Data-driven vector localized waves and parameters discovery for Manakov system using deep learning approach

An improved physics-informed neural network (IPINN) algorithm with four output functions and four physics constraints, which possesses neuron-wise locally adaptive activation function and slope recovery term, is appropriately proposed to obtain the data-driven vector localized waves, including vecto...

Full description

Saved in:
Bibliographic Details
Published inChaos, solitons and fractals Vol. 160; p. 112182
Main Authors Pu, Jun-Cai, Chen, Yong
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.07.2022
Subjects
Online AccessGet full text
ISSN0960-0779
1873-2887
DOI10.1016/j.chaos.2022.112182

Cover

Loading…
Abstract An improved physics-informed neural network (IPINN) algorithm with four output functions and four physics constraints, which possesses neuron-wise locally adaptive activation function and slope recovery term, is appropriately proposed to obtain the data-driven vector localized waves, including vector solitons, breathers and rogue waves (RWs) for the Manakov system with initial and boundary conditions, as well as data-driven parameters discovery for Manakov system with unknown parameters. The data-driven vector RWs which also contain interaction waves of RWs and bright-dark solitons, interaction waves of RWs and breathers, as well as RWs evolved from bright-dark solitons are learned to verify the capability of the IPINN algorithm in training complex localized wave. In the process of parameter discovery, routine IPINN can not accurately train unknown parameters whether using clean data or noisy data. Thus we introduce parameter regularization strategy with adjustable weight coefficients into IPINN to effectively and accurately train prediction parameters, then find that once setting the appropriate weight coefficients, the training effect is better as using noisy data. Numerical results show that IPINN with parameter regularization shows superior noise immunity in parameters discovery problem. •The improved PINN method with four outputs and four nonlinear equation constraints is firstly proposed.•The data-driven vector localized waves and parameters discovery for the Manakov system are considered.•The data-driven vector interaction solutions and parameters discovery are obtained.•We introduce L2 norm parameter regularization strategy with adjustable weight coefficients into improved PINN.•The training effect is better as using noisy data in improved PINN with parameter regularization.
AbstractList An improved physics-informed neural network (IPINN) algorithm with four output functions and four physics constraints, which possesses neuron-wise locally adaptive activation function and slope recovery term, is appropriately proposed to obtain the data-driven vector localized waves, including vector solitons, breathers and rogue waves (RWs) for the Manakov system with initial and boundary conditions, as well as data-driven parameters discovery for Manakov system with unknown parameters. The data-driven vector RWs which also contain interaction waves of RWs and bright-dark solitons, interaction waves of RWs and breathers, as well as RWs evolved from bright-dark solitons are learned to verify the capability of the IPINN algorithm in training complex localized wave. In the process of parameter discovery, routine IPINN can not accurately train unknown parameters whether using clean data or noisy data. Thus we introduce parameter regularization strategy with adjustable weight coefficients into IPINN to effectively and accurately train prediction parameters, then find that once setting the appropriate weight coefficients, the training effect is better as using noisy data. Numerical results show that IPINN with parameter regularization shows superior noise immunity in parameters discovery problem. •The improved PINN method with four outputs and four nonlinear equation constraints is firstly proposed.•The data-driven vector localized waves and parameters discovery for the Manakov system are considered.•The data-driven vector interaction solutions and parameters discovery are obtained.•We introduce L2 norm parameter regularization strategy with adjustable weight coefficients into improved PINN.•The training effect is better as using noisy data in improved PINN with parameter regularization.
ArticleNumber 112182
Author Pu, Jun-Cai
Chen, Yong
Author_xml – sequence: 1
  givenname: Jun-Cai
  surname: Pu
  fullname: Pu, Jun-Cai
  organization: School of Mathematical Sciences, Shanghai Key Laboratory of Pure Mathematics and Mathematical Practice, East China Normal University, Shanghai 200241, China
– sequence: 2
  givenname: Yong
  surname: Chen
  fullname: Chen, Yong
  email: ychen@sei.ecnu.edu.cn
  organization: School of Mathematical Sciences, Shanghai Key Laboratory of Pure Mathematics and Mathematical Practice, East China Normal University, Shanghai 200241, China
BookMark eNqFkD1PwzAQQC0EEm3hF7D4DyTYTuskAwMqn1IRC8zW1T5Tt6kd2SGo_HpSysQA0-mkeye9NybHPngk5IKznDMuL9e5XkFIuWBC5JwLXokjMuJVWWSiqspjMmK1ZBkry_qUjFNaM8Y4k2JENjfQQWai69HTHnUXIm2ChsZ9oqEf0GOi4A1tIcIWO4yJGpd06DHuqB2On8DDJvQ07VKHW_qenH-jBrGlDUL0-w3aNgbQqzNyYqFJeP4zJ-T17vZl_pAtnu8f59eLTBes6DJZAIhBYsaXyKy2hbbSGIu15rVZlihwKtkUSinllGOFxsysEELOBqOy1qKYkPrwV8eQUkSrtOugc8F3EVyjOFP7amqtvqupfTV1qDawxS-2jW4LcfcPdXWgcNDqHUaVtEOv0bg4NFUmuD_5L8n2jAU
CitedBy_id crossref_primary_10_1007_s11071_023_08641_1
crossref_primary_10_1016_j_chaos_2022_112787
crossref_primary_10_1016_j_jestch_2023_101489
crossref_primary_10_1007_s11071_023_08287_z
crossref_primary_10_1007_s11071_024_10180_2
crossref_primary_10_1088_1572_9494_accb8d
crossref_primary_10_1088_0256_307X_41_3_030201
crossref_primary_10_1088_1572_9494_ad1a0e
