Data-driven vector localized waves and parameters discovery for Manakov system using deep learning approach
An improved physics-informed neural network (IPINN) algorithm with four output functions and four physics constraints, which possesses neuron-wise locally adaptive activation function and slope recovery term, is appropriately proposed to obtain the data-driven vector localized waves, including vecto...
Saved in:
Published in | Chaos, solitons and fractals Vol. 160; p. 112182 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.07.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0960-0779 1873-2887 |
DOI | 10.1016/j.chaos.2022.112182 |
Cover
Loading…
Abstract | An improved physics-informed neural network (IPINN) algorithm with four output functions and four physics constraints, which possesses neuron-wise locally adaptive activation function and slope recovery term, is appropriately proposed to obtain the data-driven vector localized waves, including vector solitons, breathers and rogue waves (RWs) for the Manakov system with initial and boundary conditions, as well as data-driven parameters discovery for Manakov system with unknown parameters. The data-driven vector RWs which also contain interaction waves of RWs and bright-dark solitons, interaction waves of RWs and breathers, as well as RWs evolved from bright-dark solitons are learned to verify the capability of the IPINN algorithm in training complex localized wave. In the process of parameter discovery, routine IPINN can not accurately train unknown parameters whether using clean data or noisy data. Thus we introduce parameter regularization strategy with adjustable weight coefficients into IPINN to effectively and accurately train prediction parameters, then find that once setting the appropriate weight coefficients, the training effect is better as using noisy data. Numerical results show that IPINN with parameter regularization shows superior noise immunity in parameters discovery problem.
•The improved PINN method with four outputs and four nonlinear equation constraints is firstly proposed.•The data-driven vector localized waves and parameters discovery for the Manakov system are considered.•The data-driven vector interaction solutions and parameters discovery are obtained.•We introduce L2 norm parameter regularization strategy with adjustable weight coefficients into improved PINN.•The training effect is better as using noisy data in improved PINN with parameter regularization. |
---|---|
AbstractList | An improved physics-informed neural network (IPINN) algorithm with four output functions and four physics constraints, which possesses neuron-wise locally adaptive activation function and slope recovery term, is appropriately proposed to obtain the data-driven vector localized waves, including vector solitons, breathers and rogue waves (RWs) for the Manakov system with initial and boundary conditions, as well as data-driven parameters discovery for Manakov system with unknown parameters. The data-driven vector RWs which also contain interaction waves of RWs and bright-dark solitons, interaction waves of RWs and breathers, as well as RWs evolved from bright-dark solitons are learned to verify the capability of the IPINN algorithm in training complex localized wave. In the process of parameter discovery, routine IPINN can not accurately train unknown parameters whether using clean data or noisy data. Thus we introduce parameter regularization strategy with adjustable weight coefficients into IPINN to effectively and accurately train prediction parameters, then find that once setting the appropriate weight coefficients, the training effect is better as using noisy data. Numerical results show that IPINN with parameter regularization shows superior noise immunity in parameters discovery problem.
•The improved PINN method with four outputs and four nonlinear equation constraints is firstly proposed.•The data-driven vector localized waves and parameters discovery for the Manakov system are considered.•The data-driven vector interaction solutions and parameters discovery are obtained.•We introduce L2 norm parameter regularization strategy with adjustable weight coefficients into improved PINN.•The training effect is better as using noisy data in improved PINN with parameter regularization. |
ArticleNumber | 112182 |
Author | Pu, Jun-Cai Chen, Yong |
Author_xml | – sequence: 1 givenname: Jun-Cai surname: Pu fullname: Pu, Jun-Cai organization: School of Mathematical Sciences, Shanghai Key Laboratory of Pure Mathematics and Mathematical Practice, East China Normal University, Shanghai 200241, China – sequence: 2 givenname: Yong surname: Chen fullname: Chen, Yong email: ychen@sei.ecnu.edu.cn organization: School of Mathematical Sciences, Shanghai Key Laboratory of Pure Mathematics and Mathematical Practice, East China Normal University, Shanghai 200241, China |
BookMark | eNqFkD1PwzAQQC0EEm3hF7D4DyTYTuskAwMqn1IRC8zW1T5Tt6kd2SGo_HpSysQA0-mkeye9NybHPngk5IKznDMuL9e5XkFIuWBC5JwLXokjMuJVWWSiqspjMmK1ZBkry_qUjFNaM8Y4k2JENjfQQWai69HTHnUXIm2ChsZ9oqEf0GOi4A1tIcIWO4yJGpd06DHuqB2On8DDJvQ07VKHW_qenH-jBrGlDUL0-w3aNgbQqzNyYqFJeP4zJ-T17vZl_pAtnu8f59eLTBes6DJZAIhBYsaXyKy2hbbSGIu15rVZlihwKtkUSinllGOFxsysEELOBqOy1qKYkPrwV8eQUkSrtOugc8F3EVyjOFP7amqtvqupfTV1qDawxS-2jW4LcfcPdXWgcNDqHUaVtEOv0bg4NFUmuD_5L8n2jAU |
