CARBayes : An R Package for Bayesian Spatial Modeling with Conditional Autoregressive Priors
Conditional autoregressive models are commonly used to represent spatial autocorrelation in data relating to a set of non-overlapping areal units, which arise in a wide variety of applications including agriculture, education, epidemiology and image analysis. Such models are typically specified in a...
Saved in:
Published in | Journal of statistical software Vol. 55; no. 13; pp. 1 - 24 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Foundation for Open Access Statistics
01.11.2013
|
Online Access | Get full text |
ISSN | 1548-7660 1548-7660 |
DOI | 10.18637/jss.v055.i13 |
Cover
Loading…
Abstract | Conditional autoregressive models are commonly used to represent spatial autocorrelation in data relating to a set of non-overlapping areal units, which arise in a wide variety of applications including agriculture, education, epidemiology and image analysis. Such models are typically specified in a hierarchical Bayesian framework, with inference based on Markov chain Monte Carlo (MCMC) simulation. The most widely used software to fit such models is WinBUGS or OpenBUGS, but in this paper we introduce the R package CARBayes. The main advantage of CARBayes compared with the BUGS software is its ease of use, because: (1) the spatial adjacency information is easy to specify as a binary neighbourhood matrix; and (2) given the neighbourhood matrix the models can be implemented by a single function call in R. This paper outlines the general class of Bayesian hierarchical models that can be implemented in the CARBayes software, describes their implementation via MCMC simulation techniques, and illustrates their use with two worked examples in the fields of house price analysis and disease mapping. |
---|---|
AbstractList | Conditional autoregressive models are commonly used to represent spatial autocorrelation in data relating to a set of non-overlapping areal units, which arise in a wide variety of applications including agriculture, education, epidemiology and image analysis. Such models are typically specified in a hierarchical Bayesian framework, with inference based on Markov chain Monte Carlo (MCMC) simulation. The most widely used software to fit such models is WinBUGS or OpenBUGS, but in this paper we introduce the R package CARBayes. The main advantage of CARBayes compared with the BUGS software is its ease of use, because: (1) the spatial adjacency information is easy to specify as a binary neighbourhood matrix; and (2) given the neighbourhood matrix the models can be implemented by a single function call in R. This paper outlines the general class of Bayesian hierarchical models that can be implemented in the CARBayes software, describes their implementation via MCMC simulation techniques, and illustrates their use with two worked examples in the fields of house price analysis and disease mapping. |
Author | Lee, Duncan |
Author_xml | – sequence: 1 givenname: Duncan surname: Lee fullname: Lee, Duncan |
BookMark | eNptkFtLxDAQhYMoeH30PX-ga9okberbungDRfHyJoRJMlmz1kaSuuK_t64KIj7NMGfOYebbJut97JGQ_ZJNSlXz5mCR82TJpJyEkq-RrVIKVTR1zdZ_9ZtkO-cFYxUTrdwiD7PpzRG8Y6aHdNrTG3oN9gnmSH1MdCUE6OntCwwBOnoZHXahn9O3MDzSWexdGELsR2X6OsSE84Q5hyXS6xRiyrtkw0OXce-77pD7k-O72VlxcXV6PpteFJYzPhTSc4vovaidMc5VDfqWSdFYpRwqa4RphBJlDVWrWKu48E4ZX6OpeNOiVXyHnH_luggL_ZLCM6R3HSHo1SCmuYY0BNuhVsyZqkUnW26EqpyBGmRlwTaGy9bZMYt_ZdkUc07otQ0DfH45JAidLplewdYjbP0JW4-wR1fxx_Vzxf_7Hxrghg0 |
