A hybrid additively manufactured martensitic-maraging stainless steel with superior strength and corrosion resistance for plastic injection molding dies

The customization of plastic injection molding dies is technologically and economically limited by conventional manufacturing processes. Recent advances in hybrid additive manufacturing (HAM) have provided more geometrical freedom for the manufacturing of parts with desired properties. In this paper...

Full description

Saved in:
Bibliographic Details
Published inAdditive manufacturing Vol. 45; p. 102068
Main Authors Samei, Javad, Asgari, Hamed, Pelligra, Concetta, Sanjari, Mehdi, Salavati, Saied, Shahriari, Ayda, Amirmaleki, Maedeh, Jahanbakht, Mohammad, Hadadzadeh, Amir, Amirkhiz, Babak Shalchi, Mohammadi, Mohsen
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The customization of plastic injection molding dies is technologically and economically limited by conventional manufacturing processes. Recent advances in hybrid additive manufacturing (HAM) have provided more geometrical freedom for the manufacturing of parts with desired properties. In this paper, we report manufacturing of a hybrid 420/Corrax stainless steel with a reliable interface that can be applied in the manufacturing of next-generation geometrically complex plastic injection molding dies with enhanced strength and corrosion resistance. AISI 420 martensitic stainless steel is used as a cost-effective substrate, and a maraging stainless steel grade, known as Corrax, is printed on top of it using laser powder bed fusion (LPBF). A hybrid heat treatment cycle is applied to improve metallurgical properties and to enhance mechanical compatibility between the martensitic and the maraging stainless steels. Tensile tests coupled with scanning electron microscopy are carried out for analysis of failure, which show the development of shear bands in the microstructure of the 420 stainless steel substrate while a limited amount of deformation occurs in the interface region and Corrax microstructure. Void nucleation, growth, and coalescence are found at the 420/Corrax interface due to mechanical incompatibility and decohesion; however, microstructural instability mainly occurs along the shear bands on the 420 side and leads to fracture, which is quantified using high-resolution X-ray computed tomography. Nanoindentation tests show that the maximum level of hardness occurs at the interface due to the existence of sub-micron grains and the formation of AlN nanoparticles. Also, the formation of β-NiAl precipitates enhances the Corrax strength after heat treatment. In addition to a high strength, elevated corrosion resistance of the cooling channels is essential to extend the service life of plastic injection molding dies. Potentiodynamic corrosion testing at the interface shows that Corrax has remarkable corrosion resistance compared to 420. Therefore, additive manufacturing of the critical die areas such as the cooling channels using Corrax increases the service life of the mold. [Display omitted] •A HAM 420/Corrax martensitic-maraging stainless steel is fabricated using the LPBF method.•Strength and mechanical compatibility are enhanced by applying a hybrid heat treatment.•Development of shear bands followed by void formation on the 420 side lead to fracture.•β-NiAl precipitation hardening enhanced the Corrax strength after heat treatment.•Significant grain boundary and AlN nanoparticle strengthening occur at the interface.
AbstractList The customization of plastic injection molding dies is technologically and economically limited by conventional manufacturing processes. Recent advances in hybrid additive manufacturing (HAM) have provided more geometrical freedom for the manufacturing of parts with desired properties. In this paper, we report manufacturing of a hybrid 420/Corrax stainless steel with a reliable interface that can be applied in the manufacturing of next-generation geometrically complex plastic injection molding dies with enhanced strength and corrosion resistance. AISI 420 martensitic stainless steel is used as a cost-effective substrate, and a maraging stainless steel grade, known as Corrax, is printed on top of it using laser powder bed fusion (LPBF). A hybrid heat treatment cycle is applied to improve metallurgical properties and to enhance mechanical compatibility between the martensitic and the maraging stainless steels. Tensile tests coupled with scanning electron microscopy are carried out for analysis of failure, which show the development of shear bands in the microstructure of the 420 stainless steel substrate while a limited amount of deformation occurs in the interface region and Corrax microstructure. Void nucleation, growth, and coalescence are found at the 420/Corrax interface due to mechanical incompatibility and decohesion; however, microstructural instability mainly occurs along the shear bands on the 420 side and leads to fracture, which is quantified using high-resolution X-ray computed tomography. Nanoindentation tests show that the maximum level of hardness occurs at the interface due to the existence of sub-micron grains and the formation of AlN nanoparticles. Also, the formation of β-NiAl precipitates enhances the Corrax strength after heat treatment. In addition to a high strength, elevated corrosion resistance of the cooling channels is essential to extend the service life of plastic injection molding dies. Potentiodynamic corrosion testing at the interface shows that Corrax has remarkable corrosion resistance compared to 420. Therefore, additive manufacturing of the critical die areas such as the cooling channels using Corrax increases the service life of the mold. [Display omitted] •A HAM 420/Corrax martensitic-maraging stainless steel is fabricated using the LPBF method.•Strength and mechanical compatibility are enhanced by applying a hybrid heat treatment.•Development of shear bands followed by void formation on the 420 side lead to fracture.•β-NiAl precipitation hardening enhanced the Corrax strength after heat treatment.•Significant grain boundary and AlN nanoparticle strengthening occur at the interface.
ArticleNumber 102068
Author Shahriari, Ayda
Hadadzadeh, Amir
Mohammadi, Mohsen
Sanjari, Mehdi
Amirkhiz, Babak Shalchi
Samei, Javad
Jahanbakht, Mohammad
Salavati, Saied
Amirmaleki, Maedeh
Asgari, Hamed
Pelligra, Concetta
Author_xml – sequence: 1
  givenname: Javad
  surname: Samei
  fullname: Samei, Javad
  email: sameij@mcmaster.ca
  organization: Marine Additive Manufacturing Centre of Excellence, University of New Brunswick, Fredericton, NB E3B 5A1, Canada
– sequence: 2
  givenname: Hamed
  surname: Asgari
  fullname: Asgari, Hamed
  organization: Marine Additive Manufacturing Centre of Excellence, University of New Brunswick, Fredericton, NB E3B 5A1, Canada