CitedBy_id | crossref_primary_10_1007_s11071_023_08641_1 crossref_primary_10_1016_j_chaos_2022_112787 crossref_primary_10_1016_j_jestch_2023_101489 crossref_primary_10_1007_s11071_023_08287_z crossref_primary_10_1007_s11071_024_10180_2 crossref_primary_10_1088_1572_9494_accb8d crossref_primary_10_1088_0256_307X_41_3_030201 crossref_primary_10_1088_1572_9494_ad1a0e crossref_primary_10_3390_math12172694 crossref_primary_10_1016_j_jcp_2024_113090 crossref_primary_10_1016_j_chaos_2023_114085 crossref_primary_10_1088_1572_9494_ad75f7 crossref_primary_10_1007_s11071_024_10093_0 crossref_primary_10_3390_sym16010060 crossref_primary_10_1007_s11071_023_08531_6 crossref_primary_10_1016_j_chaos_2023_114090 crossref_primary_10_1007_s11071_024_10074_3 crossref_primary_10_1016_j_cnsns_2022_107051 crossref_primary_10_13108_2024_16_3_92 crossref_primary_10_1103_PhysRevE_106_025305 crossref_primary_10_1007_s12596_024_01831_z crossref_primary_10_1016_j_physleta_2022_128432 crossref_primary_10_1016_j_rinp_2023_106516 crossref_primary_10_1016_j_camwa_2023_09_047 crossref_primary_10_1080_16583655_2023_2201967 crossref_primary_10_1016_j_physleta_2022_128373 crossref_primary_10_1016_j_physd_2023_133729 crossref_primary_10_1016_j_camwa_2024_06_012 crossref_primary_10_1016_j_physd_2022_133629 crossref_primary_10_1016_j_physd_2023_133945 crossref_primary_10_1007_s11071_023_08712_3 crossref_primary_10_1007_s11424_024_3418_3 crossref_primary_10_3934_era_2024122 crossref_primary_10_1016_j_cnsns_2023_107441 crossref_primary_10_1016_j_chaos_2024_114595 crossref_primary_10_1063_5_0191283 crossref_primary_10_1016_j_physd_2024_134304 crossref_primary_10_1016_j_physd_2023_133851 crossref_primary_10_7498_aps_72_20222381 crossref_primary_10_1007_s11424_024_3321_y crossref_primary_10_1016_j_chaos_2023_113509 crossref_primary_10_1016_j_physd_2024_134262 crossref_primary_10_1016_j_physd_2024_134284 crossref_primary_10_1016_j_physd_2022_133430 crossref_primary_10_1016_j_physd_2023_134023 crossref_primary_10_1016_j_rinp_2023_106842 crossref_primary_10_3934_mbe_2022601 |
Cites_doi | 10.1007/BF01589116 10.1209/0295-5075/96/25002 10.1109/50.809672 10.1007/s11071-021-06411-5 10.1088/1402-4896/ab1482 10.1007/BF01017105 10.1103/PhysRevLett.104.093901 10.1007/s11071-021-06554-5 10.1126/science.1071021 10.1007/s11071-021-06550-9 10.1007/s11071-020-05603-9 10.1088/0256-307X/31/9/090201 10.1016/j.wavemoti.2021.102823 10.1126/science.293.5537.2051 10.1002/j.1477-8696.1966.tb05176.x 10.1016/j.chaos.2021.111393 10.1038/nbt.3300 10.1088/0256-307X/28/11/110202 10.1016/j.cnsns.2019.104915 10.1002/sapm197960143 10.1016/S0065-2156(08)70087-5 10.1109/TCSVT.2019.2897980 10.1017/S0334270000003891 10.1140/epjst/e2010-01233-0 10.1364/JOSAB.29.003119 10.1038/323533a0 10.1016/j.euromechflu.2003.09.002 10.1098/rspa.2020.0334 10.1016/j.neucom.2018.03.030 10.1103/PhysRevE.89.041201 10.1088/1674-1056/abd7e3 10.1142/S021798492150531X 10.1140/epjst/e2010-01247-6 10.1103/PhysRevLett.106.204502 10.1016/j.cnsns.2021.106067 10.1016/j.physleta.2008.12.036 10.1016/j.physleta.2017.03.023 10.1103/PhysRevE.88.022918 10.1364/OL.8.000560 10.1103/PhysRevLett.104.104503 10.1016/j.physleta.2021.127739 10.1103/PhysRevLett.109.044102 10.1016/j.physleta.2021.127408 10.1103/PhysRevE.80.026601 10.1016/j.jcp.2018.10.045 10.1016/j.jcp.2022.111053 10.1103/PhysRevE.102.032201 10.1109/ACCESS.2019.2896880 10.1016/j.physleta.2011.09.026 10.1017/S0022377809007892 10.1038/nature14539 10.1080/00401706.1987.10488205 10.1038/s42254-021-00314-5 10.1016/j.jcp.2019.109136 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.chaos.2022.112182 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Mathematics |
EISSN | 1873-2887 |
ExternalDocumentID | 10_1016_j_chaos_2022_112182 S0960077922003927 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABMAC ABNEU ABTAH ABXDB ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HLZ HMV HVGLF HZ~ IHE J1W KOM LG9 M38 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SPD SPG SSQ SSZ T5K WUQ XPP ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c303t-63aa211251be0fcf3cf6ddfe9c19db7e2e4604a766641e8edd5f2226510679c23 |
IEDL.DBID | .~1 |
ISSN | 0960-0779 |
IngestDate | Tue Jul 01 02:01:04 EDT 2025 Thu Apr 24 22:54:58 EDT 2025 Fri Feb 23 02:39:04 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Manakov system Improved PINN Parameters discovery Data-driven vector localized waves Vector rogue waves |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c303t-63aa211251be0fcf3cf6ddfe9c19db7e2e4604a766641e8edd5f2226510679c23 |
ParticipantIDs | crossref_citationtrail_10_1016_j_chaos_2022_112182 crossref_primary_10_1016_j_chaos_2022_112182 elsevier_sciencedirect_doi_10_1016_j_chaos_2022_112182 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2022 2022-07-00 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: July 2022 |
PublicationDecade | 2020 |
