Piezoelectric-based energy harvesting from bridge vibrations subjected to moving successive vehicles by functionally graded cantilever beams – Theoretical and experimental investigations
This study aims to harvest electrical energy from the vibrations of bridges. For this purpose, a functionally graded (FG) cantilever beam installed at the mid-point of a bridge was utilised. First, the motion equations for the bridge and FG harvester were acquired based on Hamilton's principle....
Saved in:
Published in | Mechanical systems and signal processing Vol. 188; p. 110015 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.04.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study aims to harvest electrical energy from the vibrations of bridges. For this purpose, a functionally graded (FG) cantilever beam installed at the mid-point of a bridge was utilised. First, the motion equations for the bridge and FG harvester were acquired based on Hamilton's principle. The bridge was considered as a simply-supported Timoshenko beam, whilst the Euler-Bernoulli beam assumption was used for the FG energy harvester. The material properties were assumed to be functionally graded in the thickness direction according to the power law distribution for both the substrate and the piezoelectric layer of the harvester. The obtained equations were solved using the Runge-Kutta method. In addition, a finite element (FE) simulation was carried out in COMSOL on the bridge-FG harvester system, and a test rig was constructed to perform some empirical tests. Finally, the voltage and power obtained from the theoretical model were compared with the FE results and measured data. An excellent agreement was observed among the results. This subject indicates that the proposed model was accurate enough to predict the behaviour of the bridge and FG harvester. The maximum power harvested by the FG harvester was measured to be about210 µWat the optimum value for the resistance. |
---|---|
AbstractList | This study aims to harvest electrical energy from the vibrations of bridges. For this purpose, a functionally graded (FG) cantilever beam installed at the mid-point of a bridge was utilised. First, the motion equations for the bridge and FG harvester were acquired based on Hamilton's principle. The bridge was considered as a simply-supported Timoshenko beam, whilst the Euler-Bernoulli beam assumption was used for the FG energy harvester. The material properties were assumed to be functionally graded in the thickness direction according to the power law distribution for both the substrate and the piezoelectric layer of the harvester. The obtained equations were solved using the Runge-Kutta method. In addition, a finite element (FE) simulation was carried out in COMSOL on the bridge-FG harvester system, and a test rig was constructed to perform some empirical tests. Finally, the voltage and power obtained from the theoretical model were compared with the FE results and measured data. An excellent agreement was observed among the results. This subject indicates that the proposed model was accurate enough to predict the behaviour of the bridge and FG harvester. The maximum power harvested by the FG harvester was measured to be about210 µWat the optimum value for the resistance. |
ArticleNumber | 110015 |
Author | Mousavi, Mohammad Ziaei-Rad, Saeed Karimi, Amir Hossein |
Author_xml | – sequence: 1 givenname: Mohammad surname: Mousavi fullname: Mousavi, Mohammad email: mohammadmousvi75@me.iut.ac.ir – sequence: 2 givenname: Saeed surname: Ziaei-Rad fullname: Ziaei-Rad, Saeed – sequence: 3 givenname: Amir Hossein surname: Karimi fullname: Karimi, Amir Hossein |