crossref_primary_10_3390_math12172694
crossref_primary_10_1016_j_jcp_2024_113090
crossref_primary_10_1016_j_chaos_2023_114085
crossref_primary_10_1088_1572_9494_ad75f7
crossref_primary_10_1007_s11071_024_10093_0
crossref_primary_10_3390_sym16010060
crossref_primary_10_1007_s11071_023_08531_6
crossref_primary_10_1016_j_chaos_2023_114090
crossref_primary_10_1007_s11071_024_10074_3
crossref_primary_10_1016_j_cnsns_2022_107051
crossref_primary_10_13108_2024_16_3_92
crossref_primary_10_1103_PhysRevE_106_025305
crossref_primary_10_1007_s12596_024_01831_z
crossref_primary_10_1016_j_physleta_2022_128432
crossref_primary_10_1016_j_rinp_2023_106516
crossref_primary_10_1016_j_camwa_2023_09_047
crossref_primary_10_1080_16583655_2023_2201967
crossref_primary_10_1016_j_physleta_2022_128373
crossref_primary_10_1016_j_physd_2023_133729
crossref_primary_10_1016_j_camwa_2024_06_012
crossref_primary_10_1016_j_physd_2022_133629
crossref_primary_10_1016_j_physd_2023_133945
crossref_primary_10_1007_s11071_023_08712_3
crossref_primary_10_1007_s11424_024_3418_3
crossref_primary_10_3934_era_2024122
crossref_primary_10_1016_j_cnsns_2023_107441
crossref_primary_10_1016_j_chaos_2024_114595
crossref_primary_10_1063_5_0191283
crossref_primary_10_1016_j_physd_2024_134304
crossref_primary_10_1016_j_physd_2023_133851
crossref_primary_10_7498_aps_72_20222381
crossref_primary_10_1007_s11424_024_3321_y
crossref_primary_10_1016_j_chaos_2023_113509
crossref_primary_10_1016_j_physd_2024_134262
crossref_primary_10_1016_j_physd_2024_134284
crossref_primary_10_1016_j_physd_2022_133430
crossref_primary_10_1016_j_physd_2023_134023
crossref_primary_10_1016_j_rinp_2023_106842
crossref_primary_10_3934_mbe_2022601
Cites_doi 10.1007/BF01589116
10.1209/0295-5075/96/25002
10.1109/50.809672
10.1007/s11071-021-06411-5
10.1088/1402-4896/ab1482
10.1007/BF01017105
10.1103/PhysRevLett.104.093901
10.1007/s11071-021-06554-5
10.1126/science.1071021
10.1007/s11071-021-06550-9
10.1007/s11071-020-05603-9
10.1088/0256-307X/31/9/090201
10.1016/j.wavemoti.2021.102823
10.1126/science.293.5537.2051
10.1002/j.1477-8696.1966.tb05176.x
10.1016/j.chaos.2021.111393
10.1038/nbt.3300
10.1088/0256-307X/28/11/110202
10.1016/j.cnsns.2019.104915
10.1002/sapm197960143
10.1016/S0065-2156(08)70087-5
10.1109/TCSVT.2019.2897980
10.1017/S0334270000003891
10.1140/epjst/e2010-01233-0
10.1364/JOSAB.29.003119
10.1038/323533a0
10.1016/j.euromechflu.2003.09.002
10.1098/rspa.2020.0334
10.1016/j.neucom.2018.03.030
10.1103/PhysRevE.89.041201
10.1088/1674-1056/abd7e3
10.1142/S021798492150531X
10.1140/epjst/e2010-01247-6
10.1103/PhysRevLett.106.204502
10.1016/j.cnsns.2021.106067
10.1016/j.physleta.2008.12.036
10.1016/j.physleta.2017.03.023
10.1103/PhysRevE.88.022918
10.1364/OL.8.000560
10.1103/PhysRevLett.104.104503
10.1016/j.physleta.2021.127739
10.1103/PhysRevLett.109.044102
10.1016/j.physleta.2021.127408
10.1103/PhysRevE.80.026601
10.1016/j.jcp.2018.10.045
10.1016/j.jcp.2022.111053
10.1103/PhysRevE.102.032201
10.1109/ACCESS.2019.2896880
10.1016/j.physleta.2011.09.026
10.1017/S0022377809007892
10.1038/nature14539
10.1080/00401706.1987.10488205
10.1038/s42254-021-00314-5
10.1016/j.jcp.2019.109136
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.chaos.2022.112182
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1873-2887
ExternalDocumentID 10_1016_j_chaos_2022_112182
S0960077922003927
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABMAC
ABNEU
ABTAH
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLZ
HMV
HVGLF
HZ~
IHE
J1W
KOM
LG9
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SPG
SSQ
SSZ
T5K
WUQ
XPP
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c303t-63aa211251be0fcf3cf6ddfe9c19db7e2e4604a766641e8edd5f2226510679c23
IEDL.DBID .~1
ISSN 0960-0779
IngestDate Tue Jul 01 02:01:04 EDT 2025
Thu Apr 24 22:54:58 EDT 2025
Fri Feb 23 02:39:04 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Manakov system
Improved PINN
Parameters discovery
Data-driven vector localized waves
Vector rogue waves
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c303t-63aa211251be0fcf3cf6ddfe9c19db7e2e4604a766641e8edd5f2226510679c23
ParticipantIDs crossref_citationtrail_10_1016_j_chaos_2022_112182
crossref_primary_10_1016_j_chaos_2022_112182
elsevier_sciencedirect_doi_10_1016_j_chaos_2022_112182
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2022
2022-07-00
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: July 2022
PublicationDecade 2020
PublicationTitle Chaos, solitons and fractals
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Guo, Wang, Cheng, He (bb0115) 2019; 79
Wang, Yang, Wang, He (bb0085) 2017; 381
Charalampidis, Cuevas-Maraver, Frantzeskakis, Kevrekidis (bb0055) 2018; 70
Rumelhart, Hinton, Williams (bb0150) 1986; 323
Kingma, Ba (bb0310) 2014
Khaykovich, Schreck, Ferrari, Bourdel, Cubizolles, Carr, Castin, Salomon (bb0005) 2002; 296
Kaplan (bb0265) 1983; 8
Mo, Ling, Zeng (bb0255) 2022; 421
Ling, Guo, Zhao (bb0110) 2014; 89
Rao, Porsezian, Kanna, Cheng, He (bb0305) 2019; 94
Wang, Menyuk (bb0270) 1999; 17
Ma (bb0015) 1979; 60
Pu, Peng, Chen (bb0235) 2021; 107
Stein (bb0320) 1987; 29
Wang, Luan, Zhou, Biswas, Alzahrani, Liu (bb0130) 2021; 104
Pu, Chen (bb0260) 2021
Sun, Wu, Hoi (bb0160) 2018; 299
Fang, Wu, Wang, Dai (bb0240) 2021; 105
Yan (bb0095) 2011; 375
Draper (bb0030) 1966; 21
Manakov (bb0105) 1974; 38
Alipanahi, Delong, Weirauch, Frey (bb0165) 2015; 33
Baronio, Degasperis, Conforti, Wabnitz (bb0290) 2012; 109
Mjolsness, DeCoste (bb0140) 2001; 293
Höhmann, Kuhl, Stöckmann, Kaplan, Heller (bb0060) 2010; 104
Bishop (bb0145) 2006
Shats, Punzmann, Xia (bb0065) 2010; 104
Wang, Yan (bb0245) 2021; 404
Jagtap, Kawaguchi, Karniadakis (bb0195) 2020; 404
Akhmediev, Eleonskii, Kulagin (bb0010) 1987; 72