PublicationTitle | Chaos, solitons and fractals |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Guo, Wang, Cheng, He (bb0115) 2019; 79 Wang, Yang, Wang, He (bb0085) 2017; 381 Charalampidis, Cuevas-Maraver, Frantzeskakis, Kevrekidis (bb0055) 2018; 70 Rumelhart, Hinton, Williams (bb0150) 1986; 323 Kingma, Ba (bb0310) 2014 Khaykovich, Schreck, Ferrari, Bourdel, Cubizolles, Carr, Castin, Salomon (bb0005) 2002; 296 Kaplan (bb0265) 1983; 8 Mo, Ling, Zeng (bb0255) 2022; 421 Ling, Guo, Zhao (bb0110) 2014; 89 Rao, Porsezian, Kanna, Cheng, He (bb0305) 2019; 94 Wang, Menyuk (bb0270) 1999; 17 Ma (bb0015) 1979; 60 Pu, Peng, Chen (bb0235) 2021; 107 Stein (bb0320) 1987; 29 Wang, Luan, Zhou, Biswas, Alzahrani, Liu (bb0130) 2021; 104 Pu, Chen (bb0260) 2021 Sun, Wu, Hoi (bb0160) 2018; 299 Fang, Wu, Wang, Dai (bb0240) 2021; 105 Yan (bb0095) 2011; 375 Draper (bb0030) 1966; 21 Manakov (bb0105) 1974; 38 Alipanahi, Delong, Weirauch, Frey (bb0165) 2015; 33 Baronio, Degasperis, Conforti, Wabnitz (bb0290) 2012; 109 Mjolsness, DeCoste (bb0140) 2001; 293 Höhmann, Kuhl, Stöckmann, Kaplan, Heller (bb0060) 2010; 104 Bishop (bb0145) 2006 Shats, Punzmann, Xia (bb0065) 2010; 104 Wang, Yan (bb0245) 2021; 404 Jagtap, Kawaguchi, Karniadakis (bb0195) 2020; 404 Akhmediev, Eleonskii, Kulagin (bb0010) 1987; 72 Miao, Chen (bb0220) 2022; 36 Stenflo, Shukla (bb0070) 2009; 75 Shao, Wang, Wang, Du, Wu (bb0170) 2020; 30 Guo, Ling (bb0285) 2011; 28 Peregrine (bb0080) 1983; 25 Raissi, Perdikaris, Karniadakis (bb0185) 2019; 378 Pu, Li, Chen (bb0230) 2021; 105 Wu, Fang, Wang, Wu, Dai (bb0250) 2021; 152 Kharif, Pelinovsky (bb0025) 2003; 22 Jagtap, Kawaguchi, Karniadakis (bb0200) 2020; 476 Wang, Yang, Chen, Yang (bb0300) 2014; 31 Chabchoub, Hoffmann, Akhmediev (bb0050) 2011; 106 Liu, Nocedal (bb0315) 1989; 45 Akhmediev, Pelinovsky (bb0045) 2010; 185 Dai, Zhang (bb0135) 2020; 100 Karniadakis, Kevrekidis, Lu, Perdikaris, Wang, Yang (bb0190) 2021; 3 Rao, He, Kanna, Mihalache (bb0125) 2020; 102 Moslem, Shukla, Eliasson (bb0075) 2011; 96 Peng, Pu, Chen (bb0215) 2022; 105 Bludov, Konotop, Akhmediev (bb0100) 2010; 185 Akhmediev, Ankiewicz, Soto-Crespo (bb0040) 2009; 80 Akhmediev, Ankiewicz, Taki (bb0020) 2009; 373 Peregrine (bb0035) 1976; 16 LeCun, Bengio, Hinton (bb0155) 2015; 521 Kaup, Malomed, Tasgal (bb0090) 1993; 48 Vishnu Priya, Senthilvelan, Lakshmanan (bb0280) 2013; 88 Yang (bb0275) 2010 Collobert, Weston, Bottou, Karlen, Kavukcuoglu, Kuksa (bb0180) 2011; 12 Li, Chen (bb0205) 2020; 72 Zhao, Liu (bb0295) 2012; 29 Wang, Lu, Dai, Chen (bb0120) 2020; 17 Lin, Chen (bb0225) 2022; 457 Nassif, Shahin, Attili, Azzeh, Shaalan (bb0175) 2019; 7 Pu, Li, Chen (bb0210) 2021; 30 Bishop (10.1016/j.chaos.2022.112182_bb0145) 2006 Rumelhart (10.1016/j.chaos.2022.112182_bb0150) 1986; 323 Wang (10.1016/j.chaos.2022.112182_bb0085) 2017; 381 Ling (10.1016/j.chaos.2022.112182_bb0110) 2014; 89 Guo (10.1016/j.chaos.2022.112182_bb0285) 2011; 28 Guo (10.1016/j.chaos.2022.112182_bb0115) 2019; 79 Alipanahi (10.1016/j.chaos.2022.112182_bb0165) 2015; 33 Lin (10.1016/j.chaos.2022.112182_bb0225) 2022; 457 Stenflo (10.1016/j.chaos.2022.112182_bb0070) 2009; 75 Jagtap (10.1016/j.chaos.2022.112182_bb0195) 2020; 404 Yang (10.1016/j.chaos.2022.112182_bb0275) 2010 Rao (10.1016/j.chaos.2022.112182_bb0305) 2019; 94 Wang (10.1016/j.chaos.2022.112182_bb0300) 2014; 31 Akhmediev (10.1016/j.chaos.2022.112182_bb0020) 2009; 373 Kingma (10.1016/j.chaos.2022.112182_bb0310) 2014 Kaplan (10.1016/j.chaos.2022.112182_bb0265) 1983; 8 LeCun (10.1016/j.chaos.2022.112182_bb0155) 2015; 521 Ma (10.1016/j.chaos.2022.112182_bb0015) 1979; 60 Mjolsness (10.1016/j.chaos.2022.112182_bb0140) 2001; 293 Kaup (10.1016/j.chaos.2022.112182_bb0090) 1993; 48 Stein (10.1016/j.chaos.2022.112182_bb0320) 1987; 29 Li (10.1016/j.chaos.2022.112182_bb0205) 2020; 72 Akhmediev (10.1016/j.chaos.2022.112182_bb0045) 2010; 185 Peregrine (10.1016/j.chaos.2022.112182_bb0080) 1983; 25 Khaykovich (10.1016/j.chaos.2022.112182_bb0005) 2002; 296 Collobert (10.1016/j.chaos.2022.112182_bb0180) 2011; 12 Nassif (10.1016/j.chaos.2022.112182_bb0175) 2019; 7 Vishnu Priya (10.1016/j.chaos.2022.112182_bb0280) 2013; 88 Fang (10.1016/j.chaos.2022.112182_bb0240) 2021; 105 Miao (10.1016/j.chaos.2022.112182_bb0220) 2022; 36 Akhmediev (10.1016/j.chaos.2022.112182_bb0040) 2009; 80 Draper (10.1016/j.chaos.2022.112182_bb0030) 1966; 21 Raissi (10.1016/j.chaos.2022.112182_bb0185) 2019; 378 Wang (10.1016/j.chaos.2022.112182_bb0270) 1999; 17 Jagtap (10.1016/j.chaos.2022.112182_bb0200) 2020; 476 Kharif (10.1016/j.chaos.2022.112182_bb0025) 2003; 22 Sun (10.1016/j.chaos.2022.112182_bb0160) 2018; 299 Karniadakis (10.1016/j.chaos.2022.112182_bb0190) 2021; 3 Liu (10.1016/j.chaos.2022.112182_bb0315) 1989; 45 Wang (10.1016/j.chaos.2022.112182_bb0130) 2021; 104 Pu (10.1016/j.chaos.2022.112182_bb0235) 2021; 107 Manakov (10.1016/j.chaos.2022.112182_bb0105) 1974; 38 Wang (10.1016/j.chaos.2022.112182_bb0245) 2021; 404 Akhmediev (10.1016/j.chaos.2022.112182_bb0010) 1987; 72 Charalampidis (10.1016/j.chaos.2022.112182_bb0055) 2018; 70 Pu (10.1016/j.chaos.2022.112182_bb0260) 2021 Wu (10.1016/j.chaos.2022.112182_bb0250) 2021; 152 Wang (10.1016/j.chaos.2022.112182_bb0120) 2020; 17 Zhao (10.1016/j.chaos.2022.112182_bb0295) 2012; 29 Bludov (10.1016/j.chaos.2022.112182_bb0100) 2010; 185 Moslem (10.1016/j.chaos.2022.112182_bb0075) 2011; 96 Pu (10.1016/j.chaos.2022.112182_bb0230) 2021; 105 Yan (10.1016/j.chaos.2022.112182_bb0095) 2011; 375 Rao (10.1016/j.chaos.2022.112182_bb0125) 2020; 102 Peregrine (10.1016/j.chaos.2022.112182_bb0035) 1976; 16 Shao (10.1016/j.chaos.2022.112182_bb0170) 2020; 30 Mo (10.1016/j.chaos.2022.112182_bb0255) 2022; 421 Shats (10.1016/j.chaos.2022.112182_bb0065) 2010; 104 Baronio (10.1016/j.chaos.2022.112182_bb0290) 2012; 109 Dai (10.1016/j.chaos.2022.112182_bb0135) 2020; 100 Höhmann (10.1016/j.chaos.2022.112182_bb0060) 2010; 104 Pu (10.1016/j.chaos.2022.112182_bb0210) 2021; 30 Peng (10.1016/j.chaos.2022.112182_bb0215) 2022; 105 Chabchoub (10.1016/j.chaos.2022.112182_bb0050) 2011; 106 |