BookMark | eNqFkE1u2zAQRrlIgOanJ-iGF5AzMk1FWnQRBGkTwECzSNcESY3kMSTSIGmhyqp36HVymp6ktJ1VF-1qgMG8mW_eJTtz3iFjn0pYlFBWN9vFPMa4WyxhuVyUJUApz9gF1HVdiOUtfGCXMW4BoFlBdcHenglfPQ5oUyBbGB2x5egw9DPf6DBhTOR63gU_chOo7ZFPZIJO5F3kcW-2mcxI8nz002E07q3FGGnKk7ghO2DkZubd3tkDpIdh5n3QbYasdokGnDBwg3qM_PfPX_xlgz5gIqsHrl0O82OHgUZ0KTfIHRP1p_vX7LzTQ8SP7_WKff_y8HL_WKy_fX26v1sXVoBIxS2AQaikqbums02Lq04a0LK2ICXAqq10hWAbLU0lZLOSUtfCll0DKITRrbhizWmvDT7GgJ2ylI4RUtA0qBLUQb3aqqN6dVCvTuozK_5id_kbHeb_UJ9PFOa3JsKgoiV0FlsKWbhqPf2T_wOKv6uL |
CitedBy_id | crossref_primary_10_1016_j_isatra_2024_10_022 crossref_primary_10_1016_j_seta_2025_104203 crossref_primary_10_3934_energy_2024027 crossref_primary_10_1016_j_apm_2024_115755 crossref_primary_10_1177_1045389X231180040 crossref_primary_10_1007_s00542_025_05865_6 crossref_primary_10_1016_j_energy_2023_130007 crossref_primary_10_1016_j_rineng_2025_104622 crossref_primary_10_1007_s10409_024_23531_x crossref_primary_10_1016_j_ijnonlinmec_2025_105067 crossref_primary_10_1088_1361_665X_ad5b30 crossref_primary_10_1016_j_energy_2024_133636 crossref_primary_10_1016_j_euromechsol_2024_105432 crossref_primary_10_1016_j_euromechsol_2024_105389 crossref_primary_10_1016_j_chaos_2025_116200 crossref_primary_10_1016_j_ymssp_2023_110611 crossref_primary_10_1088_1361_665X_ad8b87 crossref_primary_10_1063_5_0191492 crossref_primary_10_1016_j_energy_2024_133183 crossref_primary_10_1016_j_energy_2025_134583 crossref_primary_10_1109_JSEN_2024_3373021 crossref_primary_10_3390_mi14111988 crossref_primary_10_1080_15376494_2024_2358110 |
Cites_doi | 10.1016/j.jsv.2013.11.007 10.1016/j.enconman.2018.01.076 10.1007/s10409-020-00956-1 10.1088/0964-1726/22/9/095019 10.1016/j.apm.2017.04.043 10.1016/j.compstruct.2013.03.007 10.1016/j.jsv.2021.116022 10.1177/1045389X11417650 10.1177/1045389X17689927 10.1061/(ASCE)0733-9445(2004)130:5(799) 10.1016/j.engstruct.2005.02.021 10.1080/15376494.2010.519221 10.1007/s12541-011-0151-3 10.1016/j.apm.2018.09.002 10.1016/S0921-5093(97)00513-3 10.1177/0954406215593569 10.1088/0964-1726/17/4/043001 10.1016/j.compstruct.2010.07.011 10.1002/andp.18822530910 10.1016/j.enconman.2018.02.054 10.1016/j.ijmecsci.2016.09.029 10.1016/j.compstruct.2019.111537 10.1177/0583102406061499 10.1016/j.compstruct.2015.04.011 10.1016/j.compositesb.2010.12.010 10.1016/j.compstruct.2019.01.067 10.1016/j.enconman.2018.09.014 10.1016/j.ymssp.2012.10.015 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ymssp.2022.110015 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_ymssp_2022_110015 S0888327022010834 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYFN ABBOA ABJNI ABMAC ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AFJKZ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD AXJTR BJAXD BKOJK BLXMC BNPGV CS3 DM4 DU5 EBS EFBJH EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG5 LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSH SST SSV SSZ T5K XPP ZMT ZU3 ~G- 29M AAQXK AAYWO AAYXX ABDPE ABEFU ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADFGL ADJOM ADMUD ADNMO AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CAG CITATION COF EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- RIG SBC SET SEW WUQ |
ID | FETCH-LOGICAL-c303t-700be065b8f9fc9de4f5b0a58c055004d6a6e0c9a5b6359455a83c1f90e33bad3 |
IEDL.DBID | .~1 |
ISSN | 0888-3270 |
IngestDate | Tue Jul 01 04:30:16 EDT 2025 Thu Apr 24 22:51:27 EDT 2025 Sun Apr 06 06:53:36 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Consecutive moving masses Piezoelectric energy harvesting Functionally graded material Timoshenko beam Euler-Bernoulli beam |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c303t-700be065b8f9fc9de4f5b0a58c055004d6a6e0c9a5b6359455a83c1f90e33bad3 |