Miao, Chen (bb0220) 2022; 36
Stenflo, Shukla (bb0070) 2009; 75
Shao, Wang, Wang, Du, Wu (bb0170) 2020; 30
Guo, Ling (bb0285) 2011; 28
Peregrine (bb0080) 1983; 25
Raissi, Perdikaris, Karniadakis (bb0185) 2019; 378
Pu, Li, Chen (bb0230) 2021; 105
Wu, Fang, Wang, Wu, Dai (bb0250) 2021; 152
Kharif, Pelinovsky (bb0025) 2003; 22
Jagtap, Kawaguchi, Karniadakis (bb0200) 2020; 476
Wang, Yang, Chen, Yang (bb0300) 2014; 31
Chabchoub, Hoffmann, Akhmediev (bb0050) 2011; 106
Liu, Nocedal (bb0315) 1989; 45
Akhmediev, Pelinovsky (bb0045) 2010; 185
Dai, Zhang (bb0135) 2020; 100
Karniadakis, Kevrekidis, Lu, Perdikaris, Wang, Yang (bb0190) 2021; 3
Rao, He, Kanna, Mihalache (bb0125) 2020; 102
Moslem, Shukla, Eliasson (bb0075) 2011; 96
Peng, Pu, Chen (bb0215) 2022; 105
Bludov, Konotop, Akhmediev (bb0100) 2010; 185
Akhmediev, Ankiewicz, Soto-Crespo (bb0040) 2009; 80
Akhmediev, Ankiewicz, Taki (bb0020) 2009; 373
Peregrine (bb0035) 1976; 16
LeCun, Bengio, Hinton (bb0155) 2015; 521
Kaup, Malomed, Tasgal (bb0090) 1993; 48
Vishnu Priya, Senthilvelan, Lakshmanan (bb0280) 2013; 88
Yang (bb0275) 2010
Collobert, Weston, Bottou, Karlen, Kavukcuoglu, Kuksa (bb0180) 2011; 12
Li, Chen (bb0205) 2020; 72
Zhao, Liu (bb0295) 2012; 29
Wang, Lu, Dai, Chen (bb0120) 2020; 17
Lin, Chen (bb0225) 2022; 457
Nassif, Shahin, Attili, Azzeh, Shaalan (bb0175) 2019; 7
Pu, Li, Chen (bb0210) 2021; 30
Bishop (10.1016/j.chaos.2022.112182_bb0145) 2006
Rumelhart (10.1016/j.chaos.2022.112182_bb0150) 1986; 323
Wang (10.1016/j.chaos.2022.112182_bb0085) 2017; 381
Ling (10.1016/j.chaos.2022.112182_bb0110) 2014; 89
Guo (10.1016/j.chaos.2022.112182_bb0285) 2011; 28
Guo (10.1016/j.chaos.2022.112182_bb0115) 2019; 79
Alipanahi (10.1016/j.chaos.2022.112182_bb0165) 2015; 33
Lin (10.1016/j.chaos.2022.112182_bb0225) 2022; 457
Stenflo (10.1016/j.chaos.2022.112182_bb0070) 2009; 75
Jagtap (10.1016/j.chaos.2022.112182_bb0195) 2020; 404
Yang (10.1016/j.chaos.2022.112182_bb0275) 2010
Rao (10.1016/j.chaos.2022.112182_bb0305) 2019; 94
Wang (10.1016/j.chaos.2022.112182_bb0300) 2014; 31
Akhmediev (10.1016/j.chaos.2022.112182_bb0020) 2009; 373
Kingma (10.1016/j.chaos.2022.112182_bb0310) 2014
Kaplan (10.1016/j.chaos.2022.112182_bb0265) 1983; 8
LeCun (10.1016/j.chaos.2022.112182_bb0155) 2015; 521
Ma (10.1016/j.chaos.2022.112182_bb0015) 1979; 60
Mjolsness (10.1016/j.chaos.2022.112182_bb0140) 2001; 293
Kaup (10.1016/j.chaos.2022.112182_bb0090) 1993; 48
Stein (10.1016/j.chaos.2022.112182_bb0320) 1987; 29
Li (10.1016/j.chaos.2022.112182_bb0205) 2020; 72
Akhmediev (10.1016/j.chaos.2022.112182_bb0045) 2010; 185
Peregrine (10.1016/j.chaos.2022.112182_bb0080) 1983; 25
Khaykovich (10.1016/j.chaos.2022.112182_bb0005) 2002; 296
Collobert (10.1016/j.chaos.2022.112182_bb0180) 2011; 12
Nassif (10.1016/j.chaos.2022.112182_bb0175) 2019; 7
Vishnu Priya (10.1016/j.chaos.2022.112182_bb0280) 2013; 88
Fang (10.1016/j.chaos.2022.112182_bb0240) 2021; 105
Miao (10.1016/j.chaos.2022.112182_bb0220) 2022; 36
Akhmediev (10.1016/j.chaos.2022.112182_bb0040) 2009; 80
Draper (10.1016/j.chaos.2022.112182_bb0030) 1966; 21
Raissi (10.1016/j.chaos.2022.112182_bb0185) 2019; 378
Wang (10.1016/j.chaos.2022.112182_bb0270) 1999; 17
Jagtap (10.1016/j.chaos.2022.112182_bb0200) 2020; 476
Kharif (10.1016/j.chaos.2022.112182_bb0025) 2003; 22
Sun (10.1016/j.chaos.2022.112182_bb0160) 2018; 299
Karniadakis (10.1016/j.chaos.2022.112182_bb0190) 2021; 3
Liu (10.1016/j.chaos.2022.112182_bb0315) 1989; 45
Wang (10.1016/j.chaos.2022.112182_bb0130) 2021; 104
Pu (10.1016/j.chaos.2022.112182_bb0235) 2021; 107
Manakov (10.1016/j.chaos.2022.112182_bb0105) 1974; 38
Wang (10.1016/j.chaos.2022.112182_bb0245) 2021; 404
Akhmediev (10.1016/j.chaos.2022.112182_bb0010) 1987; 72
Charalampidis (10.1016/j.chaos.2022.112182_bb0055) 2018; 70
Pu (10.1016/j.chaos.2022.112182_bb0260) 2021
Wu (10.1016/j.chaos.2022.112182_bb0250) 2021; 152
Wang (10.1016/j.chaos.2022.112182_bb0120) 2020; 17
Zhao (10.1016/j.chaos.2022.112182_bb0295) 2012; 29
Bludov (10.1016/j.chaos.2022.112182_bb0100) 2010; 185
Moslem (10.1016/j.chaos.2022.112182_bb0075) 2011; 96
Pu (10.1016/j.chaos.2022.112182_bb0230) 2021; 105
Yan (10.1016/j.chaos.2022.112182_bb0095) 2011; 375
Rao (10.1016/j.chaos.2022.112182_bb0125) 2020; 102
Peregrine (10.1016/j.chaos.2022.112182_bb0035) 1976; 16
Shao (10.1016/j.chaos.2022.112182_bb0170) 2020; 30
Mo (10.1016/j.chaos.2022.112182_bb0255) 2022; 421
Shats (10.1016/j.chaos.2022.112182_bb0065) 2010; 104
Baronio (10.1016/j.chaos.2022.112182_bb0290) 2012; 109
Dai (10.1016/j.chaos.2022.112182_bb0135) 2020; 100
Höhmann (10.1016/j.chaos.2022.112182_bb0060) 2010; 104
Pu (10.1016/j.chaos.2022.112182_bb0210) 2021; 30
Peng (10.1016/j.chaos.2022.112182_bb0215) 2022; 105
Chabchoub (10.1016/j.chaos.2022.112182_bb0050) 2011; 106
References_xml – volume: 102
  year: 2020
  ident: bb0125
  article-title: Nonlocal -component nonlinear Schrödinger equations: bright solitons, energy-sharing collisions, and positons
  publication-title: Phys Rev E
– volume: 3
  start-page: 422
  year: 2021
  end-page: 440
  ident: bb0190
  article-title: Physics-informed machine learning
  publication-title: Nat Rev Phys
– volume: 33
  start-page: 831
  year: 2015
  end-page: 838
  ident: bb0165
  article-title: Predicting the sequence specificities of DMA- and RNA-binding proteins by deep learning
  publication-title: Nat Biotechnol
– volume: 29
  start-page: 143
  year: 1987
  end-page: 151
  ident: bb0320
  article-title: Large sample properties of simulations using latin hypercube sampling
  publication-title: Technometrics
– volume: 375
  start-page: 4274
  year: 2011
  end-page: 4279
  ident: bb0095
  article-title: Vector financial rogue waves
  publication-title: Phys Lett A
– volume: 299
  start-page: 42
  year: 2018
  end-page: 50
