CARBayes : An R Package for Bayesian Spatial Modeling with Conditional Autoregressive Priors

Conditional autoregressive models are commonly used to represent spatial autocorrelation in data relating to a set of non-overlapping areal units, which arise in a wide variety of applications including agriculture, education, epidemiology and image analysis. Such models are typically specified in a...

Full description

Saved in:
Bibliographic Details
Published inJournal of statistical software Vol. 55; no. 13; pp. 1 - 24
Main Author Lee, Duncan
Format Journal Article
LanguageEnglish
Published Foundation for Open Access Statistics 01.11.2013
Online AccessGet full text
ISSN1548-7660
1548-7660
DOI10.18637/jss.v055.i13

Cover

Loading…
Abstract Conditional autoregressive models are commonly used to represent spatial autocorrelation in data relating to a set of non-overlapping areal units, which arise in a wide variety of applications including agriculture, education, epidemiology and image analysis. Such models are typically specified in a hierarchical Bayesian framework, with inference based on Markov chain Monte Carlo (MCMC) simulation. The most widely used software to fit such models is WinBUGS or OpenBUGS, but in this paper we introduce the R package CARBayes. The main advantage of CARBayes compared with the BUGS software is its ease of use, because: (1) the spatial adjacency information is easy to specify as a binary neighbourhood matrix; and (2) given the neighbourhood matrix the models can be implemented by a single function call in R. This paper outlines the general class of Bayesian hierarchical models that can be implemented in the CARBayes software, describes their implementation via MCMC simulation techniques, and illustrates their use with two worked examples in the fields of house price analysis and disease mapping.
AbstractList Conditional autoregressive models are commonly used to represent spatial autocorrelation in data relating to a set of non-overlapping areal units, which arise in a wide variety of applications including agriculture, education, epidemiology and image analysis. Such models are typically specified in a hierarchical Bayesian framework, with inference based on Markov chain Monte Carlo (MCMC) simulation. The most widely used software to fit such models is WinBUGS or OpenBUGS, but in this paper we introduce the R package CARBayes. The main advantage of CARBayes compared with the BUGS software is its ease of use, because: (1) the spatial adjacency information is easy to specify as a binary neighbourhood matrix; and (2) given the neighbourhood matrix the models can be implemented by a single function call in R. This paper outlines the general class of Bayesian hierarchical models that can be implemented in the CARBayes software, describes their implementation via MCMC simulation techniques, and illustrates their use with two worked examples in the fields of house price analysis and disease mapping.
Author Lee, Duncan
Author_xml – sequence: 1
  givenname: Duncan
  surname: Lee
  fullname: Lee, Duncan
BookMark eNptkFtLxDAQhYMoeH30PX-ga9okberbungDRfHyJoRJMlmz1kaSuuK_t64KIj7NMGfOYebbJut97JGQ_ZJNSlXz5mCR82TJpJyEkq-RrVIKVTR1zdZ_9ZtkO-cFYxUTrdwiD7PpzRG8Y6aHdNrTG3oN9gnmSH1MdCUE6OntCwwBOnoZHXahn9O3MDzSWexdGELsR2X6OsSE84Q5hyXS6xRiyrtkw0OXce-77pD7k-O72VlxcXV6PpteFJYzPhTSc4vovaidMc5VDfqWSdFYpRwqa4RphBJlDVWrWKu48E4ZX6OpeNOiVXyHnH_luggL_ZLCM6R3HSHo1SCmuYY0BNuhVsyZqkUnW26EqpyBGmRlwTaGy9bZMYt_ZdkUc07otQ0DfH45JAidLplewdYjbP0JW4-wR1fxx_Vzxf_7Hxrghg0
