Classical and contemporary fractional operators for modeling diarrhea transmission dynamics under real statistical data
This paper is all about the development and analysis of an epidemiological model related to the disease of diarrhea that occurred in Ghana during 2008–2015. Using real statistical data, three new fractional-order mathematical models have been developed on the basis of having information about existi...
Saved in:
Published in | Physica A Vol. 535; p. 122496 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper is all about the development and analysis of an epidemiological model related to the disease of diarrhea that occurred in Ghana during 2008–2015. Using real statistical data, three new fractional-order mathematical models have been developed on the basis of having information about existing classical model . The new models are formulated with Caputo, Caputo–Fabrizio–Caputo and the Atangana–Baleanu–Caputo fractional-order approaches while taking care of the dimensional analysis during the process of fractionalization. Besides, existence and uniqueness for the solutions of the fractional-order models under each case are proved with the help of fixed point theory whereas positivity and boundedness of models’ solution are also investigated. Steady-states (disease-free and endemic equilibria) points of the model and sensitivity of the basic reproductive number (R0) are also explored. While many of the model’s parameters are fixed, the transmission rate (β) of the disease has been estimated and so is the case with orders of the fractional models. Using minimum distance approach, it has been found that the diarrhea model under investigation estimates the real statistical data well enough when considered with the Atangana–Baleanu–Caputo fractional order operator which has non-local and non-singular kernel. Thus, this fractional-order operator of Atangana–Baleanu in the present research study for the diarrhea model outperforms those having index law, power law and stretched exponential kernels.
•Three new fractional-order epidemiological models under Caputo, CFC and ABC are proposed.•Real statistical data is used to support the analysis.•Existence and uniqueness for the solutions of each model have been thoroughly investigated.•Stability, sensitivity, positivity and bounded of the models’solution are discussed.•Minimum distance approach is employed to show the model with better performance. |
---|---|
AbstractList | This paper is all about the development and analysis of an epidemiological model related to the disease of diarrhea that occurred in Ghana during 2008–2015. Using real statistical data, three new fractional-order mathematical models have been developed on the basis of having information about existing classical model . The new models are formulated with Caputo, Caputo–Fabrizio–Caputo and the Atangana–Baleanu–Caputo fractional-order approaches while taking care of the dimensional analysis during the process of fractionalization. Besides, existence and uniqueness for the solutions of the fractional-order models under each case are proved with the help of fixed point theory whereas positivity and boundedness of models’ solution are also investigated. Steady-states (disease-free and endemic equilibria) points of the model and sensitivity of the basic reproductive number (R0) are also explored. While many of the model’s parameters are fixed, the transmission rate (β) of the disease has been estimated and so is the case with orders of the fractional models. Using minimum distance approach, it has been found that the diarrhea model under investigation estimates the real statistical data well enough when considered with the Atangana–Baleanu–Caputo fractional order operator which has non-local and non-singular kernel. Thus, this fractional-order operator of Atangana–Baleanu in the present research study for the diarrhea model outperforms those having index law, power law and stretched exponential kernels.
•Three new fractional-order epidemiological models under Caputo, CFC and ABC are proposed.•Real statistical data is used to support the analysis.•Existence and uniqueness for the solutions of each model have been thoroughly investigated.•Stability, sensitivity, positivity and bounded of the models’solution are discussed.•Minimum distance approach is employed to show the model with better performance. |
ArticleNumber | 122496 |
Author | Qureshi, Sania Bonyah, Ebenezer Shaikh, Asif Ali |
