Is our breathing optimal? Solving a piecewise linear model with constraints
This paper is motivated by a question related to the control of amplitude and frequency of breathing. We present a simplified mathematical model, consisting of two piecewise linear ordinary differential equations, that could represent gas exchange in the lungs. We then define and solve an optimal co...
Saved in:
Published in | Journal of mathematical biology Vol. 83; no. 4; p. 43 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.10.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0303-6812 1432-1416 1432-1416 |
DOI | 10.1007/s00285-021-01661-8 |
Cover
Abstract | This paper is motivated by a question related to the control of amplitude and frequency of breathing. We present a simplified mathematical model, consisting of two piecewise linear ordinary differential equations, that could represent gas exchange in the lungs. We then define and solve an optimal control problem with unknown durations of inhalation and exhalation, subject to several constraints. The durations are divided such that one of the state variables is strictly increasing during the first phase and decreasing during the second phase. The optimal control problem can be solved analytically. One analytical solution is found when the forcing is a given sinusoidal function with unknown period and amplitude. Other analytical solutions are found when the forcing function, the period and the duration of the first phase are unknown but the amplitude is given. Our results show that different cost functions can produce different optimal forcing functions. We also show that the shape of these functions does not affect the average levels of oxygen in the lungs—the average level of oxygen is only dependent on the amplitude and period of breathing in the model we present. |
---|---|
AbstractList | This paper is motivated by a question related to the control of amplitude and frequency of breathing. We present a simplified mathematical model, consisting of two piecewise linear ordinary differential equations, that could represent gas exchange in the lungs. We then define and solve an optimal control problem with unknown durations of inhalation and exhalation, subject to several constraints. The durations are divided such that one of the state variables is strictly increasing during the first phase and decreasing during the second phase. The optimal control problem can be solved analytically. One analytical solution is found when the forcing is a given sinusoidal function with unknown period and amplitude. Other analytical solutions are found when the forcing function, the period and the duration of the first phase are unknown but the amplitude is given. Our results show that different cost functions can produce different optimal forcing functions. We also show that the shape of these functions does not affect the average levels of oxygen in the lungs—the average level of oxygen is only dependent on the amplitude and period of breathing in the model we present. This paper is motivated by a question related to the control of amplitude and frequency of breathing. We present a simplified mathematical model, consisting of two piecewise linear ordinary differential equations, that could represent gas exchange in the lungs. We then define and solve an optimal control problem with unknown durations