CitedBy_id crossref_primary_10_1016_j_ijid_2024_107001
crossref_primary_10_1515_ijb_2018_0008
crossref_primary_10_1017_S0950268821001801
crossref_primary_10_1002_sim_8339
crossref_primary_10_1111_gean_12215
crossref_primary_10_1080_13102818_2022_2151378
crossref_primary_10_1016_j_spasta_2022_100712
crossref_primary_10_1016_j_spasta_2023_100796
crossref_primary_10_2215_CJN_13591215
crossref_primary_10_1007_s41324_019_00279_9
crossref_primary_10_1016_j_prevetmed_2019_104766
crossref_primary_10_1021_acs_est_3c10797
crossref_primary_10_1186_s12942_023_00355_2
crossref_primary_10_1016_j_spasta_2021_100548
crossref_primary_10_1136_bmjopen_2015_008617
crossref_primary_10_3168_jds_2021_21386
crossref_primary_10_1016_j_healthplace_2024_103409
crossref_primary_10_1186_s12889_022_13089_w
crossref_primary_10_1111_2041_210X_12224
crossref_primary_10_1007_s11222_022_10188_x
crossref_primary_10_3389_fepid_2022_871232
crossref_primary_10_1177_23780231221127541
crossref_primary_10_1177_0272989X221123569
crossref_primary_10_3389_fgene_2021_642991
crossref_primary_10_1214_18_AOAS1205
crossref_primary_10_1016_j_spasta_2017_04_003
crossref_primary_10_1016_j_spasta_2014_12_001
crossref_primary_10_1093_humrep_deaa378
crossref_primary_10_3390_ijgi10030180
crossref_primary_10_1111_1365_2745_13858
crossref_primary_10_1080_13416979_2018_1490520
crossref_primary_10_1080_13416979_2019_1678708
crossref_primary_10_1016_j_envint_2025_109351
crossref_primary_10_1016_j_sste_2023_100582
crossref_primary_10_1080_00031305_2019_1595144
crossref_primary_10_3390_ijerph20010341
crossref_primary_10_1109_TSTE_2017_2768824
crossref_primary_10_1186_s12879_021_06589_4
crossref_primary_10_3390_ijerph182413393
crossref_primary_10_1016_j_spasta_2017_01_002
crossref_primary_10_1016_j_watres_2023_120307
crossref_primary_10_1215_00703370_10210688
crossref_primary_10_1007_s10940_020_09454_w
crossref_primary_10_3390_math9030282
crossref_primary_10_1016_j_envint_2023_107785
crossref_primary_10_1093_aje_kwae093
crossref_primary_10_1016_j_sste_2022_100477
crossref_primary_10_1186_s12916_020_01702_x
crossref_primary_10_1530_EJE_22_0355
crossref_primary_10_1002_wics_1540
crossref_primary_10_1016_j_sste_2019_03_003
crossref_primary_10_1038_s41586_023_05725_1
crossref_primary_10_1016_j_diabet_2025_101615
crossref_primary_10_1016_j_canep_2024_102738
crossref_primary_10_14710_medstat_16_2_148_159
crossref_primary_10_1088_2752_5309_ad67fb
crossref_primary_10_1093_imaman_dpaa028
crossref_primary_10_1093_jrsssa_qnad034
crossref_primary_10_3390_su11020476
crossref_primary_10_3390_ijerph14060627
crossref_primary_10_1007_s40980_022_00110_4
crossref_primary_10_1186_s40163_024_00205_x
crossref_primary_10_1093_jee_toae171
crossref_primary_10_1016_j_spasta_2021_100522
crossref_primary_10_1177_0969141320984199
crossref_primary_10_1007_s13171_021_00246_3
crossref_primary_10_1088_1742_6596_1752_1_012047
crossref_primary_10_1016_j_jaci_2021_07_044
crossref_primary_10_1111_jop_13045
crossref_primary_10_3390_su10114066
crossref_primary_10_1111_jbi_14365
crossref_primary_10_1007_s10687_020_00384_1
crossref_primary_10_1111_mms_12492
crossref_primary_10_1002_env_2643
crossref_primary_10_1016_j_cmpb_2019_02_014
crossref_primary_10_1093_aje_kwac059
crossref_primary_10_1016_j_jaci_2024_05_024
crossref_primary_10_21105_joss_04716