Author_xml | – sequence: 1 givenname: Sania surname: Qureshi fullname: Qureshi, Sania email: sania.qureshi@faculty.muet.edu.pk organization: Department of Basic Sciences and Related Studies, Mehran University of Engineering and Technology, 76062, Jamshoro, Pakistan – sequence: 2 givenname: Ebenezer surname: Bonyah fullname: Bonyah, Ebenezer email: ebbonya@gmail.com organization: Department of Mathematics Education, University of Education Winneba-(Kumasi Campus), Kumasi 1277, Ghana – sequence: 3 givenname: Asif Ali surname: Shaikh fullname: Shaikh, Asif Ali email: asif.shaikh@faculty.muet.edu.pk organization: Department of Basic Sciences and Related Studies, Mehran University of Engineering and Technology, 76062, Jamshoro, Pakistan |
BookMark | eNqFkLtOAzEQRS0UJJLAF9D4B3bxY58FBYp4SZFooLZmbS9xtGtHYwPK37NJqCigmmJ07tU9CzLzwVtCrjnLOePVzTbfbfYRcsF4m3MhirY6I3Pe1DITnLczMmeybrJC1vyCLGLcMsZ4LcWcfK0GiNFpGCh4Q3XwyY67gIB72iPo5IKffmFnEVLASPuAdAzGDs6_U-MAcWOBJgQfRzclBU_N3sPodKQf3likaKeAmCC5mI5FBhJckvMehmivfu6SvD3cv66esvXL4_Pqbp1pyWTKyqpptKig0m3FO8FYr5umYkKUvek6XciuaHhZikJCy42sZdEzqEvZl5XujNFySeQpV2OIEW2vdujGaZ3iTB3cqa06ulMHd-rkbqLaX5R2hwGTHQQ3_MPenlg7zfp0FlXUznptjUOrkzLB_cl_Ay6SkVA |
CitedBy_id | crossref_primary_10_1016_j_health_2024_100302 crossref_primary_10_1016_j_rico_2023_100277 crossref_primary_10_1016_j_rico_2024_100431 crossref_primary_10_1016_j_aej_2021_07_010 crossref_primary_10_1140_epjp_s13360_020_00819_5 crossref_primary_10_1140_epjp_s13360_020_00133_0 crossref_primary_10_1038_s41598_020_79405_9 crossref_primary_10_1142_S0218348X23400157 crossref_primary_10_1016_j_rinp_2020_103588 crossref_primary_10_1016_j_aej_2020_09_057 crossref_primary_10_1002_mma_6432 crossref_primary_10_3934_mbe_2023287 crossref_primary_10_1016_j_chaos_2020_109744 crossref_primary_10_1186_s13662_021_03587_3 crossref_primary_10_1016_j_aej_2023_05_071 crossref_primary_10_1016_j_apnum_2022_12_004 crossref_primary_10_1063_5_0188703 crossref_primary_10_1016_j_rinp_2022_105843 crossref_primary_10_3390_fractalfract7030234 crossref_primary_10_1016_j_chaos_2022_111821 crossref_primary_10_1016_j_physa_2019_123942 crossref_primary_10_1080_17455030_2022_2120217 crossref_primary_10_1155_2022_3846904 crossref_primary_10_1186_s13662_020_02890_9 crossref_primary_10_3934_dcdss_2021057 crossref_primary_10_1016_j_heliyon_2024_e40457 crossref_primary_10_1155_2022_6202049 crossref_primary_10_3390_pr11092518 crossref_primary_10_1016_j_chaos_2020_109878 crossref_primary_10_1088_1402_4896_ac13e0 crossref_primary_10_3390_fractalfract6070346 crossref_primary_10_1016_j_rinp_2020_103716 crossref_primary_10_1063_1_5117285 crossref_primary_10_1088_1402_4896_acb591 crossref_primary_10_1016_j_chaos_2019_109552 |
Cites_doi | 10.2298/TSCI160111018A 10.1007/s11071-012-0475-2 10.1016/j.chaos.2018.09.001 10.1140/epjp/i2017-11293-3 10.1016/j.physa.2009.07.024 10.1016/j.cam.2018.07.023 10.1002/num.22236 10.1016/j.camwa.2016.11.032 10.1515/phys-2016-0010 10.1016/j.jcp.2014.09.034 10.1016/j.jksus.2012.01.003 10.1016/j.chaos.2017.03.022 10.1007/s00521-014-1586-0 10.1002/cta.2348 10.1007/s00521-016-2484-4 10.1016/j.cam.2015.12.005 10.1016/j.chaos.2018.06.009 10.1108/HFF-07-2016-0278 10.1002/mma.5530 10.1007/s11075-015-0081-8 10.1016/j.chaos.2016.02.012 10.1016/0898-1221(96)00129-0 10.1063/1.4868847 10.1002/num.22209 10.1016/j.chaos.2018.09.002 10.1016/j.physa.2017.02.016 10.1016/j.apm.2016.05.041 10.1016/0378-4371(94)90064-7 10.3390/e17096289 10.1016/j.chaos.2019.03.020 10.1016/j.jcp.2014.08.004 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. |
Copyright_xml | – notice: 2019 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.physa.2019.122496 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1873-2119 |
ExternalDocumentID | 10_1016_j_physa_2019_122496 S0378437119314311 |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 7-5 71M 8P~ 9JN 9JO AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAPFB AAXUO ABAOU ABMAC ABNEU ABYKQ ACAZW ACDAQ ACFVG ACGFS ACNCT ACRLP ADBBV ADEZE ADFHU ADGUI AEBSH AEKER AEYQN AFFNX AFKWA AFTJW AGHFR AGTHC AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIIAU AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR AXJTR AXLSJ BKOJK BLXMC EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IXIXF J1W K-O KOM M38 M41 MHUIS MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSB SSF SSQ SSW SSZ T5K TN5 TWZ WH7 XPP YNT ZMT ~02 ~G- 29O 5VS 6TJ AAFFL AAQFI AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABJNI ABWVN ABXDB ACNNM ACROA ACRPL ADMUD ADNMO ADVLN AEIPS AFJKZ AFODL AFXIZ AGCQF AGQPQ AGRNS AIIUN AJWLA ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BEHZQ BEZPJ BGSCR BNPGV BNTGB BPUDD BULVW BZJEE CITATION FEDTE FGOYB HMV HVGLF HZ~ MVM NDZJH R2- SEW SPG SSH VOH WUQ XJT XOL YYP ZY4 |
ID | FETCH-LOGICAL-c303t-5688c26a6c961b200fc8860225fdbbc43b48155243a91d3734f0a753f56cbddc3 |
IEDL.DBID | .~1 |
ISSN | 0378-4371 |
IngestDate | Tue Jul 01 01:32:15 EDT 2025 Thu Apr 24 23:10:46 EDT 2025 Fri Feb 23 02:47:17 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Numerical simulations Index law Power law Epidemiology Caputo Boundedness |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c303t-5688c26a6c961b200fc8860225fdbbc43b48155243a91d3734f0a753f56cbddc3 |