– sequence: 3
  givenname: Concetta
  surname: Pelligra
  fullname: Pelligra, Concetta
  organization: Department of Materials Science and Engineering, McMaster University, Hamilton, ON L8S 4L7, Canada
– sequence: 4
  givenname: Mehdi
  surname: Sanjari
  fullname: Sanjari, Mehdi
  organization: Marine Additive Manufacturing Centre of Excellence, University of New Brunswick, Fredericton, NB E3B 5A1, Canada
– sequence: 5
  givenname: Saied
  surname: Salavati
  fullname: Salavati, Saied
  organization: Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
– sequence: 6
  givenname: Ayda
  surname: Shahriari
  fullname: Shahriari, Ayda
  organization: Marine Additive Manufacturing Centre of Excellence, University of New Brunswick, Fredericton, NB E3B 5A1, Canada
– sequence: 7
  givenname: Maedeh
  surname: Amirmaleki
  fullname: Amirmaleki, Maedeh
  organization: Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
– sequence: 8
  givenname: Mohammad
  surname: Jahanbakht
  fullname: Jahanbakht, Mohammad
  organization: Department of Industrial, Manufacturing, and Systems Engineering, The University of Texas at Arlington, Arlington, TX 76019, United States
– sequence: 9
  givenname: Amir
  surname: Hadadzadeh
  fullname: Hadadzadeh, Amir
  organization: Marine Additive Manufacturing Centre of Excellence, University of New Brunswick, Fredericton, NB E3B 5A1, Canada
– sequence: 10
  givenname: Babak Shalchi
  surname: Amirkhiz
  fullname: Amirkhiz, Babak Shalchi
  organization: Marine Additive Manufacturing Centre of Excellence, University of New Brunswick, Fredericton, NB E3B 5A1, Canada
– sequence: 11
  givenname: Mohsen
  surname: Mohammadi
  fullname: Mohammadi, Mohsen
  organization: Marine Additive Manufacturing Centre of Excellence, University of New Brunswick, Fredericton, NB E3B 5A1, Canada
BookMark eNqFkE1u2zAQhYnCAZo6PkE3vIBcUj-UtMjCCNomQIBukjVBkUN7DJkySNqBb9LjdlRn1UW64uNwvge-94UtwhSAsa9SrKWQ6tt-bZw7mHUpSkmTUqjuE7stS1kXbSfF4l13StSf2SqlvRBCNlXbd-Ut-73hu8sQ0XEywYxnGC_8YMLJG5tPERxdYoaQ6M0WpM0Ww5anbDCMkBIpgJG_Yd7xdDpCxCnSLELY0sQEx-0U45RwCjxCQgKDBe5p6ziaRKYcwx5snhcO0-hmd4eQ7tiNN2OC1fu5ZK8_vr88PBbPv34-PWyeC1uJKhfK1cPQiNL3Rta2c950qq0bUEoqZaEpVed7Jyrb9kM9QDXY1vde9VUjmnZQvlqy6upr6ZcpgtfHiJTzoqXQc796r__2q-d-9bVfovp_KIvZzCFyNDj-h72_skCxzghRJ4tArTiMVIR2E37I_wEl2Z5R
CitedBy_id crossref_primary_10_1007_s11665_024_10124_2
crossref_primary_10_1007_s40684_022_00470_8
crossref_primary_10_1007_s00170_023_11585_w
crossref_primary_10_1080_17452759_2024_2350610
crossref_primary_10_3390_met12101669
crossref_primary_10_1007_s00170_024_14731_0
crossref_primary_10_1080_17452759_2023_2290184
crossref_primary_10_3788_CJL231025
crossref_primary_10_1016_j_matpr_2021_11_647
Cites_doi 10.1038/nature14144
10.1016/j.msea.2020.140630
10.1016/j.jnucmat.2015.11.013
10.1016/j.actamat.2019.10.047
10.1016/j.actamat.2016.03.019
10.1016/j.actamat.2017.02.069
10.1038/nature22032
10.1016/j.matchar.2019.109939
10.1016/j.mechmat.2016.07.011
10.1126/science.1137711
10.5006/1.3584938
10.1016/j.scriptamat.2018.12.007
10.1016/j.scriptamat.2007.01.031
10.1016/j.scriptamat.2019.08.012
10.1016/j.actamat.2018.02.044
10.1038/nature01133
10.1016/j.actamat.2017.07.045
10.1016/j.vacuum.2018.02.040
10.1038/nature17981
10.1016/j.jallcom.2010.12.174
10.1007/s10800-015-0796-1
10.1126/science.1156084
10.1016/S1359-6454(99)00370-5
10.1016/j.actamat.2008.06.015
10.1007/s11665-021-05548-z
10.1016/j.actamat.2011.11.009
10.1126/science.aal2766
10.1016/j.actamat.2004.08.018
10.1016/j.ijplas.2017.12.009
10.1016/j.mtla.2020.100834
10.1016/j.matlet.2020.127664
10.1016/j.msea.2020.140081
10.1089/3dp.2018.0060
10.1007/s11661-020-05882-2
10.1016/j.engfailanal.2008.09.003
10.1115/1.4027492
10.1016/j.matdes.2015.12.103
10.1038/nmat5021
10.1016/j.msea.2017.10.045
10.1016/j.matlet.2019.126512
10.1016/S0010-4485(01)00203-2
10.1016/j.msea.2020.139470
10.1016/j.actamat.2020.04.036
10.1088/0370-1301/64/9/303
10.1007/BF02647972
10.1016/j.actamat.2018.11.021
10.1007/s11665-011-0043-9
10.1016/j.ijplas.2014.06.004
10.1038/ncomms4580
10.1115/1.4027940
10.1016/j.actamat.2020.08.072
10.1016/j.scriptamat.2011.06.010
10.1016/j.actamat.2019.12.037
10.1016/j.msea.2020.139999
10.1007/s11665-012-0438-2
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.addma.2021.102068
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2214-7810
ExternalDocumentID 10_1016_j_addma_2021_102068
S2214860421002335
GroupedDBID --M
.~1
0R~
1~.
4.4
457
4G.
7-5
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXUO
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FYGXN
GBLVA
KOM
M41
O9-
OAUVE
PC.
ROL
SPC
SPCBC
SSM
SST
SSZ
T5K
~G-
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c303t-6d4bb502f9a14c8dfa86745e66166ce5268f9d03c79b4be3bc7f9f6935057b6f3
IEDL.DBID .~1
ISSN 2214-8604
IngestDate Thu Apr 24 23:08:57 EDT 2025
Tue Jul 01 01:47:06 EDT 2025
Fri Feb 23 02:43:47 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Microstructure
Hybrid additive manufacturing
Martensitic-maraging stainless steel
Strengthening mechanisms
Plastic injection molding
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c303t-6d4bb502f9a14c8dfa86745e66166ce5268f9d03c79b4be3bc7f9f6935057b6f3
ParticipantIDs crossref_primary_10_1016_j_addma_2021_102068
crossref_citationtrail_10_1016_j_addma_2021_102068
elsevier_sciencedirect_doi_10_1016_j_addma_2021_102068
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2021
2021-09-00
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: September 2021
PublicationDecade 2020
PublicationTitle Additive manufacturing
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Seede, Shoukr, Zhang, Whitt, Gibbons, Flater, Elwany, Arroyave, Karaman (bib11) 2020; 186
du Plessis, Yadroitsev, Yadroitsava, Le Roux (bib44) 2018; 5
Samei, Salib, Amirmaleki, Wilkinson (bib49) 2019; 173
Standard Test Methods for Tension Testing of Metallic Materials, ASTM E8 / E8M - 15a. (n.d.).
Janovec, Vyrostkova, Svoboda (bib66) 1994; 25
Is Hybrid Manufacturing Technology the Future of Additive Manufacturing?, Addit. Manuf., 2018.
Amirmaleki, Samei, Green, van Riemsdijk, Stewart (bib52) 2016; 101
Yan, Liu, Tao, Lu (bib8) 2012; 60
Kaneko, Fukunaga, Yamada, Nakada, Kikuchi, Saghi, Barnard, Midgley (bib67) 2011; 65
Samei, Green, Golovashchenko (bib54) 2014; 136
Hybrid Machines Make Parts Using Brand New and Tried and True Technologies, Soc. Manuf. Eng., 2018.
Koyama, Zhang, Wang, Ponge, Raabe, Tsuzaki, Noguchi, Tasan (bib2) 2017; 355
Huang, Yan, Chen, Xie, Liu, Kuang, Liao (bib21) 2018; 151
Tewari, Mazumder, Batra, Dey, Banerjee (bib33) 2000; 48
Chauhan, Litvinov, Aktaa (bib60) 2016; 468
Wei, Li, Zhu, Liu, Lei, Wang, Wu, Mi, Liu, Wang, Gao (bib10) 2014; 5
Pereloma, Shekhter, Miller, Ringer (bib34) 2004; 52
Standard test methods for determining average grain size using semiautomatic and automatic image analysis, ASTM E1382 - 97., 2015.