  ident: bb0160
  article-title: Face detection using deep learning: an improved faster RCNN approach
  publication-title: Neurocomputing
– volume: 30
  year: 2021
  ident: bb0210
  article-title: Soliton, breather and rogue wave solutions for solving the nonlinear Schrödinger equation using a deep learning method with physical constraints
  publication-title: Chin Phys B
– volume: 21
  start-page: 2
  year: 1966
  end-page: 4
  ident: bb0030
  article-title: Freak Ocean waves
  publication-title: Weather
– year: 2010
  ident: bb0275
  article-title: Nonlinear waves in integrable and nonintegrable systems
– volume: 107
  year: 2021
  ident: bb0235
  article-title: The data-driven localized wave solutions of the derivative nonlinear Schrödinger equation by using improved PINN approach
  publication-title: Wave Motion
– volume: 12
  start-page: 2493
  year: 2011
  end-page: 2537
  ident: bb0180
  article-title: Natural language processing (almost) from scratch
  publication-title: J Mach Learn Res
– volume: 7
  start-page: 19143
  year: 2019
  end-page: 19165
  ident: bb0175
  article-title: Speech recognition using deep neural networks: a systematic review
  publication-title: IEEE Access
– volume: 88
  year: 2013
  ident: bb0280
  article-title: Akhmediev breathers, ma solitons, and general breathers from rogue waves: a case study in the manakov system
  publication-title: Phys Rev E
– volume: 60
  start-page: 43
  year: 1979
  end-page: 58
  ident: bb0015
  article-title: The perturbed plane-wave solutions of the cubic Schrödinger equation
  publication-title: Stud Appl Math
– volume: 28
  year: 2011
  ident: bb0285
  article-title: Rogue wave, breathers and bright-dark-rogue solutions for the coupled Schrödinger equations
  publication-title: Chin Phys Lett
– volume: 185
  start-page: 1
  year: 2010
  end-page: 4
  ident: bb0045
  article-title: Editorial-introductory remarks on “discussion and debate: rogue waves-towards a unifying concept?”
  publication-title: Eur Phys J Special Topics
– volume: 105
  year: 2022
  ident: bb0215
  article-title: PINN deep learning for the Chen-lee-liu equation: rogue wave on the periodic background
  publication-title: Commun Nonlinear Sci Numer Simul
– volume: 378
  start-page: 686
  year: 2019
  end-page: 707
  ident: bb0185
  article-title: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J Comput Phys
– volume: 381
  start-page: 1714
  year: 2017
  end-page: 1718
  ident: bb0085
  article-title: The height of an th-order fundamental rogue wave for the nonlinear Schrödinger equation
  publication-title: Phys Lett A
– volume: 104
  year: 2010
  ident: bb0060
  article-title: Freak waves in the linear regime: a microwave study
  publication-title: Phys Rev Lett
– year: 2021
  ident: bb0260
  article-title: Data-driven forward-inverse problems for Yajima-Oikawa system using deep learning with parameter regularization
– volume: 185
  start-page: 169
  year: 2010
  end-page: 180
  ident: bb0100
  article-title: Vector rogue waves in binary mixtures of Bose-Einstein condensates
  publication-title: Eur Phys J Special Topics
– volume: 106
  year: 2011
  ident: bb0050
  article-title: Rogue wave observation in a water wave tank
  publication-title: Phys Rev Lett
– volume: 72
  start-page: 183
  year: 1987
  end-page: 196
  ident: bb0010
  article-title: Exact first-order solutions of the nonlinear Schrödinger equation
  publication-title: Theor Math Phys
– volume: 48
  start-page: 3049
  year: 1993
  end-page: 3053
  ident: bb0090
  article-title: Internal dynamics of a vector soliton in a nonlinear optical fiber
  publication-title: Phys RevE
– volume: 104
  year: 2010
  ident: bb0065
  article-title: Capillary rogue waves
  publication-title: Phys Rev Lett
– volume: 45
  start-page: 503
  year: 1989
  end-page: 528
  ident: bb0315
  article-title: On the limited memory BFGS method for large scale optimization
  publication-title: Math Program
– volume: 104
  start-page: 2613
  year: 2021
  end-page: 2620
  ident: bb0130
  article-title: Bright soliton solutions of the (2+1)-dimensional generalized coupled nonlinear Schrödinger equation with the four-wave mixing term
  publication-title: Nonlinear Dyn
– year: 2006
  ident: bb0145
  article-title: Pattern recognition and machine learning
– volume: 94
  year: 2019
  ident: bb0305
  article-title: Vector rogue waves in integrable -coupled nonlinear Schrödinger equations
  publication-title: Phys Scr
– volume: 8
  start-page: 560
  year: 1983
  end-page: 562
  ident: bb0265
  article-title: Light-induced nonreciprocity, field invariants, and nonlinear eigenpolarizations
  publication-title: Opt Lett
– volume: 404
  year: 2020
  ident: bb0195
  article-title: Adaptive activation functions accelerate convergence in deep and physics-informed neural networks
  publication-title: J Comput Phys
– volume: 421
  year: 2022
  ident: bb0255
  article-title: Data-driven vector soliton solutions of coupled nonlinear Schrödinger equation using a deep learning algorithm
  publication-title: Phys Lett A
– volume: 25
  start-page: 16
  year: 1983
  end-page: 43
  ident: bb0080
  article-title: Water waves, nonlinear Schrödinger equations and their solutions
  publication-title: J Austral Math Soc Ser B
– year: 2014
  ident: bb0310
  article-title: Adam: a method for stochastic optimization
– volume: 16
  start-page: 9
  year: 1976
  end-page: 117
  ident: bb0035
  article-title: Interaction of water waves and currents
  publication-title: Adv Appl Mech
– volume: 30
  start-page: 781
  year: 2020
  end-page: 794
  ident: bb0170
  article-title: Saliency-aware convolution neural network for ship detection in surveillance video
  publication-title: IEEE Trans Circuits Syst Video Technol