ParticipantIDs | crossref_citationtrail_10_1016_j_ymssp_2022_110015 crossref_primary_10_1016_j_ymssp_2022_110015 elsevier_sciencedirect_doi_10_1016_j_ymssp_2022_110015 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-04-01 2023-04-00 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Mechanical systems and signal processing |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Cook-Chennault, Thambi, Sastry (b0030) 2008; 17 M. Karimi, R. Tikani, S. Ziaei-Rad, Piezoelectric energy harvesting from bridge vibrations under moving consecutive masses Hamani, Tikani, Assadi, Ziaei-Rad (b0055) 2020; 150 Zhao, Yang, Li, Crossley (b0150) 2017; 28 Ali, Friswell, Adhikari (b0170) 2011; 22 Ma, Lee (b0075) 2011; 93 Hao, Zhang, Yang (b0125) 2011; 42 Curie, Curie (b0035) 1880; 3 Heshmati, Amini (b0120) 2019; 66 Li, Upadrashta, Yu, Yang (b0115) 2018; 176 Kim, Kim, Kim (b0160) 2011; 12 Jin, Batra (b0080) 1998; 242 Li, Zhao, Li (b0095) 2014; 333 Eshtehardiha, Tikani, Ziaei-Rad (b0005) 2021; 500 Leutz, Wallmersperger (b0065) 2011; 18 Erturk, Inman (b0060) 2011 Azam, Mofid, Khoraskani (b0090) 2013; 20 Karimi, Karimi, Tikani, Ziaei-Rad (b0105) 2016; 119 Peigney, Siegert (b0175) 2013; 22 Lynch, Loh (b0020) 2006; 38 Ko, Ni (b0015) 2005; 27 Zhang, Chen, Ni, Zang, Hou (b0070) 2020; 233 2019. Larkin, Abdelkefi (b0155) 2019; 213 Lippmann (b0045) 1881; 10 Zhang, Xiang, Shi, Zhan (b0145) 2018; 163 W.G. Hankel, Über die aktino-und peizoelektrischen Eigenschaften des Bergkrystalles und ihre Beziehung zu den thermoelektrischen: S. Hirzel, 1881. S. Rabet, H. R. Ovesy, A. Ramazani, Mechanical Properties and Failure Behavior of Hexagonal Boron Nitride–Graphene van der Waals Heterostructures through Molecular Dynamics Simulation Yao, Liu, Ma, Wang, Zhang (b0135) 2020; 36 Priya, Inman (b0010) 2009 Karimi, Tikani, Ziaei-Rad, Mirdamadi (b0130) 2016; 230 vol. 16, no. 6, pp. 108-118, 2016 (in Persian). Izadgoshasb, Lim, Lake, Tang, Padilla, Kashiwao (b0140) 2018; 161 Wang, Meng (b0165) 2013; 36 Amini, Emdad, Farid (b0050) 2015; 129 Kim, Reddy (b0085) 2013; 103 Amini, Heshmati, Fatehi, Habibi (b0110) 2017; 49 Bilello, Bergman, Kuchma (b0100) 2004; 130 Bilello (10.1016/j.ymssp.2022.110015_b0100) 2004; 130 Eshtehardiha (10.1016/j.ymssp.2022.110015_b0005) 2021; 500 Zhao (10.1016/j.ymssp.2022.110015_b0150) 2017; 28 Priya (10.1016/j.ymssp.2022.110015_b0010) 2009 10.1016/j.ymssp.2022.110015_b0040 Lynch (10.1016/j.ymssp.2022.110015_b0020) 2006; 38 Erturk (10.1016/j.ymssp.2022.110015_b0060) 2011 Li (10.1016/j.ymssp.2022.110015_b0115) 2018; 176 10.1016/j.ymssp.2022.110015_b0025 Ko (10.1016/j.ymssp.2022.110015_b0015) 2005; 27 Kim (10.1016/j.ymssp.2022.110015_b0160) 2011; 12 Cook-Chennault (10.1016/j.ymssp.2022.110015_b0030) 2008; 17 Kim (10.1016/j.ymssp.2022.110015_b0085) 2013; 103 Jin (10.1016/j.ymssp.2022.110015_b0080) 1998; 242 Peigney (10.1016/j.ymssp.2022.110015_b0175) 2013; 22 Karimi (10.1016/j.ymssp.2022.110015_b0105) 2016; 119 Heshmati (10.1016/j.ymssp.2022.110015_b0120) 2019; 66 Lippmann (10.1016/j.ymssp.2022.110015_b0045) 1881; 10 Li (10.1016/j.ymssp.2022.110015_b0095) 2014; 333 Amini (10.1016/j.ymssp.2022.110015_b0110) 2017; 49 Amini (10.1016/j.ymssp.2022.110015_b0050) 2015; 129 Azam (10.1016/j.ymssp.2022.110015_b0090) 2013; 20 Ma (10.1016/j.ymssp.2022.110015_b0075) 2011; 93 Hamani (10.1016/j.ymssp.2022.110015_b0055) 2020; 150 Izadgoshasb (10.1016/j.ymssp.2022.110015_b0140) 2018; 161 Leutz (10.1016/j.ymssp.2022.110015_b0065) 2011; 18 Larkin (10.1016/j.ymssp.2022.110015_b0155) 2019; 213 Zhang (10.1016/j.ymssp.2022.110015_b0145) 2018; 163 Ali (10.1016/j.ymssp.2022.110015_b0170) 2011; 22 Karimi (10.1016/j.ymssp.2022.110015_b0130) 2016; 230 Zhang (10.1016/j.ymssp.2022.110015_b0070) 2020; 233 Hao (10.1016/j.ymssp.2022.110015_b0125) 2011; 42 Curie (10.1016/j.ymssp.2022.110015_b0035) 1880; 3 10.1016/j.ymssp.2022.110015_b0180 Wang (10.1016/j.ymssp.2022.110015_b0165) 2013; 36 Yao (10.1016/j.ymssp.2022.110015_b0135) 2020; 36 |
