A hybrid additively manufactured martensitic-maraging stainless steel with superior strength and corrosion resistance for plastic injection molding dies
The customization of plastic injection molding dies is technologically and economically limited by conventional manufacturing processes. Recent advances in hybrid additive manufacturing (HAM) have provided more geometrical freedom for the manufacturing of parts with desired properties. In this paper...
Saved in:
Published in | Additive manufacturing Vol. 45; p. 102068 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.09.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The customization of plastic injection molding dies is technologically and economically limited by conventional manufacturing processes. Recent advances in hybrid additive manufacturing (HAM) have provided more geometrical freedom for the manufacturing of parts with desired properties. In this paper, we report manufacturing of a hybrid 420/Corrax stainless steel with a reliable interface that can be applied in the manufacturing of next-generation geometrically complex plastic injection molding dies with enhanced strength and corrosion resistance. AISI 420 martensitic stainless steel is used as a cost-effective substrate, and a maraging stainless steel grade, known as Corrax, is printed on top of it using laser powder bed fusion (LPBF). A hybrid heat treatment cycle is applied to improve metallurgical properties and to enhance mechanical compatibility between the martensitic and the maraging stainless steels. Tensile tests coupled with scanning electron microscopy are carried out for analysis of failure, which show the development of shear bands in the microstructure of the 420 stainless steel substrate while a limited amount of deformation occurs in the interface region and Corrax microstructure. Void nucleation, growth, and coalescence are found at the 420/Corrax interface due to mechanical incompatibility and decohesion; however, microstructural instability mainly occurs along the shear bands on the 420 side and leads to fracture, which is quantified using high-resolution X-ray computed tomography. Nanoindentation tests show that the maximum level of hardness occurs at the interface due to the existence of sub-micron grains and the formation of AlN nanoparticles. Also, the formation of β-NiAl precipitates enhances the Corrax strength after heat treatment. In addition to a high strength, elevated corrosion resistance of the cooling channels is essential to extend the service life of plastic injection molding dies. Potentiodynamic corrosion testing at the interface shows that Corrax has remarkable corrosion resistance compared to 420. Therefore, additive manufacturing of the critical die areas such as the cooling channels using Corrax increases the service life of the mold.
[Display omitted]
•A HAM 420/Corrax martensitic-maraging stainless steel is fabricated using the LPBF method.•Strength and mechanical compatibility are enhanced by applying a hybrid heat treatment.•Development of shear bands followed by void formation on the 420 side lead to fracture.•β-NiAl precipitation hardening enhanced the Corrax strength after heat treatment.•Significant grain boundary and AlN nanoparticle strengthening occur at the interface. |
---|---|
AbstractList | The customization of plastic injection molding dies is technologically and economically limited by conventional manufacturing processes. Recent advances in hybrid additive manufacturing (HAM) have provided more geometrical freedom for the manufacturing of parts with desired properties. In this paper, we report manufacturing of a hybrid 420/Corrax stainless steel with a reliable interface that can be applied in the manufacturing of next-generation geometrically complex plastic injection molding dies with enhanced strength and corrosion resistance. AISI 420 martensitic stainless steel is used as a cost-effective substrate, and a maraging stainless steel grade, known as Corrax, is printed on top of it using laser powder bed fusion (LPBF). A hybrid heat treatment cycle is applied to improve metallurgical properties and to enhance mechanical compatibility between the martensitic and the maraging stainless steels. Tensile tests coupled with scanning electron microscopy are carried out for analysis of failure, which show the development of shear bands in the microstructure of the 420 stainless steel substrate while a limited amount of deformation occurs in the interface region and Corrax microstructure. Void nucleation, growth, and coalescence are found at the 420/Corrax interface due to mechanical incompatibility and decohesion; however, microstructural instability mainly occurs along the shear bands on the 420 side and leads to fracture, which is quantified using high-resolution X-ray computed tomography. Nanoindentation tests show that the maximum level of hardness occurs at the interface due to the existence of sub-micron grains and the formation of AlN nanoparticles. Also, the formation of β-NiAl precipitates enhances the Corrax strength after heat treatment. In addition to a high strength, elevated corrosion resistance of the cooling channels is essential to extend the service life of plastic injection molding dies. Potentiodynamic corrosion testing at the interface shows that Corrax has remarkable corrosion resistance compared to 420. Therefore, additive manufacturing of the critical die areas such as the cooling channels using Corrax increases the service life of the mold.
[Display omitted]
•A HAM 420/Corrax martensitic-maraging stainless steel is fabricated using the LPBF method.•Strength and mechanical compatibility are enhanced by applying a hybrid heat treatment.•Development of shear bands followed by void formation on the 420 side lead to fracture.•β-NiAl precipitation hardening enhanced the Corrax strength after heat treatment.•Significant grain boundary and AlN nanoparticle strengthening occur at the interface. |
ArticleNumber | 102068 |
Author | Shahriari, Ayda Hadadzadeh, Amir Mohammadi, Mohsen Sanjari, Mehdi Amirkhiz, Babak Shalchi Samei, Javad Jahanbakht, Mohammad Salavati, Saied Amirmaleki, Maedeh Asgari, Hamed Pelligra, Concetta |
