Functional form selection and calibration of macroscopic fundamental diagrams
Macroscopic fundamental diagram (MFD) is widely applied in network-level traffic control and management with most applications necessitating a well-calibrated MFD. With various data sources, more and more empirical MFDs are documented, while the MFD functional form is predetermined by traffic engine...
Saved in:
Published in | Physica A Vol. 640; p. 129691 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.04.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0378-4371 1873-2119 |
DOI | 10.1016/j.physa.2024.129691 |
Cover
Loading…
Abstract | Macroscopic fundamental diagram (MFD) is widely applied in network-level traffic control and management with most applications necessitating a well-calibrated MFD. With various data sources, more and more empirical MFDs are documented, while the MFD functional form is predetermined by traffic engineers based on their prior experiences. To our best, no generally accepted functional form has been identified. An automatic functional form selection method is yet to be devised. To meet this, a two-step MFD calibration framework is proposed to enable both the functional form selection and the estimation of parameters in this paper. A math program problem is first developed to identify a proper functional form from a set of candidate functions via random sampling of the measurement data. A mean-field variational Bayesian (MFVB) algorithm is then proposed to estimate the parameters of the selected MFD functions using the full measurement dataset. Both calibrations with and without the MFD dynamics are evaluated. The comparison between these calibration results highlights that the calibration considering the MFD dynamics can better characterize network traffic dynamics subject to dynamic travel demand and traffic control measures. Leveraging functional form selection and the computational advantages of the MFVB method, the two-step framework can significantly reduce the computational burden. Results using simulated data and empirical data validate the effectiveness and efficiency of the two-step framework. Furthermore, different functional forms are identified for different cities, highlighting the importance of functional form selection in the MFD calibration.
•Automatic functional form selection for macroscopic fundamental diagram.•Mean-field variational Bayesian algorithm for efficient parameter estimation.•Calibration incorporating MFD dynamics better characterizes network traffic dynamics. |
---|---|
AbstractList | Macroscopic fundamental diagram (MFD) is widely applied in network-level traffic control and management with most applications necessitating a well-calibrated MFD. With various data sources, more and more empirical MFDs are documented, while the MFD functional form is predetermined by traffic engineers based on their prior experiences. To our best, no generally accepted functional form has been identified. An automatic functional form selection method is yet to be devised. To meet this, a two-step MFD calibration framework is proposed to enable both the functional form selection and the estimation of parameters in this paper. A math program problem is first developed to identify a proper functional form from a set of candidate functions via random sampling of the measurement data. A mean-field variational Bayesian (MFVB) algorithm is then proposed to estimate the parameters of the selected MFD functions using the full measurement dataset. Both calibrations with and without the MFD dynamics are evaluated. The comparison between these calibration results highlights that the calibration considering the MFD dynamics can better characterize network traffic dynamics subject to dynamic travel demand and traffic control measures. Leveraging functional form selection and the computational advantages of the MFVB method, the two-step framework can significantly reduce the computational burden. Results using simulated data and empirical data validate the effectiveness and efficiency of the two-step framework. Furthermore, different functional forms are identified for different cities, highlighting the importance of functional form selection in the MFD calibration.
•Automatic functional form selection for macroscopic fundamental diagram.•Mean-field variational Bayesian algorithm for efficient parameter estimation.•Calibration incorporating MFD dynamics better characterizes network traffic dynamics. |
ArticleNumber | 129691 |
Author | Jin, Xiao Ma, Wenfei Huang, Yunping Zhong, Renxin |
Author_xml | – sequence: 1 givenname: Wenfei surname: Ma fullname: Ma, Wenfei email: mawf5@mail2.sysu.edu.cn organization: School of Intelligent Systems Engineering, Sun Yat-sen University (Shenzhen Campus), Guangdong, China – sequence: 2 givenname: Yunping surname: Huang fullname: Huang, Yunping email: yunping.huang@connect.polyu.hk organization: Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China – sequence: 3 givenname: Xiao surname: Jin fullname: Jin, Xiao email: jinx9@mail2.sysu.edu.cn organization: School of Intelligent Systems Engineering, Sun Yat-sen University (Shenzhen Campus), Guangdong, China – sequence: 4 givenname: Renxin surname: Zhong fullname: Zhong, Renxin email: zhrenxin@mail.sysu.edu.cn organization: School of Intelligent Systems Engineering, Sun Yat-sen University (Shenzhen Campus), Guangdong, China |
BookMark | eNqFkLFOwzAQhi1UJFrgCVjyAglnO3HigQFVFJCKWGC2XNsHrhKnslOkvj1pysQA0-lO-n799y3ILPTBEXJDoaBAxe222H0eki4YsLKgTApJz8icNjXPGaVyRubA6yYveU0vyCKlLQDQmrM5eVntgxl8H3SbYR-7LLnWTYdMB5sZ3fpN1NPeY9ZpE_tk-p03Ge6D1Z0Lw0harz-i7tIVOUfdJnf9My_J--rhbfmUr18fn5f369xw4EMuzIaD0NZwXom6EhwNWtqUGgQzDboGOQITwjiAElAIubESmXBV1QBK5JdEnnKPdVJ0qIwfppZD1L5VFNTRi9qqyYs6elEnLyPLf7G76DsdD_9QdyfKjW99eRdVMt4F46yPoy9le_8n_w23NIFG |
CitedBy_id | crossref_primary_10_1016_j_trc_2025_105008 crossref_primary_10_1016_j_jum_2025_01_002 crossref_primary_10_1007_s42421_024_00102_4 crossref_primary_10_3390_app14083486 |