References_xml | – reference: M. Karimi, R. Tikani, S. Ziaei-Rad, Piezoelectric energy harvesting from bridge vibrations under moving consecutive masses, – reference: , 2019. – volume: 500 year: 2021 ident: b0005 article-title: Experimental and numerical investigation of energy harvesting from double cantilever beams with internal resonance publication-title: J. Sound Vib. – volume: 66 start-page: 344 year: 2019 end-page: 361 ident: b0120 article-title: A comprehensive study on the functionally graded piezoelectric energy harvesting from vibrations of a graded beam under travelling multi-oscillators publication-title: App. Math. Model. – volume: 230 start-page: 2363 year: 2016 end-page: 2375 ident: b0130 article-title: Experimental and theoretical studies on piezoelectric energy harvesting from low-frequency ambient random vibrations publication-title: Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. – volume: 93 start-page: 831 year: 2011 end-page: 842 ident: b0075 article-title: A further discussion of nonlinear mechanical behavior for FGM beams under in-plane thermal loading publication-title: Compos. Struct. – volume: 12 start-page: 1129 year: 2011 end-page: 1141 ident: b0160 article-title: A review of piezoelectric energy harvesting based on vibration publication-title: Int. J. Precis. Eng. Manuf. – volume: 38 start-page: 91 year: 2006 end-page: 130 ident: b0020 article-title: A summary review of wireless sensors and sensor networks for structural health monitoring publication-title: Shock Vibrat. Digest – volume: 129 start-page: 165 year: 2015 end-page: 176 ident: b0050 article-title: Finite element modeling of functionally graded piezoelectric harvesters publication-title: Compos. Struct. – volume: 161 start-page: 66 year: 2018 end-page: 73 ident: b0140 article-title: Optimizing orientation of piezoelectric cantilever beam for harvesting energy from human walking publication-title: Energ. Conver. Manage. – volume: 28 start-page: 2372 year: 2017 end-page: 2387 ident: b0150 article-title: Closed-form solutions for forced vibrations of piezoelectric energy harvesters by means of Green’s functions publication-title: J. Intell. Mater. Syst. Struct. – reference: vol. 16, no. 6, pp. 108-118, 2016 (in Persian). – volume: 10 start-page: 381 year: 1881 end-page: 394 ident: b0045 article-title: Principe de la conservation de l'électricité, ou second principe de la théorie des phénomènes électriques publication-title: J. Phys. Théor. Appl. – volume: 36 start-page: 193 year: 2013 end-page: 209 ident: b0165 article-title: Analytical modeling and experimental verification of vibration-based piezoelectric bimorph beam with a tip-mass for power harvesting publication-title: Mech. Syst. Sig. Process. – year: 2011 ident: b0060 article-title: Piezoelectric energy harvesting – volume: 18 start-page: 32 year: 2011 end-page: 52 ident: b0065 article-title: Thermo-mechanical behavior of functionally graded materials: modeling, simulation and error estimation publication-title: Mech. Adv. Mater. Struct. – volume: 49 start-page: 1 year: 2017 end-page: 16 ident: b0110 article-title: Piezoelectric energy harvesting from vibrations of a beam subjected to multi-moving loads publication-title: App. Math. Model. – volume: 213 start-page: 25 year: 2019 end-page: 36 ident: b0155 article-title: Neutral axis modeling and effectiveness of functionally graded piezoelectric energy harvesters publication-title: Compos. Struct. – reference: S. Rabet, H. R. Ovesy, A. Ramazani, Mechanical Properties and Failure Behavior of Hexagonal Boron Nitride–Graphene van der Waals