Author_xml | – sequence: 1 givenname: Javad surname: Samei fullname: Samei, Javad email: sameij@mcmaster.ca organization: Marine Additive Manufacturing Centre of Excellence, University of New Brunswick, Fredericton, NB E3B 5A1, Canada – sequence: 2 givenname: Hamed surname: Asgari fullname: Asgari, Hamed organization: Marine Additive Manufacturing Centre of Excellence, University of New Brunswick, Fredericton, NB E3B 5A1, Canada – sequence: 3 givenname: Concetta surname: Pelligra fullname: Pelligra, Concetta organization: Department of Materials Science and Engineering, McMaster University, Hamilton, ON L8S 4L7, Canada – sequence: 4 givenname: Mehdi surname: Sanjari fullname: Sanjari, Mehdi organization: Marine Additive Manufacturing Centre of Excellence, University of New Brunswick, Fredericton, NB E3B 5A1, Canada – sequence: 5 givenname: Saied surname: Salavati fullname: Salavati, Saied organization: Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada – sequence: 6 givenname: Ayda surname: Shahriari fullname: Shahriari, Ayda organization: Marine Additive Manufacturing Centre of Excellence, University of New Brunswick, Fredericton, NB E3B 5A1, Canada – sequence: 7 givenname: Maedeh surname: Amirmaleki fullname: Amirmaleki, Maedeh organization: Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada – sequence: 8 givenname: Mohammad surname: Jahanbakht fullname: Jahanbakht, Mohammad organization: Department of Industrial, Manufacturing, and Systems Engineering, The University of Texas at Arlington, Arlington, TX 76019, United States – sequence: 9 givenname: Amir surname: Hadadzadeh fullname: Hadadzadeh, Amir organization: Marine Additive Manufacturing Centre of Excellence, University of New Brunswick, Fredericton, NB E3B 5A1, Canada – sequence: 10 givenname: Babak Shalchi surname: Amirkhiz fullname: Amirkhiz, Babak Shalchi organization: Marine Additive Manufacturing Centre of Excellence, University of New Brunswick, Fredericton, NB E3B 5A1, Canada – sequence: 11 givenname: Mohsen surname: Mohammadi fullname: Mohammadi, Mohsen organization: Marine Additive Manufacturing Centre of Excellence, University of New Brunswick, Fredericton, NB E3B 5A1, Canada |
BookMark | eNqFkE1u2zAQhYnCAZo6PkE3vIBcUj-UtMjCCNomQIBukjVBkUN7DJkySNqBb9LjdlRn1UW64uNwvge-94UtwhSAsa9SrKWQ6tt-bZw7mHUpSkmTUqjuE7stS1kXbSfF4l13StSf2SqlvRBCNlXbd-Ut-73hu8sQ0XEywYxnGC_8YMLJG5tPERxdYoaQ6M0WpM0Ww5anbDCMkBIpgJG_Yd7xdDpCxCnSLELY0sQEx-0U45RwCjxCQgKDBe5p6ziaRKYcwx5snhcO0-hmd4eQ7tiNN2OC1fu5ZK8_vr88PBbPv34-PWyeC1uJKhfK1cPQiNL3Rta2c950qq0bUEoqZaEpVed7Jyrb9kM9QDXY1vde9VUjmnZQvlqy6upr6ZcpgtfHiJTzoqXQc796r__2q-d-9bVfovp_KIvZzCFyNDj-h72_skCxzghRJ4tArTiMVIR2E37I_wEl2Z5R |
CitedBy_id | crossref_primary_10_1007_s11665_024_10124_2 crossref_primary_10_1007_s40684_022_00470_8 crossref_primary_10_1007_s00170_023_11585_w crossref_primary_10_1080_17452759_2024_2350610 crossref_primary_10_3390_met12101669 crossref_primary_10_1007_s00170_024_14731_0 crossref_primary_10_1080_17452759_2023_2290184 crossref_primary_10_3788_CJL231025 crossref_primary_10_1016_j_matpr_2021_11_647 |
Cites_doi | 10.1038/nature14144 10.1016/j.msea.2020.140630 10.1016/j.jnucmat.2015.11.013 10.1016/j.actamat.2019.10.047 10.1016/j.actamat.2016.03.019 10.1016/j.actamat.2017.02.069 10.1038/nature22032 10.1016/j.matchar.2019.109939 10.1016/j.mechmat.2016.07.011 10.1126/science.1137711 10.5006/1.3584938 10.1016/j.scriptamat.2018.12.007 10.1016/j.scriptamat.2007.01.031 10.1016/j.scriptamat.2019.08.012 10.1016/j.actamat.2018.02.044 10.1038/nature01133 10.1016/j.actamat.2017.07.045 10.1016/j.vacuum.2018.02.040 10.1038/nature17981 10.1016/j.jallcom.2010.12.174 10.1007/s10800-015-0796-1 10.1126/science.1156084 10.1016/S1359-6454(99)00370-5 10.1016/j.actamat.2008.06.015 10.1007/s11665-021-05548-z 10.1016/j.actamat.2011.11.009 10.1126/science.aal2766 10.1016/j.actamat.2004.08.018 10.1016/j.ijplas.2017.12.009 10.1016/j.mtla.2020.100834 10.1016/j.matlet.2020.127664 10.1016/j.msea.2020.140081 10.1089/3dp.2018.0060 10.1007/s11661-020-05882-2 10.1016/j.engfailanal.2008.09.003 10.1115/1.4027492 10.1016/j.matdes.2015.12.103 10.1038/nmat5021 10.1016/j.msea.2017.10.045 10.1016/j.matlet.2019.126512 10.1016/S0010-4485(01)00203-2 10.1016/j.msea.2020.139470 10.1016/j.actamat.2020.04.036 10.1088/0370-1301/64/9/303 10.1007/BF02647972 10.1016/j.actamat.2018.11.021 10.1007/s11665-011-0043-9 10.1016/j.ijplas.2014.06.004 10.1038/ncomms4580 10.1115/1.4027940 10.1016/j.actamat.2020.08.072 10.1016/j.scriptamat.2011.06.010 10.1016/j.actamat.2019.12.037 10.1016/j.msea.2020.139999 10.1007/s11665-012-0438-2 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. |
Copyright_xml | – notice: 2021 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.addma.2021.102068 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2214-7810 |
ExternalDocumentID | 10_1016_j_addma_2021_102068 S2214860421002335 |
GroupedDBID | --M .~1 0R~ 1~. 4.4 457 4G. 7-5 8P~ AABXZ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAXUO ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC EBS EFJIC EFLBG EJD FDB FIRID FYGXN GBLVA KOM M41 O9- OAUVE PC. ROL SPC SPCBC SSM SST SSZ T5K ~G- AAQFI AATTM AAXKI AAYWO AAYXX ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c303t-6d4bb502f9a14c8dfa86745e66166ce5268f9d03c79b4be3bc7f9f6935057b6f3 |
IEDL.DBID | .~1 |
ISSN | 2214-8604 |
IngestDate | Thu Apr 24 23:08:57 EDT 2025 Tue Jul 01 01:47:06 EDT 2025 Fri Feb 23 02:43:47 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Microstructure Hybrid additive manufacturing Martensitic-maraging stainless steel Strengthening mechanisms Plastic injection molding |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c303t-6d4bb502f9a14c8dfa86745e66166ce5268f9d03c79b4be3bc7f9f6935057b6f3 |
ParticipantIDs | crossref_primary_10_1016_j_addma_2021_102068 crossref_citationtrail_10_1016_j_addma_2021_102068 elsevier_sciencedirect_doi_10_1016_j_addma_2021_102068 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2021 2021-09-00 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 09 year: 2021 text: September 2021 |
PublicationDecade | 2020 |
PublicationTitle | Additive manufacturing |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Seede, Shoukr, Zhang, Whitt, Gibbons, Flater, Elwany, Arroyave, Karaman (bib11) 2020; 186 du Plessis, Yadroitsev, Yadroitsava, Le Roux (bib44) 2018; 5 Samei, Salib, Amirmaleki, Wilkinson (bib49) 2019; 173 Standard Test Methods for Tension Testing of Metallic Materials, ASTM E8 / E8M - 15a. (n.d.). Janovec, Vyrostkova, Svoboda (bib66) 1994; 25 Is Hybrid Manufacturing Technology the Future of Additive Manufacturing?, Addit. Manuf., 2018. Amirmaleki, Samei, Green, van Riemsdijk, Stewart (bib52) 2016; 101 Yan, Liu, Tao, Lu (bib8) 2012; 60 Kaneko, Fukunaga, Yamada, Nakada, Kikuchi, Saghi, Barnard, Midgley (bib67) 2011; 65 Samei, Green, Golovashchenko (bib54) 2014; 136 Hybrid Machines Make Parts Using Brand New and Tried and True Technologies, Soc. Manuf. Eng., 2018. Koyama, Zhang, Wang, Ponge, Raabe, Tsuzaki, Noguchi, Tasan (bib2) 2017; 355 Huang, Yan, Chen, Xie, Liu, Kuang, Liao (bib21) 2018; 151 