References_xml | – volume: 102 year: 2020 ident: bb0125 article-title: Nonlocal -component nonlinear Schrödinger equations: bright solitons, energy-sharing collisions, and positons publication-title: Phys Rev E – volume: 3 start-page: 422 year: 2021 end-page: 440 ident: bb0190 article-title: Physics-informed machine learning publication-title: Nat Rev Phys – volume: 33 start-page: 831 year: 2015 end-page: 838 ident: bb0165 article-title: Predicting the sequence specificities of DMA- and RNA-binding proteins by deep learning publication-title: Nat Biotechnol – volume: 29 start-page: 143 year: 1987 end-page: 151 ident: bb0320 article-title: Large sample properties of simulations using latin hypercube sampling publication-title: Technometrics – volume: 375 start-page: 4274 year: 2011 end-page: 4279 ident: bb0095 article-title: Vector financial rogue waves publication-title: Phys Lett A – volume: 299 start-page: 42 year: 2018 end-page: 50 ident: bb0160 article-title: Face detection using deep learning: an improved faster RCNN approach publication-title: Neurocomputing – volume: 30 year: 2021 ident: bb0210 article-title: Soliton, breather and rogue wave solutions for solving the nonlinear Schrödinger equation using a deep learning method with physical constraints publication-title: Chin Phys B – volume: 21 start-page: 2 year: 1966 end-page: 4 ident: bb0030 article-title: Freak Ocean waves publication-title: Weather – year: 2010 ident: bb0275 article-title: Nonlinear waves in integrable and nonintegrable systems – volume: 107 year: 2021 ident: bb0235 article-title: The data-driven localized wave solutions of the derivative nonlinear Schrödinger equation by using improved PINN approach publication-title: Wave Motion – volume: 12 start-page: 2493 year: 2011 end-page: 2537 ident: bb0180 article-title: Natural language processing (almost) from scratch publication-title: J Mach Learn Res – volume: 7 start-page: 19143 year: 2019 end-page: 19165 ident: bb0175 article-title: Speech recognition using deep neural networks: a systematic review publication-title: IEEE Access – volume: 88 year: 2013 ident: bb0280 article-title: Akhmediev breathers, ma solitons, and general breathers from rogue waves: a case study in the manakov system publication-title: Phys Rev E – volume: 60 start-page: 43 year: 1979 end-page: 58 ident: bb0015 article-title: The perturbed plane-wave solutions of the cubic Schrödinger equation publication-title: Stud Appl Math – volume: 28 year: 2011 ident: bb0285 article-title: Rogue wave, breathers and bright-dark-rogue solutions for the coupled Schrödinger equations publication-title: Chin Phys Lett – volume: 185 start-page: 1 year: 2010 end-page: 4 ident: bb0045 article-title: Editorial-introductory remarks on “discussion and debate: rogue waves-towards a unifying concept?” publication-title: Eur Phys J Special Topics – volume: 105 year: 2022 ident: bb0215 article-title: PINN deep learning for the Chen-lee-liu equation: rogue wave on the periodic background publication-title: Commun Nonlinear Sci Numer Simul – volume: 378 start-page: 686 year: 2019 end-page: 707 ident: bb0185 article-title: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: J Comput Phys – volume: 381 start-page: 1714 year: 2017 end-page: 1718 ident: bb0085 article-title: The height of an th-order fundamental rogue wave for the nonlinear Schrödinger equation publication-title: Phys Lett A – volume: 104 year: 2010 ident: bb0060 article-title: Freak waves in the linear regime: a microwave study publication-title: Phys Rev Lett – year: 2021 ident: bb0260 article-title: Data-driven forward-inverse problems for Yajima-Oikawa system using deep learning with parameter regularization – volume: 185 start-page: 169 year: 2010 end-page: 180 ident: bb0100 article-title: Vector rogue waves in binary mixtures of Bose-Einstein condensates publication-title: Eur Phys J Special Topics – volume: 106 year: 2011 ident: bb0050 article-title: Rogue wave observation in a water wave tank publication-title: Phys Rev Lett – volume: 72 start-page: 183 year: 1987 end-page: 196 ident: bb0010 article-title: Exact first-order solutions of the nonlinear Schrödinger equation publication-title: Theor Math Phys – volume: 48 start-page: 3049 year: 1993 end-page: 3053 ident: bb0090 article-title: Internal dynamics of a vector soliton in a nonlinear optical fiber publication-title: Phys RevE – volume: 104 year: 2010 ident: bb0065 article-title: Capillary rogue waves publication-title: Phys Rev Lett – volume: 45 start-page: 503 year: 1989 end-page: 528 ident: bb0315 article-title: On the limited memory BFGS method for large scale optimization publication-title: Math Program – volume: 104 start-page: 2613 year: 2021 end-page: 2620 ident: bb0130 article-title: Bright soliton solutions of the (2+1)-dimensional generalized coupled nonlinear Schrödinger equation with the four-wave mixing term publication-title: Nonlinear Dyn – year: 2006 ident: bb0145 article-title: Pattern recognition and machine learning – volume: 94 year: 2019 ident: bb0305 article-title: Vector rogue waves in integrable -coupled nonlinear Schrödinger equations publication-title: Phys Scr – volume: 8 start-page: 560 year: 1983 end-page: 562 ident: bb0265 article-title: Light-induced nonreciprocity, field invariants, and nonlinear eigenpolarizations publication-title: Opt Lett – volume: 404 year: 2020 ident: bb0195 article-title: Adaptive activation functions accelerate convergence in deep and physics-informed neural networks publication-title: J Comput Phys – volume: 421 year: 2022 ident: bb0255 article-title: Data-driven vector soliton solutions of coupled nonlinear Schrödinger equation using a deep learning algorithm publication-title: Phys Lett A – volume: 25 