Blach, Falat, Ševc (bib59) 2009; 16
Uematsu, Kakiuchi, Nakajima, Matsuo (bib29) 2021
Samei, Sadeghi, Mortezapour, Salavati, Amirmaleki (bib45) 2020; 797
Samei, Amirmaleki, Shirinzadeh Dastgiri, Marinelli, Green (bib48) 2019; 255
Wang, Palmer, Beese (bib12) 2016; 110
Wang, Su, Szklarska-Smialowska (bib36) 1988; 44
.
Maire, Bouaziz, Di Michiel, Verdu (bib51) 2008; 56
Shakerin, Hadadzadeh, Amirkhiz, Shamsdini, Li, Mohammadi (bib26) 2019; 29
Kürnsteiner, Wilms, Weisheit, Barriobero-Vila, Jägle, Raabe (bib31) 2017; 129
Boes, Röttger, Theisen, Cui, Uhlenwinkel, Schulz, Zoch, Stern, Tenkamp, Walther (bib18) 2020; 34
Hadadzadeh, Amirkhiz, Shakerin, Kelly, Li, Mohammadi (bib22) 2020; 31
Ferreri, Pokharel, Livescu, Brown, Knezevic, Park, Torrez, Gray (bib16) 2020; 195
Hadadzadeh, Shahriari, Shalchi, Li (bib32) 2020; 787
Lei, Deng, Li, Wang (bib58) 2019; 162
Azizi, Ghiaasiaan, Prager, Ghoncheh, Samk, Lausic, Byleveld, Phillion (bib28) 2019; 27
Hur, Lee, Zhu-Hu, Kim (bib39) 2002; 34
Tasan, Hoefnagels, Diehl, Yan, Roters, Raabe (bib43) 2014; 63
Samei, Pelligra, Amirmaleki, Wilkinson (bib46) 2020; 269
Oh, Son, Cho, Yang, Shin, Shim (bib17) 2020; 794
Sun, Simm, Martin, McAdam, Galvin, Perkins, Bagot, Moody, Ooi, Hill, Rawson, Bhadeshia (bib30) 2018; 149
Bai, Zhao, Zhang, Wang (bib24) 2021; 802
Wu, Liu, Niu, Miao, Zhao, Tang, Bi, Ma (bib20) 2020; 32
Kimura, Inoue, Yin, Tsuzaki (bib3) 2008; 320
Gray, Livescu, Rigg, Trujillo, Cady, Chen, Carpenter, Lienert, Fensin (bib15) 2017; 138
Yamamoto, Brady, Lu, Maziasz, Liu, Pint, More, Meyer, Payzant (bib7) 2007; 316
Samei, Zhou, Kang, Wilkinson (bib55) 2019; 117
Salehiyan, Samei, Amirkhiz, Hector, Wilkinson (bib56) 2020; 51
Dharmendra, Shakerin, Ram, Mohammadi (bib23) 2020; 13
Kučerová, Zetková, Jeníček, Burdová (bib25) 2020; 32
Samei, Green, Golovashchenko, Hassannejadasl (bib42) 2013; 22
Samei, Amirmaleki, Ventura, Pawlikowski, Bayes, Misiolek, Wilkinson (bib47) 2020; 34
Jiang, Wang, Wu, Liu, Chen, Yao, Gault, Ponge, Raabe, Hirata, Chen, Wang, Lu (bib5) 2017; 544
Smith, Sugar, San Marchi, Schoenung (bib14) 2019; 164
Lee, Tam, Li, Yu, Cho, Samei, Wilkinson, Choe, Erb (bib50) 2019; 158
Wang, Voisin, McKeown, Ye, Calta, Li, Zeng, Zhang, Chen, Roehling, Ott, Santala, Depond, Matthews, Hamza, Zhu (bib9) 2018; 17
Hidalgo, Vittorietti, Farahani, Vercruysse, Petrov, Sietsma (bib63) 2020; 200
Isfahany, Saghafian, Borhani (bib61) 2011; 509
Hall (bib65) 1951; 64
Yinmin, Mingwei, Fenghua, En (bib6) 2002; 419
Samei, Green, Golovashchenko (bib53) 2014; 136
Barlow, Du Toit (bib62) 2012; 21
Ebrahimi, Mohammadi (bib27) 2018; 23
Asgari, Mohammadi (bib19) 2018; 709
Lu, Yao, Chen, Wang, Shao, Ge (bib35) 2015; 45
Kang, Ososkov, Embury, Wilkinson (bib41) 2007; 56
Samei, Green, Cheng, de Carvalho Lima (bib57) 2016; 92
Li, Pradeep, Deng, Raabe, Tasan (bib1) 2016; 534
Kim, Kim, Kim (bib4) 2015; 518
Polonsky, Lenthe, Echlin, Livescu, Gray, Pollock (bib13) 2020; 183
Hadadzadeh (10.1016/j.addma.2021.102068_bib32) 2020; 787
Janovec (10.1016/j.addma.2021.102068_bib66) 1994; 25
Shakerin (10.1016/j.addma.2021.102068_bib26) 2019; 29
Samei (10.1016/j.addma.2021.102068_bib53) 2014; 136
Yan (10.1016/j.addma.2021.102068_bib8) 2012; 60
10.1016/j.addma.2021.102068_bib37
10.1016/j.addma.2021.102068_bib38
Koyama (10.1016/j.addma.2021.102068_bib2) 2017; 355
Kang (10.1016/j.addma.2021.102068_bib41) 2007; 56
Huang (10.1016/j.addma.2021.102068_bib21) 2018; 151
Ebrahimi (10.1016/j.addma.2021.102068_bib27) 2018; 23
Asgari (10.1016/j.addma.2021.102068_bib19) 2018; 709
Wang (10.1016/j.addma.2021.102068_bib12) 2016; 110
Samei (10.1016/j.addma.2021.102068_bib57) 2016; 92
Kürnsteiner (10.1016/j.addma.2021.102068_bib31) 2017; 129
Samei (10.1016/j.addma.2021.102068_bib48) 2019; 255
Yinmin (10.1016/j.addma.2021.102068_bib6) 2002; 419
Samei (10.1016/j.addma.2021.102068_bib49) 2019; 173
Lei (10.1016/j.addma.2021.102068_bib58) 2019; 162
Seede (10.1016/j.addma.2021.102068_bib11) 2020; 186
Hur (10.1016/j.addma.2021.102068_bib39) 2002; 34
Isfahany (10.1016/j.addma.2021.102068_bib61) 2011; 509
10.1016/j.addma.2021.102068_bib64
Wu (10.1016/j.addma.2021.102068_bib20) 2020; 32
Wang (10.1016/j.addma.2021.102068_bib36) 1988; 44
Hidalgo (10.1016/j.addma.2021.102068_bib63) 2020; 200
Sun (10.1016/j.addma.2021.102068_bib30) 2018; 149
du Plessis (10.1016/j.addma.2021.102068_bib44) 2018; 5
Samei (10.1016/j.addma.2021.102068_bib46) 2020; 269
Hadadzadeh (10.1016/j.addma.2021.102068_bib22) 2020; 31
Samei (10.1016/j.addma.2021.102068_bib55) 2019; 117
Samei (10.1016/j.addma.2021.102068_bib54) 2014; 136
Kimura (10.1016/j.addma.2021.102068_bib3) 2008; 320
Wang (10.1016/j.addma.2021.102068_bib9) 2018; 17
Tasan (10.1016/j.addma.2021.102068_bib43) 2014; 63
Salehiyan (10.1016/j.addma.2021.102068_bib56) 2020; 51
Samei (10.1016/j.addma.2021.102068_bib42) 2013; 22
Chauhan (10.1016/j.addma.2021.102068_bib60) 2016; 468
Barlow (10.1016/j.addma.2021.102068_bib62) 2012; 21
Uematsu (10.1016/j.addma.2021.102068_bib29) 2021
Wei (10.1016/j.addma.2021.102068_bib10) 2014; 5
Tewari (10.1016/j.addma.2021.102068_bib33) 2000; 48
Samei (10.1016/j.addma.2021.102068_bib47) 2020; 34
Kaneko (10.1016/j.addma.2021.102068_bib67) 2011; 65
Maire (10.1016/j.addma.2021.102068_bib51) 2008; 56
Smith (10.1016/j.addma.2021.102068_bib14) 2019; 164
Blach (10.1016/j.addma.2021.102068_bib59) 2009; 16
Gray (10.1016/j.addma.2021.102068_bib15) 2017; 138
Boes (10.1016/j.addma.2021.102068_bib18) 2020; 34
Kučerová (10.1016/j.addma.2021.102068_bib25) 2020; 32
Lee (10.1016/j.addma.2021.102068_bib50) 2019; 158
Pereloma (10.1016/j.addma.2021.102068_bib34) 2004; 52
Samei (10.1016/j.addma.2021.102068_bib45) 2020; 797
Li (10.1016/j.addma.2021.102068_bib1) 2016; 534
Kim (10.1016/j.addma.2021.102068_bib4) 2015; 518
Hall (10.1016/j.addma.2021.102068_bib65) 1951; 64
Bai (10.1016/j.addma.2021.102068_bib24) 2021; 802
Polonsky (10.1016/j.addma.2021.102068_bib13) 2020; 183