Tewari, Mazumder, Batra, Dey, Banerjee (bib33) 2000; 48 Chauhan, Litvinov, Aktaa (bib60) 2016; 468 Wei, Li, Zhu, Liu, Lei, Wang, Wu, Mi, Liu, Wang, Gao (bib10) 2014; 5 Pereloma, Shekhter, Miller, Ringer (bib34) 2004; 52 Standard test methods for determining average grain size using semiautomatic and automatic image analysis, ASTM E1382 - 97., 2015. Blach, Falat, Ševc (bib59) 2009; 16 Uematsu, Kakiuchi, Nakajima, Matsuo (bib29) 2021 Samei, Sadeghi, Mortezapour, Salavati, Amirmaleki (bib45) 2020; 797 Samei, Amirmaleki, Shirinzadeh Dastgiri, Marinelli, Green (bib48) 2019; 255 Wang, Palmer, Beese (bib12) 2016; 110 Wang, Su, Szklarska-Smialowska (bib36) 1988; 44 . Maire, Bouaziz, Di Michiel, Verdu (bib51) 2008; 56 Shakerin, Hadadzadeh, Amirkhiz, Shamsdini, Li, Mohammadi (bib26) 2019; 29 Kürnsteiner, Wilms, Weisheit, Barriobero-Vila, Jägle, Raabe (bib31) 2017; 129 Boes, Röttger, Theisen, Cui, Uhlenwinkel, Schulz, Zoch, Stern, Tenkamp, Walther (bib18) 2020; 34 Hadadzadeh, Amirkhiz, Shakerin, Kelly, Li, Mohammadi (bib22) 2020; 31 Ferreri, Pokharel, Livescu, Brown, Knezevic, Park, Torrez, Gray (bib16) 2020; 195 Hadadzadeh, Shahriari, Shalchi, Li (bib32) 2020; 787 Lei, Deng, Li, Wang (bib58) 2019; 162 Azizi, Ghiaasiaan, Prager, Ghoncheh, Samk, Lausic, Byleveld, Phillion (bib28) 2019; 27 Hur, Lee, Zhu-Hu, Kim (bib39) 2002; 34 Tasan, Hoefnagels, Diehl, Yan, Roters, Raabe (bib43) 2014; 63 Samei, Pelligra, Amirmaleki, Wilkinson (bib46) 2020; 269 Oh, Son, Cho, Yang, Shin, Shim (bib17) 2020; 794 Sun, Simm, Martin, McAdam, Galvin, Perkins, Bagot, Moody, Ooi, Hill, Rawson, Bhadeshia (bib30) 2018; 149 Bai, Zhao, Zhang, Wang (bib24) 2021; 802 Wu, Liu, Niu, Miao, Zhao, Tang, Bi, Ma (bib20) 2020; 32 Kimura, Inoue, Yin, Tsuzaki (bib3) 2008; 320 Gray, Livescu, Rigg, Trujillo, Cady, Chen, Carpenter, Lienert, Fensin (bib15) 2017; 138 Yamamoto, Brady, Lu, Maziasz, Liu, Pint, More, Meyer, Payzant (bib7) 2007; 316 Samei, Zhou, Kang, Wilkinson (bib55) 2019; 117 Salehiyan, Samei, Amirkhiz, Hector, Wilkinson (bib56) 2020; 51 Dharmendra, Shakerin, Ram, Mohammadi (bib23) 2020; 13 Kučerová, Zetková, Jeníček, Burdová (bib25) 2020; 32 Samei, Green, Golovashchenko, Hassannejadasl (bib42) 2013; 22 Samei, Amirmaleki, Ventura, Pawlikowski, Bayes, Misiolek, Wilkinson (bib47) 2020; 34 Jiang, Wang, Wu, Liu, Chen, Yao, Gault, Ponge, Raabe, Hirata, Chen, Wang, Lu (bib5) 2017; 544 Smith, Sugar, San Marchi, Schoenung (bib14) 2019; 164 Lee, Tam, Li, Yu, Cho, Samei, Wilkinson, Choe, Erb (bib50) 2019; 158 Wang, Voisin, McKeown, Ye, Calta, Li, Zeng, Zhang, Chen, Roehling, Ott, Santala, Depond, Matthews, Hamza, Zhu (bib9) 2018; 17 Hidalgo, Vittorietti, Farahani, Vercruysse, Petrov, Sietsma (bib63) 2020; 200 Isfahany, Saghafian, Borhani (bib61) 2011; 509 Hall (bib65) 1951; 64 Yinmin, Mingwei, Fenghua, En (bib6) 2002; 419 Samei, Green, Golovashchenko (bib53) 2014; 136 Barlow, Du Toit (bib62) 2012; 21 Ebrahimi, Mohammadi (bib27) 2018; 23 Asgari, Mohammadi (bib19) 2018; 709 Lu, Yao, Chen, Wang, Shao, Ge (bib35) 2015; 45 Kang, Ososkov, Embury, Wilkinson (bib41) 2007; 56 Samei, Green, Cheng, de Carvalho Lima (bib57) 2016; 92 Li, Pradeep, Deng, Raabe, Tasan (bib1) 2016; 534 Kim, Kim, Kim (bib4) 2015; 518 Polonsky, Lenthe, Echlin, Livescu, Gray, Pollock (bib13) 2020; 183 Hadadzadeh (10.1016/j.addma.2021.102068_bib32) 2020; 787 Janovec (10.1016/j.addma.2021.102068_bib66) 1994; 25 Shakerin (10.1016/j.addma.2021.102068_bib26) 2019; 29 Samei (10.1016/j.addma.2021.102068_bib53) 2014; 136 Yan (10.1016/j.addma.2021.102068_bib8) 2012; 60 10.1016/j.addma.2021.102068_bib37 10.1016/j.addma.2021.102068_bib38 Koyama (10.1016/j.addma.2021.102068_bib2) 2017; 355 Kang (10.1016/j.addma.2021.102068_bib41) 2007; 56 Huang (10.1016/j.addma.2021.102068_bib21) 2018; 151 Ebrahimi (10.1016/j.addma.2021.102068_bib27) 2018; 23 Asgari (10.1016/j.addma.2021.102068_bib19) 2018; 709 Wang (10.1016/j.addma.2021.102068_bib12) 2016; 110 Samei (10.1016/j.addma.2021.102068_bib57) 2016; 92 Kürnsteiner (10.1016/j.addma.2021.102068_bib31) 2017; 129 Samei (10.1016/j.addma.2021.102068_bib48) 2019; 255 Yinmin (10.1016/j.addma.2021.102068_bib6) 2002; 419 Samei (10.1016/j.addma.2021.102068_bib49) 2019; 173 Lei (10.1016/j.addma.2021.102068_bib58) 2019; 162 Seede (10.1016/j.addma.2021.102068_bib11) 2020; 186 Hur (10.1016/j.addma.2021.102068_bib39) 2002; 34 Isfahany (10.1016/j.addma.2021.102068_bib61) 2011; 509 10.1016/j.addma.2021.102068_bib64 Wu (10.1016/j.addma.2021.102068_bib20) 2020; 32 Wang (10.1016/j.addma.2021.102068_bib36) 1988; 44 Hidalgo (10.1016/j.addma.2021.102068_bib63) 2020; 200 Sun (10.1016/j.addma.2021.102068_bib30) 2018; 149 du Plessis (10.1016/j.addma.2021.102068_bib44) 2018; 5 Samei (10.1016/j.addma.2021.102068_bib46) 2020; 269 Hadadzadeh (10.1016/j.addma.2021.102068_bib22) 2020; 31 Samei (10.1016/j.addma.2021.102068_bib55) 2019; 117 Samei (10.1016/j.addma.2021.102068_bib54) 2014; 136 Kimura (10.1016/j.addma.2021.102068_bib3) 2008; 320 Wang (10.1016/j.addma.2021.102068_bib9) 2018; 17 Tasan (10.1016/j.addma.2021.102068_bib43) 2014; 63 Salehiyan (10.1016/j.addma.2021.102068_bib56) 2020; 51 Samei (10.1016/j.addma.2021.102068_bib42) 2013; 22 Chauhan (10.1016/j.addma.2021.102068_bib60) 2016; 468 Barlow (10.1016/j.addma.2021.102068_bib62) 2012; 21 Uematsu (10.1016/j.addma.2021.102068_bib29) 2021 Wei (10.1016/j.addma.2021.102068_bib10) 2014; 5 Tewari (10.1016/j.addma.2021.102068_bib33) 2000; 48 Samei (10.1016/j.addma.2021.102068_bib47) 2020; 34 Kaneko (10.1016/j.addma.2021.102068_bib67) 2011; 65 Maire (10.1016/j.addma.2021.102068_bib51) 2008; 56 Smith (10.1016/j.addma.2021.102068_bib14) 2019; 164 Blach (10.1016/j.addma.2021.102068_bib59) 2009; 16 Gray (10.1016/j.addma.2021.102068_bib15) 2017; 138 Boes (10.1016/j.addma.2021.102068_bib18) 2020; 34 Kučerová (10.1016/j.addma.2021.102068_bib25) 2020; 32 Lee (10.1016/j.addma.2021.102068_bib50) 2019; 158 Pereloma (10.1016/j.addma.2021.102068_bib34) 2004; 52 Samei (10.1016/j.addma.2021.102068_bib45) 2020; 797 Li (10.1016/j.addma.2021.102068_bib1) 2016; 534 Kim (10.1016/j.addma.2021.102068_bib4) 2015; 518 Hall (10.1016/j.addma.2021.102068_bib65) 1951; 64 Bai (10.1016/j.addma.2021.102068_bib24) 2021; 802 Polonsky (10.1016/j.addma.2021.102068_bib13) 2020; 183 Oh (10.1016/j.addma.2021.102068_bib17) 2020; 794 Jiang (10.1016/j.addma.2021.102068_bib5) 2017; 544 Ferreri (10.1016/j.addma.2021.102068_bib16) 2020; 195 Azizi (10.1016/j.addma.2021.102068_bib28) 2019; 27 Yamamoto (10.1016/j.addma.2021.102068_bib7) 2007; 316 Amirmaleki (10.1016/j.addma.2021.102068_bib52) 2016; 101 Lu (10.1016/j.addma.2021.102068_bib35) 2015; 45 Dharmendra (10.1016/j.addma.2021.102068_bib23) 2020; 13 10.1016/j.addma.2021.102068_bib40 |