Heterostructures through Molecular Dynamics Simulation, – volume: 150 year: 2020 ident: b0055 article-title: Energy harvesting from moving harmonic and moving continuous mass traversing on a simply supported beam publication-title: Measurement – volume: 233 year: 2020 ident: b0070 article-title: Supersonic aerodynamic piezoelectric energy harvesting performance of functionally graded beams publication-title: Compos. Struct. – volume: 130 start-page: 799 year: 2004 end-page: 804 ident: b0100 article-title: Experimental investigation of a small-scale bridge model under a moving mass publication-title: J. Struct. Eng. – reference: W.G. Hankel, Über die aktino-und peizoelektrischen Eigenschaften des Bergkrystalles und ihre Beziehung zu den thermoelektrischen: S. Hirzel, 1881. – volume: 176 start-page: 69 year: 2018 end-page: 85 ident: b0115 article-title: Sandwich piezoelectric energy harvester: Analytical modeling and experimental validation publication-title: Energ. Conver. Manage. – year: 2009 ident: b0010 article-title: Energy Harvesting Technologies – volume: 20 start-page: 50 year: 2013 end-page: 56 ident: b0090 article-title: Dynamic response of Timoshenko beam under moving mass publication-title: Sci. Iran. – volume: 333 start-page: 1781 year: 2014 end-page: 1795 ident: b0095 article-title: Green's functions of the forced vibration of Timoshenko beams with damping effect publication-title: J. Sound Vib. – volume: 36 start-page: 557 year: 2020 end-page: 577 ident: b0135 article-title: Experimental study on broadband bistable energy harvester with L-shaped piezoelectric cantilever beam publication-title: Acta Mech. Sinica – volume: 17 year: 2008 ident: b0030 article-title: Powering MEMS portable devices—a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems publication-title: Smart Mater. Struct. – volume: 103 start-page: 86 year: 2013 end-page: 98 ident: b0085 article-title: Analytical solutions for bending, vibration, and buckling of FGM plates using a couple stress-based third-order theory publication-title: Compos. Struct. – volume: 3 start-page: 90 year: 1880 end-page: 93 ident: b0035 article-title: Développement par compression de l'électricité polaire dans les cristaux hémièdres à faces inclinées publication-title: Bull. Minér. – volume: 242 start-page: 70 year: 1998 end-page: 76 ident: b0080 article-title: R-curve and strength behavior of a functionally graded material publication-title: Mater. Sci. Eng. A – volume: 42 start-page: 402 year: 2011 end-page: 413 ident: b0125 article-title: Nonlinear oscillation of a cantilever FGM rectangular plate based on third-order plate theory and asymptotic perturbation method publication-title: Compos. B Eng. – volume: 27 start-page: 1715 year: 2005 end-page: 1725 ident: b0015 article-title: Technology developments in structural health monitoring of large-scale bridges publication-title: Eng. Struct. – volume: 163 start-page: 169 year: 2018 end-page: 179 ident: b0145 article-title: Experimental investigation on piezoelectric energy harvesting from vehicle-bridge coupling vibration publication-title: Energ. Conver. Manage. – volume: 22 start-page: 1929 year: 2011 end-page: 1938 ident: b0170 article-title: Analysis of energy harvesters for highway bridges publication-title: J. Intell. Mater. Syst. Struct. – volume: 22 year: 2013 ident: b0175 article-title: Piezoelectric energy harvesting from traffic-induced bridge vibrations publication-title: Smart Mater. Struct. – volume: 119 start-page: 1 year: 2016 end-page: 11 ident: b0105 article-title: Experimental and theoretical investigations on piezoelectric-based energy harvesting from bridge vibrations under travelling vehicles publication-title: Int. J. Mech. Sci. – volume: 