnjKc5p9XiR31G1iE0dIpSSl6WS_L2PGoXsT6ge09GZ8BHjS4eEnRJq50NLVpIwhgMDBH32OK06_QwzO_tCEnsk6C7oZ17PwF95yCEC3Ja6zbA-juvyOvd7cv2Id093T9ub3apEVTEtKS6AlOCqQHAMi42FHgpWSlkXVWSW1tYI_dU51AwU9hciEICFFBBzQq9EStSHe8a34fgoVYGo47Yu-g1topRNTtSjfpypGZH6uhoYsUvdvDYaX_4h7o-UjB96wPBq2AQJnEWPZiobI9_8p9mQIZW |
CitedBy_id | crossref_primary_10_1007_s10064_024_04008_x |
Cites_doi | 10.1080/19475705.2023.2213807 10.1007/s10346-019-01279-4 10.1016/j.cageo.2021.104826 10.1016/j.rockmb.2024.100144 10.1016/j.gsf.2023.101758 10.3390/ijerph182010971 10.3390/rs14122866 10.1080/10106049.2022.2087753 10.1007/s10346-019-01286-5 10.1080/10106049.2022.2102221 10.1109/TGRS.2024.3424680 10.1080/13658816.2013.770515 10.1016/j.scitotenv.2020.137320 10.3390/w16172414 10.1016/j.geomorph.2018.06.006 10.1016/j.geomorph.2008.02.011 10.1007/s10346-019-01274-9 10.1007/s10346-020-01392-9 10.1016/j.catena.2021.105250 10.1016/j.catena.2019.104188 10.1061/(ASCE)GT.1943-5606.0002267 10.1016/j.catena.2019.104240 10.1016/S0304-3800(01)00396-9 10.1016/j.earscirev.2020.103225 10.1002/nag.3189 10.1016/j.jrmge.2024.04.029 10.1016/j.compgeo.2020.103440 10.1007/s10346-021-01841-z 10.3390/rs12203347 10.1016/j.soildyn.2024.108491 10.1016/j.catena.2020.105067 10.1080/10106049.2023.2256308 10.1007/s11440-022-01730-2 10.1007/s12665-018-7261-5 10.1016/j.earscirev.2018.03.001 10.1016/j.apgeog.2021.102598 10.1007/s10462-021-09967-1 10.1080/19475705.2024.2392778 10.1016/j.ijdrr.2024.104797 10.2307/143141 10.1016/j.jrmge.2023.11.001 10.1016/j.catena.2018.12.035 10.1016/j.jrmge.2023.03.001 10.1029/2024GL108202 10.1016/j.gsf.2021.101211 10.1016/j.ijdrr.2023.104061 10.1007/s11069-022-05252-8 10.1007/s00477-018-1609-y 10.1016/j.gr.2022.05.012 10.1016/j.cageo.2022.105073 10.1016/j.gsf.2019.10.001 10.1016/j.ijplas.2022.103496 10.1016/j.gsf.2021.101317 10.1080/19475705.2021.1950217 10.1007/s10064-022-02672-5 10.1061/(ASCE)GT.1943-5606.0002449 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Ltd |
Copyright_xml | – notice: 2024 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ijdrr.2024.104966 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Social Welfare & Social Work |
EISSN | 2212-4209 |
ExternalDocumentID | 10_1016_j_ijdrr_2024_104966 S2212420924007283 |
GroupedDBID | --M .~1 0R~ 1~. 4.4 457 4G. 5VS 7-5 8P~ AACTN AAEDT AAEDW AAFJI AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABFYP ABJNI ABLST ABMAC ABMMH ABQEM ABQYD ABXDB ACDAQ ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE AEBSH AEIPS AEKER AENEX AFJKZ AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANKPU AOMHK ATOGT AVARZ AXJTR BKOJK BLECG BLXMC EBS EFJIC EJD FDB FIRID FNPLU FYGXN GBLVA HZ~ IMUCA KCYFY KOM M41 MO0 O-L O9- OAUVE P-8 P-9 PC. PRBVW Q38 RIG ROL SDF SPC SPCBC SSB SSE SSJ SSO SSZ T5K ~G- AATTM AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKYEP APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c303t-80a9ec8ecfeeed12350e2861836f9962dd7dc6b0a4e71c7d43376ee7e9ef17a53 |
IEDL.DBID | .~1 |
ISSN | 2212-4209 |
IngestDate | Thu Apr 24 23:09:19 EDT 2025 Tue Jul 01 03:41:04 EDT 2025 Sat Feb 08 15:52:39 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Confidence map Landslide susceptibility Monte Carlo simulation Buffer-controlled sampling Machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c303t-80a9ec8ecfeeed12350e2861836f9962dd7dc6b0a4e71c7d43376ee7e9ef17a53 |
ParticipantIDs | crossref_citationtrail_10_1016_j_ijdrr_2024_104966 crossref_primary_10_1016_j_ijdrr_2024_104966 elsevier_sciencedirect_doi_10_1016_j_ijdrr_2024_104966 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2024 2024-11-00 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: November 2024 |
PublicationDecade | 2020 |
PublicationTitle | International journal of disaster risk reduction |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Hirzel, Helfer, Metral (bib33) 2001; 145 Liu, Zhang, Li, Huang, Wang (bib1) 2022; 37 Topaçli, Ozcan, Gokceoglu (bib17) 2024; 25 Shi, Zhao, Gao (bib76) 2021; 45 Huang, Liu, Jiang, Catani, Liu, Fan, Huang (bib50) 2024 Peethambaran, Leshchinsky (bib4) 2023; 97 Reichenbach, Rossi, Malamud, Mihir, Guzzetti (bib15) 2018; 180 Dou, Yunus, Bui, Merghadi, Sahana, Zhu, Chen, Han, Pham (bib9) 2020; 17 Qin, Bao, Zhu, Wang, Hu (bib25) 2013; 27 Zhou, Wen, Zhang, Xu, Zhang (bib59) 2021; 12 Huang, Teng, Yao, Jiang, Catani, Chen, Huang (bib19) 2024; 16 Huang, Ye, Jiang, Huang, Chang, Chen (bib20) 2021; 202 He, Zhang, Dou, Jiang, Xiao, Zhou (bib8) 2024; 3 Zhao, Zhao (bib53) 2021; 2021 Hong, Miao, Liu, Zhu (bib27) 2019; 176 Qin, Zhou (bib71) 2023; 18 Yang, Ma, Ding, Wen, Sun (bib37) 2024; 16 Merghadi, Yunus, Dou, Whiteley, ThaiPham, Bui, Avtar, Abderrahmane (bib7) 2020; 207 Dou, Yunus, Merghadi, Shirzadi, Nguyen, Hussain, Avtar, Chen, Pham, Yamagishi (bib13) 2020; 720 Lucchese, de Oliveira, Pedrollo (bib40) 2021; 198 Xiong, Zhou, Wang, Wang, Wang, Ji, Wang, Zou, You, Qin (bib46) 2022; 14 Zhang, Li, Li, Liu, Chen, Ding (bib12) 2021; 54 Adnan, Rahman, Ahmed, Ahmed, Rabbi, Rahman (bib23) 2020; 12 Huang, Zhang, Zhou, Wang, Huang, Zhu (bib57) 2020; 17 Shi, Zhao (bib72) 2020; 146 Wang, Lin, Wang, Jiang, Su, Wang, Mondal, Huang, Wang (bib61) 2022; 112 Gameiro, Riffel, de Oliveira, Guasselli (bib34) 2021; 137 Song, Li, Lizárraga, Zhao, Buscarnera (bib5) 2021; 154 Wei, Ye, Ge, Li (bib6) 2022; 19 Wang, Wang, Zhang (bib47) 2022 Weiss (bib51) 2001; vol. 200 Domènech, Alvioli, Corominas (bib54) 2020; 17 Dong, Dou, Fu, Zhang, Xing (bib3) 2023; 38 Hua, Wang, Li, Xu, Xia (bib41) 2020; 18 Tobler (bib31) 1970; 46 Zhang, Zhang, Dou, Hou, Xiang, Wang, Yang, Liu (bib2) 2024 Luo, Lin, Chen, Zhu, Xu, Huo, Yu, Peng (bib24) 2019; 9 Kim, Lee, Park, Ahn, Kil, Sung, Biging (bib42) 2018; 32 Huang, Pan, Fan, Jiang, Huang, Zhou (bib60) 2022; 81 Jenks (bib56) 1967; 7 Yao, Tham, Dai (bib39) 2008; 101 Di Napoli, Carotenuto, Cevasco, Confuorto, Di Martire, Firpo, Pepe, Raso, Calcaterra (bib43) 2020; 17 Shi, Nie, Zhao, Gao (bib73) 2020; 121 Geurts, Ernst, Wehenkel (bib58) 2006; 63 Yang, Liu, Huang, Huang, Wang (bib44) 2023; 123 Bragagnolo, da Silva, Grzybowski (bib10) 2020; 184 Karakas, Unal, Cetinkaya, Ozcan, Karakas, Can, Gokceoglu, Kocaman (bib22) 2024; 178 Anshori, Samodra, Mardiatno, Sartohadi (bib30) 2022; 161 Liu, Yang, Huang, Wang (bib11) 2021; 12 Nicu (bib49) 2018; 77 Kuan-Tsung, Merghadi, Yunus, Binh Thai, Dou (bib21) 2019; 9 Zhu, Miao, Liu, Bai, Zeng, Ma, Hong (bib36) 2019; 183 Huang, Yan, Fan, Yao, Huang, Chen, Hong (bib26) 2022; 13 Bruzón, Arrogante-Funes, Arrogante-Funes, Martín-González, Novillo, Fernández, Vázquez-Jiménez, Alarcón-Paredes, Alonso-Silverio, Cantu-Ramirez, Ramos-Bernal (bib45) 2021; 18 Shi, Liu, Yin (bib69) 2021; 147 Huang, Xiong, Yao, Catani, Zhou, Huang (bib18) 2023; 15 Zhang, Liu, Zhu, Shao (bib74) 2023; 160 Liu, Yin, Xiao, Huang, Cheng (bib70) 2024; 15 Sun, Wu, Wen, Gu (bib29) 2023; 14 Sholichin, Othman, Prayogo, Rahardjo (bib16) 2024 Li, Cui, Hu, Lu, Guo, Wang, Wang, Wang, Zhou (bib52) 2024; 51 Aditian, Kubota, Shinohara (bib48) 2018; 318 Dong, Dou, Li, Chen, Ji, Xing, Zhang, Daud (bib14) 2024; 62 Achour, Pourghasemi (bib28) 2020; 11 Zhu, Lu, Liu, Qin, Zhou (bib35) 2018; 24 Zhu, Sun, Wen, Zhang, Ji, Li, Zhou, Zhao (bib38) 2024; 15 Liu, Zhang, Zhang, Shu, Xiao (bib32) 2022; 37 Pradhan, Sameen (bib55) 2017 Merghadi (10.1016/j.ijdrr.2024.104966_bib7) 2020; 207 Hong (10.1016/j.ijdrr.2024.104966_bib27) 2019; 176 Huang (10.1016/j.ijdrr.2024.104966_bib50) 2024 Sholichin (10.1016/j.ijdrr.2024.104966_bib16) 2024 Xiong (10.1016/j.ijdrr.2024.104966_bib46) 2022; 14 Wang (10.1016/j.ijdrr.2024.104966_bib61) 2022; 112 Liu (10.1016/j.ijdrr.2024.104966_bib1) 2022; 37 Huang (10.1016/j.ijdrr.2024.104966_bib20) 2021; 202 Qin (10.1016/j.ijdrr.2024.104966_bib25) 2013; 27 Kim (10.1016/j.ijdrr.2024.104966_bib42) 2018; 32 Huang (10.1016/j.ijdrr.2024.104966_bib19) 2024; 16 Shi (10.1016/j.ijdrr.2024.104966_bib69) 2021; 147 Bragagnolo (10.1016/j.ijdrr.2024.104966_bib10) 2020; 184 Kuan-Tsung (10.1016/j.ijdrr.2024.104966_bib21) 2019; 9 Hua (10.1016/j.ijdrr.2024.104966_bib41) 2020; 18 Weiss (10.1016/j.ijdrr.2024.104966_bib51) 2001; vol. 200 Zhu (10.1016/j.ijdrr.2024.104966_bib36) 2019; 183 Topaçli (10.1016/j.ijdrr.2024.104966_bib17) 2024; 25 Dong (10.1016/j.ijdrr.2024.104966_bib14) 2024; 62 Yao (10.1016/j.ijdrr.2024.104966_bib39) 2008; 101 Sun (10.1016/j.ijdrr.2024.104966_bib29) 2023; 14 Luo (10.1016/j.ijdrr.2024.104966_bib24) 2019; 9 Yang (10.1016/j.ijdrr.2024.104966_bib37) 2024; 16 Di Napoli (10.1016/j.ijdrr.2024.104966_bib43) 2020; 17 Wang (10.1016/j.ijdrr.2024.104966_bib47) 2022 Huang (10.1016/j.ijdrr.2024.104966_bib60) 2022; 81 Anshori (10.1016/j.ijdrr.2024.104966_bib30) 2022; 161 Peethambaran (10.1016/j.ijdrr.2024.104966_bib4) 2023; 97 Zhao (10.1016/j.ijdrr.2024.104966_bib53) 2021; 2021 Zhang (10.1016/j.ijdrr.2024.104966_bib2) Song (10.1016/j.ijdrr.2024.104966_bib5) 2021; 154 Liu (10.1016/j.ijdrr.2024.104966_bib32) 2022; 37 Zhou (10.1016/j.ijdrr.2024.104966_bib59) 2021; 12 Yang (10.1016/j.ijdrr.2024.104966_bib44) 2023; 123 He (10.1016/j.ijdrr.2024.104966_bib8) 2024; 3 Jenks (10.1016/j.ijdrr.2024.104966_bib56) 1967; 7 Reichenbach (10.1016/j.ijdrr.2024.104966_bib15) 2018; 180 Zhang (10.1016/j.ijdrr.2024.104966_bib74) 2023; 160 Shi (10.1016/j.ijdrr.2024.104966_bib73) 2020; 121 Pradhan (10.1016/j.ijdrr.2024.104966_bib55) 2017 Huang (10.1016/j.ijdrr.2024.104966_bib26) 2022; 13 Huang (10.1016/j.ijdrr.2024.104966_bib57) 2020; 17 Geurts (10.1016/j.ijdrr.2024.104966_bib58) 2006; 63 Qin (10.1016/j.ijdrr.2024.104966_bib71) 2023; 18 Hirzel (10.1016/j.ijdrr.2024.104966_bib33) 2001; 145 Karakas (10.1016/j.ijdrr.2024.104966_bib22) 2024; 178 Nicu (10.1016/j.ijdrr.2024.104966_bib49) 2018; 77 Dou (10.1016/j.ijdrr.2024.104966_bib13) 2020; 720 Shi (10.1016/j.ijdrr.2024.104966_bib72) 2020; 146 Huang (10.1016/j.ijdrr.2024.104966_bib18) 2023; 15 Tobler (10.1016/j.ijdrr.2024.104966_bib31) 1970; 46 Liu (10.1016/j.ijdrr.2024.104966_bib11) 2021; 12 Lucchese (10.1016/j.ijdrr.2024.104966_bib40) 2021; 198 Dou (10.1016/j.ijdrr.2024.104966_bib9) 2020; 17 Zhu (10.1016/j.ijdrr.2024.104966_bib35) 2018; 24 Domènech (10.1016/j.ijdrr.2024.104966_bib54) 2020; 17 Achour (10.1016/j.ijdrr.2024.104966_bib28) 2020; 11 Adnan (10.1016/j.ijdrr.2024.104966_bib23) 2020; 12 Zhang (10.1016/j.ijdrr.2024.104966_bib12) 2021; 54 Li (10.1016/j.ijdrr.2024.104966_bib52) 2024; 51 Zhu (10.1016/j.ijdrr.2024.104966_bib38) 2024; 15 Liu (10.1016/j.ijdrr.2024.104966_bib70) 2024; 15 Wei (10.1016/j.ijdrr.2024.104966_bib6) 2022; 19 Shi (10.1016/j.ijdrr.2024.104966_bib76) 2021; 45 Dong (10.1016/j.ijdrr.2024.104966_bib3) 2023; 38 Aditian (10.1016/j.ijdrr.2024.104966_bib48) 2018; 318 Bruzón (10.1016/j.ijdrr.2024.104966_bib45) 2021; 18 Gameiro (10.1016/j.ijdrr.2024.104966_bib34) 2021; 137 |