Oh (10.1016/j.addma.2021.102068_bib17) 2020; 794
Jiang (10.1016/j.addma.2021.102068_bib5) 2017; 544
Ferreri (10.1016/j.addma.2021.102068_bib16) 2020; 195
Azizi (10.1016/j.addma.2021.102068_bib28) 2019; 27
Yamamoto (10.1016/j.addma.2021.102068_bib7) 2007; 316
Amirmaleki (10.1016/j.addma.2021.102068_bib52) 2016; 101
Lu (10.1016/j.addma.2021.102068_bib35) 2015; 45
Dharmendra (10.1016/j.addma.2021.102068_bib23) 2020; 13
10.1016/j.addma.2021.102068_bib40
References_xml – volume: 34
  year: 2020
  ident: bib18
  article-title: Gas atomization and laser additive manufacturing of nitrogen-alloyed martensitic stainless steel
  publication-title: Addit. Manuf.
– volume: 173
  start-page: 86
  year: 2019
  end-page: 90
  ident: bib49
  article-title: The role of microstructure on edge cracks in dual phase and quench and partitioning steels subject to severe cold rolling
  publication-title: Scr. Mater.
– volume: 101
  start-page: 27
  year: 2016
  end-page: 39
  ident: bib52
  article-title: 3D micromechanical modeling of dual phase steels using the representative volume element method
  publication-title: Mech. Mater.
– volume: 110
  start-page: 226
  year: 2016
  end-page: 235
  ident: bib12
  article-title: Effect of processing parameters on microstructure and tensile properties of austenitic stainless steel 304L made by directed energy deposition additive manufacturing
  publication-title: Acta Mater.
– volume: 25
  start-page: 267
  year: 1994
  end-page: 275
  ident: bib66
  article-title: Influence of tempering temperature on stability of carbide phases in 2.6cr-0.7mo-0.3v steel with various carbon content
  publication-title: Metall. Mater. Trans. A
– reference: Is Hybrid Manufacturing Technology the Future of Additive Manufacturing?, Addit. Manuf., 2018.
– volume: 16
  start-page: 1397
  year: 2009
  end-page: 1403
  ident: bib59
  article-title: Fracture characteristics of thermally exposed 9Cr – 1Mo steel after tensile and impact testing at room temperature
  publication-title: Eng. Fail. Anal.
– volume: 44
  start-page: 732
  year: 1988
  end-page: 737
  ident: bib36
  article-title: Effects of Cl− concentration and temperature on pitting of AISI 304 stainless steel
  publication-title: Corrosion
– volume: 186
  start-page: 199
  year: 2020
  end-page: 214
  ident: bib11
  article-title: An ultra-high strength martensitic steel fabricated using selective laser melting additive manufacturing: densification, microstructure, and mechanical properties
  publication-title: Acta Mater.
– volume: 129
  start-page: 52
  year: 2017
  end-page: 60
  ident: bib31
  article-title: Massive nanoprecipitation in an Fe-19Ni-xAl maraging steel triggered by the intrinsic heat treatment during laser metal deposition
  publication-title: Acta Mater.
– volume: 269
  year: 2020
  ident: bib46
  article-title: Microstructural design for damage tolerance in high strength steels
  publication-title: Mater. Lett.
– volume: 316
  start-page: 433
  year: 2007
  end-page: 436
  ident: bib7
  article-title: Creep-resistant, Al₂O₃-forming austenitic stainless steels
  publication-title: Science
– volume: 158
  year: 2019
  ident: bib50
  article-title: Multi-scale morphological characterization of Ni foams with directional pores
  publication-title: Mater. Charact.
– volume: 355
  start-page: 1055
  year: 2017
  end-page: 1057
  ident: bib2
  article-title: Bone-like crack resistance in hierarchical metastable nanolaminate steels
  publication-title: Science
– volume: 509
  start-page: 3931
  year: 2011
  end-page: 3936
  ident: bib61
  article-title: The effect of heat treatment on mechanical properties and corrosion behavior of AISI420 martensitic stainless steel
  publication-title: J. Alloy. Compd.
– volume: 419
  start-page: 912
  year: 2002
  end-page: 915
  ident: bib6
  article-title: High tensile ductility in a nanostructured metal
  publication-title: Nature
– volume: 802
  year: 2021
  ident: bib24
  article-title: Microstructure and mechanical properties of additively manufactured multi-material component with maraging steel on CrMn steel
  publication-title: Mater. Sci. Eng. A
– volume: 138
  start-page: 140
  year: 2017
  end-page: 149
  ident: bib15
  article-title: Structure/property (constitutive and spallation response) of additively manufactured 316L stainless steel
  publication-title: Acta Mater.
– volume: 162
  start-page: 421
  year: 2019
  end-page: 425
  ident: bib58
  article-title: Simultaneous enhancement of strength and ductility through coordination deformation and multi-stage transformation induced plasticity (TRIP) effect in heterogeneous metastable austenitic steel
  publication-title: Scr. Mater.
– volume: 31
  year: 2020
  ident: bib22
  article-title: Microstructural investigation and mechanical behavior of a two-material component fabricated through selective laser melting of AlSi10Mg on an Al-Cu-Ni-Fe-Mg cast alloy substrate
  publication-title: Addit. Manuf.
– volume: 22
  start-page: 2080
  year: 2013
  end-page: 2088
  ident: bib42
  article-title: Quantitative microstructural analysis of formability enhancement in dual phase steels subject to electrohydraulic forming
  publication-title: J. Mater. Eng. Perform.
– volume: 21
  start-page: 1327
  year: 2012
  end-page: 1336
  ident: bib62
  article-title: Effect of austenitizing heat treatment on the microstructure and hardness of martensitic stainless steel AISI 420
  publication-title: J. Mater. Eng. Perform.
– reference: Standard test methods for determining average grain size using semiautomatic and automatic image analysis, ASTM E1382 - 97., 2015.
– volume: 34
  start-page: 741
  year: 2002
  end-page: 754
  ident: bib39
  article-title: Hybrid rapid prototyping system using machining and deposition
  publication-title: CAD Comput. Aided Des.