of inhalation and exhalation, subject to several constraints. The durations are divided such that one of the state variables is strictly increasing during the first phase and decreasing during the second phase. The optimal control problem can be solved analytically. One analytical solution is found when the forcing is a given sinusoidal function with unknown period and amplitude. Other analytical solutions are found when the forcing function, the period and the duration of the first phase are unknown but the amplitude is given. Our results show that different cost functions can produce different optimal forcing functions. We also show that the shape of these functions does not affect the average levels of oxygen in the lungs-the average level of oxygen is only dependent on the amplitude and period of breathing in the model we present.This paper is motivated by a question related to the control of amplitude and frequency of breathing. We present a simplified mathematical model, consisting of two piecewise linear ordinary differential equations, that could represent gas exchange in the lungs. We then define and solve an optimal control problem with unknown durations of inhalation and exhalation, subject to several constraints. The durations are divided such that one of the state variables is strictly increasing during the first phase and decreasing during the second phase. The optimal control problem can be solved analytically. One analytical solution is found when the forcing is a given sinusoidal function with unknown period and amplitude. Other analytical solutions are found when the forcing function, the period and the duration of the first phase are unknown but the amplitude is given. Our results show that different cost functions can produce different optimal forcing functions. We also show that the shape of these functions does not affect the average levels of oxygen in the lungs-the average level of oxygen is only dependent on the amplitude and period of breathing in the model we present. |
ArticleNumber | 43 |
Author | Ben-Tal, Alona Roberts, Mick Zaidi, Faheem |
Author_xml | – sequence: 1 givenname: Faheem orcidid: 0000-0002-6545-3647 surname: Zaidi fullname: Zaidi, Faheem organization: Department of Mathematical Sciences, Federal Urdu University – sequence: 2 givenname: Alona orcidid: 0000-0002-2627-3774 surname: Ben-Tal fullname: Ben-Tal, Alona email: a.ben-tal@massey.ac.nz organization: School of Natural and Computational Sciences, College of Sciences, Massey University – sequence: 3 givenname: Mick orcidid: 0000-0003-2693-5093 surname: Roberts fullname: Roberts, Mick organization: School of Natural and Computational Sciences, Massey University |
BookMark | eNp9kM9LwzAYhoMouE3_AU8BL16i-ZI2bU8iwx_DgQf1HNL229bRJTXpHP73ZqsgePAU-HiflzfPmBxbZ5GQC-DXwHl2EzgXecq4AMZBKWD5ERlBIgWDBNQxGXHJJVM5iFMyDmHNOWRpASPyPAvUbT0tPZp-1dgldV3fbEx7S19d-7k_GNo1WOGuCUjbxqLxdONqbOmu6Ve0cjb03jS2D2fkZGHagOc_74S8P9y_TZ_Y_OVxNr2bsyqO6FlWFrVCXppEFipXUEMmDYKSBdSpWQiueKEKMBlUiSoNlrlKUaKUEgsBvJQTcjX0dt59bDH0etOECtvWWHTboEWaRT4TsXdCLv9E1_G3Nq47pGSeZ3HThIghVXkXgseF7nx04L80cL33qwe_OvrVB786j5AcoBDDdon-t_of6hs_aX3y |