ParticipantIDs | crossref_primary_10_1016_j_physa_2019_122496 crossref_citationtrail_10_1016_j_physa_2019_122496 elsevier_sciencedirect_doi_10_1016_j_physa_2019_122496 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-12-01 2019-12-00 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Physica A |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Sania, Yusuf (b6) 2019; 122 Gómez-Aguilar, Atangana (b31) 2017; 132 Arqub, Maayah (b20) 2018; 29 Jajarmi, Baleanu (b49) 2018; 113 Yépez-Martínez, Gómez-Aguilar (b35) 2019; 346 Higinio (b46) 2016; 72 Abu Arqub, AlSmadi (b18) 2018; 34 Abdon (b17) 2014; 25 Xia, Chen, Chen (b43) 1996; 32 Jagdev (b16) 2018; 316 Cuahutenango-Barro, Taneco-Hernández, Gómez-Aguilar (b36) 2018; 115 José (b27) 2015; 17 Diarrhoeal disease (2017, May 2). Retrived from El-Ajou, Arqub, Momani (b28) 2015; 293 Igor (b38) 1998 Ralf, Glöckle, Nonnenmacher (b10) 1994; 211 Atangana, Baleanu (b40) 2016; 20 Abdon, Alabaraoye (b19) 2013; 1 KashifAli, Yıldırım (b24) 2019 . Caputo, Fabrizio (b39) 2015; 1 Erwina, Aldila, Soewono (b2) 2014; 1589 Kai (b5) 2013; 71 Abu Arqub, Shawagfeh (b30) 2019 Baleanu, Jajarmi, Hajipour (b50) 2018 Abdon, Baleanu, Alsaedi (b22) 2016; 14 Abdullahi (b8) 2018; 28 Atangana, Gómez-Aguilar (b33) 2017; 102 Arqub (b23) 2017; 73 Badr, Atangana, Koca (b12) 2016; 8 Gómez-Aguilar, Yépez-Martínez, Escobar-Jiménez, Astorga-Zaragoza, Reyes-Reyes (b32) 2016; 40 Abdon, Koca (b14) 2016; 89 Jesús, Ramos, Clavero (b47) 2017; 318 Bonyah, Afutu, Khan, Nyabadza (b44) 2018; 33 Li, Zeng (b48) 2015 Arqub, El-Ajou (b26) 2013; 25 Gómez Aguilar, Atangana, Morales Delgado (b34) 2017; 45 Diethelm (b41) 2010 Sania (b7) 2019; 29 Sania, Ramos (b45) 2018; 19 Abdon, Gómez-Aguilar (b13) 2017; 476 Kashif Ali, Memon, Memon (b29) 2018 HongGuang, Chen, Chen (b15) 2009; 388 Saif, Khan, Farooq (b9) 2018; 116 Abu Arqub (b21) 2018; 34 Yépez-Martínez, Gómez-Aguilar, Sosa, Reyes, Torres-Jiménez (b37) 2016; 62 Bonyah, Afutu, Khan, Nyabadza (b3) 2018; 33 Shakoor, Rodrigues, Torres (b4) 2011; 1389 Arqub, El-Ajou, Momani (b11) 2015; 293 Abu Arqub (b25) 2018; 28 Zeidler (b42) 1986 Sania (10.1016/j.physa.2019.122496_b7) 2019; 29 Jajarmi (10.1016/j.physa.2019.122496_b49) 2018; 113 Kai (10.1016/j.physa.2019.122496_b5) 2013; 71 Zeidler (10.1016/j.physa.2019.122496_b42) 1986 Gómez-Aguilar (10.1016/j.physa.2019.122496_b31) 2017; 132 Arqub (10.1016/j.physa.2019.122496_b20) 2018; 29 Abdon (10.1016/j.physa.2019.122496_b22) 2016; 14 KashifAli (10.1016/j.physa.2019.122496_b24) 2019 Abdon (10.1016/j.physa.2019.122496_b19) 2013; 1 Arqub (10.1016/j.physa.2019.122496_b11) 2015; 293 Cuahutenango-Barro (10.1016/j.physa.2019.122496_b36) 2018; 115 Abu Arqub (10.1016/j.physa.2019.122496_b25) 2018; 28 Jesús (10.1016/j.physa.2019.122496_b47) 2017; 318 Abu Arqub (10.1016/j.physa.2019.122496_b18) 2018; 34 Abu Arqub (10.1016/j.physa.2019.122496_b30) 2019 Igor (10.1016/j.physa.2019.122496_b38) 1998 El-Ajou (10.1016/j.physa.2019.122496_b28) 2015; 293 Li (10.1016/j.physa.2019.122496_b48) 2015 Atangana (10.1016/j.physa.2019.122496_b33) 2017; 102 Atangana (10.1016/j.physa.2019.122496_b40) 2016; 20 Shakoor (10.1016/j.physa.2019.122496_b4) 2011; 1389 Xia (10.1016/j.physa.2019.122496_b43) 1996; 32 Saif (10.1016/j.physa.2019.122496_b9) 2018; 116 Yépez-Martínez (10.1016/j.physa.2019.122496_b37) 2016; 62 Higinio (10.1016/j.physa.2019.122496_b46) 2016; 72 Abu Arqub (10.1016/j.physa.2019.122496_b21) 2018; 34 Badr (10.1016/j.physa.2019.122496_b12) 2016; 8 Abdon (10.1016/j.physa.2019.122496_b13) 2017; 476 José (10.1016/j.physa.2019.122496_b27) 2015; 17 Yépez-Martínez (10.1016/j.physa.2019.122496_b35) 2019; 346 Diethelm (10.1016/j.physa.2019.122496_b41) 2010 Gómez-Aguilar (10.1016/j.physa.2019.122496_b32) 2016; 40 Bonyah (10.1016/j.physa.2019.122496_b44) 2018; 33 Gómez Aguilar (10.1016/j.physa.2019.122496_b34) 2017; 45 Abdullahi (10.1016/j.physa.2019.122496_b8) 2018; 28 Arqub (10.1016/j.physa.2019.122496_b23) 2017; 73 Kashif Ali (10.1016/j.physa.2019.122496_b29) 2018 Sania (10.1016/j.physa.2019.122496_b6) 2019; 122 Bonyah (10.1016/j.physa.2019.122496_b3) 2018; 33 10.1016/j.physa.2019.122496_b1 Ralf (10.1016/j.physa.2019.122496_b10) 1994; 211 Baleanu (10.1016/j.physa.2019.122496_b50) 2018 Abdon (10.1016/j.physa.2019.122496_b14) 2016; 89 HongGuang (10.1016/j.physa.2019.122496_b15) 2009; 388 Caputo (10.1016/j.physa.2019.122496_b39) 2015; 1 Jagdev (10.1016/j.physa.2019.122496_b16) 2018; 316 Erwina (10.1016/j.physa.2019.122496_b2) 2014; 1589 Abdon (10.1016/j.physa.2019.122496_b17) 2014; 25 Arqub (10.1016/j.physa.2019.122496_b26) 2013; 25 Sania (10.1016/j.physa.2019.122496_b45) 2018; 19 |