Cites_doi | 10.1016/j.trb.2015.01.001 10.1023/A:1007665907178 10.3141/2260-02 10.1016/j.physa.2018.02.172 10.1016/j.trc.2021.103065 10.1109/TITS.2020.3048959 10.1016/j.trb.2014.01.007 10.1016/j.trc.2015.12.006 10.1016/j.trb.2017.07.003 10.1016/j.trb.2008.02.002 10.1016/j.trc.2012.02.007 10.1016/j.trc.2020.102890 10.1016/j.trc.2023.104158 10.1016/j.trb.2014.12.010 10.1016/j.trc.2016.07.013 10.1016/j.trc.2019.03.005 10.1016/j.trb.2013.07.003 10.1145/3308558.3314139 10.1016/j.trb.2018.02.016 10.1080/01621459.2017.1285773 10.1016/j.sbspro.2011.04.515 10.1016/j.trb.2012.08.001 10.1016/j.trb.2021.01.004 10.1016/j.trc.2022.103759 10.1109/TITS.2020.2994347 10.1016/j.trb.2017.09.008 10.1109/MITS.2020.3014444 10.1016/j.sbspro.2014.07.181 10.3141/2124-12 10.1016/j.physa.2023.128531 10.3141/2161-05 10.1016/j.physa.2020.125401 10.1016/j.trb.2010.11.004 10.1016/j.trc.2021.103384 10.1016/j.trc.2015.10.015 10.1016/j.trb.2022.12.001 10.1109/TITS.2013.2287720 10.1109/TITS.2015.2399303 10.1016/j.trc.2023.104159 10.1038/s41598-019-51539-5 10.1016/j.trb.2016.10.011 10.1002/atr.1334 10.1016/j.trb.2010.11.006 10.1016/j.trb.2014.09.002 10.1016/j.ejor.2023.07.005 10.1016/j.trb.2006.03.001 10.1016/j.trb.2019.11.002 10.1016/j.trpro.2018.11.038 10.1016/j.trb.2008.06.008 10.1016/j.trb.2012.04.004 10.1016/j.trc.2020.102628 10.1016/j.trc.2017.08.011 10.1016/j.trb.2018.10.013 10.1016/j.trpro.2015.06.032 10.1016/j.trb.2020.03.006 10.1016/j.trc.2023.104068 10.1016/j.trpro.2015.06.034 10.1016/j.trpro.2015.06.035 10.1016/j.trc.2021.103190 |
ContentType | Journal Article |
Copyright | 2024 Elsevier B.V. |
Copyright_xml | – notice: 2024 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.physa.2024.129691 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1873-2119 |
ExternalDocumentID | 10_1016_j_physa_2024_129691 S0378437124002000 |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 7-5 71M 8P~ 9JN 9JO AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAPFB AAQFI AAXUO ABAOU ABMAC ABNEU ABYKQ ACAZW ACDAQ ACFVG ACGFS ACNCT ACRLP ADBBV ADEZE ADFHU ADGUI AEBSH AEKER AEYQN AFFNX AFKWA AFTJW AGHFR AGTHC AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIIAU AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR AXJTR AXLSJ BKOJK BLXMC EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IXIXF J1W K-O KOM MHUIS MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SPD SSB SSF SSQ SSW SSZ T5K TN5 TWZ WH7 XPP YNT ZMT ~02 ~G- 29O 5VS 6TJ AAFFL AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABJNI ABWVN ABXDB ACNNM ACROA ACRPL ADMUD ADNMO ADVLN AEIPS AFJKZ AFODL AFXIZ AGCQF AGQPQ AGRNS AIIUN AJWLA ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BEHZQ BEZPJ BGSCR BNPGV BNTGB BPUDD BULVW BZJEE CITATION EJD FEDTE FGOYB HMV HVGLF HZ~ M38 M41 MVM NDZJH R2- SPG SSH VOH WUQ XJT XOL YYP ZY4 |
ID | FETCH-LOGICAL-c303t-6cb306adc33567563fcfd184a062c8fe8f3f0266ce0040f669bd9f26e5580f9f3 |
IEDL.DBID | AIKHN |
ISSN | 0378-4371 |
IngestDate | Thu Apr 24 23:12:17 EDT 2025 Tue Jul 01 01:32:43 EDT 2025 Sat Apr 13 16:38:42 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Model calibration Functional form selection Mean-field variational Bayesian Macroscopic fundamental diagram |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c303t-6cb306adc33567563fcfd184a062c8fe8f3f0266ce0040f669bd9f26e5580f9f3 |
ParticipantIDs | crossref_citationtrail_10_1016_j_physa_2024_129691 crossref_primary_10_1016_j_physa_2024_129691 elsevier_sciencedirect_doi_10_1016_j_physa_2024_129691 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-15 |
PublicationDateYYYYMMDD | 2024-04-15 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Physica A |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Gayah, Daganzo (b41) 2011; 45 Leclercq, Chiabaut, Trinquier (b30) 2014; 62 Loder, Ambühl, Menendez, Axhausen (b37) 2019; 9 Li, Mercurius, Taitler, Wang, Noaeen, Sanner, Abdulhai (b71) 2023 Alisoltani, Leclercq, Zargayouna (b26) 2021; 145 Alisoltani, Zargayouna, Leclercq (b25) 2020; 12 Brands (b56) 2021 Ramezani, Valadkhani (b28) 2023; 152 Cheng, Lin, Zhou, Liu (b43) 2023; 312 Ciuffo, Punzo (b52) 2013; 15 Su, Chow, Zheng, Huang, Liang, Zhong (b7) 2020; 116 Geroliminis, Sun (b44) 2011; 45 Bramich, Menéndez, Ambühl (b46) 2023; 151 Daganzo, Geroliminis (b31) 2008; 42 Wu, Li, Jiang, Hao, Hu (b6) 2018; 503 May (b47) 1990 Zhong, Xiong, Huang, Sumalee, Chow, Pan (b20) 2020; 21 Ngoduy, Maher (b53) 2012; 24 Li (b68) 2014; 138 Guo, Yang, Hao, Gu (b8) 2021; 562 Paliwal, Bhatt, Biyani, Rajawat (b57) 2021; 23 Geroliminis, Sun (b36) 2011; 17 Daganzo (b61) 2007; 41 Ambühl, Loder, Bliemer, Menendez, Axhausen (b45) 2020; 137 Kouvelas, Saeedmanesh, Geroliminis (b65) 2017; 96 Yao, Chen, Su, Hu, Jin, Rong (b42) 2023; 613 Haddad (b70) 2015; 7 Zhong, Huang, Chen, Lam, Xu, Sumalee (b23) 2018; 111 Ji, Daamen, Hoogendoorn, Hoogendoorn-Lanser, Qian (b63) 2010; 2161 Zheng, Rérat, Geroliminis (b22) 2016; 62 Shim, Yeo, Lee, Hamdar, Jang (b39) 2019; 102 Pang, Liu (b58) 2020 Hoffman, Blei, Wang, Paisley (b59) 2013 Haddad, Geroliminis (b1) 2012; 46 Zhong, Fu, Sumalee, Ngoduy, Lam (b54) 2016; 63 Saeedmanesh, Kouvelas, Geroliminis (b16) 2021; 132 Laval, Castrillón (b32) 2015; 7 Zhong, Chen, Chow, Pan, Yuan, He (b67) 2016; 50 Huang, Xiong, Sumalee, Zheng, Lam, He, Zhong (b19) 2020; 131 Buisson, Ladier (b34) 2009; 2124 Geroliminis, Boyacı (b40) 2012; 46 Zhang, Qu, Wang (b66) 2018; 111 Zhong, Chen, Huang, Sumalee, Lam, Xu (b5) 2018; 117 Cassidy, Jang, Daganzo (b35) 2011; 2260 Qi (b11) 2023 He (b17) 2023 Su, Chow, Fang, Liang, Zhong (b10) 2023; 167 Yildirimoglu, Geroliminis (b12) 2014; 70 Keyvan-Ekbatani, Papageorgiou, Knoop (b4) 2015; 7 Kouvelas, Saeedmanesh, Geroliminis (b14) 2017 Geroliminis, Daganzo (b33) 2008; 42 Blei, Kucukelbir, McAuliffe (b55) 2017; 112 Yildirimoglu, Geroliminis (b18) 2013 Ambühl, Menendez (b13) 2016; 71 Ramezani, Haddad, Geroliminis (b64) 2015; 74 H. Zhang, S. Feng, C. Liu, Y. Ding, Y. Zhu, Z. Zhou, W. Zhang, Y. Yu, H. Jin, Z. Li, Cityflow: A multi-agent reinforcement learning environment for large scale city traffic scenario, in: The World Wide Web Conference, 2019, pp. 3620–3624. Valadkhani, Ramezani (b29) 2023; 152 Ambühl, Loder, Leclercq, Menendez (b38) 2021; 126 Qu, Wang, Zhang (b48) 2015; 73 Chen, Huang, Lam, Pan, Hsu, Sumalee, Zhong (b9) 2022; 142 Jin, Ma, Zhong, Jiang (b60) 2023; 11 Qu, Zhang, Wang (b49) 2017; 104 Mariotte, Leclercq, Batista, Krug, Paipuri (b15) 2020; 136 Aboudolas, Geroliminis (b2) 2013; 55 Keyvan-Ekbatani, Yildirimoglu, Geroliminis, Papageorgiou (b3) 2015; 16 Geroliminis, Daganzo (b62) 2007 Lu, Knoop, Keyvan-Ekbatani (b50) 2018; 34 Ramezani, Nourinejad (b24) 2018; 94 Holland (b51) 1992 Jordan, Ghahramani, Jaakkola, Saul (b72) 1999; 37 Beojone, Geroliminis (b27) 2021; 124 Zhong, Xiong, Huang, Zheng, Lam, Pan, He (b21) 2021; 128 Zhong (10.1016/j.physa.2024.129691_b20) 2020; 21 Qu (10.1016/j.physa.2024.129691_b48) 2015; 73 Li (10.1016/j.physa.2024.129691_b71) 2023 Daganzo (10.1016/j.physa.2024.129691_b31) 2008; 42 Ambühl (10.1016/j.physa.2024.129691_b38) 2021; 126 Yildirimoglu (10.1016/j.physa.2024.129691_b12) 2014; 70 Beojone (10.1016/j.physa.2024.129691_b27) 2021; 124 Bramich (10.1016/j.physa.2024.129691_b46) 2023; 151 Zheng (10.1016/j.physa.2024.129691_b22) 2016; 62 Haddad (10.1016/j.physa.2024.129691_b1) 2012; 46 Wu (10.1016/j.physa.2024.129691_b6) 2018; 503 Zhong (10.1016/j.physa.2024.129691_b21) 2021; 128 Ngoduy (10.1016/j.physa.2024.129691_b53) 2012; 24 Chen (10.1016/j.physa.2024.129691_b9) 2022; 142 Keyvan-Ekbatani (10.1016/j.physa.2024.129691_b4) 2015; 7 Yao (10.1016/j.physa.2024.129691_b42) 2023; 613 Cassidy (10.1016/j.physa.2024.129691_b35) 2011; 2260 Su (10.1016/j.physa.2024.129691_b10) 2023; 167 Ambühl (10.1016/j.physa.2024.129691_b45) 2020; 137 Kouvelas (10.1016/j.physa.2024.129691_b14) 2017 Geroliminis (10.1016/j.physa.2024.129691_b62) 2007 Hoffman (10.1016/j.physa.2024.129691_b59) 2013 Qi (10.1016/j.physa.2024.129691_b11) 2023 Qu (10.1016/j.physa.2024.129691_b49) 2017; 104 Ambühl (10.1016/j.physa.2024.129691_b13) 2016; 71 Daganzo (10.1016/j.physa.2024.129691_b61) 2007; 41 Saeedmanesh (10.1016/j.physa.2024.129691_b16) 2021; 132 Gayah (10.1016/j.physa.2024.129691_b41) 2011; 45 Zhang (10.1016/j.physa.2024.129691_b66) 2018; 111 Mariotte (10.1016/j.physa.2024.129691_b15) 2020; 136 Zhong (10.1016/j.physa.2024.129691_b23) 2018; 111 Guo (10.1016/j.physa.2024.129691_b8) 2021; 562 Valadkhani (10.1016/j.physa.2024.129691_b29) 2023; 152 Laval (10.1016/j.physa.2024.129691_b32) 2015; 7 Zhong (10.1016/j.physa.2024.129691_b54) 2016; 63 10.1016/j.physa.2024.129691_b69 Haddad (10.1016/j.physa.2024.129691_b70) 2015; 7 Kouvelas (10.1016/j.physa.2024.129691_b65) 2017; 96 Su (10.1016/j.physa.2024.129691_b7) 2020; 116 Holland (10.1016/j.physa.2024.129691_b51) 1992 Geroliminis (10.1016/j.physa.2024.129691_b33) 2008; 42 Geroliminis (10.1016/j.physa.2024.129691_b36) 2011; 17 Keyvan-Ekbatani (10.1016/j.physa.2024.129691_b3) 2015; 16 Alisoltani (10.1016/j.physa.2024.129691_b26) 2021; 145 Ciuffo (10.1016/j.physa.2024.129691_b52) 2013; 15 Aboudolas (10.1016/j.physa.2024.129691_b2) 2013; 55 Lu (10.1016/j.physa.2024.129691_b50) 2018; 34 Paliwal (10.1016/j.physa.2024.129691_b57) 2021; 23 Yildirimoglu (10.1016/j.physa.2024.129691_b18) 2013 Buisson (10.1016/j.physa.2024.129691_b34) 2009; 2124 May (10.1016/j.physa.2024.129691_b47) 1990 Ramezani (10.1016/j.physa.2024.129691_b64) 2015; 74 Geroliminis (10.1016/j.physa.2024.129691_b40) 2012; 46 He (10.1016/j.physa.2024.129691_b17) 2023 Zhong (10.1016/j.physa.2024.129691_b67) 2016; 50 Jordan (10.1016/j.physa.2024.129691_b72) 1999; 37 Ramezani (10.1016/j.physa.2024.129691_b24) 2018; 94 Ji (10.1016/j.physa.2024.129691_b63) 2010; 2161 Cheng (10.1016/j.physa.2024.129691_b43) 2023; 312 Shim (10.1016/j.physa.2024.129691_b39) 2019; 102 Brands (10.1016/j.physa.2024.129691_b56) 2021 Ramezani (10.1016/j.physa.2024.129691_b28) 2023; 152 Loder (10.1016/j.physa.2024.129691_b37) 2019; 9 Geroliminis (10.1016/j.physa.2024.129691_b44) 2011; 45 Li (10.1016/j.physa.2024.129691_b68) 2014; 138 Alisoltani (10.1016/j.physa.2024.129691_b25) 2020; 12 Blei (10.1016/j.physa.2024.129691_b55) 2017; 112 Leclercq (10.1016/j.physa.2024.129691_b30) 2014; 62 Pang (10.1016/j.physa.2024.129691_b58) 2020 Huang (10.1016/j.physa.2024.129691_b19) 2020; 131 Zhong (10.1016/j.physa.2024.129691_b5) 2018; 117 Jin (10.1016/j.physa.2024.129691_b60) 2023; 11 |
References_xml | – year: 2023 ident: b71 article-title: Perimeter control using deep reinforcement learning: A model-free approach towards homogeneous flow rate optimization – volume: 55 start-page: 265 year: 2013 end-page: 281 ident: b2 article-title: Perimeter and boundary flow control in multi-reservoir heterogeneous networks publication-title: Transp. Res. B – year: 2023 ident: b11 article-title: Partially observable Markov decision process for perimeter control based on a stochastic macroscopic fundamental diagram publication-title: Physica A – volume: 167 start-page: 196 year: 2023 end-page: 216 ident: b10 article-title: Hierarchical control for stochastic network traffic with reinforcement learning publication-title: Transp. Res. B – volume: 34 start-page: 243 year: 2018 end-page: 250 ident: b50 article-title: Using taxi GPS data for macroscopic traffic monitoring in large scale urban networks: Calibration and MFD derivation publication-title: Transp. Res. Procedia – volume: 131 start-page: 1 year: 2020 end-page: 25 ident: b19 article-title: A dynamic user equilibrium model for multi-region macroscopic fundamental diagram systems with time-varying delays publication-title: Transp. Res. B – volume: 562 year: 2021 ident: b8 article-title: Perimeter traffic control for single urban congested region with macroscopic fundamental diagram and boundary conditions publication-title: Physica A – volume: 42 start-page: 771 year: 2008 end-page: 781 ident: b31 article-title: An analytical approximation for the macroscopic fundamental diagram of urban traffic publication-title: Transp. Res. B – volume: 24 start-page: 102 year: 2012 end-page: 121 ident: b53 article-title: Calibration of second order traffic models using continuous cross entropy method publication-title: Transp. Res. C – volume: 2161 start-page: 40 year: 2010 end-page: 48 ident: b63 article-title: Investigating the shape of the macroscopic fundamental diagram using simulation data publication-title: Transp. Res. Rec. – volume: 128 year: 2021 ident: b21 article-title: Dynamic user equilibrium for departure time choice in the basic trip-based