– volume: 476
  year: 2020
  ident: bb0200
  article-title: Locally adaptive activation functions with slope recovery for deep and physics-informed neural networks
  publication-title: Proc R Soc A
– volume: 89
  year: 2014
  ident: bb0110
  article-title: High-order rogue waves in vector nonlinear Schrödinger equations
  publication-title: Phys Rev E
– volume: 79
  year: 2019
  ident: bb0115
  article-title: Higher-order rogue waves and modulation instability of the two-component derivative nonlinear Schrödinger equation
  publication-title: Commun Nonlinear Sci Numer Simul
– volume: 100
  start-page: 1621
  year: 2020
  end-page: 1628
  ident: bb0135
  article-title: Controlling effect of vector and scalar crossed double-ma breathers in a partially nonlocal nonlinear medium with a linear potential
  publication-title: Nonlinear Dyn
– volume: 36
  year: 2022
  ident: bb0220
  article-title: Physics-informed neural network method in high-dimensional integrable systems
  publication-title: Mod Phys Lett B
– volume: 17
  year: 2020
  ident: bb0120
  article-title: Vector optical soliton and periodic solutions of a coupled fractional nonlinear Schrödinger equation
  publication-title: Res. Phys.
– volume: 105
  start-page: 603
  year: 2021
  end-page: 616
  ident: bb0240
  article-title: Data-driven femtosecond optical soliton excitations and parameters discovery of the high-order NLSE using the PINN
  publication-title: Nonlinear Dyn
– volume: 31
  year: 2014
  ident: bb0300
  article-title: Higher-order localized waves in coupled nonlinear Schrödinger equations
  publication-title: Chin Phys Lett
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: bb0155
  article-title: Deep learning
  publication-title: Nature
– volume: 293
  start-page: 2051
  year: 2001
  end-page: 2055
  ident: bb0140
  article-title: Machine learning for science: state of the art and future prospects
  publication-title: Science
– volume: 96
  start-page: 25002
  year: 2011
  ident: bb0075
  article-title: Surface plasma rogue waves
  publication-title: Europhys Lett
– volume: 72
  year: 2020
  ident: bb0205
  article-title: A deep learning method for solving third-order nonlinear evolution equations
  publication-title: Commun Theor Phys
– volume: 22
  start-page: 603
  year: 2003
  end-page: 634
  ident: bb0025
  article-title: Physical mechanisms of the rogue wave phenomenon
  publication-title: Eur J Mech B Fluids
– volume: 323
  start-page: 533
  year: 1986
  end-page: 536
  ident: bb0150
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
– volume: 109
  year: 2012
  ident: bb0290
  article-title: Solutions of the vector nonlinear Schrödinger equations: evidence for deterministic rogue waves
  publication-title: Phys Rev Lett
– volume: 296
  start-page: 1290
  year: 2002
  end-page: 1293
  ident: bb0005
  article-title: Formation of a matter-wave bright soliton
  publication-title: Science
– volume: 29
  start-page: 3119
  year: 2012
  end-page: 3127
  ident: bb0295
  article-title: Localized nonlinear waves in a two-mode nonlinear fiber
  publication-title: J Opt Soc Am B
– volume: 373
  start-page: 675
  year: 2009
  end-page: 678
  ident: bb0020
  article-title: Waves that appear from nowhere and disappear without a trace
  publication-title: Phys Lett A
– volume: 17
  start-page: 2520
  year: 1999
  end-page: 2529
  ident: bb0270
  article-title: Polarization evolution due to the kerr nonlinearity and chromatic dispersion
  publication-title: J Lightwave Technol
– volume: 457
  year: 2022
  ident: bb0225
  article-title: A two-stage physics-informed neural network method based on conserved quantities and applications in localized wave solutions
  publication-title: J Comput Phys
– volume: 75
  start-page: 841
  year: 2009
  end-page: 847
  ident: bb0070
  article-title: Nonlinear acoustic-gravity waves
  publication-title: J Plasma Phys
– volume: 38
  start-page: 248
  year: 1974
  end-page: 253
  ident: bb0105
  article-title: On the theory of two-dimensional stationary selffocusing of electromagnetic waves
  publication-title: Sov Phys - JETP
– volume: 105
  start-page: 1723
  year: 2021
  end-page: 1739
  ident: bb0230
  article-title: Solving localized wave solutions of the derivative nonlinear Schrödinger equation using an improved PINN method
  publication-title: Nonlinear Dyn
– volume: 152
  year: 2021
  ident: bb0250
  article-title: Predicting the dynamic process and model parameters of the vector optical solitons in birefringent fibers via the modifie d PINN
  publication-title: Chaos Solitons Fractals
– volume: 80
  year: 2009
  ident: bb0040
  article-title: Rogue waves and rational solutions of the nonlinear Schrödinger equation
  publication-title: Phys Rev E
– volume: 404
  year: 2021
  ident: bb0245
  article-title: Data-driven rogue waves and parameter discovery in the defocusing nonlinear Schrödinger equation with a potential using the PINN deep learning
  publication-title: Phys Lett A
– volume: 70
  start-page: 504
  year: 2018
  ident: bb0055
  article-title: Rogue waves in ultracold bosonic seas
  publication-title: Romanian Rep Phys
– volume: 45
  start-page: 503
  year: 1989
  ident: 10.1016/j.chaos.2022.112182_bb0315
  article-title: On the limited memory BFGS method for large scale optimization
  publication-title: Math Program
  doi: 10.1007/BF01589116
– volume: 96
  start-page: 25002
  year: 2011
  ident: 10.1016/j.chaos.2022.112182_bb0075
  article-title: Surface plasma rogue waves
  publication-title: Europhys Lett
  doi: 10.1209/0295-5075/96/25002
– volume: 17
  start-page: 2520
  year: 1999
  ident: 10.1016/j.chaos.2022.112182_bb0270
  article-title: Polarization evolution due to the kerr nonlinearity and chromatic dispersion