References_xml | – year: 2010 ident: b41 article-title: The Analysis of Fractional Differential Equation – volume: 73 start-page: 1243 year: 2017 end-page: 1261 ident: b23 article-title: Fitted reproducing kernel Hilbert space method for the solutions of some certain classes of time-fractional partial differential equations subject to initial and Neumann boundary conditions publication-title: Comput. Math. Appl. – volume: 33 year: 2018 ident: b3 article-title: Mathematical model for diarrhea infection publication-title: Int. J. Ecol. Dev. – volume: 388 start-page: 4586 year: 2009 end-page: 4592 ident: b15 article-title: Variable-order fractional differential operators in anomalous diffusion modeling publication-title: Physica A – volume: 29 start-page: 1465 year: 2018 end-page: 1479 ident: b20 article-title: Solutions of Bagley–Torvik and Painlevé equations of fractional order using iterative reproducing kernel algorithm with error estimates publication-title: Neural Comput. Appl. – volume: 29 year: 2019 ident: b7 article-title: Fractional modeling of blood ethanol concentration system with real data application publication-title: Chaos – year: 2015 ident: b48 article-title: Numerical Methods for Fractional Calculus – start-page: 1 year: 2019 end-page: 8 ident: b24 article-title: Fractional treatment of vibration equation through modern analogy of fractional differentiations using integral transforms publication-title: Iran. J. Sci. Technol. Trans. A Sci. – volume: 122 start-page: 111 year: 2019 end-page: 118 ident: b6 article-title: Modeling chickenpox disease with fractional derivatives: From caputo to atangana-baleanu publication-title: Chaos Solitons Fractals – volume: 62 start-page: 310 year: 2016 end-page: 316 ident: b37 article-title: The Feng’s first integral method applied to the nonlinear mKdV space–time fractional partial differential equation publication-title: Rev. Mexicana Fs. – volume: 28 year: 2018 ident: b8 article-title: Two-strain epidemic model involving fractional derivative with Mittag-Leffler kernel publication-title: Chaos – volume: 28 start-page: 828 year: 2018 end-page: 856 ident: b25 article-title: Numerical solutions for the Robin time-fractional partial differential equations of heat and fluid flows based on the reproducing kernel algorithm publication-title: Internat. J. Numer. Methods Heat Fluid Flow – volume: 211 start-page: 13 year: 1994 end-page: 24 ident: b10 article-title: Fractional model equation for anomalous diffusion publication-title: Physica A – volume: 34 start-page: 1759 year: 2018 end-page: 1780 ident: b21 article-title: Solutions of time fractional Tricomi and Keldysh equations of Dirichlet functions types in Hilbert space publication-title: Numer. Methods Partial Differential Equations – volume: 25 start-page: 73 year: 2013 end-page: 81 ident: b26 article-title: Solution of the fractional epidemic model by homotopy analysis method publication-title: J. King Saud Univ.-Sci. – volume: 1589 year: 2014 ident: b2 article-title: Optimal control of diarrhea transmission in a flood evacuation zone publication-title: AIP Conf. Proc. – volume: 32 start-page: 109 year: 1996 end-page: 116 ident: b43 article-title: Permanence and positive periodic solution for the single-species nonautonomous delay diffusive models publication-title: Comput. Math. Appl. – volume: 72 start-page: 1089 year: 2016 end-page: 1102 ident: b46 article-title: An optimized two-step hybrid block method for solving general second order initial-value problems publication-title: Numer. Algorithms – volume: 25 start-page: 1021 year: 2014 end-page: 1030 ident: b17 article-title: Convergence and stability analysis of a novel iteration method for fractional biological population equation publication-title: Neural Comput. Appl. – volume: 40 start-page: 9079 year: 2016 end-page: 9094 ident: b32 article-title: Analytical and numerical solutions of electrical circuits described by fractional derivatives publication-title: Appl. Math. Model. – reference: Diarrhoeal disease (2017, May 2). Retrived from – volume: 89 start-page: 447 year: 2016 end-page: 454 ident: b14 article-title: Chaos in a simple nonlinear system with Atangana–Baleanu derivatives with fractional order publication-title: Chaos Solitons Fractals – start-page: 1 year: 2018 end-page: 18 ident: b50 article-title: On the nonlinear dynamical systems within the generalized fractional derivatives with Mittag–Leffler kernel publication-title: Nonlinear Dynam. – volume: 1389 year: 2011 ident: b4 article-title: Fractional derivatives in dengue epidemics publication-title: AIP Conf. Proc. – volume: 45 start-page: 1514 year: 2017 end-page: 1533 ident: b34 article-title: Electrical circuits RC, LC, and RL described by Atangana–Baleanu fractional derivatives publication-title: Int. J. Circuit Theory Appl. – volume: 113 start-page: 221 year: 2018 end-page: 229 ident: b49 article-title: A new fractional analysis on