Cites_doi | 10.1006/jmaa.1997.5523 10.1152/jappl.1950.2.11.592 10.1007/978-1-4614-3834-2 10.1007/BF02584204 10.1007/978-3-642-91002-9_3 10.1201/b12739 10.1201/9781420011418 10.1007/BF02476117 10.1113/JP274596 10.1007/BF00337351 10.2307/j.ctvcm4g0s 10.1137/1.9780898717457 10.1152/jappl.1960.15.3.325 10.1016/j.jtbi.2005.06.005 10.1090/S0002-9947-98-02129-1 10.1007/BF00337350 10.1007/978-0-8176-8086-2 10.1152/jappl.1971.30.5.597 10.1002/wsbm.1244 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021. 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021. – notice: 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. |
DBID | AAYXX CITATION 3V. 7TK 7TM 7U9 7X7 7XB 88A 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ JQ2 K7- K9. L6V LK8 M0S M1P M7N M7P M7S M7Z P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 |
DOI | 10.1007/s00285-021-01661-8 |
DatabaseName | CrossRef ProQuest Central (Corporate) Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) ProQuest Engineering Collection Biological Sciences Health & Medical Collection (Alumni) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Biochemistry Abstracts 1 Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Proquest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection Biochemistry Abstracts 1 ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Computer Science Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Mathematics |
EISSN | 1432-1416 |
ExternalDocumentID | 10_1007_s00285_021_01661_8 |
GrantInformation_xml | – fundername: Massey University funderid: http://dx.doi.org/10.13039/501100001554 |
GroupedDBID | --- -52 -5D -5G -BR -EM -Y2 -~C -~X .86 06D 0R~ 0VY 186 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 3-Y 30V 3SX 3V. 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 78A 7X7 88A 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAGAY AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDPE ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBNVY BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP D0L DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS EIOEI EJD EMB EMOBN EPAXT ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW L6V LAS LK8 LLZTM M0L M1P M4Y M7P M7S MA- MQGED MVM N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9R PF0 PQQKQ PROAC PSQYO PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SV3 SZN T13 T16 TN5 TSG TSK TSV TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WIP WJK WK6 WK8 YLTOR YQT Z45 Z7U ZMTXR ZWQNP ZXP ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT 7TK 7TM 7U9 7XB 8FD 8FK ABRTQ AZQEC DWQXO FR3 GNUQQ H94 JQ2 K9. M7N M7Z P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 PUEGO |
ID | FETCH-LOGICAL-c303t-7b9d6e0ba4396861d173ae16391d5af20609691a71c46baeb865e3e333e9210b3 |
IEDL.DBID | AGYKE |
ISSN | 0303-6812 1432-1416 |
IngestDate | Thu Sep 04 19:37:16 EDT 2025 Fri Jul 25 19:14:02 EDT 2025 Tue Jul 01 02:03:16 EDT 2025 Fri Feb 21 02:47:12 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Piecewise Breathing pattern 49-02 49K15 Optimal control |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c303t-7b9d6e0ba4396861d173ae16391d5af20609691a71c46baeb865e3e333e9210b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2627-3774 0000-0003-2693-5093 0000-0002-6545-3647 |
PQID | 2576388730 |
PQPubID | 54026 |
ParticipantIDs | proquest_miscellaneous_2576917217 proquest_journals_2576388730 crossref_primary_10_1007_s00285_021_01661_8 springer_journals_10_1007_s00285_021_01661_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-01 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Journal of mathematical biology |