model publication-title: Transp. Res. C – year: 2013 ident: b18 article-title: Dynamic route choice modeling with macroscopic fundamental diagrams – volume: 503 start-page: 231 year: 2018 end-page: 242 ident: b6 article-title: Perimeter control for urban traffic system based on macroscopic fundamental diagram publication-title: Physica A – volume: 104 start-page: 256 year: 2017 end-page: 271 ident: b49 article-title: On the stochastic fundamental diagram for freeway traffic: Model development, analytical properties, validation, and extensive applications publication-title: Transp. Res. B – reference: H. Zhang, S. Feng, C. Liu, Y. Ding, Y. Zhu, Z. Zhou, W. Zhang, Y. Yu, H. Jin, Z. Li, Cityflow: A multi-agent reinforcement learning environment for large scale city traffic scenario, in: The World Wide Web Conference, 2019, pp. 3620–3624. – volume: 613 year: 2023 ident: b42 article-title: A novel self-adaption macroscopic fundamental diagram considering network heterogeneity publication-title: Physica A – year: 2023 ident: b17 article-title: Refining time-space traffic diagrams: A simple multiple linear regression model publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 142 year: 2022 ident: b9 article-title: Data efficient reinforcement learning and adaptive optimal perimeter control of network traffic dynamics publication-title: Transp. Res. C – volume: 126 year: 2021 ident: b38 article-title: Disentangling the city traffic rhythms: A longitudinal analysis of MFD patterns over a year publication-title: Transp. Res. C – volume: 116 year: 2020 ident: b7 article-title: Neuro-dynamic programming for optimal control of macroscopic fundamental diagram systems publication-title: Transp. Res. C – volume: 137 start-page: 119 year: 2020 end-page: 132 ident: b45 article-title: A functional form with a physical meaning for the macroscopic fundamental diagram publication-title: Transp. Res. B – year: 1990 ident: b47 article-title: Traffic flow fundamentals – volume: 21 start-page: 4000 year: 2020 end-page: 4016 ident: b20 article-title: Dynamic system optimum analysis of multi-region macroscopic fundamental diagram systems with state-dependent time-varying delays publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 50 start-page: 363 year: 2016 end-page: 385 ident: b67 article-title: Automatic calibration of fundamental diagram for first-order macroscopic freeway traffic models publication-title: J. Adv. Transp. – volume: 145 start-page: 212 year: 2021 end-page: 246 ident: b26 article-title: Can dynamic ride-sharing reduce traffic congestion? publication-title: Transp. Res. B – volume: 312 start-page: 182 year: 2023 end-page: 197 ident: b43 article-title: Analytical formulation for explaining the variations in traffic states: A fundamental diagram modeling perspective with stochastic parameters publication-title: European J. Oper. Res. – volume: 138 start-page: 54 year: 2014 end-page: 66 ident: b68 article-title: Automatically generating empirical speed-flow traffic parameters from archived sensor data publication-title: Procedia-Soc. Behav. Sci. – volume: 111 start-page: 41 year: 2018 end-page: 52 ident: b66 article-title: Reproducible generation of experimental data sample for calibrating traffic flow fundamental diagram publication-title: Transp. Res. Part A: Policy Pract. – volume: 11 start-page: 1616 year: 2023 end-page: 1641 ident: b60 article-title: An efficient variational Bayesian algorithm for calibrating fundamental diagrams and its probabilistic sensitivity analysis publication-title: Transp. B: Transp. Dyn. – volume: 7 start-page: 651 year: 2015 end-page: 668 ident: b4 article-title: Controller design for gating traffic control in presence of time-delay in urban road networks publication-title: Transp. Res. Procedia – volume: 46 start-page: 1159 year: 2012 end-page: 1176 ident: b1 article-title: On the stability of traffic perimeter control in two-region urban cities publication-title: Transp. Res. B – volume: 42 start-page: 759 year: 2008 end-page: 770 ident: b33 article-title: Existence of urban-scale macroscopic fundamental diagrams: Some experimental findings publication-title: Transp. Res. B – volume: 37 start-page: 183 year: 1999 end-page: 233 ident: b72 article-title: An introduction to variational methods for graphical models publication-title: Mach. Learn. – volume: 112 start-page: 859 year: 2017 end-page: 877 ident: b55 article-title: Variational inference: A review for statisticians publication-title: J. Am. Stat. Assoc. – volume: 2260 start-page: 8 year: 2011 end-page: 15 ident: b35 article-title: Macroscopic fundamental diagrams for freeway networks: Theory and observation publication-title: Transp. Res. Rec. – volume: 117 start-page: 687 year: 2018 end-page: 707 ident: b5 article-title: Robust perimeter control for two urban regions with macroscopic fundamental diagrams: A control-Lyapunov function approach publication-title: Transp. Res. B – volume: 9 start-page: 16283 year: 2019 ident: b37 article-title: Understanding traffic capacity of urban networks publication-title: Sci. Rep. – volume: 62 start-page: 133 year: 2016 end-page: 148 ident: b22 article-title: Time-dependent area-based pricing for multimodal systems with heterogeneous users in an agent-based environment publication-title: Transp. Res. C – volume: 17 start-page: 213 year: 2011 end-page: 228 ident: b36 article-title: Hysteresis phenomena of a macroscopic fundamental diagram in freeway networks publication-title: Procedia-Soc. Behav. Sci. – volume: 74 start-page: 1 year: 2015 end-page: 19 ident: b64 article-title: Dynamics of heterogeneity in urban networks: Aggregated traffic modeling and hierarchical control publication-title: Transp. Res. B – volume: 102 start-page: 509 year: 2019 end-page: 520 ident: b39 article-title: Empirical evaluation of influential factors on bifurcation in macroscopic fundamental diagrams publication-title: Transp. Res. C – volume: 41 start-page: 49 year: 2007 end-page: 62 ident: b61 article-title: Urban gridlock: Macroscopic modeling and mitigation approaches publication-title: Transp. Res. B – volume: 7 start-page: 615 year: 2015 end-page: 