References_xml | – volume: 202 year: 2021 ident: bib20 article-title: Uncertainty study of landslide susceptibility prediction considering the different attribute interval numbers of environmental factors and different data-based models publication-title: Catena – volume: 97 year: 2023 ident: bib4 article-title: Application of landslide susceptibility towards urbanization suitability zonation in mountainous settings publication-title: Int. J. Disaster Risk Reduct. – volume: 15 start-page: 2954 year: 2023 end-page: 2972 ident: bib18 article-title: Uncertainties of landslide susceptibility prediction considering different landslide types publication-title: J. Rock Mech. Geotech. Eng. – volume: 46 start-page: 234 year: 1970 end-page: 240 ident: bib31 article-title: A computer movie simulating urban growth in the Detroit Region publication-title: Econ. Geogr. – volume: 14 start-page: 2866 year: 2022 ident: bib46 article-title: A novel intelligent method based on the Gaussian heatmap sampling technique and convolutional neural network for landslide susceptibility mapping publication-title: Remote Sens.-Basel – volume: 17 start-page: 249 year: 2020 end-page: 265 ident: bib54 article-title: Preparing first-time slope failures hazard maps: from pixel-based to slope unit-based publication-title: Landslides – year: 2024 ident: bib2 article-title: Advancing reservoir landslide stability assessment via TS-InSAR and airborne LiDAR observations in the Daping landslide group, Three Gorges Reservoir Area, China, Landslides – volume: 37 start-page: 14309 year: 2022 end-page: 14334 ident: bib1 article-title: A bibliometric analysis of the landslide susceptibility research (1999–2021) publication-title: Geocarto Int. – volume: 183 year: 2019 ident: bib36 article-title: A similarity-based approach to sampling absence data for landslide susceptibility mapping using data-driven methods publication-title: Catena – volume: 17 start-page: 217 year: 2020 end-page: 229 ident: bib57 article-title: A deep learning algorithm using a fully connected sparse autoencoder neural network for landslide susceptibility prediction publication-title: Landslides – volume: 12 start-page: 1837 year: 2021 end-page: 1861 ident: bib11 article-title: Landslide susceptibility mapping by attentional factorization machines considering feature interactions publication-title: Geomatics, Nat. Hazards Risk – volume: 25 year: 2024 ident: bib17 article-title: Performance comparison of landslide susceptibility maps derived from logistic regression and random forest models in the bolaman basin, türkiye publication-title: Nat. Hazard. Rev. – volume: 9 year: 2019 ident: bib21 article-title: Evaluating scale effects of topographic variables in landslide susceptibility models using GIS-based machine learning techniques publication-title: Sci. Rep.-UK – year: 2022 ident: bib47 article-title: Transfer learning improves landslide susceptibility assessment publication-title: Gondwana Res. – volume: 9 year: 2019 ident: bib24 article-title: Coupling logistic model tree and random subspace to predict the landslide susceptibility areas with considering the uncertainty of environmental features publication-title: Sci. Rep.-UK – volume: 154 year: 2021 ident: bib5 article-title: Shallow landslide triggering in unsaturated vegetated slopes: efficient computation of susceptibility maps publication-title: Comput. Geosci.-UK – year: 2024 ident: bib16 article-title: Assessing landslide susceptibility and formulating adaptation strategies in the konto watershed, east java, Indonesia publication-title: Int. J. Disaster Risk Reduct. – volume: 32 start-page: 2987 year: 2018 end-page: 3019 ident: bib42 article-title: Estimating landslide susceptibility areas considering the uncertainty inherent in modeling methods publication-title: Stoch. Environ. Res. Risk Assess. – volume: 77 start-page: 79 year: 2018 ident: bib49 article-title: Application of analytic hierarchy process, frequency ratio, and statistical index to landslide susceptibility: an approach to endangered cultural heritage publication-title: Environ. Earth Sci. – volume: 81 start-page: 182 year: 2022 ident: bib60 article-title: The uncertainty of landslide susceptibility prediction modeling: suitability of linear conditioning factors publication-title: Bull. Eng. Geol. Environ. – volume: 720 year: 2020 ident: bib13 article-title: Different sampling strategies for predicting landslide susceptibilities are deemed less consequential with deep learning publication-title: Sci. Total Environ. – volume: 146 year: 2020 ident: bib72 article-title: Practical estimation of compression behavior of clayey/silty sands using equivalent void-ratio concept publication-title: J. Geotech. Geoenviron. Eng. – volume: 54 start-page: 5633 year: 2021 end-page: 5673 ident: bib12 article-title: Application of deep learning algorithms in geotechnical engineering: a short critical review publication-title: Aritif. Intell. Rev. – volume: 17 start-page: 641 year: 2020 end-page: 658 ident: bib9 article-title: Improved landslide assessment using support vector machine with bagging, boosting, and stacking ensemble machine learning framework in a mountainous watershed, Japan publication-title: Landslides – volume: 184 year: 2020 ident: bib10 article-title: Artificial neural network ensembles applied to the mapping of landslide susceptibility publication-title: Catena – volume: 51 year: 2024 ident: bib52 article-title: Glacier retreat in eastern himalaya drives catastrophic Glacier hazard chain publication-title: Geophys. Res. Lett. – volume: 18 start-page: 3153 year: 2023 end-page: 3175 ident: bib71 article-title: On the seismic stability of soil slopes containing dual weak layers: true failure load assessment by finite-element limit-analysis publication-title: Acta Geotech. – start-page: 133 year: 2017 end-page: 150 ident: bib55 article-title: Effects of the spatial resolution of digital elevation models and their products on landslide susceptibility mapping publication-title: Laser Scanning Applications in Landslide Assessment – volume: 16 start-page: 2414 year: 2024 ident: bib37 article-title: A novel dataset replenishment strategy integrating time-series InSAR for refined landslide susceptibility mapping in karst regions publication-title: Water – volume: 14 year: 2023 ident: bib29 article-title: A LightGBM-based landslide