CitedBy_id | crossref_primary_10_1016_j_ijid_2024_107001 crossref_primary_10_1515_ijb_2018_0008 crossref_primary_10_1017_S0950268821001801 crossref_primary_10_1002_sim_8339 crossref_primary_10_1111_gean_12215 crossref_primary_10_1080_13102818_2022_2151378 crossref_primary_10_1016_j_spasta_2022_100712 crossref_primary_10_1016_j_spasta_2023_100796 crossref_primary_10_2215_CJN_13591215 crossref_primary_10_1007_s41324_019_00279_9 crossref_primary_10_1016_j_prevetmed_2019_104766 crossref_primary_10_1021_acs_est_3c10797 crossref_primary_10_1186_s12942_023_00355_2 crossref_primary_10_1016_j_spasta_2021_100548 crossref_primary_10_1136_bmjopen_2015_008617 crossref_primary_10_3168_jds_2021_21386 crossref_primary_10_1016_j_healthplace_2024_103409 crossref_primary_10_1186_s12889_022_13089_w crossref_primary_10_1111_2041_210X_12224 crossref_primary_10_1007_s11222_022_10188_x crossref_primary_10_3389_fepid_2022_871232 crossref_primary_10_1177_23780231221127541 crossref_primary_10_1177_0272989X221123569 crossref_primary_10_3389_fgene_2021_642991 crossref_primary_10_1214_18_AOAS1205 crossref_primary_10_1016_j_spasta_2017_04_003 crossref_primary_10_1016_j_spasta_2014_12_001 crossref_primary_10_1093_humrep_deaa378 crossref_primary_10_3390_ijgi10030180 crossref_primary_10_1111_1365_2745_13858 crossref_primary_10_1080_13416979_2018_1490520 crossref_primary_10_1080_13416979_2019_1678708 crossref_primary_10_1016_j_envint_2025_109351 crossref_primary_10_1016_j_sste_2023_100582 crossref_primary_10_1080_00031305_2019_1595144 crossref_primary_10_3390_ijerph20010341 crossref_primary_10_1109_TSTE_2017_2768824 crossref_primary_10_1186_s12879_021_06589_4 crossref_primary_10_3390_ijerph182413393 crossref_primary_10_1016_j_spasta_2017_01_002 crossref_primary_10_1016_j_watres_2023_120307 crossref_primary_10_1215_00703370_10210688 crossref_primary_10_1007_s10940_020_09454_w crossref_primary_10_3390_math9030282 crossref_primary_10_1016_j_envint_2023_107785 crossref_primary_10_1093_aje_kwae093 crossref_primary_10_1016_j_sste_2022_100477 crossref_primary_10_1186_s12916_020_01702_x crossref_primary_10_1530_EJE_22_0355 crossref_primary_10_1002_wics_1540 crossref_primary_10_1016_j_sste_2019_03_003 crossref_primary_10_1038_s41586_023_05725_1 crossref_primary_10_1016_j_diabet_2025_101615 crossref_primary_10_1016_j_canep_2024_102738 crossref_primary_10_14710_medstat_16_2_148_159 crossref_primary_10_1088_2752_5309_ad67fb crossref_primary_10_1093_imaman_dpaa028 crossref_primary_10_1093_jrsssa_qnad034 crossref_primary_10_3390_su11020476 crossref_primary_10_3390_ijerph14060627 crossref_primary_10_1007_s40980_022_00110_4 crossref_primary_10_1186_s40163_024_00205_x crossref_primary_10_1093_jee_toae171 crossref_primary_10_1016_j_spasta_2021_100522 crossref_primary_10_1177_0969141320984199 crossref_primary_10_1007_s13171_021_00246_3 crossref_primary_10_1088_1742_6596_1752_1_012047 crossref_primary_10_1016_j_jaci_2021_07_044 crossref_primary_10_1111_jop_13045 crossref_primary_10_3390_su10114066 crossref_primary_10_1111_jbi_14365 crossref_primary_10_1007_s10687_020_00384_1 crossref_primary_10_1111_mms_12492 crossref_primary_10_1002_env_2643 crossref_primary_10_1016_j_cmpb_2019_02_014 crossref_primary_10_1093_aje_kwac059 crossref_primary_10_1016_j_jaci_2024_05_024 crossref_primary_10_21105_joss_04716 crossref_primary_10_1016_j_spasta_2022_100593 