start-page: 16 year: 1983 end-page: 43 ident: bb0080 article-title: Water waves, nonlinear Schrödinger equations and their solutions publication-title: J Austral Math Soc Ser B – year: 2014 ident: bb0310 article-title: Adam: a method for stochastic optimization – volume: 16 start-page: 9 year: 1976 end-page: 117 ident: bb0035 article-title: Interaction of water waves and currents publication-title: Adv Appl Mech – volume: 30 start-page: 781 year: 2020 end-page: 794 ident: bb0170 article-title: Saliency-aware convolution neural network for ship detection in surveillance video publication-title: IEEE Trans Circuits Syst Video Technol – volume: 476 year: 2020 ident: bb0200 article-title: Locally adaptive activation functions with slope recovery for deep and physics-informed neural networks publication-title: Proc R Soc A – volume: 89 year: 2014 ident: bb0110 article-title: High-order rogue waves in vector nonlinear Schrödinger equations publication-title: Phys Rev E – volume: 79 year: 2019 ident: bb0115 article-title: Higher-order rogue waves and modulation instability of the two-component derivative nonlinear Schrödinger equation publication-title: Commun Nonlinear Sci Numer Simul – volume: 100 start-page: 1621 year: 2020 end-page: 1628 ident: bb0135 article-title: Controlling effect of vector and scalar crossed double-ma breathers in a partially nonlocal nonlinear medium with a linear potential publication-title: Nonlinear Dyn – volume: 36 year: 2022 ident: bb0220 article-title: Physics-informed neural network method in high-dimensional integrable systems publication-title: Mod Phys Lett B – volume: 17 year: 2020 ident: bb0120 article-title: Vector optical soliton and periodic solutions of a coupled fractional nonlinear Schrödinger equation publication-title: Res. Phys. – volume: 105 start-page: 603 year: 2021 end-page: 616 ident: bb0240 article-title: Data-driven femtosecond optical soliton excitations and parameters discovery of the high-order NLSE using the PINN publication-title: Nonlinear Dyn – volume: 31 year: 2014 ident: bb0300 article-title: Higher-order localized waves in coupled nonlinear Schrödinger equations publication-title: Chin Phys Lett – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: bb0155 article-title: Deep learning publication-title: Nature – volume: 293 start-page: 2051 year: 2001 end-page: 2055 ident: bb0140 article-title: Machine learning for science: state of the art and future prospects publication-title: Science – volume: 96 start-page: 25002 year: 2011 ident: bb0075 article-title: Surface plasma rogue waves publication-title: Europhys Lett – volume: 72 year: 2020 ident: bb0205 article-title: A deep learning method for solving third-order nonlinear evolution equations publication-title: Commun Theor Phys – volume: 22 start-page: 603 year: 2003 end-page: 634 ident: bb0025 article-title: Physical mechanisms of the rogue wave phenomenon publication-title: Eur J Mech B Fluids – volume: 323 start-page: 533 year: 1986 end-page: 536 ident: bb0150 article-title: Learning representations by back-propagating errors publication-title: Nature – volume: 109 year: 2012 ident: bb0290 article-title: Solutions of the vector nonlinear Schrödinger equations: evidence for deterministic rogue waves publication-title: Phys Rev Lett – volume: 296 start-page: 1290 year: 2002 end-page: 1293 ident: bb0005 article-title: Formation of a matter-wave bright soliton publication-title: Science – volume: 29 start-page: 3119 year: 2012 end-page: 3127 ident: bb0295 article-title: Localized nonlinear waves in a two-mode nonlinear fiber publication-title: J Opt Soc Am B – volume: 373 start-page: 675 year: 2009 end-page: 678 ident: bb0020 article-title: Waves that appear from nowhere and disappear without a trace publication-title: Phys Lett A – volume: 17 start-page: 2520 year: 1999 end-page: 2529 ident: bb0270 article-title: Polarization evolution due to the kerr nonlinearity and chromatic dispersion publication-title: J Lightwave Technol – volume: 457 year: 2022 ident: bb0225 article-title: A two-stage physics-informed neural network method based on conserved quantities and applications in localized wave solutions publication-title: J Comput Phys – volume: 75 start-page: 841 year: 2009 end-page: 847 ident: bb0070 article-title: Nonlinear acoustic-gravity waves publication-title: J Plasma Phys – volume: 38 start-page: 248 year: 1974 end-page: 253 ident: bb0105 article-title: On the theory of two-dimensional stationary selffocusing of electromagnetic waves publication-title: Sov Phys - JETP – volume: 105 start-page: 1723 year: 2021 end-page: 1739 ident: bb0230 article-title: Solving localized wave solutions of the derivative nonlinear Schrödinger equation using an improved PINN method publication-title: Nonlinear Dyn – volume: 152 year: 2021 ident: bb0250 article-title: Predicting the dynamic process and model parameters of the vector optical solitons in birefringent fibers via the modifie d PINN publication-title: Chaos Solitons Fractals – volume: 80 year: 2009 ident: bb0040 article-title: Rogue waves and rational solutions of the nonlinear Schrödinger equation publication-title: Phys Rev E – volume: 404 year: 2021 ident: bb0245 article-title: Data-driven rogue waves and parameter discovery in the defocusing nonlinear Schrödinger equation with a potential using the PINN deep learning publication-title: Phys Lett A – volume: 70 start-page: 504 year: 2018 ident: bb0055 article-title: Rogue waves in ultracold