630 ident: b32 article-title: Stochastic approximations for the macroscopic fundamental diagram of urban networks publication-title: Transp. Res. Procedia – volume: 45 start-page: 605 year: 2011 end-page: 617 ident: b44 article-title: Properties of a well-defined macroscopic fundamental diagram for urban traffic publication-title: Transp. Res. B – year: 2021 ident: b56 article-title: Deep Learning for Tra c Signal Control with Variational Inference – volume: 45 start-page: 643 year: 2011 end-page: 655 ident: b41 article-title: Clockwise hysteresis loops in the macroscopic fundamental diagram: An effect of network instability publication-title: Transp. Res. B – volume: 151 year: 2023 ident: b46 article-title: FitFun: A modelling framework for successfully capturing the functional form and noise of observed traffic flow–density–speed relationships publication-title: Transp. Res. C – year: 1992 ident: b51 article-title: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence – volume: 15 start-page: 553 year: 2013 end-page: 562 ident: b52 article-title: “No free lunch” theorems applied to the calibration of traffic simulation models publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 96 start-page: 26 year: 2017 end-page: 45 ident: b65 article-title: Enhancing model-based feedback perimeter control with data-driven online adaptive optimization publication-title: Transp. Res. B – volume: 7 start-page: 669 year: 2015 end-page: 688 ident: b70 article-title: Robust constrained control of uncertain macroscopic fundamental diagram networks publication-title: Transp. Res. Procedia – volume: 70 start-page: 186 year: 2014 end-page: 200 ident: b12 article-title: Approximating dynamic equilibrium conditions with macroscopic fundamental diagrams publication-title: Transp. Res. B – year: 2013 ident: b59 article-title: Stochastic variational inference publication-title: J. Mach. Learn. Res. – volume: 73 start-page: 91 year: 2015 end-page: 102 ident: b48 article-title: On the fundamental diagram for freeway traffic: A novel calibration approach for single-regime models publication-title: Transp. Res. B – volume: 136 start-page: 62 year: 2020 end-page: 86 ident: b15 article-title: Calibration and validation of multi-reservoir MFD models: A case study in Lyon publication-title: Transp. Res. B – volume: 62 start-page: 1 year: 2014 end-page: 12 ident: b30 article-title: Macroscopic fundamental diagrams: A cross-comparison of estimation methods publication-title: Transp. Res. B – start-page: 1413 year: 2020 ident: b58 article-title: Probabilistic aircraft trajectory prediction considering weather uncertainties using dropout as Bayesian approximate variational inference publication-title: AIAA Scitech 2020 Forum – volume: 71 start-page: 184 year: 2016 end-page: 197 ident: b13 article-title: Data fusion algorithm for macroscopic fundamental diagram estimation publication-title: Transp. Res. C – year: 2007 ident: b62 article-title: Macroscopic modeling of traffic in cities publication-title: Transportation Research Board 86th Annual Meeting – volume: 111 start-page: 327 year: 2018 end-page: 355 ident: b23 article-title: Boundary conditions and behavior of the macroscopic fundamental diagram based network traffic dynamics: A control systems perspective publication-title: Transp. Res. B – volume: 152 year: 2023 ident: b28 article-title: Dynamic ride-sourcing systems for city-scale networks-Part I: Matching design and model formulation and validation publication-title: Transp. Res. C – volume: 23 start-page: 4674 year: 2021 end-page: 4684 ident: b57 article-title: Traffic estimation and prediction via online variational Bayesian subspace filtering publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 124 year: 2021 ident: b27 article-title: On the inefficiency of ride-sourcing services towards urban congestion publication-title: Transp. Res. C – volume: 16 start-page: 2141 year: 2015 end-page: 2154 ident: b3 article-title: Multiple concentric gating traffic control in large-scale urban networks publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 12 start-page: 169 year: 2020 end-page: 181 ident: b25 article-title: A sequential clustering method for the taxi-dispatching problem considering traffic dynamics publication-title: IEEE Intell. Transp. Syst. Mag. – volume: 132 year: 2021 ident: b16 article-title: An extended Kalman filter approach for real-time state estimation in multi-region MFD urban networks publication-title: Transp. Res. C – volume: 46 start-page: 1607 year: 2012 end-page: 1623 ident: b40 article-title: The effect of variability of urban systems characteristics in the network capacity publication-title: Transp. Res. B – volume: 63 start-page: 147 year: 2016 end-page: 169 ident: b54 article-title: A cross-entropy method and probabilistic sensitivity analysis framework for calibrating microscopic traffic models publication-title: Transp. Res. C – volume: 152 year: 2023 ident: b29 article-title: Dynamic ride-sourcing systems for city-scale networks, Part II: Proactive vehicle repositioning publication-title: Transp. Res. C – volume: 94 start-page: 203 year: 2018 end-page: 219 ident: b24 article-title: Dynamic modeling and control of taxi services in large-scale urban networks: A macroscopic approach publication-title: Transp. Res. C – start-page: 1 year: 2017 end-page: 6 ident: b14 article-title: Real-time estimation of aggregated traffic states of multi-region urban networks publication-title: 2017 IEEE 20th International Conference on Intelligent Transportation Systems – volume: 2124 start-page: 127 year: 2009 end-page: 136 ident: b34 article-title: Exploring the impact of homogeneity of traffic measurements on the existence of macroscopic fundamental diagrams publication-title: Transp. Res. Rec. – volume: 73 start-page: 91 year: 2015 ident: 10.1016/j.physa.2024.129691_b48 article-title: On the fundamental diagram for freeway traffic: A novel calibration approach for single-regime models publication-title: Transp. Res. B doi: 10.1016/j.trb.2015.01.001 – volume: 37 start-page: 183 year: 1999 ident: 10.1016/j.physa.2024.129691_b72 article-title: An introduction