susceptibility model considering the uncertainty of non-landslide samples publication-title: Geomatics, Nat. Hazards Risk – volume: 15 year: 2024 ident: bib38 article-title: Considering the effect of non-landslide sample selection on landslide susceptibility assessment publication-title: Geomatics, Nat. Hazards Risk – volume: 45 start-page: 1007 year: 2021 end-page: 1028 ident: bib76 article-title: A homogenization-based state-dependent model for gap-graded granular materials with fine-dominated structure publication-title: Int. J. Numer. Anal. Methods Geomech. – volume: 121 start-page: 103440 year: 2020 ident: bib73 article-title: A homogenization equation for the small strain stiffness of gap-graded granular materials publication-title: Comput. Geotech. – volume: 12 year: 2021 ident: bib59 article-title: Landslide susceptibility mapping using hybrid random forest with GeoDetector and RFE for factor optimization publication-title: Geosci. Front. – volume: 160 start-page: 103496 year: 2023 ident: bib74 article-title: A novel elastic-plastic damage model for rock materials considering micro-structural degradation due to cyclic fatigue publication-title: Int. J. Plast. – volume: 180 start-page: 60 year: 2018 end-page: 91 ident: bib15 article-title: A review of statistically-based landslide susceptibility models publication-title: Earth Sci. Rev. – volume: 37 start-page: 15683 year: 2022 end-page: 15713 ident: bib32 article-title: Machine learning with a susceptibility index-based sampling strategy for landslide susceptibility assessment publication-title: Geocarto Int. – volume: 2021 year: 2021 ident: bib53 article-title: A comparative study of landslide susceptibility mapping Using SVM and PSO-SVM models based on grid and slope units publication-title: Math. Probl Eng. – volume: 161 year: 2022 ident: bib30 article-title: Volunteered geographic information mobile application for participatory landslide inventory mapping publication-title: Comput. Geosci.-UK – volume: 145 start-page: 111 year: 2001 end-page: 121 ident: bib33 article-title: Assessing habitat-suitability models with a virtual species publication-title: Ecol. Model. – volume: 18 start-page: 1 year: 2020 end-page: 22 ident: bib41 article-title: Dynamic development of landslide susceptibility based on slope unit and deep neural networks publication-title: Landslides – volume: 207 year: 2020 ident: bib7 article-title: Machine learning methods for landslide susceptibility studies: a comparative overview of algorithm performance publication-title: Earth Sci. Rev. – volume: 176 start-page: 45 year: 2019 end-page: 64 ident: bib27 article-title: Exploring the effects of the design and quantity of absence data on the performance of random forest-based landslide susceptibility mapping publication-title: Catena – volume: 3 year: 2024 ident: bib8 article-title: Application of artificial intelligence in three aspects of landslide risk assessment: a comprehensive review publication-title: Rock Mechanics Bulletin – volume: 62 year: 2024 ident: bib14 article-title: Accelerating cross-scene Co-seismic landslide detection through progressive transfer learning and lightweight deep learning strategies publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 147 year: 2021 ident: bib69 article-title: Effect of initial density, particle shape, and confining stress on the critical state behavior of weathered gap-graded granular soils publication-title: J. Geotech. Geoenviron. Eng. – volume: 11 start-page: 871 year: 2020 end-page: 883 ident: bib28 article-title: How do machine learning techniques help in increasing accuracy of landslide susceptibility maps? publication-title: Geosci. Front. – volume: 63 start-page: 3 year: 2006 end-page: 42 ident: bib58 article-title: Extremely randomized trees, Mach publication-title: Learn – volume: 15 start-page: 101758 year: 2024 ident: bib70 article-title: Dynamic prediction of landslide life expectancy using ensemble system incorporating classical prediction models and machine learning publication-title: Geosci. Front. – volume: 198 year: 2021 ident: bib40 article-title: Investigation of the influence of nonoccurrence sampling on landslide susceptibility assessment using Artificial Neural Networks publication-title: Catena – volume: 16 start-page: 213 year: 2024 end-page: 230 ident: bib19 article-title: Uncertainties of landslide susceptibility prediction: influences of random errors in landslide conditioning factors and errors reduction by low pass filter method publication-title: J. Rock Mech. Geotech. Eng. – volume: 12 start-page: 3347 year: 2020 ident: bib23 article-title: Improving spatial agreement in machine learning-based landslide susceptibility mapping publication-title: Remote Sens.-Basel – volume: 24 year: 2018 ident: bib35 article-title: Spatial prediction based on Third Law of Geography, ann publication-title: Geo Inf. Syst. – volume: 38 year: 2023 ident: bib3 article-title: Unraveling the evolution of landslide susceptibility: a systematic review of 30-years of strategic themes and trends publication-title: Geocarto Int. – volume: 19 start-page: 1087 year: 2022 end-page: 1099 ident: bib6 article-title: An attention-constrained neural network with overall cognition for landslide spatial prediction publication-title: Landslides – volume: 13 year: 2022 ident: bib26 article-title: Uncertainty pattern in landslide susceptibility prediction modelling: effects of different landslide boundaries and spatial shape expressions publication-title: Geosci. Front. – year: 2024 ident: bib50 article-title: Optimization method of conditioning factors selection and combination for landslide susceptibility prediction publication-title: J. Rock Mech. Geotech. Eng. – volume: 18 year: 2021 ident: bib45 article-title: Landslide susceptibility assessment using an AutoML framework publication-title: Int. J. Environ. Res. Public Health – volume: vol. 200 year: 2001 ident: bib51 article-title: Topographic position and landforms analysis publication-title: Poster presentation, ESRI user conference, San Diego, CA – volume: 101 start-page: 572 year: 2008 end-page: 582 ident: bib39 article-title: Landslide susceptibility mapping based on Support Vector Machine: a case study on natural slopes of Hong Kong, China publication-title: Geomorphology – volume: 112 start-page: 1967 year: 2022 end-page: 1988 ident: bib61 article-title: The influences of the spatial extent selection for non-landslide samples on statistical-based landslide susceptibility modelling: a case study of Anhui Province in China publication-title: Nat. Hazards – volume: 318 start-page: 101 year: 2018 end-page: 111 ident: bib48 article-title: Comparison of GIS-based landslide susceptibility models using frequency ratio, logistic regression, and artificial neural network in a tertiary region of Ambon, Indonesia publication-title: Geomorphology – volume: 17 start-page: 1897 year: 2020 end-page: 1914 ident: bib43 article-title: Machine learning ensemble modelling as a tool to improve landslide susceptibility mapping reliability publication-title: Landslides – volume: 123 start-page: 198 year: 2023 end-page: 216 ident: bib44 article-title: Machine learning-based landslide susceptibility assessment with optimized ratio of landslide to non-landslide samples publication-title: Gondwana Res. – volume: 7 start-page: 186 year: 1967 end-page: 190 ident: bib56 article-title: The data model concept in statistical mapping publication-title: Int. Yearb. Cartogr. – volume: 27 start-page: 1364 year: 2013 end-page: 1380 ident: bib25 article-title: Uncertainty due to DEM error in landslide susceptibility mapping publication-title: Int. J. Geogr. Inf. Sci. – volume: 137 year: 2021 ident: bib34 article-title: Artificial neural networks applied to landslide susceptibility: the effect of sampling areas on model capacity for generalization and extrapolation publication-title: Appl. Geogr. – volume: 178 year: 2024 ident: bib22 article-title: Analysis of landslide susceptibility prediction accuracy with an event-based inventory: the 6 February 2023 Turkiye earthquakes publication-title: Soil Dyn. Earthquake Eng. – volume: 24 issue: 4 year: 2018 ident: 10.1016/j.ijdrr.2024.104966_bib35 article-title: Spatial prediction based on Third Law of Geography, ann publication-title: Geo Inf. Syst. – volume: 14 issue: 1 year: 2023 ident: 10.1016/j.ijdrr.2024.104966_bib29 article-title: A LightGBM-based landslide susceptibility model considering the uncertainty of non-landslide samples publication-title: Geomatics, Nat. Hazards Risk doi: 10.1080/19475705.2023.2213807 – volume: 17 start-page: 249 issue: 2 year: 2020 ident: 10.1016/j.ijdrr.2024.104966_bib54 article-title: Preparing first-time slope failures hazard maps: from pixel-based to slope unit-based publication-title: Landslides doi: 10.1007/s10346-019-01279-4 – volume: 154 year: 2021 ident: 10.1016/j.ijdrr.2024.104966_bib5 article-title: Shallow landslide triggering in unsaturated vegetated slopes: efficient computation of susceptibility maps publication-title: Comput. Geosci.-UK doi: 10.1016/j.cageo.2021.104826 – volume: 3 issue: 4 year: 2024 ident: 10.1016/j.ijdrr.2024.104966_bib8 article-title: Application of artificial intelligence in three aspects of landslide risk assessment: a comprehensive review publication-title: Rock Mechanics Bulletin doi: 10.1016/j.rockmb.2024.100144 – volume: 15 start-page: 101758 issue: 2 year: 2024 ident: 10.1016/j.ijdrr.2024.104966_bib70 article-title: Dynamic prediction of landslide life expectancy using ensemble system incorporating classical prediction models and machine learning publication-title: Geosci. Front. doi: 10.1016/j.gsf.2023.101758 – volume: 18 issue: 20 year: 2021 ident: 10.1016/j.ijdrr.2024.104966_bib45 article-title: Landslide susceptibility assessment using an AutoML framework publication-title: Int. J. Environ. Res. Public Health doi: 10.3390/ijerph182010971 – volume: 14 start-page: 2866 issue: 12 year: 2022 ident: 10.1016/j.ijdrr.2024.104966_bib46 article-title: A novel intelligent method based on the Gaussian heatmap sampling technique and convolutional neural network for landslide susceptibility mapping publication-title: Remote Sens.-Basel doi: 10.3390/rs14122866 – volume: 37 start-page: 14309 issue: 26 year: 2022 ident: 10.1016/j.ijdrr.2024.104966_bib1 article-title: A bibliometric analysis of the landslide susceptibility research (1999–2021) publication-title: Geocarto Int. doi: 10.1080/10106049.2022.2087753 – volume: 17 start-page: 641 issue: 3 year: 2020 ident: 10.1016/j.ijdrr.2024.104966_bib9 article-title: Improved landslide assessment using support vector machine with bagging, boosting, and stacking ensemble machine learning framework in a mountainous watershed, Japan publication-title: Landslides doi: 10.1007/s10346-019-01286-5 – volume: 37 start-page: 15683 issue: 27 year: 2022 ident: 10.1016/j.ijdrr.2024.104966_bib32 article-title: Machine learning with a susceptibility index-based sampling strategy for landslide susceptibility assessment publication-title: Geocarto Int. doi: 10.1080/10106049.2022.2102221 – volume: 62 year: 2024 ident: 10.1016/j.ijdrr.2024.104966_bib14 article-title: Accelerating cross-scene Co-seismic landslide detection through progressive transfer learning and lightweight deep learning strategies publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2024.3424680 – volume: 