– volume: 51
  start-page: 4524
  year: 2020
  end-page: 4539
  ident: bib56
  article-title: Microstructural evolution during deformation of a QP980 steel
  publication-title: Metall. Mater. Trans. A
– volume: 5
  start-page: 227
  year: 2018
  end-page: 247
  ident: bib44
  article-title: X-ray microcomputed tomography in additive manufacturing: a review of the current technology and applications
  publication-title: 3D Print. Addit. Manuf.
– reference: Hybrid Machines Make Parts Using Brand New and Tried and True Technologies, Soc. Manuf. Eng., 2018.
– volume: 56
  start-page: 999
  year: 2007
  end-page: 1002
  ident: bib41
  article-title: Digital image correlation studies for microscopic strain distribution and damage in dual phase steels
  publication-title: Scr. Mater.
– volume: 195
  start-page: 59
  year: 2020
  end-page: 70
  ident: bib16
  article-title: Effects of heat treatment and build orientation on the evolution of ϵ and α′ martensite and strength during compressive loading of additively manufactured 304L stainless steel
  publication-title: Acta Mater.
– volume: 787
  year: 2020
  ident: bib32
  article-title: Additive manufacturing of an Fe – Cr – Ni – Al maraging stainless steel: microstructure evolution, heat treatment, and strengthening mechanisms
  publication-title: Mater. Sci. Eng. A
– volume: 320
  start-page: 1057
  year: 2008
  end-page: 1060
  ident: bib3
  article-title: Inverse temperature dependence of toughness in an ultrafine grain-structure steel
  publication-title: Science
– volume: 17
  start-page: 63
  year: 2018
  end-page: 70
  ident: bib9
  article-title: Additively manufactured hierarchical stainless steels with high strength and ductility
  publication-title: Nat. Mater.
– volume: 34
  year: 2020
  ident: bib47
  article-title: In-situ X-ray tomography analysis of the evolution of pores during deformation of a Cu-Sn alloy fabricated by selective laser melting
  publication-title: Addit. Manuf.
– volume: 136
  year: 2014
  ident: bib53
  article-title: Metallurgical investigations on hyperplasticity in dual phase steel sheets
  publication-title: J. Manuf. Sci. Eng.
– volume: 27
  start-page: 389
  year: 2019
  end-page: 397
  ident: bib28
  article-title: Metallurgical and mechanical assessment of hybrid additively-manufactured maraging tool steels via selective laser melting
  publication-title: Addit. Manuf.
– volume: 534
  start-page: 227
  year: 2016
  end-page: 230
  ident: bib1
  article-title: Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off
  publication-title: Nature
– volume: 518
  start-page: 77
  year: 2015
  end-page: 79
  ident: bib4
  article-title: Brittle intermetallic compound makes ultrastrong low-density steel with large ductility
  publication-title: Nature
– volume: 63
  start-page: 198
  year: 2014
  end-page: 210
  ident: bib43
  article-title: Strain localization and damage in dual phase steels investigated by coupled in-situ deformation experiments and crystal plasticity simulations
  publication-title: Int. J. Plast.
– volume: 65
  start-page: 509
  year: 2011
  end-page: 512
  ident: bib67
  article-title: Formation of M23C6-type precipitates and chromium-depleted zones in austenite stainless steel
  publication-title: Scr. Mater.
– volume: 23
  start-page: 381
  year: 2018
  end-page: 393
  ident: bib27
  article-title: Numerical tools to investigate mechanical and fatigue properties of additively manufactured MS1-H13 hybrid steels
  publication-title: Addit. Manuf.
– volume: 149
  start-page: 285
  year: 2018
  end-page: 301
  ident: bib30
  article-title: A novel ultra-high strength maraging steel with balanced ductility and creep resistance achieved by nanoscale β-NiAl and Laves phase precipitates
  publication-title: Acta Mater.
– volume: 13
  year: 2020
  ident: bib23
  article-title: Wire-arc additive manufacturing of nickel aluminum bronze/stainless steel hybrid parts – Interfacial characterization, prospects, and problems
  publication-title: Materialia
– volume: 794
  year: 2020
  ident: bib17
  article-title: Solution annealing and precipitation hardening effect on the mechanical properties of 630 stainless steel fabricated via laser melting deposition
  publication-title: Mater. Sci. Eng. A
– volume: 56
  start-page: 4954
  year: 2008
  end-page: 4964
  ident: bib51
  article-title: Initiation and growth of damage in a dual-phase steel observed by X-ray microtomography
  publication-title: Acta Mater.
– volume: 136
  year: 2014
  ident: bib54
  article-title: Analysis of failure in dual phase steel sheets subject to electrohydraulic forming
  publication-title: J. Manuf. Sci. Eng. Trans. ASME
– volume: 92
  start-page: 1028
  year: 2016
  end-page: 1037
  ident: bib57
  article-title: Influence of strain path on nucleation and growth of voids in dual phase steel sheets
  publication-title: Mater. Des.
– volume: 60
  start-page: 1059
  year: 2012
  end-page: 1071
  ident: bib8
  article-title: Strength and ductility of 316L austenitic stainless steel strengthened by nano-scale twin bundles
  publication-title: Acta Mater.
– volume: 544
  start-page: 460
  year: 2017
  end-page: 464
  ident: bib5
  article-title: Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation
  publication-title: Nature
– volume: 32
  year: 2020
  ident: bib20
  article-title: Al–Cu alloy fabricated by novel laser-tungsten inert gas hybrid additive manufacturing
  publication-title: Addit. Manuf.
– volume: 64
  start-page: 747
  year: 1951
  end-page: 753
  ident: bib65
  article-title: The deformation and ageing of mild steel: III discussion of results
  publication-title: Proc. Phys. Soc. Sect. B
– volume: 5
  start-page: 3580
  year: 2014
  ident: bib10
  article-title: Evading the strength-ductility trade-off dilemma in steel through gradient hierarchical nanotwins
  publication-title: Nat. Commun.
– reference: Standard Test Methods for Tension Testing of Metallic Materials, ASTM E8 / E8M - 15a. (n.d.).
– volume: 255
  year: 2019
  ident: bib48
  article-title: In-situ X-ray tomography analysis of the evolution of pores during deformation of AlSi10Mg fabricated by selective laser melting
  publication-title: Mater. Lett.
– volume: 164
  start-page: 728
  year: 2019
  end-page: 740
  ident: bib14
  article-title: Strengthening mechanisms in directed energy deposited austenitic stainless steel
  publication-title: Acta Mater.
– volume: 200
  start-page: 74
  year: 2020
  end-page: 90
  ident: bib63
  article-title: Influence of M23C6 carbides on the heterogeneous strain development in annealed 420 stainless steel
  publication-title: Acta Mater.
– volume: 183
  start-page: 249
  year: 2020
  end-page: 260
  ident: bib13
  article-title: Solidification-driven orientation gradients in additively manufactured stainless steel
  publication-title: Acta Mater.
– reference: .
– volume: 52
  start-page: 5589
  year: 2004
  end-page: 5602
  ident: bib34
  article-title: Ageing behaviour of an Fe-20Ni-1.8Mn-1.6Ti-0.59Al (wt%) maraging alloy: clustering, precipitation and hardening
  publication-title: Acta Mater.
– volume: 29
  year: 2019
  ident: bib26
  article-title: Additive manufacturing of maraging steel-H13 bimetals using laser powder bed fusion technique
  publication-title: Addit. Manuf.
– volume: 468
  start-page: 1
  year: 2016
  end-page: 8
  ident: bib60
  article-title: High temperature tensile properties and fracture characteristics of bimodal 12Cr-ODS steel
  publication-title: J. Nucl. Mater.