to variational methods for graphical models publication-title: Mach. Learn. doi: 10.1023/A:1007665907178 – volume: 2260 start-page: 8 issue: 1 year: 2011 ident: 10.1016/j.physa.2024.129691_b35 article-title: Macroscopic fundamental diagrams for freeway networks: Theory and observation publication-title: Transp. Res. Rec. doi: 10.3141/2260-02 – volume: 503 start-page: 231 year: 2018 ident: 10.1016/j.physa.2024.129691_b6 article-title: Perimeter control for urban traffic system based on macroscopic fundamental diagram publication-title: Physica A doi: 10.1016/j.physa.2018.02.172 – volume: 126 year: 2021 ident: 10.1016/j.physa.2024.129691_b38 article-title: Disentangling the city traffic rhythms: A longitudinal analysis of MFD patterns over a year publication-title: Transp. Res. C doi: 10.1016/j.trc.2021.103065 – volume: 23 start-page: 4674 issue: 5 year: 2021 ident: 10.1016/j.physa.2024.129691_b57 article-title: Traffic estimation and prediction via online variational Bayesian subspace filtering publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2020.3048959 – volume: 62 start-page: 1 year: 2014 ident: 10.1016/j.physa.2024.129691_b30 article-title: Macroscopic fundamental diagrams: A cross-comparison of estimation methods publication-title: Transp. Res. B doi: 10.1016/j.trb.2014.01.007 – volume: 63 start-page: 147 year: 2016 ident: 10.1016/j.physa.2024.129691_b54 article-title: A cross-entropy method and probabilistic sensitivity analysis framework for calibrating microscopic traffic models publication-title: Transp. Res. C doi: 10.1016/j.trc.2015.12.006 – volume: 104 start-page: 256 year: 2017 ident: 10.1016/j.physa.2024.129691_b49 article-title: On the stochastic fundamental diagram for freeway traffic: Model development, analytical properties, validation, and extensive applications publication-title: Transp. Res. B doi: 10.1016/j.trb.2017.07.003 – volume: 42 start-page: 759 issue: 9 year: 2008 ident: 10.1016/j.physa.2024.129691_b33 article-title: Existence of urban-scale macroscopic fundamental diagrams: Some experimental findings publication-title: Transp. Res. B doi: 10.1016/j.trb.2008.02.002 – volume: 24 start-page: 102 year: 2012 ident: 10.1016/j.physa.2024.129691_b53 article-title: Calibration of second order traffic models using continuous cross entropy method publication-title: Transp. Res. C doi: 10.1016/j.trc.2012.02.007 – volume: 124 year: 2021 ident: 10.1016/j.physa.2024.129691_b27 article-title: On the inefficiency of ride-sourcing services towards urban congestion publication-title: Transp. Res. C doi: 10.1016/j.trc.2020.102890 – volume: 152 year: 2023 ident: 10.1016/j.physa.2024.129691_b28 article-title: Dynamic ride-sourcing systems for city-scale networks-Part I: Matching design and model formulation and validation publication-title: Transp. Res. C doi: 10.1016/j.trc.2023.104158 – volume: 74 start-page: 1 year: 2015 ident: 10.1016/j.physa.2024.129691_b64 article-title: Dynamics of heterogeneity in urban networks: Aggregated traffic modeling and hierarchical control publication-title: Transp. Res. B doi: 10.1016/j.trb.2014.12.010 – volume: 71 start-page: 184 year: 2016 ident: 10.1016/j.physa.2024.129691_b13 article-title: Data fusion algorithm for macroscopic fundamental diagram estimation publication-title: Transp. Res. C doi: 10.1016/j.trc.2016.07.013 – volume: 102 start-page: 509 year: 2019 ident: 10.1016/j.physa.2024.129691_b39 article-title: Empirical evaluation of influential factors on bifurcation in macroscopic fundamental diagrams publication-title: Transp. Res. C doi: 10.1016/j.trc.2019.03.005 – volume: 55 start-page: 265 year: 2013 ident: 10.1016/j.physa.2024.129691_b2 article-title: Perimeter and boundary flow control in multi-reservoir heterogeneous networks publication-title: Transp. Res. B doi: 10.1016/j.trb.2013.07.003 – ident: 10.1016/j.physa.2024.129691_b69 doi: 10.1145/3308558.3314139 – year: 2021 ident: 10.1016/j.physa.2024.129691_b56 – volume: 111 start-page: 327 year: 2018 ident: 10.1016/j.physa.2024.129691_b23 article-title: Boundary conditions and behavior of the macroscopic fundamental diagram based network traffic dynamics: A control systems perspective publication-title: Transp. Res. B doi: 10.1016/j.trb.2018.02.016 – volume: 112 start-page: 859 issue: 518 year: 2017 ident: 10.1016/j.physa.2024.129691_b55 article-title: Variational inference: A review for statisticians publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.2017.1285773 – volume: 17 start-page: 213 year: 2011 ident: 10.1016/j.physa.2024.129691_b36 article-title: Hysteresis phenomena of a macroscopic fundamental diagram in freeway networks publication-title: Procedia-Soc. Behav. Sci. doi: 10.1016/j.sbspro.2011.04.515 – volume: 46 start-page: 1607 issue: 10 year: 2012 ident: 10.1016/j.physa.2024.129691_b40 article-title: The effect of variability of urban systems characteristics in the network capacity publication-title: Transp. Res. B doi: 10.1016/j.trb.2012.08.001 – year: 2013 ident: 10.1016/j.physa.2024.129691_b59 article-title: Stochastic variational inference publication-title: J. Mach. Learn. Res. – volume: 145 start-page: 212 year: 2021 ident: 10.1016/j.physa.2024.129691_b26 article-title: Can dynamic ride-sharing reduce traffic congestion? publication-title: Transp. Res. B doi: 10.1016/j.trb.2021.01.004 – volume: 142 year: 2022 ident: 10.1016/j.physa.2024.129691_b9 article-title: Data efficient reinforcement learning and adaptive optimal perimeter control of network traffic dynamics publication-title: Transp. Res. C doi: 10.1016/j.trc.2022.103759 – volume: 21 start-page: 4000 issue: 9 year: 2020 ident: 10.1016/j.physa.2024.129691_b20 article-title: Dynamic system optimum analysis of multi-region macroscopic fundamental diagram systems with state-dependent time-varying delays publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2020.2994347 – volume: 117 start-page: 687 year: 2018 ident: 10.1016/j.physa.2024.129691_b5 article-title: Robust perimeter control for two urban regions with macroscopic fundamental diagrams: A control-Lyapunov function approach publication-title: Transp. Res. B doi: 10.1016/j.trb.2017.09.008 – year: 2023 ident: 