PublicationTitleAbbrev | J. Math. Biol |
PublicationYear | 2021 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | BatzelJKappelFSchneditzDTranHTCardiovascular and respiratory systems: modeling, analysis, and control2007PhiladelphiaSociety for Industrial and Applied Mathematics10.1137/1.9780898717457 SchättlerHLedzewiczUGeometric optimal control2012BerlinSpringer10.1007/978-1-4614-3834-2 PontryaginLSBoltyanskiiVGGamkrelidzeRVMishechenkoEFThe mathematical theory of optimal processes1962HobokenWiley de PinhoMRVinterRBNecessary conditions for optimal control problems involving nonlinear differential algebraic equationsJ Math Anal Appl19975493516146489310.1006/jmaa.1997.5523 VinterRZhengHNecessary conditions for optimal control problems with state constraintsTrans Am Math Soc199835011811204145833710.1090/S0002-9947-98-02129-1 Hämäläinen R, Viljanen A (1978a) A hierarchical goal-seeking model of the control of breathing. Biol Cybern 29(3):151–158 Hämäläinen RP, Viljanen AA (1978b) Modelling the respiratory airflow pattern by optimization criteria. Biol Cybern 29:143–149 RohrerFBetheAPhysiologie der AtembewegungHandbuch der Normalen und Pathologischen Physiologie1925BerlinSpringer7012710.1007/978-3-642-91002-9_3 RuttimannUEYamamotoWSRespiratory airflow patterns that satisfy power and force criteria of optimalityAnn Biomed Eng19721214615910.1007/BF02584204 Ben-TalATawhaiHMIntegrative approaches for modeling regulation and function of the respiratory systemWiley Interdiscip Rev Syst Biol Med2013568769910.1002/wsbm.1244 HestenesMRCalculus of variations and optimal control theory1966HobokenWiley0173.35703 YamashiroSGrodinsFOptimal regulation of respiratory airflowJ Appl Physiol197130559760210.1152/jappl.1971.30.5.597 BerkovitzLDMedhinNGNonlinear optimal control theory2012Boca RatonCRC Press10.1201/b12739 MeadJControl of respiratory frequencyJ Appl Physiol196015332533610.1152/jappl.1960.15.3.325 HullDGOptimal control theory for applications2013BerlinSpringer LenhartSWorkmanJTOptimal control applied to biological models2007Boca RatonCRC Press10.1201/9781420011418 LiberzonDCalculus of variations and optimal control theory: a concise introduction2011PrincetonPrinceton University Press10.2307/j.ctvcm4g0s Ben-TalASimplified models for gas exchange in the human lungsJ Theor Biol2006238247449510.1016/j.jtbi.2005.06.005 UpretiSROptimal control for chemical engineers2013Boca RatonCRC Press OtisABFennWORahnHMechanics of breathing in manJ Appl Physiol195021159260710.1152/jappl.1950.2.11.592 VinterROptimal control2010BerlinSpringer10.1007/978-0-8176-8086-2 ComroeJHPhysiology of respiration19772ChicagoYear Book TiptonMJHarperAPatonJFCostelloJTThe human ventilatory response to stress: rate or depth?J Physiol20175955729575210.1113/JP274596 SaidelGMChesterEHBreathing pattern effects on pulmonary oxygen uptakeMed Biol Eng197614440240710.1007/BF02476117 S Lenhart (1661_CR11) 2007 A Ben-Tal (1661_CR3) 2013; 5 1661_CR8 DG Hull (1661_CR10) 2013 F Rohrer (1661_CR16) 1925 R Vinter (1661_CR22) 2010 1661_CR7 D Liberzon (1661_CR12) 2011 LD Berkovitz (1661_CR4) 2012 MJ Tipton (1661_CR20) 2017; 595 UE Ruttimann (1661_CR17) 1972; 1 JH Comroe (1661_CR5) 1977 A Ben-Tal (1661_CR2) 2006; 238 MR de Pinho (1661_CR6) 1997; 5 H Schättler (1661_CR19) 2012 MR Hestenes (1661_CR9) 1966 SR Upreti (1661_CR21) 2013 S Yamashiro (1661_CR24) 1971; 30 J Batzel (1661_CR1) 2007 AB Otis (1661_CR14) 1950; 2 R Vinter (1661_CR23) 1998; 350 LS Pontryagin (1661_CR15) 1962 J Mead (1661_CR13) 1960; 15 GM Saidel (1661_CR18) 1976; 14 |