bosonic seas publication-title: Romanian Rep Phys – volume: 45 start-page: 503 year: 1989 ident: 10.1016/j.chaos.2022.112182_bb0315 article-title: On the limited memory BFGS method for large scale optimization publication-title: Math Program doi: 10.1007/BF01589116 – volume: 96 start-page: 25002 year: 2011 ident: 10.1016/j.chaos.2022.112182_bb0075 article-title: Surface plasma rogue waves publication-title: Europhys Lett doi: 10.1209/0295-5075/96/25002 – volume: 17 start-page: 2520 year: 1999 ident: 10.1016/j.chaos.2022.112182_bb0270 article-title: Polarization evolution due to the kerr nonlinearity and chromatic dispersion publication-title: J Lightwave Technol doi: 10.1109/50.809672 – volume: 104 start-page: 2613 year: 2021 ident: 10.1016/j.chaos.2022.112182_bb0130 article-title: Bright soliton solutions of the (2+1)-dimensional generalized coupled nonlinear Schrödinger equation with the four-wave mixing term publication-title: Nonlinear Dyn doi: 10.1007/s11071-021-06411-5 – volume: 94 year: 2019 ident: 10.1016/j.chaos.2022.112182_bb0305 article-title: Vector rogue waves in integrable -coupled nonlinear Schrödinger equations publication-title: Phys Scr doi: 10.1088/1402-4896/ab1482 – volume: 72 start-page: 183 year: 1987 ident: 10.1016/j.chaos.2022.112182_bb0010 article-title: Exact first-order solutions of the nonlinear Schrödinger equation publication-title: Theor Math Phys doi: 10.1007/BF01017105 – volume: 104 year: 2010 ident: 10.1016/j.chaos.2022.112182_bb0060 article-title: Freak waves in the linear regime: a microwave study publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.104.093901 – volume: 105 start-page: 1723 year: 2021 ident: 10.1016/j.chaos.2022.112182_bb0230 article-title: Solving localized wave solutions of the derivative nonlinear Schrödinger equation using an improved PINN method publication-title: Nonlinear Dyn doi: 10.1007/s11071-021-06554-5 – volume: 296 start-page: 1290 year: 2002 ident: 10.1016/j.chaos.2022.112182_bb0005 article-title: Formation of a matter-wave bright soliton publication-title: Science doi: 10.1126/science.1071021 – volume: 105 start-page: 603 year: 2021 ident: 10.1016/j.chaos.2022.112182_bb0240 article-title: Data-driven femtosecond optical soliton excitations and parameters discovery of the high-order NLSE using the PINN publication-title: Nonlinear Dyn doi: 10.1007/s11071-021-06550-9 – volume: 100 start-page: 1621 year: 2020 ident: 10.1016/j.chaos.2022.112182_bb0135 article-title: Controlling effect of vector and scalar crossed double-ma breathers in a partially nonlocal nonlinear medium with a linear potential publication-title: Nonlinear Dyn doi: 10.1007/s11071-020-05603-9 – volume: 31 year: 2014 ident: 10.1016/j.chaos.2022.112182_bb0300 article-title: Higher-order localized waves in coupled nonlinear Schrödinger equations publication-title: Chin Phys Lett doi: 10.1088/0256-307X/31/9/090201 – volume: 107 year: 2021 ident: 10.1016/j.chaos.2022.112182_bb0235 article-title: The data-driven localized wave solutions of the derivative nonlinear Schrödinger equation by using improved PINN approach publication-title: Wave Motion doi: 10.1016/j.wavemoti.2021.102823 – volume: 293 start-page: 2051 year: 2001 ident: 10.1016/j.chaos.2022.112182_bb0140 article-title: Machine learning for science: state of the art and future prospects publication-title: Science doi: 10.1126/science.293.5537.2051 – volume: 21 start-page: 2 year: 1966 ident: 10.1016/j.chaos.2022.112182_bb0030 article-title: Freak Ocean waves publication-title: Weather doi: 10.1002/j.1477-8696.1966.tb05176.x – volume: 152 year: 2021 ident: 10.1016/j.chaos.2022.112182_bb0250 article-title: Predicting the dynamic process and model parameters of the vector optical solitons in birefringent fibers via the modifie d PINN publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2021.111393 – volume: 33 start-page: 831 year: 2015 ident: 10.1016/j.chaos.2022.112182_bb0165 article-title: Predicting the sequence specificities of DMA- and RNA-binding proteins by deep learning publication-title: Nat Biotechnol doi: 10.1038/nbt.3300 – volume: 28 year: 2011 ident: 10.1016/j.chaos.2022.112182_bb0285 article-title: Rogue wave, breathers and bright-dark-rogue solutions for the coupled Schrödinger equations publication-title: Chin Phys Lett doi: 10.1088/0256-307X/28/11/110202 – volume: 38 start-page: 248 year: 1974 ident: 10.1016/j.chaos.2022.112182_bb0105 article-title: On the theory of two-dimensional stationary selffocusing of electromagnetic waves publication-title: Sov Phys - JETP – volume: 79 year: 2019 ident: 10.1016/j.chaos.2022.112182_bb0115 article-title: Higher-order rogue waves and modulation instability of the two-component derivative nonlinear Schrödinger equation publication-title: Commun Nonlinear Sci Numer Simul doi: 10.1016/j.cnsns.2019.104915 – volume: 60 start-page: 43 year: 1979 ident: 10.1016/j.chaos.2022.112182_bb0015 article-title: The perturbed plane-wave solutions of the cubic Schrödinger equation publication-title: Stud Appl Math doi: 10.1002/sapm197960143 – volume: 16 start-page: 9 year: 1976 ident: 10.1016/j.chaos.2022.112182_bb0035 article-title: Interaction of water waves and currents publication-title: Adv Appl Mech doi: 10.1016/S0065-2156(08)70087-5 – volume: 30 start-page: 781 year: 2020 ident: 10.1016/j.chaos.2022.112182_bb0170 article-title: Saliency-aware convolution neural network for ship detection in surveillance video publication-title: IEEE Trans Circuits Syst Video Technol doi: 