the interaction of HIV with CD4+ T-cells publication-title: Chaos Solitons Fractals – volume: 115 start-page: 283 year: 2018 end-page: 299 ident: b36 article-title: On the solutions of fractional-time wave equation with memory effect involving operators with regular kernel publication-title: Chaos Solitons Fractals – volume: 14 start-page: 145 year: 2016 end-page: 149 ident: b22 article-title: Analysis of time-fractional Hunter-Saxton equation: a model of neumatic liquid crystal publication-title: Open Phys. – volume: 1 start-page: 94 year: 2013 ident: b19 article-title: Solving a system of fractional partial differential equations arising in the model of HIV infection of CD4+ cells and attractor one-dimensional Keller–Segel equations publication-title: Adv. Difference Equ. – volume: 71 start-page: 613 year: 2013 end-page: 619 ident: b5 article-title: A fractional calculus based model for the simulation of an outbreak of dengue fever publication-title: Nonlinear Dynam. – volume: 476 start-page: 1 year: 2017 end-page: 14 ident: b13 article-title: A new derivative with normal distribution kernel: Theory, methods and applications publication-title: Phys. A – year: 1986 ident: b42 article-title: Non-Linear Functional Analysis and its Application – start-page: 1 year: 2018 end-page: 11 ident: b29 article-title: Functionality of circuit via modern fractional differentiations publication-title: Analog Integr. Circuits Signal Process. – volume: 346 start-page: 247 year: 2019 end-page: 260 ident: b35 article-title: A new modified definition of Caputo–Fabrizio fractional-order derivative and their applications to the Multi Step Homotopy Analysis Method (MHAM) publication-title: J. Comput. Appl. Math. – year: 2019 ident: b30 article-title: Solving optimal control problems of fredholm constraint optimality via the reproducing kernel Hilbert space method with error estimates and convergence analysis publication-title: Math. Methods Appl. Sci. – volume: 293 start-page: 81 year: 2015 end-page: 95 ident: b28 article-title: Approximate analytical solution of the nonlinear fractional KdV–Burgers equation: a new iterative algorithm publication-title: J. Comput. Phys. – volume: 132 start-page: 13 year: 2017 ident: b31 article-title: New insight in fractional differentiation: power, exponential decay and Mittag-Leffler laws and applications publication-title: Eur. Phys. J. Plus – volume: 33 start-page: 45 year: 2018 end-page: 62 ident: b44 article-title: Mathematical model for diarrhea infection publication-title: Int. J. Ecol. Dev. – volume: 102 start-page: 285 year: 2017 end-page: 294 ident: b33 article-title: Hyperchaotic behaviour obtained via a nonlocal operator with exponential decay and Mittag-Leffler laws publication-title: Chaos Solitons Fractals – volume: 20 start-page: 763 year: 2016 end-page: 769 ident: b40 article-title: New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model publication-title: Therm. Sci. – reference: . – volume: 318 start-page: 599 year: 2017 end-page: 603 ident: b47 article-title: A first approach in solving initial-value problems in ODEs by elliptic fitting methods publication-title: J. Comput. Appl. Math. – volume: 293 start-page: 385 year: 2015 end-page: 399 ident: b11 article-title: Constructing and predicting solitary pattern solutions for nonlinear time-fractional dispersive partial differential equations publication-title: J. Comput. Phys. – volume: 8 year: 2016 ident: b12 article-title: A new nonlinear triadic model of predator–prey based on derivative with non-local and non-singular kernel publication-title: Adv. Mech. Eng. – volume: 34 start-page: 1577 year: 2018 end-page: 1597 ident: b18 article-title: Numerical algorithm for solving time fractional partial integrodifferential equations subject to initial and Dirichlet boundary conditions publication-title: Numer. Methods Partial Differential Equations – volume: 1 start-page: 73 year: 2015 end-page: 85 ident: b39 article-title: A new definition of fractional derivative without singular kernel publication-title: Progr. Fract. Differential Appl. – volume: 116 start-page: 63 year: 2018 end-page: 71 ident: b9 article-title: A fractional model for the dynamics of TB virus publication-title: Chaos Solitons Fractals – volume: 17 start-page: 6289 year: 2015 end-page: 6303 ident: b27 article-title: Modeling of a mass–spring-damper system by fractional derivatives with and without a singular kernel publication-title: Entropy – volume: 19 start-page: 741 year: 2018 end-page: 751 ident: b45 article-title: L-stable explicit nonlinear method with constant and variable step-size formulation for solving initial value problems publication-title: Int. J. Nonlinear Sci. Numer. Simul. – volume: 316 start-page: 504 year: 2018 end-page: 515 ident: b16 article-title: A fractional