References_xml | – reference: Ben-TalASimplified models for gas exchange in the human lungsJ Theor Biol2006238247449510.1016/j.jtbi.2005.06.005 – reference: HestenesMRCalculus of variations and optimal control theory1966HobokenWiley0173.35703 – reference: TiptonMJHarperAPatonJFCostelloJTThe human ventilatory response to stress: rate or depth?J Physiol20175955729575210.1113/JP274596 – reference: SaidelGMChesterEHBreathing pattern effects on pulmonary oxygen uptakeMed Biol Eng197614440240710.1007/BF02476117 – reference: de PinhoMRVinterRBNecessary conditions for optimal control problems involving nonlinear differential algebraic equationsJ Math Anal Appl19975493516146489310.1006/jmaa.1997.5523 – reference: YamashiroSGrodinsFOptimal regulation of respiratory airflowJ Appl Physiol197130559760210.1152/jappl.1971.30.5.597 – reference: SchättlerHLedzewiczUGeometric optimal control2012BerlinSpringer10.1007/978-1-4614-3834-2 – reference: VinterRZhengHNecessary conditions for optimal control problems with state constraintsTrans Am Math Soc199835011811204145833710.1090/S0002-9947-98-02129-1 – reference: PontryaginLSBoltyanskiiVGGamkrelidzeRVMishechenkoEFThe mathematical theory of optimal processes1962HobokenWiley – reference: LiberzonDCalculus of variations and optimal control theory: a concise introduction2011PrincetonPrinceton University Press10.2307/j.ctvcm4g0s – reference: LenhartSWorkmanJTOptimal control applied to biological models2007Boca RatonCRC Press10.1201/9781420011418 – reference: BerkovitzLDMedhinNGNonlinear optimal control theory2012Boca RatonCRC Press10.1201/b12739 – reference: ComroeJHPhysiology of respiration19772ChicagoYear Book – reference: Hämäläinen RP, Viljanen AA (1978b) Modelling the respiratory airflow pattern by optimization criteria. Biol Cybern 29:143–149 – reference: UpretiSROptimal control for chemical engineers2013Boca RatonCRC Press – reference: HullDGOptimal control theory for applications2013BerlinSpringer – reference: OtisABFennWORahnHMechanics of breathing in manJ Appl Physiol195021159260710.1152/jappl.1950.2.11.592 – reference: BatzelJKappelFSchneditzDTranHTCardiovascular and respiratory systems: modeling, analysis, and control2007PhiladelphiaSociety for Industrial and Applied Mathematics10.1137/1.9780898717457 – reference: Ben-TalATawhaiHMIntegrative approaches for modeling regulation and function of the respiratory systemWiley Interdiscip Rev Syst Biol Med2013568769910.1002/wsbm.1244 – reference: Hämäläinen R, Viljanen A (1978a) A hierarchical goal-seeking model of the control of breathing. Biol Cybern 29(3):151–158 – reference: VinterROptimal control2010BerlinSpringer10.1007/978-0-8176-8086-2 – reference: MeadJControl of respiratory frequencyJ Appl Physiol196015332533610.1152/jappl.1960.15.3.325 – reference: RohrerFBetheAPhysiologie der AtembewegungHandbuch der Normalen und Pathologischen Physiologie1925BerlinSpringer7012710.1007/978-3-642-91002-9_3 – reference: RuttimannUEYamamotoWSRespiratory airflow patterns that satisfy power and force criteria of optimalityAnn Biomed Eng19721214615910.1007/BF02584204 – volume-title: Physiology of respiration year: 1977 ident: 1661_CR5 – volume: 5 start-page: 493 year: 1997 