10.1109/TCSVT.2019.2897980 – volume: 12 start-page: 2493 year: 2011 ident: 10.1016/j.chaos.2022.112182_bb0180 article-title: Natural language processing (almost) from scratch publication-title: J Mach Learn Res – volume: 25 start-page: 16 year: 1983 ident: 10.1016/j.chaos.2022.112182_bb0080 article-title: Water waves, nonlinear Schrödinger equations and their solutions publication-title: J Austral Math Soc Ser B doi: 10.1017/S0334270000003891 – volume: 185 start-page: 1 year: 2010 ident: 10.1016/j.chaos.2022.112182_bb0045 article-title: Editorial-introductory remarks on “discussion and debate: rogue waves-towards a unifying concept?” publication-title: Eur Phys J Special Topics doi: 10.1140/epjst/e2010-01233-0 – volume: 29 start-page: 3119 year: 2012 ident: 10.1016/j.chaos.2022.112182_bb0295 article-title: Localized nonlinear waves in a two-mode nonlinear fiber publication-title: J Opt Soc Am B doi: 10.1364/JOSAB.29.003119 – volume: 72 year: 2020 ident: 10.1016/j.chaos.2022.112182_bb0205 article-title: A deep learning method for solving third-order nonlinear evolution equations publication-title: Commun Theor Phys – year: 2006 ident: 10.1016/j.chaos.2022.112182_bb0145 – volume: 323 start-page: 533 year: 1986 ident: 10.1016/j.chaos.2022.112182_bb0150 article-title: Learning representations by back-propagating errors publication-title: Nature doi: 10.1038/323533a0 – volume: 22 start-page: 603 year: 2003 ident: 10.1016/j.chaos.2022.112182_bb0025 article-title: Physical mechanisms of the rogue wave phenomenon publication-title: Eur J Mech B Fluids doi: 10.1016/j.euromechflu.2003.09.002 – volume: 476 year: 2020 ident: 10.1016/j.chaos.2022.112182_bb0200 article-title: Locally adaptive activation functions with slope recovery for deep and physics-informed neural networks publication-title: Proc R Soc A doi: 10.1098/rspa.2020.0334 – volume: 299 start-page: 42 year: 2018 ident: 10.1016/j.chaos.2022.112182_bb0160 article-title: Face detection using deep learning: an improved faster RCNN approach publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.03.030 – volume: 89 year: 2014 ident: 10.1016/j.chaos.2022.112182_bb0110 article-title: High-order rogue waves in vector nonlinear Schrödinger equations publication-title: Phys Rev E doi: 10.1103/PhysRevE.89.041201 – volume: 30 year: 2021 ident: 10.1016/j.chaos.2022.112182_bb0210 article-title: Soliton, breather and rogue wave solutions for solving the nonlinear Schrödinger equation using a deep learning method with physical constraints publication-title: Chin Phys B doi: 10.1088/1674-1056/abd7e3 – volume: 36 year: 2022 ident: 10.1016/j.chaos.2022.112182_bb0220 article-title: Physics-informed neural network method in high-dimensional integrable systems publication-title: Mod Phys Lett B doi: 10.1142/S021798492150531X – volume: 185 start-page: 169 year: 2010 ident: 10.1016/j.chaos.2022.112182_bb0100 article-title: Vector rogue waves in binary mixtures of Bose-Einstein condensates publication-title: Eur Phys J Special Topics doi: 10.1140/epjst/e2010-01247-6 – volume: 48 start-page: 3049 year: 1993 ident: 10.1016/j.chaos.2022.112182_bb0090 article-title: Internal dynamics of a vector soliton in a nonlinear optical fiber publication-title: Phys RevE – year: 2010 ident: 10.1016/j.chaos.2022.112182_bb0275 – volume: 106 year: 2011 ident: 10.1016/j.chaos.2022.112182_bb0050 article-title: Rogue wave observation in a water wave tank publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.106.204502 – volume: 105 year: 2022 ident: 10.1016/j.chaos.2022.112182_bb0215 article-title: PINN deep learning for the Chen-lee-liu equation: rogue wave on the periodic background publication-title: Commun Nonlinear Sci Numer Simul doi: 10.1016/j.cnsns.2021.106067 – volume: 373 start-page: 675 year: 2009 ident: 10.1016/j.chaos.2022.112182_bb0020 article-title: Waves that appear from nowhere and disappear without a trace publication-title: Phys Lett A doi: 10.1016/j.physleta.2008.12.036 – year: 2021 ident: 10.1016/j.chaos.2022.112182_bb0260 – year: 2014 ident: 10.1016/j.chaos.2022.112182_bb0310 – volume: 381 start-page: 1714 year: 2017 ident: 10.1016/j.chaos.2022.112182_bb0085 article-title: The height of an th-order fundamental rogue wave for the nonlinear Schrödinger equation publication-title: Phys Lett A doi: 10.1016/j.physleta.2017.03.023 – volume: 88 year: 2013 ident: 10.1016/j.chaos.2022.112182_bb0280 article-title: Akhmediev breathers, ma solitons, and general breathers from rogue waves: a case study in the manakov system publication-title: Phys Rev E doi: 10.1103/PhysRevE.88.022918 – volume: 8 start-page: 560 year: 1983 ident: 10.1016/j.chaos.2022.112182_bb0265 article-title: Light-induced nonreciprocity, field invariants, and nonlinear eigenpolarizations publication-title: Opt Lett doi: 10.1364/OL.8.000560 – volume: 104 year: 2010 ident: 10.1016/j.chaos.2022.112182_bb0065 article-title: Capillary rogue waves publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.104.104503 – volume: 421 year: 2022 ident: 10.1016/j.chaos.2022.112182_bb0255 article-title: Data-driven vector soliton solutions of coupled nonlinear Schrödinger equation using a deep learning algorithm publication-title: Phys Lett A doi: 10.1016/j.physleta.2021.127739 – volume: 109 year: 2012 ident: 10.1016/j.chaos.2022.112182_bb0290 article-title: Solutions of the vector nonlinear Schrödinger equations: evidence for deterministic rogue waves publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.109.044102 – volume: 