– volume: 797
  year: 2020
  ident: bib45
  article-title: 4D X-ray tomography characterization of void nucleation and growth during deformation of strontium-added AZ31 alloys
  publication-title: Mater. Sci. Eng. A
– volume: 45
  start-page: 375
  year: 2015
  end-page: 383
  ident: bib35
  article-title: Effects of austenitizing temperature on the microstructure and electrochemical behavior of a martensitic stainless steel
  publication-title: J. Appl. Electrochem.
– volume: 709
  start-page: 82
  year: 2018
  end-page: 89
  ident: bib19
  article-title: Microstructure and mechanical properties of stainless steel CX manufactured by Direct Metal Laser Sintering
  publication-title: Mater. Sci. Eng. A
– volume: 32
  year: 2020
  ident: bib25
  article-title: Hybrid parts produced by deposition of 18Ni300 maraging steel via selective laser melting on forged and heat treated advanced high strength steel
  publication-title: Addit. Manuf.
– volume: 117
  start-page: 58
  year: 2019
  end-page: 70
  ident: bib55
  article-title: Microstructural analysis of ductility and fracture in fine-grained and ultrafine-grained vanadium-added DP1300 steels
  publication-title: Int. J. Plast.
– volume: 151
  start-page: 275
  year: 2018
  end-page: 282
  ident: bib21
  article-title: Additive manufacturing hybrid Ni/Ti-6Al-4V structural component via selective laser melting and cold spraying
  publication-title: Vacuum
– volume: 48
  start-page: 1187
  year: 2000
  end-page: 1200
  ident: bib33
  article-title: Precipitation in 18 wt% Ni maraging steel of grade 350
  publication-title: Acta Mater.
– year: 2021
  ident: bib29
  article-title: Microstructures and fatigue behavior of additively manufactured maraging steel deposited on conventionally manufactured base plate
  publication-title: J. Mater. Eng. Perform.
– volume: 518
  start-page: 77
  year: 2015
  ident: 10.1016/j.addma.2021.102068_bib4
  article-title: Brittle intermetallic compound makes ultrastrong low-density steel with large ductility
  publication-title: Nature
  doi: 10.1038/nature14144
– volume: 802
  year: 2021
  ident: 10.1016/j.addma.2021.102068_bib24
  article-title: Microstructure and mechanical properties of additively manufactured multi-material component with maraging steel on CrMn steel
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2020.140630
– volume: 468
  start-page: 1
  year: 2016
  ident: 10.1016/j.addma.2021.102068_bib60
  article-title: High temperature tensile properties and fracture characteristics of bimodal 12Cr-ODS steel
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2015.11.013
– volume: 183
  start-page: 249
  year: 2020
  ident: 10.1016/j.addma.2021.102068_bib13
  article-title: Solidification-driven orientation gradients in additively manufactured stainless steel
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2019.10.047
– volume: 110
  start-page: 226
  year: 2016
  ident: 10.1016/j.addma.2021.102068_bib12
  article-title: Effect of processing parameters on microstructure and tensile properties of austenitic stainless steel 304L made by directed energy deposition additive manufacturing
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.03.019
– volume: 129
  start-page: 52
  year: 2017
  ident: 10.1016/j.addma.2021.102068_bib31
  article-title: Massive nanoprecipitation in an Fe-19Ni-xAl maraging steel triggered by the intrinsic heat treatment during laser metal deposition
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2017.02.069
– volume: 23
  start-page: 381
  year: 2018
  ident: 10.1016/j.addma.2021.102068_bib27
  article-title: Numerical tools to investigate mechanical and fatigue properties of additively manufactured MS1-H13 hybrid steels
  publication-title: Addit. Manuf.
– volume: 544
  start-page: 460
  year: 2017
  ident: 10.1016/j.addma.2021.102068_bib5
  article-title: Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation
  publication-title: Nature
  doi: 10.1038/nature22032
– volume: 158
  year: 2019
  ident: 10.1016/j.addma.2021.102068_bib50
  article-title: Multi-scale morphological characterization of Ni foams with directional pores
  publication-title: Mater. Charact.
  doi: 10.1016/j.matchar.2019.109939
– ident: 10.1016/j.addma.2021.102068_bib40
– ident: 10.1016/j.addma.2021.102068_bib37
– volume: 32
  year: 2020
  ident: 10.1016/j.addma.2021.102068_bib25
  article-title: Hybrid parts produced by deposition of 18Ni300 maraging steel via selective laser melting on forged and heat treated advanced high strength steel
  publication-title: Addit. Manuf.
– volume: 101
  start-page: 27
  year: 2016
  ident: 10.1016/j.addma.2021.102068_bib52
  article-title: 3D micromechanical modeling of dual phase steels using the representative volume element method
  publication-title: Mech. Mater.
  doi: 10.1016/j.mechmat.2016.07.011
– volume: 316
  start-page: 433
  issue: 80
  year: 2007
  ident: 10.1016/j.addma.2021.102068_bib7
  article-title: Creep-resistant, Al₂O₃-forming austenitic stainless steels
  publication-title: Science
  doi: 10.1126/science.1137711
– volume: 44
  start-page: 732
  year: 1988
  ident: 10.1016/j.addma.2021.102068_bib36
  article-title: Effects of Cl− concentration and temperature on pitting of AISI 304 stainless steel
  publication-title: Corrosion
  doi: 10.5006/1.3584938
– volume: 162
  start-page: 421
  year: 2019
  ident: 10.1016/j.addma.2021.102068_bib58
  article-title: Simultaneous enhancement of strength and ductility through coordination deformation and multi-stage transformation induced plasticity (TRIP) effect in heterogeneous metastable austenitic steel
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2018.12.007
– volume: 56
  start-page: 999
  year: 2007
  ident: 10.1016/j.addma.2021.102068_bib41
  article-title: Digital image correlation studies for microscopic strain distribution and damage in dual phase steels
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2007.01.031
– volume: 173
  start-page: 86
  year: 2019
  ident: 10.1016/j.addma.2021.102068_bib49
  article-title: The role of microstructure on edge cracks in dual phase and quench and partitioning steels subject to severe cold rolling
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2019.08.012
– volume: 149
  start-page: 285
  year: 2018
  ident: 10.1016/j.addma.2021.102068_bib30
  article-title: A novel ultra-high strength maraging steel with balanced ductility and creep resistance achieved by nanoscale β-NiAl and Laves phase precipitates
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2018.02.044
– volume: 419
  start-page: 912
  year: 2002
  ident: 10.1016/j.addma.2021.102068_bib6
  article-title: High tensile ductility in a nanostructured metal
  publication-title: Nature
  doi: 10.1038/nature01133
– volume: 29
  year: 2019
  ident: 10.1016/j.addma.2021.102068_bib26
  article-title: Additive manufacturing of maraging steel-H13 bimetals using laser powder bed fusion technique
  publication-title: Addit. Manuf.