  publication-title: J Lightwave Technol
  doi: 10.1109/50.809672
– volume: 104
  start-page: 2613
  year: 2021
  ident: 10.1016/j.chaos.2022.112182_bb0130
  article-title: Bright soliton solutions of the (2+1)-dimensional generalized coupled nonlinear Schrödinger equation with the four-wave mixing term
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-021-06411-5
– volume: 94
  year: 2019
  ident: 10.1016/j.chaos.2022.112182_bb0305
  article-title: Vector rogue waves in integrable -coupled nonlinear Schrödinger equations
  publication-title: Phys Scr
  doi: 10.1088/1402-4896/ab1482
– volume: 72
  start-page: 183
  year: 1987
  ident: 10.1016/j.chaos.2022.112182_bb0010
  article-title: Exact first-order solutions of the nonlinear Schrödinger equation
  publication-title: Theor Math Phys
  doi: 10.1007/BF01017105
– volume: 104
  year: 2010
  ident: 10.1016/j.chaos.2022.112182_bb0060
  article-title: Freak waves in the linear regime: a microwave study
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.104.093901
– volume: 105
  start-page: 1723
  year: 2021
  ident: 10.1016/j.chaos.2022.112182_bb0230
  article-title: Solving localized wave solutions of the derivative nonlinear Schrödinger equation using an improved PINN method
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-021-06554-5
– volume: 296
  start-page: 1290
  year: 2002
  ident: 10.1016/j.chaos.2022.112182_bb0005
  article-title: Formation of a matter-wave bright soliton
  publication-title: Science
  doi: 10.1126/science.1071021
– volume: 105
  start-page: 603
  year: 2021
  ident: 10.1016/j.chaos.2022.112182_bb0240
  article-title: Data-driven femtosecond optical soliton excitations and parameters discovery of the high-order NLSE using the PINN
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-021-06550-9
– volume: 100
  start-page: 1621
  year: 2020
  ident: 10.1016/j.chaos.2022.112182_bb0135
  article-title: Controlling effect of vector and scalar crossed double-ma breathers in a partially nonlocal nonlinear medium with a linear potential
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-020-05603-9
– volume: 31
  year: 2014
  ident: 10.1016/j.chaos.2022.112182_bb0300
  article-title: Higher-order localized waves in coupled nonlinear Schrödinger equations
  publication-title: Chin Phys Lett
  doi: 10.1088/0256-307X/31/9/090201
– volume: 107
  year: 2021
  ident: 10.1016/j.chaos.2022.112182_bb0235
  article-title: The data-driven localized wave solutions of the derivative nonlinear Schrödinger equation by using improved PINN approach
  publication-title: Wave Motion
  doi: 10.1016/j.wavemoti.2021.102823
– volume: 293
  start-page: 2051
  year: 2001
  ident: 10.1016/j.chaos.2022.112182_bb0140
  article-title: Machine learning for science: state of the art and future prospects
  publication-title: Science
  doi: 10.1126/science.293.5537.2051
– volume: 21
  start-page: 2
  year: 1966
  ident: 10.1016/j.chaos.2022.112182_bb0030
  article-title: Freak Ocean waves
  publication-title: Weather
  doi: 10.1002/j.1477-8696.1966.tb05176.x
– volume: 152
  year: 2021
  ident: 10.1016/j.chaos.2022.112182_bb0250
  article-title: Predicting the dynamic process and model parameters of the vector optical solitons in birefringent fibers via the modifie d PINN
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2021.111393
– volume: 33
  start-page: 831
  year: 2015
  ident: 10.1016/j.chaos.2022.112182_bb0165
  article-title: Predicting the sequence specificities of DMA- and RNA-binding proteins by deep learning
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3300
– volume: 28
  year: 2011
  ident: 10.1016/j.chaos.2022.112182_bb0285
  article-title: Rogue wave, breathers and bright-dark-rogue solutions for the coupled Schrödinger equations
  publication-title: Chin Phys Lett
  doi: 10.1088/0256-307X/28/11/110202
– volume: 38
  start-page: 248
  year: 1974
  ident: 10.1016/j.chaos.2022.112182_bb0105
  article-title: On the theory of two-dimensional stationary selffocusing of electromagnetic waves
  publication-title: Sov Phys - JETP
– volume: 79
  year: 2019
  ident: 10.1016/j.chaos.2022.112182_bb0115
  article-title: Higher-order rogue waves and modulation instability of the two-component derivative nonlinear Schrödinger equation
  publication-title: Commun Nonlinear Sci Numer Simul
  doi: 10.1016/j.cnsns.2019.104915
– volume: 60
  start-page: 43
  year: 1979
  ident: 10.1016/j.chaos.2022.112182_bb0015
  article-title: The perturbed plane-wave solutions of the cubic Schrödinger equation
  publication-title: Stud Appl Math
  doi: 10.1002/sapm197960143
– volume: 16
  start-page: 9
  year: 1976
  ident: 10.1016/j.chaos.2022.112182_bb0035
  article-title: Interaction of water waves and currents
  publication-title: Adv Appl Mech
  doi: 10.1016/S0065-2156(08)70087-5
– volume: 30
  start-page: 781
  year: 2020
  ident: 10.1016/j.chaos.2022.112182_bb0170
  article-title: Saliency-aware convolution neural network for ship detection in surveillance video
  publication-title: IEEE Trans Circuits Syst Video Technol
  doi: 10.1109/TCSVT.2019.2897980
– volume: 12
  start-page: 2493
  year: 2011
  ident: 10.1016/j.chaos.2022.112182_bb0180
  article-title: Natural language processing (almost) from scratch
  publication-title: J Mach Learn Res
– volume: 25
  start-page: 16
  year: 1983
  ident: 10.1016/j.chaos.2022.112182_bb0080
  article-title: Water waves, nonlinear Schrödinger equations and their solutions
  publication-title: J Austral Math Soc Ser B
  doi: 10.1017/S0334270000003891
– volume: 185
  start-page: 1
  year: 2010
  ident: 10.1016/j.chaos.2022.112182_bb0045
  article-title: Editorial-introductory remarks on “discussion and debate: rogue waves-towards a unifying concept?”