ident: 1661_CR6 publication-title: J Math Anal Appl doi: 10.1006/jmaa.1997.5523 – volume-title: Calculus of variations and optimal control theory year: 1966 ident: 1661_CR9 – volume: 2 start-page: 592 issue: 11 year: 1950 ident: 1661_CR14 publication-title: J Appl Physiol doi: 10.1152/jappl.1950.2.11.592 – volume-title: Geometric optimal control year: 2012 ident: 1661_CR19 doi: 10.1007/978-1-4614-3834-2 – volume: 1 start-page: 146 issue: 2 year: 1972 ident: 1661_CR17 publication-title: Ann Biomed Eng doi: 10.1007/BF02584204 – start-page: 70 volume-title: Handbuch der Normalen und Pathologischen Physiologie year: 1925 ident: 1661_CR16 doi: 10.1007/978-3-642-91002-9_3 – volume-title: Optimal control theory for applications year: 2013 ident: 1661_CR10 – volume-title: Nonlinear optimal control theory year: 2012 ident: 1661_CR4 doi: 10.1201/b12739 – volume-title: Optimal control applied to biological models year: 2007 ident: 1661_CR11 doi: 10.1201/9781420011418 – volume: 14 start-page: 402 issue: 4 year: 1976 ident: 1661_CR18 publication-title: Med Biol Eng doi: 10.1007/BF02476117 – volume: 595 start-page: 5729 year: 2017 ident: 1661_CR20 publication-title: J Physiol doi: 10.1113/JP274596 – ident: 1661_CR7 doi: 10.1007/BF00337351 – volume-title: Calculus of variations and optimal control theory: a concise introduction year: 2011 ident: 1661_CR12 doi: 10.2307/j.ctvcm4g0s – volume-title: Cardiovascular and respiratory systems: modeling, analysis, and control year: 2007 ident: 1661_CR1 doi: 10.1137/1.9780898717457 – volume-title: Optimal control for chemical engineers year: 2013 ident: 1661_CR21 – volume: 15 start-page: 325 issue: 3 year: 1960 ident: 1661_CR13 publication-title: J Appl Physiol doi: 10.1152/jappl.1960.15.3.325 – volume: 238 start-page: 474 issue: 2 year: 2006 ident: 1661_CR2 publication-title: J Theor Biol doi: 10.1016/j.jtbi.2005.06.005 – volume: 350 start-page: 1181 year: 1998 ident: 1661_CR23 publication-title: Trans Am Math Soc doi: 10.1090/S0002-9947-98-02129-1 – ident: 1661_CR8 doi: 10.1007/BF00337350 – volume-title: The mathematical theory of optimal processes year: 1962 ident: 1661_CR15 – volume-title: Optimal control year: 2010 ident: 1661_CR22 doi: 10.1007/978-0-8176-8086-2 – volume: 30 start-page: 597 issue: 5 year: 1971 ident: 1661_CR24 publication-title: J Appl Physiol doi: 10.1152/jappl.1971.30.5.597 – volume: 5 start-page: 687 year: 2013 ident: 1661_CR3 publication-title: Wiley Interdiscip Rev Syst Biol Med doi: 10.1002/wsbm.1244 |
SSID | ssj0017591 |
Score | 2.3077414 |
Snippet | This paper is motivated by a question related to the control of amplitude and frequency of breathing. We present a simplified mathematical model, consisting of... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 43 |
SubjectTerms | Amplitudes Applications of Mathematics Breathing Constraint modelling Cost function Differential equations Exact solutions Exhalation Gas exchange Inhalation Lungs Mathematical and Computational Biology Mathematical models Mathematics Mathematics and Statistics Optimal control Ordinary differential equations Respiration |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fS8MwEA66Ifgi_sTplAi-aXBt1rR9GiqTqThEHeytJM0NBrOda4f433vXdhsK-tzQkEty991d7j7GzrWBAJRrhZYjCt3ErtBtOxJtT2oJaAKtQwXOT33VG7Qfht6wCrhl1bPKhU4sFLVNY4qRXxEwlngjZKsz_RDEGkXZ1YpCY53VUQUHeM7rN93-88syj-B7JWceKmpBnbaqspmieI7cDapOJncarZQIfpqmFd78lSItLM_dNtuqICO_Lvd4h61Bsss2ShLJrz32eJ9xHMINwT-KJ_EU1cC7nnT4azqheAHXfDqGGD7HGXCClXrGCwYcTlFYHhNEJKaIPNtng7vu221PVBQJIsYl5cI3oVXQMhpxhQqUYx1fakCMFTrW0yO3pdBFCR3tO3FbGQ0mUB5IkFJCiM6ekQeslqQJHDIuUVaIpqyk3tUIVIxjTRCHgQGF3nccNNjFQjrRtOyEES17HheyjFCWUSHLCEc3FwKMqluRRas9bLCz5Wc8z5Sk0Amk83JMSH6p32CXC8GvfvH3jEf_z3jMNl3a6-IdXpPV8tkcThBP5Oa0OjTfQ8DFrA priority: 102 providerName: ProQuest |