epidemiological model for computer viruses pertaining to a new fractional derivative publication-title: Appl. Math. Comput. – year: 1998 ident: b38 article-title: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and Some of their Applications. Vol. 198 – volume: 20 start-page: 763 issue: 2 year: 2016 ident: 10.1016/j.physa.2019.122496_b40 article-title: New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model publication-title: Therm. Sci. doi: 10.2298/TSCI160111018A – volume: 71 start-page: 613 issue: 4 year: 2013 ident: 10.1016/j.physa.2019.122496_b5 article-title: A fractional calculus based model for the simulation of an outbreak of dengue fever publication-title: Nonlinear Dynam. doi: 10.1007/s11071-012-0475-2 – volume: 116 start-page: 63 year: 2018 ident: 10.1016/j.physa.2019.122496_b9 article-title: A fractional model for the dynamics of TB virus publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2018.09.001 – start-page: 1 year: 2019 ident: 10.1016/j.physa.2019.122496_b24 article-title: Fractional treatment of vibration equation through modern analogy of fractional differentiations using integral transforms publication-title: Iran. J. Sci. Technol. Trans. A Sci. – volume: 132 start-page: 13 issue: 1 year: 2017 ident: 10.1016/j.physa.2019.122496_b31 article-title: New insight in fractional differentiation: power, exponential decay and Mittag-Leffler laws and applications publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/i2017-11293-3 – volume: 388 start-page: 4586 issue: 21 year: 2009 ident: 10.1016/j.physa.2019.122496_b15 article-title: Variable-order fractional differential operators in anomalous diffusion modeling publication-title: Physica A doi: 10.1016/j.physa.2009.07.024 – year: 1998 ident: 10.1016/j.physa.2019.122496_b38 – volume: 29 issue: 1 year: 2019 ident: 10.1016/j.physa.2019.122496_b7 article-title: Fractional modeling of blood ethanol concentration system with real data application publication-title: Chaos – volume: 346 start-page: 247 year: 2019 ident: 10.1016/j.physa.2019.122496_b35 article-title: A new modified definition of Caputo–Fabrizio fractional-order derivative and their applications to the Multi Step Homotopy Analysis Method (MHAM) publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2018.07.023 – year: 2015 ident: 10.1016/j.physa.2019.122496_b48 – volume: 34 start-page: 1759 issue: 5 year: 2018 ident: 10.1016/j.physa.2019.122496_b21 article-title: Solutions of time fractional Tricomi and Keldysh equations of Dirichlet functions types in Hilbert space publication-title: Numer. Methods Partial Differential Equations doi: 10.1002/num.22236 – volume: 73 start-page: 1243 issue: 6 year: 2017 ident: 10.1016/j.physa.2019.122496_b23 article-title: Fitted reproducing kernel Hilbert space method for the solutions of some certain classes of time-fractional partial differential equations subject to initial and Neumann boundary conditions publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2016.11.032 – volume: 14 start-page: 145 issue: 1 year: 2016 ident: 10.1016/j.physa.2019.122496_b22 article-title: Analysis of time-fractional Hunter-Saxton equation: a model of neumatic liquid crystal publication-title: Open Phys. doi: 10.1515/phys-2016-0010 – volume: 293 start-page: 385 year: 2015 ident: 10.1016/j.physa.2019.122496_b11 article-title: Constructing and predicting solitary pattern solutions for nonlinear time-fractional dispersive partial differential equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2014.09.034 – volume: 25 start-page: 73 issue: 1 year: 2013 ident: 10.1016/j.physa.2019.122496_b26 article-title: Solution of the fractional epidemic model by homotopy analysis method publication-title: J. King Saud Univ.-Sci. doi: 10.1016/j.jksus.2012.01.003 – start-page: 1 year: 2018 ident: 10.1016/j.physa.2019.122496_b29 article-title: Functionality of circuit via modern fractional differentiations publication-title: Analog Integr. Circuits Signal Process. – volume: 102 start-page: 285 year: 2017 ident: 10.1016/j.physa.2019.122496_b33 article-title: Hyperchaotic behaviour obtained via a nonlocal operator with exponential decay and Mittag-Leffler laws publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2017.03.022 – volume: 25 start-page: 1021 issue: 5 year: 2014 ident: 10.1016/j.physa.2019.122496_b17 article-title: Convergence and stability analysis of a novel iteration method for fractional biological population equation publication-title: Neural Comput. Appl. doi: 10.1007/s00521-014-1586-0 – volume: 33 issue: 4 year: 2018 ident: 10.1016/j.physa.2019.122496_b3 article-title: Mathematical model for diarrhea infection publication-title: Int. J. Ecol. Dev. – ident: 10.1016/j.physa.2019.122496_b1 – volume: 45 start-page: 1514 issue: 11 year: 2017 ident: 10.1016/j.physa.2019.122496_b34 