crossref_primary_10_1016_j_spasta_2022_100593
crossref_primary_10_3390_ijerph16162927
crossref_primary_10_1007_s10453_024_09815_z
crossref_primary_10_1111_bmsp_12230
crossref_primary_10_2354_psj_36_014
crossref_primary_10_1289_EHP2663
crossref_primary_10_1016_j_jnc_2022_126212
crossref_primary_10_1016_j_spasta_2020_100475
crossref_primary_10_1001_jamanetworkopen_2023_48914
crossref_primary_10_1002_sim_8817
crossref_primary_10_3825_ece_22_00021
crossref_primary_10_1016_j_canep_2021_102033
crossref_primary_10_1126_sciadv_ade8888
crossref_primary_10_1007_s13253_022_00508_z
crossref_primary_10_1016_j_sste_2022_100494
crossref_primary_10_3389_fneur_2023_1209446
crossref_primary_10_1214_18_BA1123
crossref_primary_10_1016_j_jth_2024_101805
crossref_primary_10_1177_0962280216660407
crossref_primary_10_1016_j_socscimed_2020_113231
crossref_primary_10_1002_ecs2_1824
crossref_primary_10_1029_2022GH000758
crossref_primary_10_1186_s12942_019_0185_9
crossref_primary_10_29233_sdufeffd_983296
crossref_primary_10_1016_j_agrformet_2021_108411
crossref_primary_10_1016_j_spasta_2021_100502
crossref_primary_10_1080_10618600_2024_2365728
crossref_primary_10_1111_saje_12279
crossref_primary_10_1016_j_amepre_2022_08_022
crossref_primary_10_1016_j_sste_2018_01_003
crossref_primary_10_1016_j_onehlt_2019_100092
crossref_primary_10_1016_j_onehlt_2022_100411
crossref_primary_10_1016_j_ssmph_2021_100786
crossref_primary_10_3389_fvets_2023_1278852
crossref_primary_10_1029_2023GH000816
crossref_primary_10_1016_j_canep_2020_101849
crossref_primary_10_1016_j_spasta_2019_01_003
crossref_primary_10_3390_su11236643
crossref_primary_10_1080_23249935_2018_1564801
crossref_primary_10_1016_j_spasta_2022_100691
crossref_primary_10_1016_j_sste_2019_100302
crossref_primary_10_7717_peerj_533
crossref_primary_10_1080_00949655_2022_2102633
crossref_primary_10_1016_j_sste_2016_04_001
crossref_primary_10_4081_gh_2024_1321
crossref_primary_10_1002_sta4_61
crossref_primary_10_1016_j_sste_2019_100306
crossref_primary_10_1002_ece3_5424
crossref_primary_10_1007_s10552_022_01614_6
crossref_primary_10_1186_s41256_024_00361_2
crossref_primary_10_1016_j_sste_2020_100353
crossref_primary_10_1080_13658816_2021_1931873
crossref_primary_10_1007_s00180_017_0752_0
crossref_primary_10_1186_s40748_022_00143_z
crossref_primary_10_2147_OAEM_S405397
crossref_primary_10_1016_j_aap_2020_105924
crossref_primary_10_3390_math9050524
crossref_primary_10_1073_pnas_2100685118
crossref_primary_10_1175_JAMC_D_15_0329_1
crossref_primary_10_1016_j_healthplace_2014_05_002
crossref_primary_10_1080_09603123_2019_1593328
crossref_primary_10_1016_j_aap_2019_105270
crossref_primary_10_1111_rssc_12469
crossref_primary_10_1016_j_ijforecast_2022_05_003
crossref_primary_10_3390_econometrics5020024
crossref_primary_10_2105_AJPH_2021_306558
crossref_primary_10_1002_psp_2689
crossref_primary_10_1038_s41598_022_11017_x
crossref_primary_10_1093_jrsssa_qnad113
crossref_primary_10_1214_18_BA1107
crossref_primary_10_1080_24709360_2018_1469809
crossref_primary_10_1093_ofid_ofab534
crossref_primary_10_1186_s12889_022_14541_7
crossref_primary_10_1289_EHP12276
crossref_primary_10_1016_j_spasta_2016_05_003
crossref_primary_10_1016_j_sste_2022_100540
crossref_primary_10_30897_ijegeo_936152
crossref_primary_10_1289_EHP14574
crossref_primary_10_1016_j_ijheh_2025_114527
crossref_primary_10_1016_j_ssci_2022_105722
crossref_primary_10_3201_eid2412_171357