63 start-page: 3 issue: 1 year: 2006 ident: 10.1016/j.ijdrr.2024.104966_bib58 article-title: Extremely randomized trees, Mach publication-title: Learn – volume: 27 start-page: 1364 issue: 7 year: 2013 ident: 10.1016/j.ijdrr.2024.104966_bib25 article-title: Uncertainty due to DEM error in landslide susceptibility mapping publication-title: Int. J. Geogr. Inf. Sci. doi: 10.1080/13658816.2013.770515 – volume: 720 year: 2020 ident: 10.1016/j.ijdrr.2024.104966_bib13 article-title: Different sampling strategies for predicting landslide susceptibilities are deemed less consequential with deep learning publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.137320 – volume: 16 start-page: 2414 issue: 17 year: 2024 ident: 10.1016/j.ijdrr.2024.104966_bib37 article-title: A novel dataset replenishment strategy integrating time-series InSAR for refined landslide susceptibility mapping in karst regions publication-title: Water doi: 10.3390/w16172414 – year: 2022 ident: 10.1016/j.ijdrr.2024.104966_bib47 article-title: Transfer learning improves landslide susceptibility assessment publication-title: Gondwana Res. – volume: 318 start-page: 101 year: 2018 ident: 10.1016/j.ijdrr.2024.104966_bib48 article-title: Comparison of GIS-based landslide susceptibility models using frequency ratio, logistic regression, and artificial neural network in a tertiary region of Ambon, Indonesia publication-title: Geomorphology doi: 10.1016/j.geomorph.2018.06.006 – volume: 101 start-page: 572 issue: 4 year: 2008 ident: 10.1016/j.ijdrr.2024.104966_bib39 article-title: Landslide susceptibility mapping based on Support Vector Machine: a case study on natural slopes of Hong Kong, China publication-title: Geomorphology doi: 10.1016/j.geomorph.2008.02.011 – volume: 17 start-page: 217 issue: 1 year: 2020 ident: 10.1016/j.ijdrr.2024.104966_bib57 article-title: A deep learning algorithm using a fully connected sparse autoencoder neural network for landslide susceptibility prediction publication-title: Landslides doi: 10.1007/s10346-019-01274-9 – volume: 17 start-page: 1897 issue: 8 year: 2020 ident: 10.1016/j.ijdrr.2024.104966_bib43 article-title: Machine learning ensemble modelling as a tool to improve landslide susceptibility mapping reliability publication-title: Landslides doi: 10.1007/s10346-020-01392-9 – volume: 202 year: 2021 ident: 10.1016/j.ijdrr.2024.104966_bib20 article-title: Uncertainty study of landslide susceptibility prediction considering the different attribute interval numbers of environmental factors and different data-based models publication-title: Catena doi: 10.1016/j.catena.2021.105250 – volume: 183 year: 2019 ident: 10.1016/j.ijdrr.2024.104966_bib36 article-title: A similarity-based approach to sampling absence data for landslide susceptibility mapping using data-driven methods publication-title: Catena doi: 10.1016/j.catena.2019.104188 – volume: 146 issue: 6 year: 2020 ident: 10.1016/j.ijdrr.2024.104966_bib72 article-title: Practical estimation of compression behavior of clayey/silty sands using equivalent void-ratio concept publication-title: J. Geotech. Geoenviron. Eng. doi: 10.1061/(ASCE)GT.1943-5606.0002267 – volume: 184 year: 2020 ident: 10.1016/j.ijdrr.2024.104966_bib10 article-title: Artificial neural network ensembles applied to the mapping of landslide susceptibility publication-title: Catena doi: 10.1016/j.catena.2019.104240 – volume: 145 start-page: 111 issue: 2 year: 2001 ident: 10.1016/j.ijdrr.2024.104966_bib33 article-title: Assessing habitat-suitability models with a virtual species publication-title: Ecol. Model. doi: 10.1016/S0304-3800(01)00396-9 – volume: 25 issue: 1 year: 2024 ident: 10.1016/j.ijdrr.2024.104966_bib17 article-title: Performance comparison of landslide susceptibility maps derived from logistic regression and random forest models in the bolaman basin, türkiye publication-title: Nat. Hazard. Rev. – volume: 207 year: 2020 ident: 10.1016/j.ijdrr.2024.104966_bib7 article-title: Machine learning methods for landslide susceptibility studies: a comparative overview of algorithm performance publication-title: Earth Sci. Rev. doi: 10.1016/j.earscirev.2020.103225 – volume: 9 year: 2019 ident: 10.1016/j.ijdrr.2024.104966_bib21 article-title: Evaluating scale effects of topographic variables in landslide susceptibility models using GIS-based machine learning techniques publication-title: Sci. Rep.-UK – volume: 45 start-page: 1007 issue: 8 year: 2021 ident: 10.1016/j.ijdrr.2024.104966_bib76 article-title: A homogenization-based state-dependent model for gap-graded granular materials with fine-dominated structure publication-title: Int. J. Numer. Anal. Methods Geomech. doi: 10.1002/nag.3189 – year: 2024 ident: 10.1016/j.ijdrr.2024.104966_bib50 article-title: Optimization method of conditioning factors selection and combination for landslide susceptibility prediction publication-title: J. Rock Mech. Geotech. Eng. doi: 10.1016/j.jrmge.2024.04.029 – volume: 121 start-page: 103440 year: 2020 ident: 10.1016/j.ijdrr.2024.104966_bib73 article-title: A homogenization equation for the small strain stiffness of gap-graded granular materials publication-title: Comput. Geotech. doi: 10.1016/j.compgeo.2020.103440 – volume: 19 start-page: 1087 issue: 5 year: 2022 ident: 10.1016/j.ijdrr.2024.104966_bib6 article-title: An attention-constrained neural network with overall cognition for landslide spatial prediction publication-title: Landslides doi: 10.1007/s10346-021-01841-z – volume: 7 start-page: 186 year: 1967 ident: 10.1016/j.ijdrr.2024.104966_bib56 article-title: The data model concept in statistical mapping publication-title: Int. Yearb. Cartogr. – volume: 12 start-page: 3347 issue: 20 year: 2020 ident: 10.1016/j.ijdrr.2024.104966_bib23 article-title: Improving spatial agreement in machine learning-based landslide susceptibility mapping publication-title: Remote Sens.