article-title: Electrical circuits RC, LC, and RL described by Atangana–Baleanu fractional derivatives publication-title: Int. J. Circuit Theory Appl. doi: 10.1002/cta.2348 – volume: 29 start-page: 1465 issue: 5 year: 2018 ident: 10.1016/j.physa.2019.122496_b20 article-title: Solutions of Bagley–Torvik and Painlevé equations of fractional order using iterative reproducing kernel algorithm with error estimates publication-title: Neural Comput. Appl. doi: 10.1007/s00521-016-2484-4 – volume: 318 start-page: 599 year: 2017 ident: 10.1016/j.physa.2019.122496_b47 article-title: A first approach in solving initial-value problems in ODEs by elliptic fitting methods publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2015.12.005 – volume: 113 start-page: 221 year: 2018 ident: 10.1016/j.physa.2019.122496_b49 article-title: A new fractional analysis on the interaction of HIV with CD4+ T-cells publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2018.06.009 – volume: 28 start-page: 828 issue: 4 year: 2018 ident: 10.1016/j.physa.2019.122496_b25 article-title: Numerical solutions for the Robin time-fractional partial differential equations of heat and fluid flows based on the reproducing kernel algorithm publication-title: Internat. J. Numer. Methods Heat Fluid Flow doi: 10.1108/HFF-07-2016-0278 – year: 2019 ident: 10.1016/j.physa.2019.122496_b30 article-title: Solving optimal control problems of fredholm constraint optimality via the reproducing kernel Hilbert space method with error estimates and convergence analysis publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.5530 – year: 1986 ident: 10.1016/j.physa.2019.122496_b42 – volume: 72 start-page: 1089 issue: 4 year: 2016 ident: 10.1016/j.physa.2019.122496_b46 article-title: An optimized two-step hybrid block method for solving general second order initial-value problems publication-title: Numer. Algorithms doi: 10.1007/s11075-015-0081-8 – start-page: 1 year: 2018 ident: 10.1016/j.physa.2019.122496_b50 article-title: On the nonlinear dynamical systems within the generalized fractional derivatives with Mittag–Leffler kernel publication-title: Nonlinear Dynam. – year: 2010 ident: 10.1016/j.physa.2019.122496_b41 – volume: 89 start-page: 447 year: 2016 ident: 10.1016/j.physa.2019.122496_b14 article-title: Chaos in a simple nonlinear system with Atangana–Baleanu derivatives with fractional order publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2016.02.012 – volume: 32 start-page: 109 issue: 4 year: 1996 ident: 10.1016/j.physa.2019.122496_b43 article-title: Permanence and positive periodic solution for the single-species nonautonomous delay diffusive models publication-title: Comput. Math. Appl. doi: 10.1016/0898-1221(96)00129-0 – volume: 1 start-page: 73 issue: 2 year: 2015 ident: 10.1016/j.physa.2019.122496_b39 article-title: A new definition of fractional derivative without singular kernel publication-title: Progr. Fract. Differential Appl. – volume: 1589 issue: 1 year: 2014 ident: 10.1016/j.physa.2019.122496_b2 article-title: Optimal control of diarrhea transmission in a flood evacuation zone publication-title: AIP Conf. Proc. doi: 10.1063/1.4868847 – volume: 8 issue: 11 year: 2016 ident: 10.1016/j.physa.2019.122496_b12 article-title: A new nonlinear triadic model of predator–prey based on derivative with non-local and non-singular kernel publication-title: Adv. Mech. Eng. – volume: 34 start-page: 1577 issue: 5 year: 2018 ident: 10.1016/j.physa.2019.122496_b18 article-title: Numerical algorithm for solving time fractional partial integrodifferential equations subject to initial and Dirichlet boundary conditions publication-title: Numer. Methods Partial Differential Equations doi: 10.1002/num.22209 – volume: 1389 issue: 1 year: 2011 ident: 10.1016/j.physa.2019.122496_b4 article-title: Fractional derivatives in dengue epidemics publication-title: AIP Conf. Proc. – volume: 316 start-page: 504 year: 2018 ident: 10.1016/j.physa.2019.122496_b16 article-title: A fractional epidemiological model for computer viruses pertaining to a new fractional derivative publication-title: Appl. Math. Comput. – volume: 1 start-page: 94 issue: 2013 year: 2013 ident: 10.1016/j.physa.2019.122496_b19 article-title: Solving a system of fractional partial differential equations arising in the model of HIV infection of CD4+ cells and attractor one-dimensional Keller–Segel equations publication-title: Adv. Difference Equ. – volume: 115 start-page: 283 year: 2018 ident: 10.1016/j.physa.2019.122496_b36 article-title: On the solutions of fractional-time wave equation with memory effect involving operators with regular kernel publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2018.09.002 – volume: 33 start-page: 45 issue: 4 year: 2018 ident: 10.1016/j.physa.2019.122496_b44 article-title: Mathematical