References_xml | – volume: 34 year: 2020 ident: bib18 article-title: Gas atomization and laser additive manufacturing of nitrogen-alloyed martensitic stainless steel publication-title: Addit. Manuf. – volume: 173 start-page: 86 year: 2019 end-page: 90 ident: bib49 article-title: The role of microstructure on edge cracks in dual phase and quench and partitioning steels subject to severe cold rolling publication-title: Scr. Mater. – volume: 101 start-page: 27 year: 2016 end-page: 39 ident: bib52 article-title: 3D micromechanical modeling of dual phase steels using the representative volume element method publication-title: Mech. Mater. – volume: 110 start-page: 226 year: 2016 end-page: 235 ident: bib12 article-title: Effect of processing parameters on microstructure and tensile properties of austenitic stainless steel 304L made by directed energy deposition additive manufacturing publication-title: Acta Mater. – volume: 25 start-page: 267 year: 1994 end-page: 275 ident: bib66 article-title: Influence of tempering temperature on stability of carbide phases in 2.6cr-0.7mo-0.3v steel with various carbon content publication-title: Metall. Mater. Trans. A – reference: Is Hybrid Manufacturing Technology the Future of Additive Manufacturing?, Addit. Manuf., 2018. – volume: 16 start-page: 1397 year: 2009 end-page: 1403 ident: bib59 article-title: Fracture characteristics of thermally exposed 9Cr – 1Mo steel after tensile and impact testing at room temperature publication-title: Eng. Fail. Anal. – volume: 44 start-page: 732 year: 1988 end-page: 737 ident: bib36 article-title: Effects of Cl− concentration and temperature on pitting of AISI 304 stainless steel publication-title: Corrosion – volume: 186 start-page: 199 year: 2020 end-page: 214 ident: bib11 article-title: An ultra-high strength martensitic steel fabricated using selective laser melting additive manufacturing: densification, microstructure, and mechanical properties publication-title: Acta Mater. – volume: 129 start-page: 52 year: 2017 end-page: 60 ident: bib31 article-title: Massive nanoprecipitation in an Fe-19Ni-xAl maraging steel triggered by the intrinsic heat treatment during laser metal deposition publication-title: Acta Mater. – volume: 269 year: 2020 ident: bib46 article-title: Microstructural design for damage tolerance in high strength steels publication-title: Mater. Lett. – volume: 316 start-page: 433 year: 2007 end-page: 436 ident: bib7 article-title: Creep-resistant, Al₂O₃-forming austenitic stainless steels publication-title: Science – volume: 158 year: 2019 ident: bib50 article-title: Multi-scale morphological characterization of Ni foams with directional pores publication-title: Mater. Charact. – volume: 355 start-page: 1055 year: 2017 end-page: 1057 ident: bib2 article-title: Bone-like crack resistance in hierarchical metastable nanolaminate steels publication-title: Science – volume: 509 start-page: 3931 year: 2011 end-page: 3936 ident: bib61 article-title: The effect of heat treatment on mechanical properties and corrosion behavior of AISI420 martensitic stainless steel publication-title: J. Alloy. Compd. – volume: 419 start-page: 912 year: 2002 end-page: 915 ident: bib6 article-title: High tensile ductility in a nanostructured metal publication-title: Nature – volume: 802 year: 2021 ident: bib24 article-title: Microstructure and mechanical properties of additively manufactured multi-material component with maraging steel on CrMn steel publication-title: Mater. Sci. Eng. A – volume: 138 start-page: 140 year: 2017 end-page: 149 ident: bib15 article-title: Structure/property (constitutive and spallation response) of additively manufactured 316L stainless steel publication-title: Acta Mater. – volume: 162 start-page: 421 year: 2019 end-page: 425 ident: bib58 article-title: Simultaneous enhancement of strength and ductility through coordination deformation and multi-stage transformation induced plasticity (TRIP) effect in heterogeneous metastable austenitic steel publication-title: Scr. Mater. – volume: 31 year: 2020 ident: bib22 article-title: Microstructural investigation and mechanical behavior of a two-material component fabricated through selective laser melting of AlSi10Mg on an Al-Cu-Ni-Fe-Mg cast alloy substrate publication-title: Addit. Manuf. – volume: 22 start-page: 2080 year: 2013 end-page: 2088 ident: bib42 article-title: Quantitative microstructural analysis of formability enhancement in dual phase steels subject to electrohydraulic forming publication-title: J. Mater. Eng. Perform. – volume: 21 start-page: 1327 year: 2012 end-page: 1336 ident: bib62 article-title: Effect of austenitizing heat treatment on the microstructure and hardness of martensitic stainless steel AISI 420 publication-title: J. Mater. Eng. Perform. – reference: Standard test methods for determining average grain size using semiautomatic and automatic image analysis, ASTM E1382 - 97., 2015. – volume: 34 start-page: 741 year: 2002 end-page: 754 ident: bib39 article-title: Hybrid rapid prototyping system using machining and deposition publication-title: CAD Comput. Aided Des. – volume: 51 start-page: 4524 year: 2020 end-page: 4539 ident: bib56 article-title: Microstructural evolution during deformation of a QP980 steel publication-title: Metall. Mater. Trans. A – volume: 5 start-page: 227 year: 2018 end-page: 247 ident: bib44 article-title: X-ray microcomputed tomography in additive manufacturing: a review of the current technology and applications publication-title: 3D Print. Addit. Manuf. – reference: Hybrid Machines Make Parts Using Brand New and Tried and True Technologies, Soc. Manuf. Eng., 2018. – volume: 56 start-page: 999 year: 2007 end-page: 1002 ident: bib41 article-title: Digital image correlation studies for microscopic strain distribution and damage in dual phase steels publication-title: Scr. Mater. – volume: 195 start-page: 59 year: 2020 end-page: 70 ident: bib16 article-title: Effects of heat treatment and build orientation on the evolution of ϵ and α′ martensite and strength during compressive loading of additively manufactured 304L stainless steel publication-title: Acta Mater. – volume: 787 year: 2020 ident: bib32 article-title: Additive manufacturing of an Fe – Cr – Ni – Al maraging stainless steel: microstructure evolution, heat treatment, and strengthening mechanisms publication-title: Mater. Sci. Eng. A – volume: 320 start-page: 1057 year: 2008 end-page: 1060 ident: bib3 article-title: Inverse temperature dependence of toughness in an ultrafine grain-structure steel publication-title: Science – volume: 17 start-page: 63 year: 2018 end-page: 70 ident: bib9 article-title: Additively manufactured hierarchical stainless steels with high strength and ductility publication-title: Nat. Mater. – volume: 34 year: 2020 ident: bib47 article-title: In-situ X-ray tomography analysis of the evolution of pores during deformation of a Cu-Sn alloy fabricated by selective laser melting publication-title: Addit. Manuf. – volume: 136 year: 2014 ident: bib53 article-title: Metallurgical investigations on hyperplasticity in dual phase steel sheets publication-title: J. Manuf. Sci. Eng. – volume: 27 start-page: 389 year: 2019 end-page: 397 ident: bib28 article-title: Metallurgical and mechanical assessment of hybrid additively-manufactured maraging tool steels via selective laser melting publication-title: Addit. Manuf. – volume: 534 start-page: 227 year: 2016 end-page: 230 ident: bib1 article-title: Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off publication-title: Nature – volume: 518 start-page: 77 year: 2015 end-page: 79 ident: bib4 article-title: Brittle intermetallic compound makes ultrastrong low-density steel with large ductility publication-title: Nature – volume: 63 start-page: 198 year: 2014 end-page: 210 ident: bib43 article-title: Strain localization and damage in dual phase steels investigated by coupled in-situ deformation experiments and crystal plasticity simulations publication-title: Int. J. Plast. – volume: 65 start-page: 509 year: 2011 end-page: 512 ident: bib67 article-title: Formation of M23C6-type precipitates and chromium-depleted zones in austenite stainless steel publication-title: Scr. Mater. – volume: 23 start-page: 381 year: 2018 end-page: 393 ident: bib27 article-title: Numerical tools to investigate mechanical and fatigue properties of additively manufactured MS1-H13 hybrid steels publication-title: Addit. Manuf. – volume: 149 start-page: 285 year: 2018 end-page: 301 ident: bib30 article-title: A novel ultra-high strength maraging steel with balanced ductility and creep resistance achieved by nanoscale β-NiAl and Laves phase precipitates publication-title: Acta Mater. – volume: 13 year: 2020 ident: bib23 article-title: Wire-arc additive manufacturing of nickel aluminum bronze/stainless steel hybrid parts – Interfacial characterization, prospects, and problems publication-title: Materialia – volume: 794 year: 2020 ident: bib17 article-title: Solution annealing and precipitation hardening effect on the mechanical properties of 630 stainless steel fabricated via laser melting deposition publication-title: Mater. Sci. Eng. A – volume: 56 start-page: 4954 year: 2008 end-page: 4964 ident: bib51 article-title: Initiation and growth of damage in a dual-phase steel observed by X-ray microtomography publication-title: Acta Mater. – volume: 136 year: 2014 ident: bib54 article-title: Analysis of failure in dual phase steel sheets subject to electrohydraulic forming publication-title: J. Manuf. Sci. Eng. Trans. ASME – volume: 92 start-page: 1028 year: 2016 end-page: 1037 ident: bib57 article-title: Influence of strain path on nucleation and growth of voids in dual phase steel sheets publication-title: Mater. Des. – volume: 60 start-page: 1059 year: 2012 end-page: 1071 ident: bib8 article-title: Strength and ductility of 316L austenitic stainless steel strengthened by nano-scale twin bundles publication-title: Acta Mater. – volume: 544 start-page: 460 year: 2017 end-page: 464 ident: bib5 article-title: Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation publication-title: Nature – volume: 32 year: 2020 ident: bib20 article-title: Al–Cu alloy fabricated by novel laser-tungsten inert gas hybrid additive manufacturing publication-title: Addit. Manuf. – volume: 64 start-page: 747 year: 1951 end-page: 753 ident: bib65 article-title: The deformation and ageing of mild steel: III discussion of results publication-title: Proc. Phys. Soc. Sect. B – volume: 5 start-page: 3580 year: 2014 ident: bib10 article-title: Evading the strength-ductility trade-off dilemma in steel through gradient hierarchical nanotwins publication-title: Nat. Commun. – reference: Standard Test Methods for Tension Testing of Metallic Materials, ASTM E8 / E8M - 15a. (n.d.). – volume: 255 year: 2019 ident: bib48 article-title: In-situ X-ray tomography analysis of the evolution of pores during deformation of AlSi10Mg fabricated by selective laser melting publication-title: Mater. Lett. – volume: 164 start-page: 728 year: 2019 end-page: 740 ident: bib14 article-title: Strengthening mechanisms in directed energy deposited austenitic stainless steel publication-title: Acta Mater. – volume: 200 start-page: 74 year: 2020 end-page: 90 ident: bib63 article-title: Influence of M23C6 carbides on the heterogeneous strain development in annealed 420 stainless steel publication-title: Acta Mater. – volume: 183 start-page: 249 year: 2020 end-page: 260 ident: bib13 article-title: Solidification-driven orientation gradients in additively manufactured stainless steel publication-title: Acta Mater. – reference: . – volume: 52 start-page: 5589 year: 2004 end-page: 5602 ident: bib34 article-title: Ageing behaviour of an Fe-20Ni-1.8Mn-1.6Ti-0.59Al (wt%) maraging alloy: clustering, precipitation and hardening publication-title: Acta Mater. – volume: 29 year: 2019 ident: bib26 article-title: Additive manufacturing of maraging steel-H13 bimetals using laser powder bed fusion technique publication-title: Addit. Manuf. – volume: 468 start-page: 1 year: 2016 end-page: 8 ident: bib60 article-title: High temperature tensile properties and fracture characteristics of bimodal 12Cr-ODS steel publication-title: J. Nucl. Mater. – volume: 797 year: 2020 ident: bib45 article-title: 4D X-ray tomography characterization of void nucleation and growth during deformation of strontium-added AZ31 alloys publication-title: Mater. Sci. Eng. A – volume: 45 start-page: 375 year: 2015 end-page: 383 ident: bib35 article-title: Effects of austenitizing temperature on the microstructure and electrochemical behavior of a martensitic stainless steel publication-title: J. Appl. Electrochem. – volume: 709 start-page: 82 year: 2018 end-page: 89 ident: bib19 article-title: Microstructure and mechanical properties of stainless steel CX manufactured by Direct Metal Laser Sintering publication-title: Mater. Sci. Eng. A – volume: 32 year: 2020 ident: bib25 article-title: Hybrid parts produced by deposition of 18Ni300 maraging steel via selective laser melting on forged and heat treated advanced high strength steel publication-title: Addit. Manuf. – volume: 117 start-page: 58 year: 2019 end-page: 70 ident: bib55 article-title: Microstructural analysis of ductility and