333 start-page: 1781 issue: 6 year: 2014 ident: 10.1016/j.ymssp.2022.110015_b0095 article-title: Green's functions of the forced vibration of Timoshenko beams with damping effect publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2013.11.007 – volume: 161 start-page: 66 year: 2018 ident: 10.1016/j.ymssp.2022.110015_b0140 article-title: Optimizing orientation of piezoelectric cantilever beam for harvesting energy from human walking publication-title: Energ. Conver. Manage. doi: 10.1016/j.enconman.2018.01.076 – volume: 36 start-page: 557 issue: 3 year: 2020 ident: 10.1016/j.ymssp.2022.110015_b0135 article-title: Experimental study on broadband bistable energy harvester with L-shaped piezoelectric cantilever beam publication-title: Acta Mech. Sinica doi: 10.1007/s10409-020-00956-1 – volume: 22 issue: 9 year: 2013 ident: 10.1016/j.ymssp.2022.110015_b0175 article-title: Piezoelectric energy harvesting from traffic-induced bridge vibrations publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/22/9/095019 – volume: 49 start-page: 1 year: 2017 ident: 10.1016/j.ymssp.2022.110015_b0110 article-title: Piezoelectric energy harvesting from vibrations of a beam subjected to multi-moving loads publication-title: App. Math. Model. doi: 10.1016/j.apm.2017.04.043 – volume: 103 start-page: 86 year: 2013 ident: 10.1016/j.ymssp.2022.110015_b0085 article-title: Analytical solutions for bending, vibration, and buckling of FGM plates using a couple stress-based third-order theory publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2013.03.007 – volume: 500 year: 2021 ident: 10.1016/j.ymssp.2022.110015_b0005 article-title: Experimental and numerical investigation of energy harvesting from double cantilever beams with internal resonance publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2021.116022 – ident: 10.1016/j.ymssp.2022.110015_b0025 – year: 2009 ident: 10.1016/j.ymssp.2022.110015_b0010 – volume: 22 start-page: 1929 issue: 16 year: 2011 ident: 10.1016/j.ymssp.2022.110015_b0170 article-title: Analysis of energy harvesters for highway bridges publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/1045389X11417650 – volume: 28 start-page: 2372 issue: 17 year: 2017 ident: 10.1016/j.ymssp.2022.110015_b0150 article-title: Closed-form solutions for forced vibrations of piezoelectric energy harvesters by means of Green’s functions publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/1045389X17689927 – volume: 130 start-page: 799 issue: 5 year: 2004 ident: 10.1016/j.ymssp.2022.110015_b0100 article-title: Experimental investigation of a small-scale bridge model under a moving mass publication-title: J. Struct. Eng. doi: 10.1061/(ASCE)0733-9445(2004)130:5(799) – volume: 3 start-page: 90 issue: 4 year: 1880 ident: 10.1016/j.ymssp.2022.110015_b0035 article-title: Développement par compression de l'électricité polaire dans les cristaux hémièdres à faces inclinées publication-title: Bull. Minér. – volume: 27 start-page: 1715 issue: 12 year: 2005 ident: 10.1016/j.ymssp.2022.110015_b0015 article-title: Technology developments in structural health monitoring of large-scale bridges publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2005.02.021 – volume: 18 start-page: 32 issue: 1 year: 2011 ident: 10.1016/j.ymssp.2022.110015_b0065 article-title: Thermo-mechanical behavior of functionally graded materials: modeling, simulation and error estimation publication-title: Mech. Adv. Mater. Struct. doi: 10.1080/15376494.2010.519221 – volume: 10 start-page: 381 issue: 1 year: 1881 ident: 10.1016/j.ymssp.2022.110015_b0045 article-title: Principe de la conservation de l'électricité, ou second principe de la théorie des phénomènes électriques publication-title: J. Phys. Théor. Appl. – volume: 