model for diarrhea infection publication-title: Int. J. Ecol. Dev. – volume: 19 start-page: 741 issue: 7–8 year: 2018 ident: 10.1016/j.physa.2019.122496_b45 article-title: L-stable explicit nonlinear method with constant and variable step-size formulation for solving initial value problems publication-title: Int. J. Nonlinear Sci. Numer. Simul. – volume: 476 start-page: 1 year: 2017 ident: 10.1016/j.physa.2019.122496_b13 article-title: A new derivative with normal distribution kernel: Theory, methods and applications publication-title: Phys. A doi: 10.1016/j.physa.2017.02.016 – volume: 40 start-page: 9079 issue: 21–22 year: 2016 ident: 10.1016/j.physa.2019.122496_b32 article-title: Analytical and numerical solutions of electrical circuits described by fractional derivatives publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2016.05.041 – volume: 211 start-page: 13 issue: 1 year: 1994 ident: 10.1016/j.physa.2019.122496_b10 article-title: Fractional model equation for anomalous diffusion publication-title: Physica A doi: 10.1016/0378-4371(94)90064-7 – volume: 17 start-page: 6289 issue: 9 year: 2015 ident: 10.1016/j.physa.2019.122496_b27 article-title: Modeling of a mass–spring-damper system by fractional derivatives with and without a singular kernel publication-title: Entropy doi: 10.3390/e17096289 – volume: 122 start-page: 111 year: 2019 ident: 10.1016/j.physa.2019.122496_b6 article-title: Modeling chickenpox disease with fractional derivatives: From caputo to atangana-baleanu publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2019.03.020 – volume: 28 issue: 12 year: 2018 ident: 10.1016/j.physa.2019.122496_b8 article-title: Two-strain epidemic model involving fractional derivative with Mittag-Leffler kernel publication-title: Chaos – volume: 293 start-page: 81 year: 2015 ident: 10.1016/j.physa.2019.122496_b28 article-title: Approximate analytical solution of the nonlinear fractional KdV–Burgers equation: a new iterative algorithm publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2014.08.004 – volume: 62 start-page: 310 issue: 4 year: 2016 ident: 10.1016/j.physa.2019.122496_b37 article-title: The Feng’s first integral method applied to the nonlinear mKdV space–time fractional partial differential equation publication-title: Rev. Mexicana Fs. |
SSID | ssj0001732 |
Score | 2.44482 |
Snippet | This paper is all about the development and analysis of an epidemiological model related to the disease of diarrhea that occurred in Ghana during 2008–2015.... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 122496 |
SubjectTerms | Boundedness Caputo Epidemiology Index law Numerical simulations Power law |
Title | Classical and contemporary fractional operators for modeling diarrhea transmission dynamics under real statistical data |
URI | https://dx.doi.org/10.1016/j.physa.2019.122496 |
Volume | 535 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KRfAiPrE-yh48mjbJbnaTYymWqtiLFnoL2UegUtqSRrz5253ZJFpBevCWxy6E2ck8dr_5hpDbxIrMaqM9qxT3eG4DL7PYQwOCeT_IpZRua-B5IsZT_jiLZi0ybGphEFZZ2_7KpjtrXT_p19Lsr-fz_ovPZMyZDCAEAafv6ns5l6jlvc8fmEcgWXWSANkSjm6YhxzGC3cPkHwoSHp4woTM_X95py2PMzoih3WoSAfV1xyTll2ekH0H2dSbU_Lh-lmijGm2NFRv0UzRvKjqFeDdam3dSfqGQnhKXeMb8FYU1KIowBDTEp0VLDbumlFT9affUCwtKygElAuKJUeOzRmuEU96Rqaj-9fh2KvbKHga_FPpRSKOdSgyoRMRKPgrch1j56kwyo1SmjOFhC1RyFmWBIZJxnM_gywmj4RWxmh2TtrL1dJeEKoyyIC48TPBDIdUUCVRHvpW-ngH1qJDwkZ8qa45xrHVxSJtwGRvqZN5ijJPK5l3yN33pHVFsbF7uGjWJf2lKSk4gV0TL_878Yoc4F0FYrkm7bJ4tzcQipSq63StS_YGD0_jyRdZreAA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RUFUuCCiINz6UW8PGseNsDhwQDy3PCyBxS_2KBIKwym6FuPRP9Q92xkkoSIgDErckjq1kPJqH_Xk-gB-5V9pbZyNvjIxk6XmkPXFoYDAf8zLLsrA0cHauBlfy-Dq9noC_3VkYglW2tr-x6cFat096rTR7w5ub3kUssr4UGccQBJ0-5y2y8sQ_PWLeNto52sdJ3kqSw4PLvUHUUgtEFm32OEpVv28TpZXNFTeoKaXtExtTkpbOGCuFoSImaSKFzrkTmZBlrDGyL1NljXNW4LhfYEqiuSDahO0__3ElPBPN1gWmZ_R5XamjACqj5QqqdsTzbdrSIqqAt9zhCxd3OAszbWzKdpvfn4MJX83D14ARtaPv8BgINGlSma4csy_qWrGybg5IYNvD0Iet-xHDeJgFph10jwz1sK7R8rMxeUfULlqmY-6p0vc4OqOzbDXDCPaO0RmnUD4arwnAugBXnyLcRZisHiq_BMxoTLmki7USTmLuafK0TGKfxXSH5mkZkk58hW2LmhO3xl3RodduiyDzgmReNDJfhp_PnYZNTY_3X1fdvBSvVLNAr_Nex5WPdtyEb4PLs9Pi9Oj8ZBWmqaVB0KzB5Lj-7dcxDhqbjaB3DH59tqL_A6TfGpk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classical+and+contemporary+fractional+operators+for+modeling+diarrhea+transmission+dynamics+under+real+statistical+data&rft.jtitle=Physica+A&rft.au=Qureshi%2C+Sania&rft.au=Bonyah%2C+Ebenezer&rft.au=Shaikh%2C+Asif+Ali&rft.date=2019-12-01&rft.issn=0378-4371&rft.volume=535&rft.spage=122496&rft_id=info:doi/10.1016%2Fj.physa.2019.122496&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_physa_2019_122496 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4371&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4371&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4371&client=summon |