crossref_primary_10_1016_j_sste_2017_01_001
crossref_primary_10_3390_ijerph19095483
crossref_primary_10_1016_j_sste_2020_100340
crossref_primary_10_1016_j_csda_2021_107264
crossref_primary_10_3389_fvets_2020_00339
crossref_primary_10_1016_j_ebiom_2019_09_026
crossref_primary_10_3390_tropicalmed7110337
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.18637/jss.v055.i13
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1548-7660
EndPage 24
ExternalDocumentID oai_doaj_org_article_80db29ed593b482dba6a52cac7b359dc
10_18637_jss_v055_i13
GroupedDBID 29L
2WC
5GY
5VS
AAFWJ
AAKPC
AAYXX
ACGFO
ACIPV
ADBBV
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
C1A
CITATION
E3Z
EBS
EJD
F5P
GROUPED_DOAJ
GX1
IPNFZ
KQ8
M~E
OK1
OVT
P2P
RIG
RNS
TR2
XSB
ID FETCH-LOGICAL-c303t-5f3ceeff46dbbdd27ef90547c88de8cb4b748416a29809834fd8bf6eb2379ec83
IEDL.DBID DOA
ISSN 1548-7660
IngestDate Wed Aug 27 01:16:25 EDT 2025
Tue Jul 01 03:06:27 EDT 2025
Thu Apr 24 23:00:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c303t-5f3ceeff46dbbdd27ef90547c88de8cb4b748416a29809834fd8bf6eb2379ec83
OpenAccessLink https://doaj.org/article/80db29ed593b482dba6a52cac7b359dc
PageCount 24
ParticipantIDs doaj_primary_oai_doaj_org_article_80db29ed593b482dba6a52cac7b359dc
crossref_citationtrail_10_18637_jss_v055_i13
crossref_primary_10_18637_jss_v055_i13
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-11-01
PublicationDateYYYYMMDD 2013-11-01
PublicationDate_xml – month: 11
  year: 2013
  text: 2013-11-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of statistical software
PublicationYear 2013
Publisher Foundation for Open Access Statistics
Publisher_xml – name: Foundation for Open Access Statistics
SSID ssj0020495
Score 2.4985719
Snippet Conditional autoregressive models are commonly used to represent spatial autocorrelation in data relating to a set of non-overlapping areal units, which arise...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 1
Title CARBayes : An R Package for Bayesian Spatial Modeling with Conditional Autoregressive Priors
URI https://doaj.org/article/80db29ed593b482dba6a52cac7b359dc
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF7Ekx7EJ9YXexBPxjbZ3WTXW1vUIlRKUSh4CPuEqqTSVMF_70yalnoQL15yWIYlfLPMzLfJfEPIufeQ1pmzEZCLJOKWhUgJ6YG1ZqbFlEmVxEbh_kPae-L3IzFaGfWF_4TN5YHnwDVly5lEeScUM1wmzuhUi8RqmxkmlLMYfSHnLchUTbWg7hW1oqZMWdZ8Kcurz5YQV-OY_chAK0L9VUa53SZbdSlI2_NX2CFrvtglm_2ljmq5R5677WFHf_nymrYLOqQDbV8hAFCoNGm1Ds6lOFUYThHFsWbYXE7xbpV2J_gxurroo20UKvAVs4bgRgfT8WRa7pOn25vHbi-qxyFEFvLMLBKBQUYLgafOGOeSzAcFBVdmpXReWsMN6oLGqU6UbCnJeHDShBSoM8uUt5IdkPViUvhDQjOurY9TGYLWnHthDHOBGRu8jGPHfYNcLiDKba0VjiMr3nLkDIhoDojmiGgOiDbIxdL8fS6S8ZthB_FeGqG2dbUAHs9rj-d_efzoPzY5JhsJDraougpPyPps-uFPobyYmbPqJMHzbhR_A1v203M
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CARBayes%3A+An+R+Package+for+Bayesian+Spatial+Modeling+with+Conditional+Autoregressive+Priors&rft.jtitle=Journal+of+statistical+software&rft.au=Duncan+Lee&rft.date=2013-11-01&rft.pub=Foundation+for+Open+Access+Statistics&rft.eissn=1548-7660&rft.volume=55&rft.issue=1&rft.spage=1&rft.epage=24&rft_id=info:doi/10.18637%2Fjss.v055.i13&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_80db29ed593b482dba6a52cac7b359dc
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1548-7660&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1548-7660&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1548-7660&client=summon