fracture in fine-grained and ultrafine-grained vanadium-added DP1300 steels publication-title: Int. J. Plast. – volume: 151 start-page: 275 year: 2018 end-page: 282 ident: bib21 article-title: Additive manufacturing hybrid Ni/Ti-6Al-4V structural component via selective laser melting and cold spraying publication-title: Vacuum – volume: 48 start-page: 1187 year: 2000 end-page: 1200 ident: bib33 article-title: Precipitation in 18 wt% Ni maraging steel of grade 350 publication-title: Acta Mater. – year: 2021 ident: bib29 article-title: Microstructures and fatigue behavior of additively manufactured maraging steel deposited on conventionally manufactured base plate publication-title: J. Mater. Eng. Perform. – volume: 518 start-page: 77 year: 2015 ident: 10.1016/j.addma.2021.102068_bib4 article-title: Brittle intermetallic compound makes ultrastrong low-density steel with large ductility publication-title: Nature doi: 10.1038/nature14144 – volume: 802 year: 2021 ident: 10.1016/j.addma.2021.102068_bib24 article-title: Microstructure and mechanical properties of additively manufactured multi-material component with maraging steel on CrMn steel publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2020.140630 – volume: 468 start-page: 1 year: 2016 ident: 10.1016/j.addma.2021.102068_bib60 article-title: High temperature tensile properties and fracture characteristics of bimodal 12Cr-ODS steel publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2015.11.013 – volume: 183 start-page: 249 year: 2020 ident: 10.1016/j.addma.2021.102068_bib13 article-title: Solidification-driven orientation gradients in additively manufactured stainless steel publication-title: Acta Mater. doi: 10.1016/j.actamat.2019.10.047 – volume: 110 start-page: 226 year: 2016 ident: 10.1016/j.addma.2021.102068_bib12 article-title: Effect of processing parameters on microstructure and tensile properties of austenitic stainless steel 304L made by directed energy deposition additive manufacturing publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.03.019 – volume: 129 start-page: 52 year: 2017 ident: 10.1016/j.addma.2021.102068_bib31 article-title: Massive nanoprecipitation in an Fe-19Ni-xAl maraging steel triggered by the intrinsic heat treatment during laser metal deposition publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.02.069 – volume: 23 start-page: 381 year: 2018 ident: 10.1016/j.addma.2021.102068_bib27 article-title: Numerical tools to investigate mechanical and fatigue properties of additively manufactured MS1-H13 hybrid steels publication-title: Addit. Manuf. – volume: 544 start-page: 460 year: 2017 ident: 10.1016/j.addma.2021.102068_bib5 article-title: Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation publication-title: Nature doi: 10.1038/nature22032 – volume: 158 year: 2019 ident: 10.1016/j.addma.2021.102068_bib50 article-title: Multi-scale morphological characterization of Ni foams with directional pores publication-title: Mater. Charact. doi: 10.1016/j.matchar.2019.109939 – ident: 10.1016/j.addma.2021.102068_bib40 – ident: 10.1016/j.addma.2021.102068_bib37 – volume: 32 year: 2020 ident: 10.1016/j.addma.2021.102068_bib25 article-title: Hybrid parts produced by deposition of 18Ni300 maraging steel via selective laser melting on forged and heat treated advanced high strength steel publication-title: Addit. Manuf. – volume: 101 start-page: 27 year: 2016 ident: 10.1016/j.addma.2021.102068_bib52 article-title: 3D micromechanical modeling of dual phase steels using the representative volume element method publication-title: Mech. Mater. doi: 10.1016/j.mechmat.2016.07.011 – volume: 316 start-page: 433 issue: 80 year: 2007 ident: 10.1016/j.addma.2021.102068_bib7 article-title: Creep-resistant, Al₂O₃-forming austenitic stainless steels publication-title: Science doi: 10.1126/science.1137711 – volume: 44 start-page: 732 year: 1988 ident: 10.1016/j.addma.2021.102068_bib36 article-title: Effects of Cl− concentration and temperature on pitting of AISI 304 stainless steel publication-title: Corrosion doi: 10.5006/1.3584938 – volume: 162 start-page: 421 year: 2019 ident: 10.1016/j.addma.2021.102068_bib58 article-title: Simultaneous enhancement of strength and ductility through coordination deformation and multi-stage transformation induced plasticity (TRIP) effect in heterogeneous metastable austenitic steel publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2018.12.007 – volume: 56 start-page: 999 year: 2007 ident: 10.1016/j.addma.2021.102068_bib41 article-title: Digital image correlation studies for microscopic strain distribution and damage in dual phase steels publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2007.01.031 – volume: 173 start-page: 86 year: 2019 ident: 10.1016/j.addma.2021.102068_bib49 article-title: The role of microstructure on edge cracks in dual phase and quench and partitioning steels subject to severe cold rolling publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2019.08.012 – volume: 149 start-page: 285 year: 2018 ident: 10.1016/j.addma.2021.102068_bib30 article-title: A novel ultra-high strength maraging steel with balanced ductility and creep resistance achieved by nanoscale β-NiAl and Laves phase precipitates publication-title: Acta Mater. doi: 10.1016/j.actamat.2018.02.044 – volume: 419 start-page: 912 year: 2002 ident: 10.1016/j.addma.2021.102068_bib6 article-title: High tensile ductility in a nanostructured metal publication-title: Nature doi: 10.1038/nature01133 – volume: 29 year: 2019 ident: 10.1016/j.addma.2021.102068_bib26 article-title: Additive manufacturing of maraging steel-H13 bimetals using laser powder bed fusion technique publication-title: Addit. Manuf. – volume: 138 start-page: 140 year: 2017 ident: 10.1016/j.addma.2021.102068_bib15 article-title: Structure/property (constitutive and spallation response) of additively manufactured 316L stainless steel publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.07.045 – volume: 151 start-page: 275 year: 2018 ident: 10.1016/j.addma.2021.102068_bib21 article-title: Additive manufacturing hybrid Ni/Ti-6Al-4V structural component via selective laser melting and cold spraying publication-title: Vacuum doi: 10.1016/j.vacuum.2018.02.040 – volume: 534 start-page: 227 year: 2016 ident: 10.1016/j.addma.2021.102068_bib1 article-title: Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off publication-title: Nature doi: 10.1038/nature17981 – volume: 509 start-page: 3931 year: 2011 ident: 10.1016/j.addma.2021.102068_bib61 article-title: The effect of heat treatment on mechanical properties and corrosion behavior of AISI420 martensitic stainless steel publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2010.12.174 – ident: 10.1016/j.addma.2021.102068_bib64 – volume: 45 start-page: 375 year: 2015 ident: 10.1016/j.addma.2021.102068_bib35 article-title: Effects of austenitizing temperature on the microstructure and electrochemical behavior of a martensitic stainless steel publication-title: J. Appl. Electrochem. doi: 10.1007/s10800-015-0796-1 – volume: 320 start-page: 1057 year: 2008 ident: 10.1016/j.addma.2021.102068_bib3 article-title: Inverse temperature dependence of toughness in an ultrafine grain-structure steel publication-title: Science doi: 10.1126/science.1156084 – volume: 48 start-page: 1187 year: 2000 ident: 10.1016/j.addma.2021.102068_bib33 article-title: Precipitation in 18 wt% Ni maraging steel of grade 350 publication-title: Acta Mater. doi: 10.1016/S1359-6454(99)00370-5 – volume: 56 start-page: 4954 year: 2008 ident: 10.1016/j.addma.2021.102068_bib51 article-title: Initiation and growth of damage in a dual-phase steel observed by X-ray microtomography publication-title: Acta Mater. doi: 10.1016/j.actamat.2008.06.015 – year: 2021 ident: 10.1016/j.addma.2021.102068_bib29 article-title: Microstructures and fatigue behavior of additively manufactured maraging steel deposited on conventionally manufactured base plate publication-title: J. Mater. Eng. Perform. doi: 10.1007/s11665-021-05548-z – volume: 60 start-page: 1059 year: 2012 ident: 10.1016/j.addma.2021.102068_bib8 article-title: Strength and ductility of 316L austenitic stainless steel strengthened by nano-scale twin bundles publication-title: Acta Mater. doi: 10.1016/j.actamat.2011.11.009 – volume: 34 year: 2020 ident: 10.1016/j.addma.2021.102068_bib47 article-title: In-situ X-ray tomography analysis of the evolution of pores during deformation of a Cu-Sn alloy fabricated by selective laser melting publication-title: Addit. Manuf. – volume: 355 start-page: 1055 issue: 80 year: 2017 ident: 10.1016/j.addma.2021.102068_bib2 article-title: Bone-like crack resistance in hierarchical metastable nanolaminate steels publication-title: Science doi: 10.1126/science.aal2766 – volume: 52 start-page: 5589 year: 2004 ident: 10.1016/j.addma.2021.102068_bib34 article-title: Ageing behaviour of an Fe-20Ni-1.8Mn-1.6Ti-0.59Al (wt%) maraging alloy: clustering, precipitation and hardening publication-title: Acta Mater. doi: 10.1016/j.actamat.2004.08.018 – volume: 117 start-page: 58 year: 2019 ident: 10.1016/j.addma.2021.102068_bib55 article-title: Microstructural analysis of ductility and fracture in fine-grained and ultrafine-grained vanadium-added DP1300 steels publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2017.12.009 – volume: 13 year: 2020 ident: 10.1016/j.addma.2021.102068_bib23 article-title: Wire-arc additive manufacturing of nickel aluminum bronze/stainless steel hybrid parts – Interfacial characterization, prospects, and problems publication-title: Materialia doi: 10.1016/j.mtla.2020.100834 – volume: 269 year: 2020 ident: 10.1016/j.addma.2021.102068_bib46 article-title: Microstructural design for damage tolerance in high strength steels publication-title: Mater. Lett. doi: 10.1016/j.matlet.2020.127664 – volume: 797 year: 2020 ident: 10.1016/j.addma.2021.102068_bib45 article-title: 4D X-ray tomography characterization of void nucleation and growth during deformation of strontium-added AZ31 alloys publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2020.140081 – volume: 5 start-page: 227 year: 2018 ident: 10.1016/j.addma.2021.102068_bib44 article-title: X-ray microcomputed tomography in additive manufacturing: a review of the current technology and applications publication-title: 3D Print. Addit. Manuf. doi: 10.1089/3dp.2018.0060 – volume: 51 start-page: 4524 year: 2020 ident: 10.1016/j.addma.2021.102068_bib56 article-title: Microstructural evolution during deformation of a QP980 steel publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-020-05882-2 – volume: 16 start-page: 1397 year: 2009 ident: 10.1016/j.addma.2021.102068_bib59 article-title: Fracture characteristics of thermally exposed 9Cr – 1Mo steel after tensile and impact testing at room temperature publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2008.09.003 – volume: 136 year: 2014 ident: 10.1016/j.addma.2021.102068_bib53 article-title: Metallurgical investigations on hyperplasticity in dual phase steel sheets publication-title: J. Manuf. Sci. Eng. doi: 10.1115/1.4027492 – volume: 92 start-page: 1028 year: 2016 ident: 10.1016/j.addma.2021.102068_bib57 article-title: Influence of strain path on nucleation and growth of voids in dual phase steel sheets publication-title: Mater. Des. doi: 10.1016/j.matdes.2015.12.103 – volume: 17 start-page: 63 year: 2018 ident: 10.1016/j.addma.2021.102068_bib9 article-title: Additively manufactured hierarchical stainless steels with high strength and ductility publication-title: Nat. Mater. doi: 10.1038/nmat5021 – volume: 709 start-page: 82 year: 2018 ident: 10.1016/j.addma.2021.102068_bib19 article-title: Microstructure and mechanical properties of stainless steel CX manufactured by Direct Metal Laser Sintering publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2017.10.045 – volume: 255 year: 2019 ident: 10.1016/j.addma.2021.102068_bib48 article-title: In-situ X-ray tomography analysis of the evolution of pores during deformation of AlSi10Mg fabricated by selective laser melting publication-title: Mater. Lett. doi: 10.1016/j.matlet.2019.126512 – volume: 34 start-page: 741 year: 2002 ident: 10.1016/j.addma.2021.102068_bib39 article-title: Hybrid rapid prototyping system using machining and deposition publication-title: CAD Comput. Aided Des. doi: 10.1016/S0010-4485(01)00203-2 – volume: 787 year: 2020 ident: 10.1016/j.addma.2021.102068_bib32 article-title: Additive manufacturing of an Fe – Cr – Ni – Al maraging stainless steel: microstructure evolution, heat treatment, and strengthening mechanisms publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2020.139470 – volume: 195 start-page: 59 year: 2020 ident: 10.1016/j.addma.2021.102068_bib16 article-title: Effects of heat treatment and build orientation on the evolution of ϵ and α′ martensite and strength during compressive loading of additively manufactured 304L stainless steel publication-title: Acta Mater. doi: 10.1016/j.actamat.2020.04.036 – volume: 64 start-page: 747 year: 1951 ident: 10.1016/j.addma.2021.102068_bib65 article-title: The deformation and ageing of mild steel: III discussion of results publication-title: Proc. Phys. Soc. Sect. B doi: 10.1088/0370-1301/64/9/303 – volume: 25 start-page: 267 year: 1994 ident: 10.1016/j.addma.2021.102068_bib66 