– volume: 138
  start-page: 140
  year: 2017
  ident: 10.1016/j.addma.2021.102068_bib15
  article-title: Structure/property (constitutive and spallation response) of additively manufactured 316L stainless steel
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2017.07.045
– volume: 151
  start-page: 275
  year: 2018
  ident: 10.1016/j.addma.2021.102068_bib21
  article-title: Additive manufacturing hybrid Ni/Ti-6Al-4V structural component via selective laser melting and cold spraying
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2018.02.040
– volume: 534
  start-page: 227
  year: 2016
  ident: 10.1016/j.addma.2021.102068_bib1
  article-title: Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off
  publication-title: Nature
  doi: 10.1038/nature17981
– volume: 509
  start-page: 3931
  year: 2011
  ident: 10.1016/j.addma.2021.102068_bib61
  article-title: The effect of heat treatment on mechanical properties and corrosion behavior of AISI420 martensitic stainless steel
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2010.12.174
– ident: 10.1016/j.addma.2021.102068_bib64
– volume: 45
  start-page: 375
  year: 2015
  ident: 10.1016/j.addma.2021.102068_bib35
  article-title: Effects of austenitizing temperature on the microstructure and electrochemical behavior of a martensitic stainless steel
  publication-title: J. Appl. Electrochem.
  doi: 10.1007/s10800-015-0796-1
– volume: 320
  start-page: 1057
  year: 2008
  ident: 10.1016/j.addma.2021.102068_bib3
  article-title: Inverse temperature dependence of toughness in an ultrafine grain-structure steel
  publication-title: Science
  doi: 10.1126/science.1156084
– volume: 48
  start-page: 1187
  year: 2000
  ident: 10.1016/j.addma.2021.102068_bib33
  article-title: Precipitation in 18 wt% Ni maraging steel of grade 350
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(99)00370-5
– volume: 56
  start-page: 4954
  year: 2008
  ident: 10.1016/j.addma.2021.102068_bib51
  article-title: Initiation and growth of damage in a dual-phase steel observed by X-ray microtomography
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2008.06.015
– year: 2021
  ident: 10.1016/j.addma.2021.102068_bib29
  article-title: Microstructures and fatigue behavior of additively manufactured maraging steel deposited on conventionally manufactured base plate
  publication-title: J. Mater. Eng. Perform.
  doi: 10.1007/s11665-021-05548-z
– volume: 60
  start-page: 1059
  year: 2012
  ident: 10.1016/j.addma.2021.102068_bib8
  article-title: Strength and ductility of 316L austenitic stainless steel strengthened by nano-scale twin bundles
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2011.11.009
– volume: 34
  year: 2020
  ident: 10.1016/j.addma.2021.102068_bib47
  article-title: In-situ X-ray tomography analysis of the evolution of pores during deformation of a Cu-Sn alloy fabricated by selective laser melting
  publication-title: Addit. Manuf.
– volume: 355
  start-page: 1055
  issue: 80
  year: 2017
  ident: 10.1016/j.addma.2021.102068_bib2
  article-title: Bone-like crack resistance in hierarchical metastable nanolaminate steels
  publication-title: Science
  doi: 10.1126/science.aal2766
– volume: 52
  start-page: 5589
  year: 2004
  ident: 10.1016/j.addma.2021.102068_bib34
  article-title: Ageing behaviour of an Fe-20Ni-1.8Mn-1.6Ti-0.59Al (wt%) maraging alloy: clustering, precipitation and hardening
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2004.08.018
– volume: 117
  start-page: 58
  year: 2019
  ident: 10.1016/j.addma.2021.102068_bib55
  article-title: Microstructural analysis of ductility and fracture in fine-grained and ultrafine-grained vanadium-added DP1300 steels
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2017.12.009
– volume: 13
  year: 2020
  ident: 10.1016/j.addma.2021.102068_bib23
  article-title: Wire-arc additive manufacturing of nickel aluminum bronze/stainless steel hybrid parts – Interfacial characterization, prospects, and problems
  publication-title: Materialia
  doi: 10.1016/j.mtla.2020.100834
– volume: 269
  year: 2020
  ident: 10.1016/j.addma.2021.102068_bib46
  article-title: Microstructural design for damage tolerance in high strength steels
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2020.127664
– volume: 797
  year: 2020
  ident: 10.1016/j.addma.2021.102068_bib45
  article-title: 4D X-ray tomography characterization of void nucleation and growth during deformation of strontium-added AZ31 alloys
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2020.140081
– volume: 5
  start-page: 227
  year: 2018
  ident: 10.1016/j.addma.2021.102068_bib44
  article-title: X-ray microcomputed tomography in additive manufacturing: a review of the current technology and applications
  publication-title: 3D Print. Addit. Manuf.
  doi: 10.1089/3dp.2018.0060
– volume: 51
  start-page: 4524
  year: 2020
  ident: 10.1016/j.addma.2021.102068_bib56
  article-title: Microstructural evolution during deformation of a QP980 steel
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-020-05882-2
– volume: 16
  start-page: 1397
  year: 2009
  ident: 10.1016/j.addma.2021.102068_bib59
  article-title: Fracture characteristics of thermally exposed 9Cr – 1Mo steel after tensile and impact testing at room temperature
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2008.09.003
– volume: 136
  year: 2014
  ident: 10.1016/j.addma.2021.102068_bib53
  article-title: Metallurgical investigations on hyperplasticity in dual phase steel sheets
  publication-title: J. Manuf. Sci. Eng.
  doi: 10.1115/1.4027492
– volume: 92
  start-page: 1028
  year: 2016
  ident: 10.1016/j.addma.2021.102068_bib57
  article-title: Influence of strain path on nucleation and growth of voids in dual phase steel sheets
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2015.12.103
– volume: 17
  start-page: 63
  year: 2018
  ident: 10.1016/j.addma.2021.102068_bib9
  article-title: Additively manufactured hierarchical stainless steels with high strength and ductility
  publication-title: Nat. Mater.
  doi: 10.1038/nmat5021
– volume: 709
  start-page: 82
  year: 2018
  ident: 10.1016/j.addma.2021.102068_bib19
  article-title: Microstructure and mechanical properties of stainless steel CX manufactured by Direct Metal Laser Sintering
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2017.10.045
– volume: 255
  year: 2019
  ident: 10.1016/j.addma.2021.102068_bib48
  article-title: In-situ X-ray tomography analysis of the evolution of pores during deformation of AlSi10Mg fabricated by selective laser melting
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2019.126512
– volume: 34
  start-page: 741
  year: 2002
  ident: 10.1016/j.addma.2021.102068_bib39
  article-title: Hybrid rapid prototyping system using machining and deposition
  publication-title: CAD Comput. Aided Des.
  doi: 10.1016/S0010-4485(01)00203-2
– volume: 787
  year: 2020
  ident: 10.1016/j.addma.2021.102068_bib32
  article-title: Additive manufacturing of an Fe – Cr – Ni – Al maraging stainless steel: microstructure evolution, heat treatment, and strengthening mechanisms
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2020.139470
– volume: 195
  start-page: 59
  year: 2020
  ident: 10.1016/j.addma.2021.102068_bib16
  article-title: Effects of heat treatment and build orientation on the evolution of ϵ and α′ martensite and strength during compressive loading of additively manufactured 304L stainless steel
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2020.04.036
– volume: 64
  start-page: 747
  year: 1951
  ident: 10.1016/j.addma.2021.102068_bib65
  article-title: The deformation and ageing of mild steel: III discussion of results
  publication-title: Proc. Phys. Soc. Sect. B
  doi: 10.1088/0370-1301/64/9/303
– volume: 25
  start-page: 267
  year: 1994
  ident: 10.1016/j.addma.2021.102068_bib66
  article-title: Influence of tempering temperature on stability of carbide phases in 2.6cr-0.7mo-0.3v steel with various carbon content
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/BF02647972
– volume: 164
  start-page: 728
  year: 2019
  ident: 10.1016/j.addma.2021.102068_bib14
  article-title: Strengthening mechanisms in directed energy deposited austenitic stainless steel
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2018.11.021
– volume: 31
  year: 2020
  ident: 10.1016/j.addma.2021.102068_bib22
  article-title: Microstructural investigation and mechanical behavior of a two-material component fabricated through selective laser melting of AlSi10Mg on an Al-Cu-Ni-Fe-Mg cast alloy substrate
  publication-title: Addit. Manuf.