crossref_primary_10_3390_ijerph16162927 crossref_primary_10_1007_s10453_024_09815_z crossref_primary_10_1111_bmsp_12230 crossref_primary_10_2354_psj_36_014 crossref_primary_10_1289_EHP2663 crossref_primary_10_1016_j_jnc_2022_126212 crossref_primary_10_1016_j_spasta_2020_100475 crossref_primary_10_1001_jamanetworkopen_2023_48914 crossref_primary_10_1002_sim_8817 crossref_primary_10_3825_ece_22_00021 crossref_primary_10_1016_j_canep_2021_102033 crossref_primary_10_1126_sciadv_ade8888 crossref_primary_10_1007_s13253_022_00508_z crossref_primary_10_1016_j_sste_2022_100494 crossref_primary_10_3389_fneur_2023_1209446 crossref_primary_10_1214_18_BA1123 crossref_primary_10_1016_j_jth_2024_101805 crossref_primary_10_1177_0962280216660407 crossref_primary_10_1016_j_socscimed_2020_113231 crossref_primary_10_1002_ecs2_1824 crossref_primary_10_1029_2022GH000758 crossref_primary_10_1186_s12942_019_0185_9 crossref_primary_10_29233_sdufeffd_983296 crossref_primary_10_1016_j_agrformet_2021_108411 crossref_primary_10_1016_j_spasta_2021_100502 crossref_primary_10_1080_10618600_2024_2365728 crossref_primary_10_1111_saje_12279 crossref_primary_10_1016_j_amepre_2022_08_022 crossref_primary_10_1016_j_sste_2018_01_003 crossref_primary_10_1016_j_onehlt_2019_100092 crossref_primary_10_1016_j_onehlt_2022_100411 crossref_primary_10_1016_j_ssmph_2021_100786 crossref_primary_10_3389_fvets_2023_1278852 crossref_primary_10_1029_2023GH000816 crossref_primary_10_1016_j_canep_2020_101849 crossref_primary_10_1016_j_spasta_2019_01_003 crossref_primary_10_3390_su11236643 crossref_primary_10_1080_23249935_2018_1564801 crossref_primary_10_1016_j_spasta_2022_100691 crossref_primary_10_1016_j_sste_2019_100302 crossref_primary_10_7717_peerj_533 crossref_primary_10_1080_00949655_2022_2102633 crossref_primary_10_1016_j_sste_2016_04_001 crossref_primary_10_4081_gh_2024_1321 crossref_primary_10_1002_sta4_61 crossref_primary_10_1016_j_sste_2019_100306 crossref_primary_10_1002_ece3_5424 crossref_primary_10_1007_s10552_022_01614_6 crossref_primary_10_1186_s41256_024_00361_2 crossref_primary_10_1016_j_sste_2020_100353 crossref_primary_10_1080_13658816_2021_1931873 crossref_primary_10_1007_s00180_017_0752_0 crossref_primary_10_1186_s40748_022_00143_z crossref_primary_10_2147_OAEM_S405397 crossref_primary_10_1016_j_aap_2020_105924 crossref_primary_10_3390_math9050524 crossref_primary_10_1073_pnas_2100685118 crossref_primary_10_1175_JAMC_D_15_0329_1 crossref_primary_10_1016_j_healthplace_2014_05_002 crossref_primary_10_1080_09603123_2019_1593328 crossref_primary_10_1016_j_aap_2019_105270 crossref_primary_10_1111_rssc_12469 crossref_primary_10_1016_j_ijforecast_2022_05_003 crossref_primary_10_3390_econometrics5020024 crossref_primary_10_2105_AJPH_2021_306558 crossref_primary_10_1002_psp_2689 crossref_primary_10_1038_s41598_022_11017_x crossref_primary_10_1093_jrsssa_qnad113 crossref_primary_10_1214_18_BA1107 crossref_primary_10_1080_24709360_2018_1469809 crossref_primary_10_1093_ofid_ofab534 crossref_primary_10_1186_s12889_022_14541_7 crossref_primary_10_1289_EHP12276 crossref_primary_10_1016_j_spasta_2016_05_003 crossref_primary_10_1016_j_sste_2022_100540 crossref_primary_10_30897_ijegeo_936152 crossref_primary_10_1289_EHP14574 crossref_primary_10_1016_j_ijheh_2025_114527 crossref_primary_10_1016_j_ssci_2022_105722 crossref_primary_10_3201_eid2412_171357 crossref_primary_10_1016_j_sste_2017_01_001 crossref_primary_10_3390_ijerph19095483 crossref_primary_10_1016_j_sste_2020_100340 crossref_primary_10_1016_j_csda_2021_107264 crossref_primary_10_3389_fvets_2020_00339 crossref_primary_10_1016_j_ebiom_2019_09_026 crossref_primary_10_3390_tropicalmed7110337 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.18637/jss.v055.i13 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1548-7660 |