-Basel doi: 10.3390/rs12203347 – volume: 18 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.ijdrr.2024.104966_bib41 article-title: Dynamic development of landslide susceptibility based on slope unit and deep neural networks publication-title: Landslides – volume: 178 year: 2024 ident: 10.1016/j.ijdrr.2024.104966_bib22 article-title: Analysis of landslide susceptibility prediction accuracy with an event-based inventory: the 6 February 2023 Turkiye earthquakes publication-title: Soil Dyn. Earthquake Eng. doi: 10.1016/j.soildyn.2024.108491 – volume: 198 year: 2021 ident: 10.1016/j.ijdrr.2024.104966_bib40 article-title: Investigation of the influence of nonoccurrence sampling on landslide susceptibility assessment using Artificial Neural Networks publication-title: Catena doi: 10.1016/j.catena.2020.105067 – volume: 38 issue: 1 year: 2023 ident: 10.1016/j.ijdrr.2024.104966_bib3 article-title: Unraveling the evolution of landslide susceptibility: a systematic review of 30-years of strategic themes and trends publication-title: Geocarto Int. doi: 10.1080/10106049.2023.2256308 – volume: 18 start-page: 3153 issue: 6 year: 2023 ident: 10.1016/j.ijdrr.2024.104966_bib71 article-title: On the seismic stability of soil slopes containing dual weak layers: true failure load assessment by finite-element limit-analysis publication-title: Acta Geotech. doi: 10.1007/s11440-022-01730-2 – volume: 77 start-page: 79 issue: 3 year: 2018 ident: 10.1016/j.ijdrr.2024.104966_bib49 article-title: Application of analytic hierarchy process, frequency ratio, and statistical index to landslide susceptibility: an approach to endangered cultural heritage publication-title: Environ. Earth Sci. doi: 10.1007/s12665-018-7261-5 – volume: 180 start-page: 60 year: 2018 ident: 10.1016/j.ijdrr.2024.104966_bib15 article-title: A review of statistically-based landslide susceptibility models publication-title: Earth Sci. Rev. doi: 10.1016/j.earscirev.2018.03.001 – volume: 137 year: 2021 ident: 10.1016/j.ijdrr.2024.104966_bib34 article-title: Artificial neural networks applied to landslide susceptibility: the effect of sampling areas on model capacity for generalization and extrapolation publication-title: Appl. Geogr. doi: 10.1016/j.apgeog.2021.102598 – volume: 54 start-page: 5633 issue: 8 year: 2021 ident: 10.1016/j.ijdrr.2024.104966_bib12 article-title: Application of deep learning algorithms in geotechnical engineering: a short critical review publication-title: Aritif. Intell. Rev. doi: 10.1007/s10462-021-09967-1 – volume: 15 issue: 1 year: 2024 ident: 10.1016/j.ijdrr.2024.104966_bib38 article-title: Considering the effect of non-landslide sample selection on landslide susceptibility assessment publication-title: Geomatics, Nat. Hazards Risk doi: 10.1080/19475705.2024.2392778 – start-page: 133 year: 2017 ident: 10.1016/j.ijdrr.2024.104966_bib55 article-title: Effects of the spatial resolution of digital elevation models and their products on landslide susceptibility mapping – year: 2024 ident: 10.1016/j.ijdrr.2024.104966_bib16 article-title: Assessing landslide susceptibility and formulating adaptation strategies in the konto watershed, east java, Indonesia publication-title: Int. J. Disaster Risk Reduct. doi: 10.1016/j.ijdrr.2024.104797 – volume: 46 start-page: 234 year: 1970 ident: 10.1016/j.ijdrr.2024.104966_bib31 article-title: A computer movie simulating urban growth in the Detroit Region publication-title: Econ. Geogr. doi: 10.2307/143141 – volume: 16 start-page: 213 issue: 1 year: 2024 ident: 10.1016/j.ijdrr.2024.104966_bib19 article-title: Uncertainties of landslide susceptibility prediction: influences of random errors in landslide conditioning factors and errors reduction by low pass filter method publication-title: J. Rock Mech. Geotech. Eng. doi: 10.1016/j.jrmge.2023.11.001 – volume: 176 start-page: 45 year: 2019 ident: 10.1016/j.ijdrr.2024.104966_bib27 article-title: Exploring the effects of the design and quantity of absence data on the performance of random forest-based landslide susceptibility mapping publication-title: Catena doi: 10.1016/j.catena.2018.12.035 – volume: 15 start-page: 2954 issue: 11 year: 2023 ident: 10.1016/j.ijdrr.2024.104966_bib18 article-title: Uncertainties of landslide susceptibility prediction considering different landslide types publication-title: J. Rock Mech. Geotech. Eng. doi: 10.1016/j.jrmge.2023.03.001 – volume: 51 issue: 8 year: 2024 ident: 10.1016/j.ijdrr.2024.104966_bib52 article-title: Glacier retreat in eastern himalaya drives catastrophic Glacier hazard chain publication-title: Geophys. Res. Lett. doi: 10.1029/2024GL108202 – volume: 12 issue: 5 year: 2021 ident: 10.1016/j.ijdrr.2024.104966_bib59 article-title: Landslide susceptibility mapping using hybrid random forest with GeoDetector and RFE for factor optimization publication-title: Geosci. Front. doi: 10.1016/j.gsf.2021.101211 – volume: 97 year: 2023 ident: 10.1016/j.ijdrr.2024.104966_bib4 article-title: Application of landslide susceptibility towards urbanization suitability zonation in mountainous settings publication-title: Int. J. Disaster Risk Reduct. doi: 10.1016/j.ijdrr.2023.104061 – volume: 112 start-page: 1967 issue: 3 year: 2022 ident: 10.1016/j.ijdrr.2024.104966_bib61 article-title: The influences of the spatial extent selection for non-landslide samples on statistical-based landslide susceptibility modelling: a case study of Anhui Province in China publication-title: Nat. Hazards doi: 10.1007/s11069-022-05252-8 – ident: 10.1016/j.ijdrr.2024.104966_bib2 – volume: 32 start-page: 2987 issue: 11 year: 2018 ident: 10.1016/j.ijdrr.2024.104966_bib42 article-title: Estimating landslide susceptibility areas considering the uncertainty inherent in modeling methods publication-title: Stoch. Environ. Res. Risk Assess. doi: 10.1007/s00477-018-1609-y – volume: 123 start-page: 198 year: 2023 ident: 10.1016/j.ijdrr.2024.104966_bib44 article-title: Machine learning-based landslide susceptibility assessment with optimized ratio of landslide to non-landslide samples publication-title: Gondwana Res. doi: 10.1016/j.gr.2022.05.012 – volume: 161 year: 2022 ident: 10.1016/j.ijdrr.2024.104966_bib30 article-title: Volunteered geographic information mobile application for participatory landslide inventory mapping publication-title: Comput. Geosci.