– volume: 21
  start-page: 1327
  year: 2012
  ident: 10.1016/j.addma.2021.102068_bib62
  article-title: Effect of austenitizing heat treatment on the microstructure and hardness of martensitic stainless steel AISI 420
  publication-title: J. Mater. Eng. Perform.
  doi: 10.1007/s11665-011-0043-9
– volume: 63
  start-page: 198
  year: 2014
  ident: 10.1016/j.addma.2021.102068_bib43
  article-title: Strain localization and damage in dual phase steels investigated by coupled in-situ deformation experiments and crystal plasticity simulations
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2014.06.004
– volume: 5
  start-page: 3580
  year: 2014
  ident: 10.1016/j.addma.2021.102068_bib10
  article-title: Evading the strength-ductility trade-off dilemma in steel through gradient hierarchical nanotwins
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4580
– volume: 136
  year: 2014
  ident: 10.1016/j.addma.2021.102068_bib54
  article-title: Analysis of failure in dual phase steel sheets subject to electrohydraulic forming
  publication-title: J. Manuf. Sci. Eng. Trans. ASME
  doi: 10.1115/1.4027940
– volume: 200
  start-page: 74
  year: 2020
  ident: 10.1016/j.addma.2021.102068_bib63
  article-title: Influence of M23C6 carbides on the heterogeneous strain development in annealed 420 stainless steel
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2020.08.072
– volume: 65
  start-page: 509
  year: 2011
  ident: 10.1016/j.addma.2021.102068_bib67
  article-title: Formation of M23C6-type precipitates and chromium-depleted zones in austenite stainless steel
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2011.06.010
– volume: 34
  year: 2020
  ident: 10.1016/j.addma.2021.102068_bib18
  article-title: Gas atomization and laser additive manufacturing of nitrogen-alloyed martensitic stainless steel
  publication-title: Addit. Manuf.
– volume: 186
  start-page: 199
  year: 2020
  ident: 10.1016/j.addma.2021.102068_bib11
  article-title: An ultra-high strength martensitic steel fabricated using selective laser melting additive manufacturing: densification, microstructure, and mechanical properties
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2019.12.037
– volume: 794
  year: 2020
  ident: 10.1016/j.addma.2021.102068_bib17
  article-title: Solution annealing and precipitation hardening effect on the mechanical properties of 630 stainless steel fabricated via laser melting deposition
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2020.139999
– volume: 32
  year: 2020
  ident: 10.1016/j.addma.2021.102068_bib20
  article-title: Al–Cu alloy fabricated by novel laser-tungsten inert gas hybrid additive manufacturing
  publication-title: Addit. Manuf.
– ident: 10.1016/j.addma.2021.102068_bib38
– volume: 22
  start-page: 2080
  year: 2013
  ident: 10.1016/j.addma.2021.102068_bib42
  article-title: Quantitative microstructural analysis of formability enhancement in dual phase steels subject to electrohydraulic forming
  publication-title: J. Mater. Eng. Perform.
  doi: 10.1007/s11665-012-0438-2
– volume: 27
  start-page: 389
  year: 2019
  ident: 10.1016/j.addma.2021.102068_bib28
  article-title: Metallurgical and mechanical assessment of hybrid additively-manufactured maraging tool steels via selective laser melting
  publication-title: Addit. Manuf.
SSID ssj0001537982
Score 2.4312017
Snippet The customization of plastic injection molding dies is technologically and economically limited by conventional manufacturing processes. Recent advances in...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 102068
SubjectTerms Hybrid additive manufacturing
Martensitic-maraging stainless steel
Microstructure
Plastic injection molding
Strengthening mechanisms
Title A hybrid additively manufactured martensitic-maraging stainless steel with superior strength and corrosion resistance for plastic injection molding dies
URI https://dx.doi.org/10.1016/j.addma.2021.102068
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQLDAgnuItD4yYJrGT1GNVgQoIFqjULfITikpalXbowu_g53LnJDwkxMBmWz7L8jn3cO6-I-QUrFTwGkzEIiM4E94qJvNYMa80KD_QZ9rhe8ftXdbri-tBOlgi3SYXBsMqa9lfyfQgreuRVn2arclw2LpPkhgrKIkEUUQ5x0RzIXK85edv8dc7S8pzGWpG4XyGBA34UAjzgu874A8lMaIYRAi5-puC-qZ0LjfIem0t0k61oU2y5MotsvYNQ3CbvHfo0wLTriiGBqHwGi3oiyrnmLIwnzoLnWkIU4c1GLRDWSIa0qZGIOag5dyI4nssfZ0j7vF4SjGDpHyEEVVaCv4p7BT4R8E1R3MTzoiCrUsnYHnDonRYPoeArpK-VP-yKIYm7pD-5cVDt8fqcgvMgB6bscwKrdMo8VLFwrStV-0sF6kDDZ5lxiEujJc24iaXWmjHtcm99Jnk6OPozPNdslyOS7dHqHSpMio3NhdWtC2XRskYFopSDSwSfp8kzRkXpsYix5IYo6IJOnsuAmMKZExRMWafnH0STSoojr-nZw3zih83qgBl8RfhwX8JD8kq9qoItCOyPJvO3TGYLDN9Eu7kCVnpXN307j4APBzurQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagDMCAeIo3HhgxTWInqUeEQOW5ABJb5CcUlVCVdujC7-DncuckPCTEwOY4Ocvy2fdw7r4jZB-sVPAaTMQiIzgT3iom81gxrzQoP9Bn2uF9x9V11r0T5_fp_RQ5bnJhMKyylv2VTA_Suu5p16vZHvR67ZskibGCkkgQRZTzdJrMCDi-WMbg8C3-umhJeS5D0SgkYEjRoA-FOC844AGAKIkRxiBCzNXfNNQ3rXO6SBZqc5EeVTNaIlOuXCbz30AEV8j7EX2cYN4VxdgglF79CX1W5RhzFsZDZ-FhGOLUYQwG7VCXiIa8qT7IOWg516d4IUtfxwh8_DKkmEJSPkCPKi0FBxVmCgyk4JujvQmLRMHYpQMwvWFQ2iufQkRXSZ-rn1kUYxNXyd3pye1xl9X1FpgBRTZimRVap1HipYqF6VivOlkuUgcqPMuMQ2AYL23ETS610I5rk3vpM8nRydGZ52ukVb6Ubp1Q6VJlVG5sLqzoWC6NkjEMFKVaiFz4DZI0a1yYGowca2L0iybq7KkIjCmQMUXFmA1y8Ek0qLA4_v48a5hX_NhSBWiLvwg3_0u4R2a7t1eXxeXZ9cUWmcM3VTjaNmmNhmO3A_bLSO-G_fkBtNHwOw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+additively+manufactured+martensitic-maraging+stainless+steel+with+superior+strength+and+corrosion+resistance+for+plastic+injection+molding+dies&rft.jtitle=Additive+manufacturing&rft.au=Samei%2C+Javad&rft.au=Asgari%2C+Hamed&rft.au=Pelligra%2C+Concetta&rft.au=Sanjari%2C+Mehdi&rft.date=2021-09-01&rft.pub=Elsevier+B.V&rft.issn=2214-8604&rft.eissn=2214-7810&rft.volume=45&rft_id=info:doi/10.1016%2Fj.addma.2021.102068&rft.externalDocID=S2214860421002335
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-8604&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-8604&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-8604&client=summon