Title | Is our breathing optimal? Solving a piecewise linear model with constraints |
URI | https://link.springer.com/article/10.1007/s00285-021-01661-8 https://www.proquest.com/docview/2576388730 https://www.proquest.com/docview/2576917217 |
Volume | 83 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS-NAEB-0RdAHz0-uXk9W8E0jTbbZbJ6kd7R-oYhaqE9hN5mC6LViUkT_emfyJSf64EsCyWaTzOzu_GZmZwZg11jUqLzEMXLMppvYc0w3GTtdXxqJJAITlwOczy_U8bB7OvJHZVBYWu12r1yS-UpdB7uxesDRxKz-klRx9Dw0fVeHugHN3tHtWb_2HgR-USmPlmeH82uVwTKf9_K_QHpHmR8co7m8GfyAYfWlxTaT-4NZZg_i1w9JHL_7KyuwXAJQ0StGzCrM4WQNFoqSlC9rsHRe53FN1-HsJBX0gLAMLdlWJaa0xPwzD4fievrAtghhxOMdxvh8l6JgyGqeRF5dR7CFV8QMP7kKRZZuwHDQv_l77JTlF5yYCJc5gQ0ThR1rCLMordzEDaRBwm-hm_hm7HUUqT-hawI37ipr0Grlo0QpJYakSFq5CY3JdII_QUjiCCG1RHJebAJB1k2sjkNtUZFmH-sW7FU8iB6LLBtRnU85J1ZExIpyYkXUul2xKSpnXBqx4iRpxZSdFuzUt2musAPETHA6K9qErPMGLdivOPPexddv3Ppe81-w6DFz8z1_bWhkTzP8Tdgls9swH4wCOurB0XY5bOn8p39xeUVXh17vDb0D5vs |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-NADLZYEFouK56iuzwGCU7siCaTTJIDQggoLQUugMQtzGRcCQmaLilC_Cl-I3bStFokuHHOKCN947E_22MbYNtYjFH7ThrV49BN5ksTuJ4MQmUUkgl0Hhc4X1zq9k1wdhveTsFbXQvDzyprnVgqapdnHCPfY2Ks6Eao5sHgn-SpUZxdrUdoVGLRxdcXctmK_c4xne-O77dOro_acjRVQGakrocysonT2LSGTLGOtee8SBkkWpJ4LjQ9v6mJ1Seeibws0NagjXWICpVSmJB_ZBX99wfMBEolPCoibp2OsxZRWE3oo30k9_UaFemUpXrs3HAtNDvvZBNl_L8hnLDbDwnZ0s615uHXiKCKw0qiFmAK-4swW42sfF2CbqcQtERYJpscvRI5KZ1H83AgrvIHjk4IIwb3mOHLfYGCSax5EuW8HcExX5ExIeW5FMNiGW6-BboVmO7nfVwFoQgr4m5OcadsokXWczbOktiiJl8_ixuwW6OTDqq-G-m4w3KJZUpYpiWWKa1eqwFMR3ewSCcS04Ct8We6PZwSMX3Mn6s1CXvBUQP-1sBPfvH5jr-_3nETfravL87T885l9w_M-Xzu5QvANZgePj3jOjGZod0oxUfA3XfL6ztqDP-4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fT9tADLZY0aa9oI0xrdBth8Sexokml1yShwltg4pSqBAMibdwl3OlStAUUoT6r_HXzc6PVpu0vfGcU076zmd_ts82wI6xGKP2nTRqxKGbzJcmcCMZhMooJBPoPC5wPh3qo8vg-Cq8WoGnphaGn1U2OrFU1C7POEa-x8RY0Y1Q3b1R_Szi7KC3P72TPEGKM63NOI1KRAY4fyT3rfjWP6Cz_uL7vcNfP49kPWFAZqS6ZzKyidPYtYbMso6157xIGSSKknguNCO_q4nhJ56JvCzQ1qCNdYgKlVKYkK9kFf33BaxGZBWDFqz-OByenS9yGFFYzeujnSR3-apLdsrCPXZ1uDKaXXmykDL-0ywuue5f6dnS6vXewFpNV8X3Sr7ewgpO1uFlNcBy_g4G_ULQEmGZenIsS-Skgm7Nzb64yG84ViGMmI4xw8dxgYIprbkX5fQdwRFgkTE95SkVs2IDLp8FvPfQmuQT_ABCEVbE5JzivtmEpfWcjbMktqjJ88_iNnxt0EmnVReOdNFvucQyJSzTEsuUVncaANP6RhbpUn7asL34THeJEyRmgvlDtSZhnzhqw24D_PIX_95x8_87foZXJKvpSX842ILXPh97-RywA63Z_QN-JFozs59q-RFw_dwi-xvq8QVi |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Is+our+breathing+optimal%3F+Solving+a+piecewise+linear+model+with+constraints&rft.jtitle=Journal+of+mathematical+biology&rft.au=Zaidi%2C+Faheem&rft.au=Ben-Tal%2C+Alona&rft.au=Roberts%2C+Mick&rft.date=2021-10-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0303-6812&rft.eissn=1432-1416&rft.volume=83&rft.issue=4&rft_id=info:doi/10.1007%2Fs00285-021-01661-8&rft.externalDocID=10_1007_s00285_021_01661_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0303-6812&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0303-6812&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0303-6812&client=summon |