article-title: Influence of tempering temperature on stability of carbide phases in 2.6cr-0.7mo-0.3v steel with various carbon content publication-title: Metall. Mater. Trans. A doi: 10.1007/BF02647972 – volume: 164 start-page: 728 year: 2019 ident: 10.1016/j.addma.2021.102068_bib14 article-title: Strengthening mechanisms in directed energy deposited austenitic stainless steel publication-title: Acta Mater. doi: 10.1016/j.actamat.2018.11.021 – volume: 31 year: 2020 ident: 10.1016/j.addma.2021.102068_bib22 article-title: Microstructural investigation and mechanical behavior of a two-material component fabricated through selective laser melting of AlSi10Mg on an Al-Cu-Ni-Fe-Mg cast alloy substrate publication-title: Addit. Manuf. – volume: 21 start-page: 1327 year: 2012 ident: 10.1016/j.addma.2021.102068_bib62 article-title: Effect of austenitizing heat treatment on the microstructure and hardness of martensitic stainless steel AISI 420 publication-title: J. Mater. Eng. Perform. doi: 10.1007/s11665-011-0043-9 – volume: 63 start-page: 198 year: 2014 ident: 10.1016/j.addma.2021.102068_bib43 article-title: Strain localization and damage in dual phase steels investigated by coupled in-situ deformation experiments and crystal plasticity simulations publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2014.06.004 – volume: 5 start-page: 3580 year: 2014 ident: 10.1016/j.addma.2021.102068_bib10 article-title: Evading the strength-ductility trade-off dilemma in steel through gradient hierarchical nanotwins publication-title: Nat. Commun. doi: 10.1038/ncomms4580 – volume: 136 year: 2014 ident: 10.1016/j.addma.2021.102068_bib54 article-title: Analysis of failure in dual phase steel sheets subject to electrohydraulic forming publication-title: J. Manuf. Sci. Eng. Trans. ASME doi: 10.1115/1.4027940 – volume: 200 start-page: 74 year: 2020 ident: 10.1016/j.addma.2021.102068_bib63 article-title: Influence of M23C6 carbides on the heterogeneous strain development in annealed 420 stainless steel publication-title: Acta Mater. doi: 10.1016/j.actamat.2020.08.072 – volume: 65 start-page: 509 year: 2011 ident: 10.1016/j.addma.2021.102068_bib67 article-title: Formation of M23C6-type precipitates and chromium-depleted zones in austenite stainless steel publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2011.06.010 – volume: 34 year: 2020 ident: 10.1016/j.addma.2021.102068_bib18 article-title: Gas atomization and laser additive manufacturing of nitrogen-alloyed martensitic stainless steel publication-title: Addit. Manuf. – volume: 186 start-page: 199 year: 2020 ident: 10.1016/j.addma.2021.102068_bib11 article-title: An ultra-high strength martensitic steel fabricated using selective laser melting additive manufacturing: densification, microstructure, and mechanical properties publication-title: Acta Mater. doi: 10.1016/j.actamat.2019.12.037 – volume: 794 year: 2020 ident: 10.1016/j.addma.2021.102068_bib17 article-title: Solution annealing and precipitation hardening effect on the mechanical properties of 630 stainless steel fabricated via laser melting deposition publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2020.139999 – volume: 32 year: 2020 ident: 10.1016/j.addma.2021.102068_bib20 article-title: Al–Cu alloy fabricated by novel laser-tungsten inert gas hybrid additive manufacturing publication-title: Addit. Manuf. – ident: 10.1016/j.addma.2021.102068_bib38 – volume: 22 start-page: 2080 year: 2013 ident: 10.1016/j.addma.2021.102068_bib42 article-title: Quantitative microstructural analysis of formability enhancement in dual phase steels subject to electrohydraulic forming publication-title: J. Mater. Eng. Perform. doi: 10.1007/s11665-012-0438-2 – volume: 27 start-page: 389 year: 2019 ident: 10.1016/j.addma.2021.102068_bib28 article-title: Metallurgical and mechanical assessment of hybrid additively-manufactured maraging tool steels via selective laser melting publication-title: Addit. Manuf. |
SSID | ssj0001537982 |
Score | 2.4312017 |
Snippet | The customization of plastic injection molding dies is technologically and economically limited by conventional manufacturing processes. Recent advances in... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 102068 |
SubjectTerms | Hybrid additive manufacturing Martensitic-maraging stainless steel Microstructure Plastic injection molding Strengthening mechanisms |
Title | A hybrid additively manufactured martensitic-maraging stainless steel with superior strength and corrosion resistance for plastic injection molding dies |
URI | https://dx.doi.org/10.1016/j.addma.2021.102068 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQLDAgnuItD4yYJrGT1GNVgQoIFqjULfITikpalXbowu_g53LnJDwkxMBmWz7L8jn3cO6-I-QUrFTwGkzEIiM4E94qJvNYMa80KD_QZ9rhe8ftXdbri-tBOlgi3SYXBsMqa9lfyfQgreuRVn2arclw2LpPkhgrKIkEUUQ5x0RzIXK85edv8dc7S8pzGWpG4XyGBA34UAjzgu874A8lMaIYRAi5-puC-qZ0LjfIem0t0k61oU2y5MotsvYNQ3CbvHfo0wLTriiGBqHwGi3oiyrnmLIwnzoLnWkIU4c1GLRDWSIa0qZGIOag5dyI4nssfZ0j7vF4SjGDpHyEEVVaCv4p7BT4R8E1R3MTzoiCrUsnYHnDonRYPoeArpK-VP-yKIYm7pD-5cVDt8fqcgvMgB6bscwKrdMo8VLFwrStV-0sF6kDDZ5lxiEujJc24iaXWmjHtcm99Jnk6OPozPNdslyOS7dHqHSpMio3NhdWtC2XRskYFopSDSwSfp8kzRkXpsYix5IYo6IJOnsuAmMKZExRMWafnH0STSoojr-nZw3zih83qgBl8RfhwX8JD8kq9qoItCOyPJvO3TGYLDN9Eu7kCVnpXN307j4APBzurQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagDMCAeIo3HhgxTWInqUeEQOW5ABJb5CcUlVCVdujC7-DncuckPCTEwOY4Ocvy2fdw7r4jZB-sVPAaTMQiIzgT3iom81gxrzQoP9Bn2uF9x9V11r0T5_fp_RQ5bnJhMKyylv2VTA_Suu5p16vZHvR67ZskibGCkkgQRZTzdJrMCDi-WMbg8C3-umhJeS5D0SgkYEjRoA-FOC844AGAKIkRxiBCzNXfNNQ3rXO6SBZqc5EeVTNaIlOuXCbz30AEV8j7EX2cYN4VxdgglF79CX1W5RhzFsZDZ-FhGOLUYQwG7VCXiIa8qT7IOWg516d4IUtfxwh8_DKkmEJSPkCPKi0FBxVmCgyk4JujvQmLRMHYpQMwvWFQ2iufQkRXSZ-rn1kUYxNXyd3pye1xl9X1FpgBRTZimRVap1HipYqF6VivOlkuUgcqPMuMQ2AYL23ETS610I5rk3vpM8nRydGZ52ukVb6Ubp1Q6VJlVG5sLqzoWC6NkjEMFKVaiFz4DZI0a1yYGowca2L0iybq7KkIjCmQMUXFmA1y8Ek0qLA4_v48a5hX_NhSBWiLvwg3_0u4R2a7t1eXxeXZ9cUWmcM3VTjaNmmNhmO3A_bLSO-G_fkBtNHwOw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+additively+manufactured+martensitic-maraging+stainless+steel+with+superior+strength+and+corrosion+resistance+for+plastic+injection+molding+dies&rft.jtitle=Additive+manufacturing&rft.au=Samei%2C+Javad&rft.au=Asgari%2C+Hamed&rft.au=Pelligra%2C+Concetta&rft.au=Sanjari%2C+Mehdi&rft.date=2021-09-01&rft.pub=Elsevier+B.V&rft.issn=2214-8604&rft.eissn=2214-7810&rft.volume=45&rft_id=info:doi/10.1016%2Fj.addma.2021.102068&rft.externalDocID=S2214860421002335 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-8604&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-8604&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-8604&client=summon |