-UK doi: 10.1016/j.cageo.2022.105073 – volume: 11 start-page: 871 issue: 3 year: 2020 ident: 10.1016/j.ijdrr.2024.104966_bib28 article-title: How do machine learning techniques help in increasing accuracy of landslide susceptibility maps? publication-title: Geosci. Front. doi: 10.1016/j.gsf.2019.10.001 – volume: 2021 year: 2021 ident: 10.1016/j.ijdrr.2024.104966_bib53 article-title: A comparative study of landslide susceptibility mapping Using SVM and PSO-SVM models based on grid and slope units publication-title: Math. Probl Eng. – volume: vol. 200 year: 2001 ident: 10.1016/j.ijdrr.2024.104966_bib51 article-title: Topographic position and landforms analysis – volume: 160 start-page: 103496 year: 2023 ident: 10.1016/j.ijdrr.2024.104966_bib74 article-title: A novel elastic-plastic damage model for rock materials considering micro-structural degradation due to cyclic fatigue publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2022.103496 – volume: 13 issue: 2 year: 2022 ident: 10.1016/j.ijdrr.2024.104966_bib26 article-title: Uncertainty pattern in landslide susceptibility prediction modelling: effects of different landslide boundaries and spatial shape expressions publication-title: Geosci. Front. doi: 10.1016/j.gsf.2021.101317 – volume: 9 year: 2019 ident: 10.1016/j.ijdrr.2024.104966_bib24 article-title: Coupling logistic model tree and random subspace to predict the landslide susceptibility areas with considering the uncertainty of environmental features publication-title: Sci. Rep.-UK – volume: 12 start-page: 1837 issue: 1 year: 2021 ident: 10.1016/j.ijdrr.2024.104966_bib11 article-title: Landslide susceptibility mapping by attentional factorization machines considering feature interactions publication-title: Geomatics, Nat. Hazards Risk doi: 10.1080/19475705.2021.1950217 – volume: 81 start-page: 182 issue: 5 year: 2022 ident: 10.1016/j.ijdrr.2024.104966_bib60 article-title: The uncertainty of landslide susceptibility prediction modeling: suitability of linear conditioning factors publication-title: Bull. Eng. Geol. Environ. doi: 10.1007/s10064-022-02672-5 – volume: 147 issue: 2 year: 2021 ident: 10.1016/j.ijdrr.2024.104966_bib69 article-title: Effect of initial density, particle shape, and confining stress on the critical state behavior of weathered gap-graded granular soils publication-title: J. Geotech. Geoenviron. Eng. doi: 10.1061/(ASCE)GT.1943-5606.0002449 |
SSID | ssj0000866288 |
Score | 2.3415012 |
Snippet | The quality of landslide and non-landslide samples plays a crucial role in landslide susceptibility maps (LSMs) generated using machine learning algorithms.... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 104966 |
SubjectTerms | Buffer-controlled sampling Confidence map Landslide susceptibility Machine learning Monte Carlo simulation |
Title | Quantifying uncertainty in landslide susceptibility mapping due to sampling randomness |
URI | https://dx.doi.org/10.1016/j.ijdrr.2024.104966 |
Volume | 114 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8JAEN0QvHgxfkYUyR6MJyulXfpxJESCmpAYRbk1292pKQIlpRy4-Nud6QfRxHDw1m12kma6fW-3--YtY9cmIqPylDAs4WiD1l-GD9o2vNB3_VB0yeCF1BYjZzgWj5PupMb6VS0MySpL7C8wPUfr8k67zGZ7GcftFwtRV1imTypIF1mSKtiFS6P87quz_c-CU3Y6UZfOmMP-BgVU5kO5zCue6pR8QS1B251-7pb4B0H9IJ3BITsoZ4u8VzzQEavB4pg1i5Ja_g6zSKbAb3h1I0k_T9jb81qSAojqlziyVrHnn214vOB5Ye8s1sBX61UuaMm1sRs-l-TT8MH1GniW8JUkoTm2kcl0Mic4PGXjwf1rf2iUpycYCmkpQ-qRPigPVATIg1QSa4LlOfgJOxEuciytXa2c0JQC3I5ytbARawBc8CHquLJrn7H6IlnAOePkKeh4nk17NkLhijC0vcjDaylVx5aiwawqZYEqrcXphItZUGnIpkGe54DyHBR5brDbbdCycNbY3d2p3kXwa4AEiP27Ai_-G3jJ9qlVFB42WT1L13CFM5AsbOVDrMX2eg9Pw9E32Mracw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2VcoALYhU7PiBORG0TN8uxQlQtSyUEhd4ix56gQDe16aF_z0wWBBLqgVviZKRo4rxnx2-eAS7rhIza19KypWssnn9ZARrH8qPACyLZZIMXVlv03E5f3g2agwrclLUwLKsssD_H9Ayti5Zakc3aNElqzzahrrTrAasgPWLJNVhnd6pmFdZb3ftO7_tXC43aeVNd3maOQiyOKf2HMqVX8mFmbA1qS17xDDLDxD846gfvtLdhqxgwilb-TDtQwfEunOZVteINh7GaobgSZcNk9rkHr08LxSIgLmESRFz5sn-6FMlYZLW9w8SgmC_mmaYlk8cuxUixVcO7MAsU6UTMFWvN6ZzIzExGjIj70G_fvtx0rGIDBUsTM6XEPipA7aOOkaiQq2LraPsufcVuTPMc2xjPaDeqK4leQ3tGOgQ3iB4GGDc81XQOoDqejPEQBNsKur7v8LKN1DQpjBw_9ulYKd1wlDwCu0xZqAt3cd7kYhiWMrKPMMtzyHkO8zwfwfV30DQ311h9u1u-i_BXHwkJ_lcFHv838AI2Oi-PD-FDt3d_Apt8Ja9DPIVqOlvgGQ1I0ui86HBfX5DdJA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantifying+uncertainty+in+landslide+susceptibility+mapping+due+to+sampling+randomness&rft.jtitle=International+journal+of+disaster+risk+reduction&rft.au=Liu%2C+Lei-Lei&rft.au=Zhao%2C+Shuang-Lin&rft.au=Yang%2C+Can&rft.au=Zhang%2C+Wengang&rft.date=2024-11-01&rft.pub=Elsevier+Ltd&rft.issn=2212-4209&rft.eissn=2212-4209&rft.volume=114&rft_id=info:doi/10.1016%2Fj.ijdrr.2024.104966&rft.externalDocID=S2212420924007283 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2212-4209&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2212-4209&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2212-4209&client=summon |