  publication-title: Eur Phys J Special Topics
  doi: 10.1140/epjst/e2010-01233-0
– volume: 29
  start-page: 3119
  year: 2012
  ident: 10.1016/j.chaos.2022.112182_bb0295
  article-title: Localized nonlinear waves in a two-mode nonlinear fiber
  publication-title: J Opt Soc Am B
  doi: 10.1364/JOSAB.29.003119
– volume: 72
  year: 2020
  ident: 10.1016/j.chaos.2022.112182_bb0205
  article-title: A deep learning method for solving third-order nonlinear evolution equations
  publication-title: Commun Theor Phys
– year: 2006
  ident: 10.1016/j.chaos.2022.112182_bb0145
– volume: 323
  start-page: 533
  year: 1986
  ident: 10.1016/j.chaos.2022.112182_bb0150
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
  doi: 10.1038/323533a0
– volume: 22
  start-page: 603
  year: 2003
  ident: 10.1016/j.chaos.2022.112182_bb0025
  article-title: Physical mechanisms of the rogue wave phenomenon
  publication-title: Eur J Mech B Fluids
  doi: 10.1016/j.euromechflu.2003.09.002
– volume: 476
  year: 2020
  ident: 10.1016/j.chaos.2022.112182_bb0200
  article-title: Locally adaptive activation functions with slope recovery for deep and physics-informed neural networks
  publication-title: Proc R Soc A
  doi: 10.1098/rspa.2020.0334
– volume: 299
  start-page: 42
  year: 2018
  ident: 10.1016/j.chaos.2022.112182_bb0160
  article-title: Face detection using deep learning: an improved faster RCNN approach
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.03.030
– volume: 89
  year: 2014
  ident: 10.1016/j.chaos.2022.112182_bb0110
  article-title: High-order rogue waves in vector nonlinear Schrödinger equations
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.89.041201
– volume: 30
  year: 2021
  ident: 10.1016/j.chaos.2022.112182_bb0210
  article-title: Soliton, breather and rogue wave solutions for solving the nonlinear Schrödinger equation using a deep learning method with physical constraints
  publication-title: Chin Phys B
  doi: 10.1088/1674-1056/abd7e3
– volume: 36
  year: 2022
  ident: 10.1016/j.chaos.2022.112182_bb0220
  article-title: Physics-informed neural network method in high-dimensional integrable systems
  publication-title: Mod Phys Lett B
  doi: 10.1142/S021798492150531X
– volume: 185
  start-page: 169
  year: 2010
  ident: 10.1016/j.chaos.2022.112182_bb0100
  article-title: Vector rogue waves in binary mixtures of Bose-Einstein condensates
  publication-title: Eur Phys J Special Topics
  doi: 10.1140/epjst/e2010-01247-6
– volume: 48
  start-page: 3049
  year: 1993
  ident: 10.1016/j.chaos.2022.112182_bb0090
  article-title: Internal dynamics of a vector soliton in a nonlinear optical fiber
  publication-title: Phys RevE
– year: 2010
  ident: 10.1016/j.chaos.2022.112182_bb0275
– volume: 106
  year: 2011
  ident: 10.1016/j.chaos.2022.112182_bb0050
  article-title: Rogue wave observation in a water wave tank
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.106.204502
– volume: 105
  year: 2022
  ident: 10.1016/j.chaos.2022.112182_bb0215
  article-title: PINN deep learning for the Chen-lee-liu equation: rogue wave on the periodic background
  publication-title: Commun Nonlinear Sci Numer Simul
  doi: 10.1016/j.cnsns.2021.106067
– volume: 373
  start-page: 675
  year: 2009
  ident: 10.1016/j.chaos.2022.112182_bb0020
  article-title: Waves that appear from nowhere and disappear without a trace
  publication-title: Phys Lett A
  doi: 10.1016/j.physleta.2008.12.036
– year: 2021
  ident: 10.1016/j.chaos.2022.112182_bb0260
– year: 2014
  ident: 10.1016/j.chaos.2022.112182_bb0310
– volume: 381
  start-page: 1714
  year: 2017
  ident: 10.1016/j.chaos.2022.112182_bb0085
  article-title: The height of an th-order fundamental rogue wave for the nonlinear Schrödinger equation
  publication-title: Phys Lett A
  doi: 10.1016/j.physleta.2017.03.023
– volume: 88
  year: 2013
  ident: 10.1016/j.chaos.2022.112182_bb0280
  article-title: Akhmediev breathers, ma solitons, and general breathers from rogue waves: a case study in the manakov system
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.88.022918
– volume: 8
  start-page: 560
  year: 1983
  ident: 10.1016/j.chaos.2022.112182_bb0265
  article-title: Light-induced nonreciprocity, field invariants, and nonlinear eigenpolarizations
  publication-title: Opt Lett
  doi: 10.1364/OL.8.000560
– volume: 104
  year: 2010
  ident: 10.1016/j.chaos.2022.112182_bb0065
  article-title: Capillary rogue waves
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.104.104503
– volume: 421
  year: 2022
  ident: 10.1016/j.chaos.2022.112182_bb0255
  article-title: Data-driven vector soliton solutions of coupled nonlinear Schrödinger equation using a deep learning algorithm
  publication-title: Phys Lett A
  doi: 10.1016/j.physleta.2021.127739
– volume: 109
  year: 2012
  ident: 10.1016/j.chaos.2022.112182_bb0290
  article-title: Solutions of the vector nonlinear Schrödinger equations: evidence for deterministic rogue waves
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.109.044102
– volume: 70
  start-page: 504
  year: 2018
  ident: 10.1016/j.chaos.2022.112182_bb0055
  article-title: Rogue waves in ultracold bosonic seas
  publication-title: Romanian Rep Phys
– volume: 404
  year: 2021
  ident: 10.1016/j.chaos.2022.112182_bb0245