70 start-page: 504 year: 2018 ident: 10.1016/j.chaos.2022.112182_bb0055 article-title: Rogue waves in ultracold bosonic seas publication-title: Romanian Rep Phys – volume: 404 year: 2021 ident: 10.1016/j.chaos.2022.112182_bb0245 article-title: Data-driven rogue waves and parameter discovery in the defocusing nonlinear Schrödinger equation with a potential using the PINN deep learning publication-title: Phys Lett A doi: 10.1016/j.physleta.2021.127408 – volume: 80 year: 2009 ident: 10.1016/j.chaos.2022.112182_bb0040 article-title: Rogue waves and rational solutions of the nonlinear Schrödinger equation publication-title: Phys Rev E doi: 10.1103/PhysRevE.80.026601 – volume: 378 start-page: 686 year: 2019 ident: 10.1016/j.chaos.2022.112182_bb0185 article-title: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: J Comput Phys doi: 10.1016/j.jcp.2018.10.045 – volume: 457 year: 2022 ident: 10.1016/j.chaos.2022.112182_bb0225 article-title: A two-stage physics-informed neural network method based on conserved quantities and applications in localized wave solutions publication-title: J Comput Phys doi: 10.1016/j.jcp.2022.111053 – volume: 102 year: 2020 ident: 10.1016/j.chaos.2022.112182_bb0125 article-title: Nonlocal -component nonlinear Schrödinger equations: bright solitons, energy-sharing collisions, and positons publication-title: Phys Rev E doi: 10.1103/PhysRevE.102.032201 – volume: 7 start-page: 19143 year: 2019 ident: 10.1016/j.chaos.2022.112182_bb0175 article-title: Speech recognition using deep neural networks: a systematic review publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2896880 – volume: 375 start-page: 4274 year: 2011 ident: 10.1016/j.chaos.2022.112182_bb0095 article-title: Vector financial rogue waves publication-title: Phys Lett A doi: 10.1016/j.physleta.2011.09.026 – volume: 75 start-page: 841 year: 2009 ident: 10.1016/j.chaos.2022.112182_bb0070 article-title: Nonlinear acoustic-gravity waves publication-title: J Plasma Phys doi: 10.1017/S0022377809007892 – volume: 521 start-page: 436 year: 2015 ident: 10.1016/j.chaos.2022.112182_bb0155 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 29 start-page: 143 year: 1987 ident: 10.1016/j.chaos.2022.112182_bb0320 article-title: Large sample properties of simulations using latin hypercube sampling publication-title: Technometrics doi: 10.1080/00401706.1987.10488205 – volume: 3 start-page: 422 year: 2021 ident: 10.1016/j.chaos.2022.112182_bb0190 article-title: Physics-informed machine learning publication-title: Nat Rev Phys doi: 10.1038/s42254-021-00314-5 – volume: 404 year: 2020 ident: 10.1016/j.chaos.2022.112182_bb0195 article-title: Adaptive activation functions accelerate convergence in deep and physics-informed neural networks publication-title: J Comput Phys doi: 10.1016/j.jcp.2019.109136 – volume: 17 year: 2020 ident: 10.1016/j.chaos.2022.112182_bb0120 article-title: Vector optical soliton and periodic solutions of a coupled fractional nonlinear Schrödinger equation publication-title: Res. Phys. |
SSID | ssj0001062 |
Score | 2.570865 |
Snippet | An improved physics-informed neural network (IPINN) algorithm with four output functions and four physics constraints, which possesses neuron-wise locally... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 112182 |
SubjectTerms | Data-driven vector localized waves Improved PINN Manakov system Parameters discovery Vector rogue waves |
Title | Data-driven vector localized waves and parameters discovery for Manakov system using deep learning approach |
URI | https://dx.doi.org/10.1016/j.chaos.2022.112182 |
Volume | 160 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8JAEN0QvOjBCGrED7IHD5q40m6_jwQlqIGLknBrtrtbRLQQQIwe_O3ubLeoieHgsc1M0uxsZ962b94gdGoJmzOL-0SIMCUu92yicLMgYagyZsRd6elpDd2e3-m7twNvUEKtohcGaJUm9-c5XWdrc6dhVrMxHY0a9wC-rSCIKPCrIgod5a4bgH7-5ec3zUMdefSfBGVMwLpQHtIcL_7IJqDZTSm00tgh_bs6_ag47R20baAibuZPU0ElmVXRVnelszqvoop5Nef4zOhHn--i8RVbMCJmkMfwUn-Vx7pkjT6kwG9sqcxZJjCofr8AG2aOoTcXuJzvWGFYDJSY8WSJc5VnDNT4IRZSTrGZMTHEhRT5Huq3rx9aHWJmKhCuitWC-A5j6synUE0irZSnDk99IVIZcTsCpWUqXd9yWaBONa4tQymElyoI4XsgNRdx6uyjcjbJ5AHCaZJw6gmHqaSpqprNrMiRifBDiyVSJLyGaLGWMTeC4zD34jkumGVPsQ5ADAGI8wDU0MXKaZrrbaw394sgxb-2TawqwjrHw_86HqFNuMoZu8eovJi9yhOFSxZJXW-8Otpo3tx1el-aoeNs |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2xHIADggKirD5wAAmribM0OSKgSulyoZV6ixzbgbK0VRuK4OvxJE4FEuLANfFIkcd585w8vwE4s6QtuCV8KmWQUld4NtW8WdIg0IgZCld5ebeGTteP-u7dwBsswXV5FgZllQb7C0zP0dpcqZnZrE2Gw9o9km-rXg8Z6qtCVl-GVXSn0ot99arZiroLQNa7nvxngh5PMaA0H8plXuKRj9G2mzE8TWMH7PcC9a3oNLZg07BFclU80DYsqVEFNjoLq9VZBbbN2zkj58ZC-mIHnm94xqmcIpSRef5hnuRVa_ipJHnncz2cjyRB4-9XFMTMCB7PRTnnB9E0lqAq5nk8J4XRM0F1_AORSk2IaTPxQEo38l3oN2571xE1bRWo0PUqo77Dud72aWKTKCsVqSNSX8pUhcIO0WyZKde3XF7XGxvXVoGS0ks1i_A9dJsLBXP2YGU0Hql9IGmSCOZJh2vc1IXN5lboqET6gcUTJRNRBVbOZSyM5zi2vniJS3HZU5wnIMYExEUCqnC5CJoUlht_D_fLJMU_Vk6si8JfgQf_DTyFtajXacftZrd1COt4pxDwHsFKNn1Tx5qmZMmJWYZfamTmHQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+vector+localized+waves+and+parameters+discovery+for+Manakov+system+using+deep+learning+approach&rft.jtitle=Chaos%2C+solitons+and+fractals&rft.au=Pu%2C+Jun-Cai&rft.au=Chen%2C+Yong&rft.date=2022-07-01&rft.pub=Elsevier+Ltd&rft.issn=0960-0779&rft.eissn=1873-2887&rft.volume=160&rft_id=info:doi/10.1016%2Fj.chaos.2022.112182&rft.externalDocID=S0960077922003927 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-0779&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-0779&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-0779&client=summon |