10.1016/j.physa.2024.129691_b17 article-title: Refining time-space traffic diagrams: A simple multiple linear regression model publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 12 start-page: 169 issue: 4 year: 2020 ident: 10.1016/j.physa.2024.129691_b25 article-title: A sequential clustering method for the taxi-dispatching problem considering traffic dynamics publication-title: IEEE Intell. Transp. Syst. Mag. doi: 10.1109/MITS.2020.3014444 – start-page: 1413 year: 2020 ident: 10.1016/j.physa.2024.129691_b58 article-title: Probabilistic aircraft trajectory prediction considering weather uncertainties using dropout as Bayesian approximate variational inference – volume: 138 start-page: 54 year: 2014 ident: 10.1016/j.physa.2024.129691_b68 article-title: Automatically generating empirical speed-flow traffic parameters from archived sensor data publication-title: Procedia-Soc. Behav. Sci. doi: 10.1016/j.sbspro.2014.07.181 – year: 1990 ident: 10.1016/j.physa.2024.129691_b47 – volume: 2124 start-page: 127 issue: 1 year: 2009 ident: 10.1016/j.physa.2024.129691_b34 article-title: Exploring the impact of homogeneity of traffic measurements on the existence of macroscopic fundamental diagrams publication-title: Transp. Res. Rec. doi: 10.3141/2124-12 – volume: 613 year: 2023 ident: 10.1016/j.physa.2024.129691_b42 article-title: A novel self-adaption macroscopic fundamental diagram considering network heterogeneity publication-title: Physica A doi: 10.1016/j.physa.2023.128531 – year: 2023 ident: 10.1016/j.physa.2024.129691_b11 article-title: Partially observable Markov decision process for perimeter control based on a stochastic macroscopic fundamental diagram publication-title: Physica A – volume: 2161 start-page: 40 issue: 1 year: 2010 ident: 10.1016/j.physa.2024.129691_b63 article-title: Investigating the shape of the macroscopic fundamental diagram using simulation data publication-title: Transp. Res. Rec. doi: 10.3141/2161-05 – volume: 562 year: 2021 ident: 10.1016/j.physa.2024.129691_b8 article-title: Perimeter traffic control for single urban congested region with macroscopic fundamental diagram and boundary conditions publication-title: Physica A doi: 10.1016/j.physa.2020.125401 – start-page: 1 year: 2017 ident: 10.1016/j.physa.2024.129691_b14 article-title: Real-time estimation of aggregated traffic states of multi-region urban networks – volume: 45 start-page: 605 issue: 3 year: 2011 ident: 10.1016/j.physa.2024.129691_b44 article-title: Properties of a well-defined macroscopic fundamental diagram for urban traffic publication-title: Transp. Res. B doi: 10.1016/j.trb.2010.11.004 – volume: 132 year: 2021 ident: 10.1016/j.physa.2024.129691_b16 article-title: An extended Kalman filter approach for real-time state estimation in multi-region MFD urban networks publication-title: Transp. Res. C doi: 10.1016/j.trc.2021.103384 – volume: 62 start-page: 133 year: 2016 ident: 10.1016/j.physa.2024.129691_b22 article-title: Time-dependent area-based pricing for multimodal systems with heterogeneous users in an agent-based environment publication-title: Transp. Res. C doi: 10.1016/j.trc.2015.10.015 – year: 2007 ident: 10.1016/j.physa.2024.129691_b62 article-title: Macroscopic modeling of traffic in cities – volume: 167 start-page: 196 year: 2023 ident: 10.1016/j.physa.2024.129691_b10 article-title: Hierarchical control for stochastic network traffic with reinforcement learning publication-title: Transp. Res. B doi: 10.1016/j.trb.2022.12.001 – volume: 111 start-page: 41 year: 2018 ident: 10.1016/j.physa.2024.129691_b66 article-title: Reproducible generation of experimental data sample for calibrating traffic flow fundamental diagram publication-title: Transp. Res. Part A: Policy Pract. – volume: 15 start-page: 553 issue: 2 year: 2013 ident: 10.1016/j.physa.2024.129691_b52 article-title: “No free lunch” theorems applied to the calibration of traffic simulation models publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2013.2287720 – volume: 16 start-page: 2141 issue: 4 year: 2015 ident: 10.1016/j.physa.2024.129691_b3 article-title: Multiple concentric gating traffic control in large-scale urban networks publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2015.2399303 – volume: 152 year: 2023 ident: 10.1016/j.physa.2024.129691_b29 article-title: Dynamic ride-sourcing systems for city-scale networks, Part II: Proactive vehicle repositioning publication-title: Transp. Res. C doi: 10.1016/j.trc.2023.104159 – volume: 9 start-page: 16283 issue: 1 year: 2019 ident: 10.1016/j.physa.2024.129691_b37 article-title: Understanding traffic capacity of urban networks publication-title: Sci. Rep. doi: 10.1038/s41598-019-51539-5 – volume: 11 start-page: 1616 issue: 1 year: 2023 ident: 10.1016/j.physa.2024.129691_b60 article-title: An efficient variational Bayesian algorithm for calibrating fundamental diagrams and its probabilistic sensitivity analysis publication-title: Transp. B: Transp. Dyn. – year: 2013 ident: 10.1016/j.physa.2024.129691_b18 – volume: 96 start-page: 26 year: 2017 ident: 10.1016/j.physa.2024.129691_b65 article-title: Enhancing model-based feedback perimeter control with data-driven online adaptive optimization publication-title: Transp. Res. B doi: 10.1016/j.trb.2016.10.011 – volume: 50 start-page: 363 issue: 3 year: 2016 ident: 10.1016/j.physa.2024.129691_b67 article-title: Automatic calibration of fundamental diagram for first-order macroscopic freeway traffic models publication-title: J. Adv. Transp. doi: 10.1002/atr.1334 – volume: 45 start-page: 643 issue: 4 year: 2011 ident: 10.1016/j.physa.2024.129691_b41 article-title: Clockwise hysteresis loops in the macroscopic fundamental diagram: An effect of network instability publication-title: Transp. Res. B doi: 10.1016/j.trb.2010.11.006 – volume: 70 start-page: 186 year: 2014 ident: 10.1016/j.physa.2024.129691_b12 article-title: Approximating dynamic equilibrium conditions with macroscopic fundamental diagrams publication-title: Transp. Res. B doi: 10.1016/j.trb.2014.09.002 – volume: 312 start-page: 182 issue: 1 year: 2023 ident: 10.1016/j.physa.2024.129691_b43 article-title: Analytical formulation for