  article-title: Data-driven rogue waves and parameter discovery in the defocusing nonlinear Schrödinger equation with a potential using the PINN deep learning
  publication-title: Phys Lett A
  doi: 10.1016/j.physleta.2021.127408
– volume: 80
  year: 2009
  ident: 10.1016/j.chaos.2022.112182_bb0040
  article-title: Rogue waves and rational solutions of the nonlinear Schrödinger equation
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.80.026601
– volume: 378
  start-page: 686
  year: 2019
  ident: 10.1016/j.chaos.2022.112182_bb0185
  article-title: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2018.10.045
– volume: 457
  year: 2022
  ident: 10.1016/j.chaos.2022.112182_bb0225
  article-title: A two-stage physics-informed neural network method based on conserved quantities and applications in localized wave solutions
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2022.111053
– volume: 102
  year: 2020
  ident: 10.1016/j.chaos.2022.112182_bb0125
  article-title: Nonlocal -component nonlinear Schrödinger equations: bright solitons, energy-sharing collisions, and positons
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.102.032201
– volume: 7
  start-page: 19143
  year: 2019
  ident: 10.1016/j.chaos.2022.112182_bb0175
  article-title: Speech recognition using deep neural networks: a systematic review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2896880
– volume: 375
  start-page: 4274
  year: 2011
  ident: 10.1016/j.chaos.2022.112182_bb0095
  article-title: Vector financial rogue waves
  publication-title: Phys Lett A
  doi: 10.1016/j.physleta.2011.09.026
– volume: 75
  start-page: 841
  year: 2009
  ident: 10.1016/j.chaos.2022.112182_bb0070
  article-title: Nonlinear acoustic-gravity waves
  publication-title: J Plasma Phys
  doi: 10.1017/S0022377809007892
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.1016/j.chaos.2022.112182_bb0155
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 29
  start-page: 143
  year: 1987
  ident: 10.1016/j.chaos.2022.112182_bb0320
  article-title: Large sample properties of simulations using latin hypercube sampling
  publication-title: Technometrics
  doi: 10.1080/00401706.1987.10488205
– volume: 3
  start-page: 422
  year: 2021
  ident: 10.1016/j.chaos.2022.112182_bb0190
  article-title: Physics-informed machine learning
  publication-title: Nat Rev Phys
  doi: 10.1038/s42254-021-00314-5
– volume: 404
  year: 2020
  ident: 10.1016/j.chaos.2022.112182_bb0195
  article-title: Adaptive activation functions accelerate convergence in deep and physics-informed neural networks
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2019.109136
– volume: 17
  year: 2020
  ident: 10.1016/j.chaos.2022.112182_bb0120
  article-title: Vector optical soliton and periodic solutions of a coupled fractional nonlinear Schrödinger equation
  publication-title: Res. Phys.
SSID ssj0001062
Score 2.570865
Snippet An improved physics-informed neural network (IPINN) algorithm with four output functions and four physics constraints, which possesses neuron-wise locally...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 112182
SubjectTerms Data-driven vector localized waves
Improved PINN
Manakov system
Parameters discovery
Vector rogue waves
Title Data-driven vector localized waves and parameters discovery for Manakov system using deep learning approach
URI https://dx.doi.org/10.1016/j.chaos.2022.112182
Volume 160
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8JAEN0QvOjBCGrED7IHD5q40m6_jwQlqIGLknBrtrtbRLQQQIwe_O3ubLeoieHgsc1M0uxsZ962b94gdGoJmzOL-0SIMCUu92yicLMgYagyZsRd6elpDd2e3-m7twNvUEKtohcGaJUm9-c5XWdrc6dhVrMxHY0a9wC-rSCIKPCrIgod5a4bgH7-5ec3zUMdefSfBGVMwLpQHtIcL_7IJqDZTSm00tgh_bs6_ag47R20baAibuZPU0ElmVXRVnelszqvoop5Nef4zOhHn--i8RVbMCJmkMfwUn-Vx7pkjT6kwG9sqcxZJjCofr8AG2aOoTcXuJzvWGFYDJSY8WSJc5VnDNT4IRZSTrGZMTHEhRT5Huq3rx9aHWJmKhCuitWC-A5j6synUE0irZSnDk99IVIZcTsCpWUqXd9yWaBONa4tQymElyoI4XsgNRdx6uyjcjbJ5AHCaZJw6gmHqaSpqprNrMiRifBDiyVSJLyGaLGWMTeC4zD34jkumGVPsQ5ADAGI8wDU0MXKaZrrbaw394sgxb-2TawqwjrHw_86HqFNuMoZu8eovJi9yhOFSxZJXW-8Otpo3tx1el-aoeNs
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2xHIADggKirD5wAAmribM0OSKgSulyoZV6ixzbgbK0VRuK4OvxJE4FEuLANfFIkcd585w8vwE4s6QtuCV8KmWQUld4NtW8WdIg0IgZCld5ebeGTteP-u7dwBsswXV5FgZllQb7C0zP0dpcqZnZrE2Gw9o9km-rXg8Z6qtCVl-GVXSn0ot99arZiroLQNa7nvxngh5PMaA0H8plXuKRj9G2mzE8TWMH7PcC9a3oNLZg07BFclU80DYsqVEFNjoLq9VZBbbN2zkj58ZC-mIHnm94xqmcIpSRef5hnuRVa_ipJHnncz2cjyRB4-9XFMTMCB7PRTnnB9E0lqAq5nk8J4XRM0F1_AORSk2IaTPxQEo38l3oN2571xE1bRWo0PUqo77Dud72aWKTKCsVqSNSX8pUhcIO0WyZKde3XF7XGxvXVoGS0ks1i_A9dJsLBXP2YGU0Hql9IGmSCOZJh2vc1IXN5lboqET6gcUTJRNRBVbOZSyM5zi2vniJS3HZU5wnIMYExEUCqnC5CJoUlht_D_fLJMU_Vk6si8JfgQf_DTyFtajXacftZrd1COt4pxDwHsFKNn1Tx5qmZMmJWYZfamTmHQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+vector+localized+waves+and+parameters+discovery+for+Manakov+system+using+deep+learning+approach&rft.jtitle=Chaos%2C+solitons+and+fractals&rft.au=Pu%2C+Jun-Cai&rft.au=Chen%2C+Yong&rft.date=2022-07-01&rft.pub=Elsevier+Ltd&rft.issn=0960-0779&rft.eissn=1873-2887&rft.volume=160&rft_id=info:doi/10.1016%2Fj.chaos.2022.112182&rft.externalDocID=S0960077922003927
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-0779&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-0779&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-0779&client=summon