EndPage | 24 |
ExternalDocumentID | oai_doaj_org_article_80db29ed593b482dba6a52cac7b359dc 10_18637_jss_v055_i13 |
GroupedDBID | 29L 2WC 5GY 5VS AAFWJ AAKPC AAYXX ACGFO ACIPV ADBBV AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV C1A CITATION E3Z EBS EJD F5P GROUPED_DOAJ GX1 IPNFZ KQ8 M~E OK1 OVT P2P RIG RNS TR2 XSB |
ID | FETCH-LOGICAL-c303t-5f3ceeff46dbbdd27ef90547c88de8cb4b748416a29809834fd8bf6eb2379ec83 |
IEDL.DBID | DOA |
ISSN | 1548-7660 |
IngestDate | Wed Aug 27 01:16:25 EDT 2025 Tue Jul 01 03:06:27 EDT 2025 Thu Apr 24 23:00:13 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c303t-5f3ceeff46dbbdd27ef90547c88de8cb4b748416a29809834fd8bf6eb2379ec83 |
OpenAccessLink | https://doaj.org/article/80db29ed593b482dba6a52cac7b359dc |
PageCount | 24 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_80db29ed593b482dba6a52cac7b359dc crossref_citationtrail_10_18637_jss_v055_i13 crossref_primary_10_18637_jss_v055_i13 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-11-01 |
PublicationDateYYYYMMDD | 2013-11-01 |
PublicationDate_xml | – month: 11 year: 2013 text: 2013-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Journal of statistical software |
PublicationYear | 2013 |
Publisher | Foundation for Open Access Statistics |
Publisher_xml | – name: Foundation for Open Access Statistics |
SSID | ssj0020495 |
Score | 2.4985719 |
Snippet | Conditional autoregressive models are commonly used to represent spatial autocorrelation in data relating to a set of non-overlapping areal units, which arise... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 1 |
Title | CARBayes : An R Package for Bayesian Spatial Modeling with Conditional Autoregressive Priors |
URI | https://doaj.org/article/80db29ed593b482dba6a52cac7b359dc |
Volume | 55 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF7Ekx7EJ9YXexBPxjbZ3WTXW1vUIlRKUSh4CPuEqqTSVMF_70yalnoQL15yWIYlfLPMzLfJfEPIufeQ1pmzEZCLJOKWhUgJ6YG1ZqbFlEmVxEbh_kPae-L3IzFaGfWF_4TN5YHnwDVly5lEeScUM1wmzuhUi8RqmxkmlLMYfSHnLchUTbWg7hW1oqZMWdZ8Kcurz5YQV-OY_chAK0L9VUa53SZbdSlI2_NX2CFrvtglm_2ljmq5R5677WFHf_nymrYLOqQDbV8hAFCoNGm1Ds6lOFUYThHFsWbYXE7xbpV2J_gxurroo20UKvAVs4bgRgfT8WRa7pOn25vHbi-qxyFEFvLMLBKBQUYLgafOGOeSzAcFBVdmpXReWsMN6oLGqU6UbCnJeHDShBSoM8uUt5IdkPViUvhDQjOurY9TGYLWnHthDHOBGRu8jGPHfYNcLiDKba0VjiMr3nLkDIhoDojmiGgOiDbIxdL8fS6S8ZthB_FeGqG2dbUAHs9rj-d_efzoPzY5JhsJDraougpPyPps-uFPobyYmbPqJMHzbhR_A1v203M |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CARBayes%3A+An+R+Package+for+Bayesian+Spatial+Modeling+with+Conditional+Autoregressive+Priors&rft.jtitle=Journal+of+statistical+software&rft.au=Duncan+Lee&rft.date=2013-11-01&rft.pub=Foundation+for+Open+Access+Statistics&rft.eissn=1548-7660&rft.volume=55&rft.issue=1&rft.spage=1&rft.epage=24&rft_id=info:doi/10.18637%2Fjss.v055.i13&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_80db29ed593b482dba6a52cac7b359dc |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1548-7660&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1548-7660&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1548-7660&client=summon |