explaining the variations in traffic states: A fundamental diagram modeling perspective with stochastic parameters publication-title: European J. Oper. Res. doi: 10.1016/j.ejor.2023.07.005 – volume: 41 start-page: 49 issue: 1 year: 2007 ident: 10.1016/j.physa.2024.129691_b61 article-title: Urban gridlock: Macroscopic modeling and mitigation approaches publication-title: Transp. Res. B doi: 10.1016/j.trb.2006.03.001 – volume: 131 start-page: 1 year: 2020 ident: 10.1016/j.physa.2024.129691_b19 article-title: A dynamic user equilibrium model for multi-region macroscopic fundamental diagram systems with time-varying delays publication-title: Transp. Res. B doi: 10.1016/j.trb.2019.11.002 – volume: 34 start-page: 243 year: 2018 ident: 10.1016/j.physa.2024.129691_b50 article-title: Using taxi GPS data for macroscopic traffic monitoring in large scale urban networks: Calibration and MFD derivation publication-title: Transp. Res. Procedia doi: 10.1016/j.trpro.2018.11.038 – volume: 42 start-page: 771 issue: 9 year: 2008 ident: 10.1016/j.physa.2024.129691_b31 article-title: An analytical approximation for the macroscopic fundamental diagram of urban traffic publication-title: Transp. Res. B doi: 10.1016/j.trb.2008.06.008 – volume: 46 start-page: 1159 issue: 9 year: 2012 ident: 10.1016/j.physa.2024.129691_b1 article-title: On the stability of traffic perimeter control in two-region urban cities publication-title: Transp. Res. B doi: 10.1016/j.trb.2012.04.004 – volume: 116 year: 2020 ident: 10.1016/j.physa.2024.129691_b7 article-title: Neuro-dynamic programming for optimal control of macroscopic fundamental diagram systems publication-title: Transp. Res. C doi: 10.1016/j.trc.2020.102628 – volume: 94 start-page: 203 year: 2018 ident: 10.1016/j.physa.2024.129691_b24 article-title: Dynamic modeling and control of taxi services in large-scale urban networks: A macroscopic approach publication-title: Transp. Res. C doi: 10.1016/j.trc.2017.08.011 – volume: 137 start-page: 119 year: 2020 ident: 10.1016/j.physa.2024.129691_b45 article-title: A functional form with a physical meaning for the macroscopic fundamental diagram publication-title: Transp. Res. B doi: 10.1016/j.trb.2018.10.013 – year: 1992 ident: 10.1016/j.physa.2024.129691_b51 – volume: 7 start-page: 615 year: 2015 ident: 10.1016/j.physa.2024.129691_b32 article-title: Stochastic approximations for the macroscopic fundamental diagram of urban networks publication-title: Transp. Res. Procedia doi: 10.1016/j.trpro.2015.06.032 – volume: 136 start-page: 62 year: 2020 ident: 10.1016/j.physa.2024.129691_b15 article-title: Calibration and validation of multi-reservoir MFD models: A case study in Lyon publication-title: Transp. Res. B doi: 10.1016/j.trb.2020.03.006 – volume: 151 year: 2023 ident: 10.1016/j.physa.2024.129691_b46 article-title: FitFun: A modelling framework for successfully capturing the functional form and noise of observed traffic flow–density–speed relationships publication-title: Transp. Res. C doi: 10.1016/j.trc.2023.104068 – volume: 7 start-page: 651 year: 2015 ident: 10.1016/j.physa.2024.129691_b4 article-title: Controller design for gating traffic control in presence of time-delay in urban road networks publication-title: Transp. Res. Procedia doi: 10.1016/j.trpro.2015.06.034 – volume: 7 start-page: 669 year: 2015 ident: 10.1016/j.physa.2024.129691_b70 article-title: Robust constrained control of uncertain macroscopic fundamental diagram networks publication-title: Transp. Res. Procedia doi: 10.1016/j.trpro.2015.06.035 – year: 2023 ident: 10.1016/j.physa.2024.129691_b71 – volume: 128 year: 2021 ident: 10.1016/j.physa.2024.129691_b21 article-title: Dynamic user equilibrium for departure time choice in the basic trip-based model publication-title: Transp. Res. C doi: 10.1016/j.trc.2021.103190 |
SSID | ssj0001732 |
Score | 2.4606256 |
Snippet | Macroscopic fundamental diagram (MFD) is widely applied in network-level traffic control and management with most applications necessitating a well-calibrated... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 129691 |
SubjectTerms | Functional form selection Macroscopic fundamental diagram Mean-field variational Bayesian Model calibration |
Title | Functional form selection and calibration of macroscopic fundamental diagrams |
URI | https://dx.doi.org/10.1016/j.physa.2024.129691 |
Volume | 640 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLb2EBIXxFOMx5QDR7q1TZOmx2liGiB2gUm7VU2aSEOwTWxc-e3YfUwgoR04Jo3V6pNr-0scG-DGhKHGOD_3VJIjQYnCyEt0jKzVUTckrXybFdU-J3I8jR5mYtaAYX0XhtIqK9tf2vTCWlcz_QrN_mo-7z_7PFYRjwPKgqQLJ01ohzyRogXtwf3jeLI1yEHMy8MEJEwkUBcfKtK8aAOB6g-FUQ9dn0yCvx3UD6czOoSDKlpkg_KDjqBhF8ewV2RtmvUJPI3QK5WbeYyCT7YuutrgBMsWOUP4iQwX46Vj7xm90SxXc8McXQAp6_oz1BBK0VqfwnR09zIce1V_BM-g49l40mgM-LPccC4w7pfcGZcjY8t8GRrlrHLcIcWSxtKv6qRMdJ64UFohlO8Sx8-gtVgu7DkwX6g8F7FWTqNbUxE-DDhSCSMjnUTGdiCsQUlNVTyceli8pXWW2GtaIJkSkmmJZAdut0KrsnbG7uWyRjv9pQIpWvddghf_FbyEfRrR4VAgrqC1-fi01xhjbHQXmr2voFtp0jfJ6dAY |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVKEYILYhVl9YEjaZPYcZwjqqgKtL3QSr1F8SYVQVrRcuXbmcnCIqEeOMb2KNHTZBb7eYaQax2GCuJ848nEQILCQ-4lKoas1WE3JCV9mxXVPkeiP-EP02jaIN36LgzSKivbX9r0wlpXI50Kzc5iNus8-SyWnMUBsiDxwskG2eQRi5HX1_745nkEMSuPEiBdwuV16aGC5IXbB1h9KORtcHwiCf52Tz9cTm-P7FaxIr0tP2efNGx-QLYKzqZeHpJhD3xSuZVHMfSky6KnDQzQLDcUwMdUuHieO_qa4Rv1fDHT1OH1j7KqPwX9QILW8ohMenfjbt-ruiN4GtzOyhNaQbifGc1YBFG_YE47A_la5otQS2elYw4SLKEt_qhOiESZxIXCRpH0XeLYMWnm89yeEOpH0pgoVtIpcGqSw2QAQEotuEq4ti0S1qCkuiodjh0sXtKaI_acFkimiGRaItkiN19Ci7JyxvrlokY7_aUAKdj2dYKn_xW8Itv98XCQDu5Hj2dkB2fwmCiIzklz9fZuLyDaWKnLQps-AYfe0OM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+form+selection+and+calibration+of+macroscopic+fundamental+diagrams&rft.jtitle=Physica+A&rft.au=Ma%2C+Wenfei&rft.au=Huang%2C+Yunping&rft.au=Jin%2C+Xiao&rft.au=Zhong%2C+Renxin&rft.date=2024-04-15&rft.issn=0378-4371&rft.volume=640&rft.spage=129691&rft_id=info:doi/10.1016%2Fj.physa.2024.129691&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_physa_2024_129691 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4371&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4371&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4371&client=summon |