12 start-page: 1129 issue: 6 year: 2011 ident: 10.1016/j.ymssp.2022.110015_b0160 article-title: A review of piezoelectric energy harvesting based on vibration publication-title: Int. J. Precis. Eng. Manuf. doi: 10.1007/s12541-011-0151-3 – volume: 66 start-page: 344 year: 2019 ident: 10.1016/j.ymssp.2022.110015_b0120 article-title: A comprehensive study on the functionally graded piezoelectric energy harvesting from vibrations of a graded beam under travelling multi-oscillators publication-title: App. Math. Model. doi: 10.1016/j.apm.2018.09.002 – volume: 242 start-page: 70 issue: 1–2 year: 1998 ident: 10.1016/j.ymssp.2022.110015_b0080 article-title: R-curve and strength behavior of a functionally graded material publication-title: Mater. Sci. Eng. A doi: 10.1016/S0921-5093(97)00513-3 – volume: 230 start-page: 2363 issue: 14 year: 2016 ident: 10.1016/j.ymssp.2022.110015_b0130 article-title: Experimental and theoretical studies on piezoelectric energy harvesting from low-frequency ambient random vibrations publication-title: Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. doi: 10.1177/0954406215593569 – year: 2011 ident: 10.1016/j.ymssp.2022.110015_b0060 – volume: 17 issue: 4 year: 2008 ident: 10.1016/j.ymssp.2022.110015_b0030 article-title: Powering MEMS portable devices—a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/17/4/043001 – volume: 93 start-page: 831 issue: 2 year: 2011 ident: 10.1016/j.ymssp.2022.110015_b0075 article-title: A further discussion of nonlinear mechanical behavior for FGM beams under in-plane thermal loading publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2010.07.011 – ident: 10.1016/j.ymssp.2022.110015_b0040 doi: 10.1002/andp.18822530910 – volume: 163 start-page: 169 year: 2018 ident: 10.1016/j.ymssp.2022.110015_b0145 article-title: Experimental investigation on piezoelectric energy harvesting from vehicle-bridge coupling vibration publication-title: Energ. Conver. Manage. doi: 10.1016/j.enconman.2018.02.054 – volume: 119 start-page: 1 year: 2016 ident: 10.1016/j.ymssp.2022.110015_b0105 article-title: Experimental and theoretical investigations on piezoelectric-based energy harvesting from bridge vibrations under travelling vehicles publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2016.09.029 – volume: 233 year: 2020 ident: 10.1016/j.ymssp.2022.110015_b0070 article-title: Supersonic aerodynamic piezoelectric energy harvesting performance of functionally graded beams publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2019.111537 – volume: 38 start-page: 91 issue: 2 year: 2006 ident: 10.1016/j.ymssp.2022.110015_b0020 article-title: A summary review of wireless sensors and sensor networks for structural health monitoring publication-title: Shock Vibrat. Digest doi: 10.1177/0583102406061499 – volume: 129 start-page: 165 year: 2015 ident: 10.1016/j.ymssp.2022.110015_b0050 article-title: Finite element modeling of functionally graded piezoelectric harvesters publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2015.04.011 – volume: 42 start-page: 402 issue: 3 year: 2011 ident: 10.1016/j.ymssp.2022.110015_b0125 article-title: Nonlinear oscillation of a cantilever FGM rectangular plate based on third-order plate theory and asymptotic perturbation method publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2010.12.010 – volume: 213 start-page: 25 year: 2019 ident: 10.1016/j.ymssp.2022.110015_b0155 article-title: Neutral axis modeling and effectiveness of functionally graded piezoelectric energy harvesters publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2019.01.067 – ident: 10.1016/j.ymssp.2022.110015_b0180 – volume: 176 start-page: 69 year: 2018 ident: 10.1016/j.ymssp.2022.110015_b0115 article-title: Sandwich piezoelectric energy harvester: Analytical modeling and experimental validation publication-title: Energ. Conver. Manage. doi: 10.1016/j.enconman.2018.09.014 – volume: 36 start-page: 193 issue: 1 year: 2013 ident: 10.1016/j.ymssp.2022.110015_b0165 article-title: Analytical modeling and experimental verification of vibration-based piezoelectric bimorph beam with a tip-mass for power harvesting publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2012.10.015 – volume: 20 start-page: 50 issue: 1 year: 2013 ident: 10.1016/j.ymssp.2022.110015_b0090 article-title: Dynamic response of Timoshenko beam under moving mass publication-title: Sci. Iran. – volume: 150 year: 2020 ident: 10.1016/j.ymssp.2022.110015_b0055 article-title: Energy harvesting from moving harmonic and moving continuous mass traversing on a simply supported beam publication-title: Measurement |
SSID | ssj0009406 |
Score | 2.5172217 |
Snippet | This study aims to harvest electrical energy from the vibrations of bridges. For this purpose, a functionally graded (FG) cantilever beam installed at the... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 110015 |
SubjectTerms | Consecutive moving masses Euler-Bernoulli beam Functionally graded material Piezoelectric energy harvesting Timoshenko beam |
Title | Piezoelectric-based energy harvesting from bridge vibrations subjected to moving successive vehicles by functionally graded cantilever beams – Theoretical and experimental investigations |
URI | https://dx.doi.org/10.1016/j.ymssp.2022.110015 |
Volume | 188 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTttAEF4hemkPqH-oUIrm0GPdLPZu1ntEEVFoVVSpIHGz9s9gRByUBKRwQLxDX6dPw5N0Zm2TVEIcerVm5JVndmZ2PfN9jH0uvaBCNk_KYPCAEjKTGMltElSaO2u9VCUdFH8c9Ucn4tupPF1jg24Whtoq29jfxPQYrdsnvfZr9q6qqvcL9we6o6JR0T0sJAgTVAhFXv71btnmoUXk1yThhKQ75KHY47UYz2YEWpmm1A7PiRv3qey0knGGr9lGWyrCfrOaN2wt1G_ZqxUAwXfsz88q3E4aKpvKJZSSPIQ4zgfnZhohNOozoBkSaEaz4IbOx9HZYHZt6RYGVeYTGMerBXwWGRQxBsJNOI89c2AXQOmvuTW8XMDZ1HhUIqNgTMG9ADaY8Qwe7n_D8XIwEkyNi1lhEIBqCeqB73_PToYHx4NR0vIxJA4T3TxRnNuAJYvNS1067YMopeVG5o7jOYcL3zf9wJ020mIZo4WUJs_cXql5yDJrfLbJ1utJHT4w8Frmmn46auWFylJTKkWCOpawudtiaWeHwrVg5cSZcVl0XWkXRTReQcYrGuNtsS-PSlcNVsfz4v3OwMU_LldgNnlOcft_FT-ylynRB8du3x22Pp9eh09Y08ztbnTaXfZi__D76OgvWpf9cQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTttAEB7RcGh7qPqr0kI7hx5rZbG9sfeIUFEoEFVqkLhZ-2cwIg5KAlJ66jv0dXganqQza7tJpYpDr9aOvPLMzs965vsAPpUu5UQ2j0qvqUDxiY60FCbyWZxbY5zMSi4UT0aD4Wn69UyebcB-NwvDbZWt7298evDW7ZN--zX711XV_07ng8wx41HRXUok0kewyehUsgebe4dHw9EKezcNFJu8PmKBDnwotHktJ_M541bGMXfEC6bH_VeAWgs6B8_hWZst4l6zoRew4euX8HQNQ_AV3H2r_I9pw2ZT2YijkkMfJvrwQs8CikZ9jjxGgs10Ft5yiRzsDec3hi9iSGQxxUm4XaBngUSR3CDe-ovQNodmiRwBm4vDqyWez7QjIdYLuRU6Dmi8nszx_ucvHK9mI1HXtJk1EgGsVrge9P7XcHrwZbw_jFpKhshSrFtEmRDGU9Zi8lKVVjmfltIILXMrqNQRqRvogRdWaWkok1GplDpP7G6phE8So13yBnr1tPZvAZ2SueL_jipzaZbEuswyXqhCFpvbLYg7PRS2xStn2oyromtMuyyC8gpWXtEobws-_xG6buA6Hl4-6BRc_GV1BQWUhwTf_a_gR3g8HJ8cF8eHo6P38ITJ65s-oG3oLWY3fodSnIX50Jrwb_YFACw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Piezoelectric-based+energy+harvesting+from+bridge+vibrations+subjected+to+moving+successive+vehicles+by+functionally+graded+cantilever+beams+%E2%80%93+Theoretical+and+experimental+investigations&rft.jtitle=Mechanical+systems+and+signal+processing&rft.au=Mousavi%2C+Mohammad&rft.au=Ziaei-Rad%2C+Saeed&rft.au=Karimi%2C+Amir+Hossein&rft.date=2023-04-01&rft.issn=0888-3270&rft.volume=188&rft.spage=110015&rft_id=info:doi/10.1016%2Fj.ymssp.2022.110015&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ymssp_2022_110015 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-3270&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-3270&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-3270&client=summon |