Classical and contemporary fractional operators for modeling diarrhea transmission dynamics under real statistical data

This paper is all about the development and analysis of an epidemiological model related to the disease of diarrhea that occurred in Ghana during 2008–2015. Using real statistical data, three new fractional-order mathematical models have been developed on the basis of having information about existi...

Full description

Saved in:
Bibliographic Details
Published inPhysica A Vol. 535; p. 122496
Main Authors Qureshi, Sania, Bonyah, Ebenezer, Shaikh, Asif Ali
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper is all about the development and analysis of an epidemiological model related to the disease of diarrhea that occurred in Ghana during 2008–2015. Using real statistical data, three new fractional-order mathematical models have been developed on the basis of having information about existing classical model . The new models are formulated with Caputo, Caputo–Fabrizio–Caputo and the Atangana–Baleanu–Caputo fractional-order approaches while taking care of the dimensional analysis during the process of fractionalization. Besides, existence and uniqueness for the solutions of the fractional-order models under each case are proved with the help of fixed point theory whereas positivity and boundedness of models’ solution are also investigated. Steady-states (disease-free and endemic equilibria) points of the model and sensitivity of the basic reproductive number (R0) are also explored. While many of the model’s parameters are fixed, the transmission rate (β) of the disease has been estimated and so is the case with orders of the fractional models. Using minimum distance approach, it has been found that the diarrhea model under investigation estimates the real statistical data well enough when considered with the Atangana–Baleanu–Caputo fractional order operator which has non-local and non-singular kernel. Thus, this fractional-order operator of Atangana–Baleanu in the present research study for the diarrhea model outperforms those having index law, power law and stretched exponential kernels. •Three new fractional-order epidemiological models under Caputo, CFC and ABC are proposed.•Real statistical data is used to support the analysis.•Existence and uniqueness for the solutions of each model have been thoroughly investigated.•Stability, sensitivity, positivity and bounded of the models’solution are discussed.•Minimum distance approach is employed to show the model with better performance.
AbstractList This paper is all about the development and analysis of an epidemiological model related to the disease of diarrhea that occurred in Ghana during 2008–2015. Using real statistical data, three new fractional-order mathematical models have been developed on the basis of having information about existing classical model . The new models are formulated with Caputo, Caputo–Fabrizio–Caputo and the Atangana–Baleanu–Caputo fractional-order approaches while taking care of the dimensional analysis during the process of fractionalization. Besides, existence and uniqueness for the solutions of the fractional-order models under each case are proved with the help of fixed point theory whereas positivity and boundedness of models’ solution are also investigated. Steady-states (disease-free and endemic equilibria) points of the model and sensitivity of the basic reproductive number (R0) are also explored. While many of the model’s parameters are fixed, the transmission rate (β) of the disease has been estimated and so is the case with orders of the fractional models. Using minimum distance approach, it has been found that the diarrhea model under investigation estimates the real statistical data well enough when considered with the Atangana–Baleanu–Caputo fractional order operator which has non-local and non-singular kernel. Thus, this fractional-order operator of Atangana–Baleanu in the present research study for the diarrhea model outperforms those having index law, power law and stretched exponential kernels. •Three new fractional-order epidemiological models under Caputo, CFC and ABC are proposed.•Real statistical data is used to support the analysis.•Existence and uniqueness for the solutions of each model have been thoroughly investigated.•Stability, sensitivity, positivity and bounded of the models’solution are discussed.•Minimum distance approach is employed to show the model with better performance.
ArticleNumber 122496
Author Qureshi, Sania
Bonyah, Ebenezer
Shaikh, Asif Ali
Author_xml – sequence: 1
  givenname: Sania
  surname: Qureshi
  fullname: Qureshi, Sania
  email: sania.qureshi@faculty.muet.edu.pk
  organization: Department of Basic Sciences and Related Studies, Mehran University of Engineering and Technology, 76062, Jamshoro, Pakistan
– sequence: 2
  givenname: Ebenezer
  surname: Bonyah
  fullname: Bonyah, Ebenezer
  email: ebbonya@gmail.com
  organization: Department of Mathematics Education, University of Education Winneba-(Kumasi Campus), Kumasi 1277, Ghana
– sequence: 3
  givenname: Asif Ali
  surname: Shaikh
  fullname: Shaikh, Asif Ali
  email: asif.shaikh@faculty.muet.edu.pk
  organization: Department of Basic Sciences and Related Studies, Mehran University of Engineering and Technology, 76062, Jamshoro, Pakistan
BookMark eNqFkLtOAzEQRS0UJJLAF9D4B3bxY58FBYp4SZFooLZmbS9xtGtHYwPK37NJqCigmmJ07tU9CzLzwVtCrjnLOePVzTbfbfYRcsF4m3MhirY6I3Pe1DITnLczMmeybrJC1vyCLGLcMsZ4LcWcfK0GiNFpGCh4Q3XwyY67gIB72iPo5IKffmFnEVLASPuAdAzGDs6_U-MAcWOBJgQfRzclBU_N3sPodKQf3likaKeAmCC5mI5FBhJckvMehmivfu6SvD3cv66esvXL4_Pqbp1pyWTKyqpptKig0m3FO8FYr5umYkKUvek6XciuaHhZikJCy42sZdEzqEvZl5XujNFySeQpV2OIEW2vdujGaZ3iTB3cqa06ulMHd-rkbqLaX5R2hwGTHQQ3_MPenlg7zfp0FlXUznptjUOrkzLB_cl_Ay6SkVA
CitedBy_id crossref_primary_10_1016_j_health_2024_100302
crossref_primary_10_1016_j_rico_2023_100277
crossref_primary_10_1016_j_rico_2024_100431
crossref_primary_10_1016_j_aej_2021_07_010
crossref_primary_10_1140_epjp_s13360_020_00819_5
crossref_primary_10_1140_epjp_s13360_020_00133_0
crossref_primary_10_1038_s41598_020_79405_9
crossref_primary_10_1142_S0218348X23400157
crossref_primary_10_1016_j_rinp_2020_103588
crossref_primary_10_1016_j_aej_2020_09_057
crossref_primary_10_1002_mma_6432
crossref_primary_10_3934_mbe_2023287
crossref_primary_10_1016_j_chaos_2020_109744
crossref_primary_10_1186_s13662_021_03587_3
crossref_primary_10_1016_j_aej_2023_05_071
crossref_primary_10_1016_j_apnum_2022_12_004
crossref_primary_10_1063_5_0188703
crossref_primary_10_1016_j_rinp_2022_105843
crossref_primary_10_3390_fractalfract7030234
crossref_primary_10_1016_j_chaos_2022_111821
crossref_primary_10_1016_j_physa_2019_123942
crossref_primary_10_1080_17455030_2022_2120217
crossref_primary_10_1155_2022_3846904
crossref_primary_10_1186_s13662_020_02890_9
crossref_primary_10_3934_dcdss_2021057
crossref_primary_10_1016_j_heliyon_2024_e40457
crossref_primary_10_1155_2022_6202049
crossref_primary_10_3390_pr11092518
crossref_primary_10_1016_j_chaos_2020_109878
crossref_primary_10_1088_1402_4896_ac13e0
crossref_primary_10_3390_fractalfract6070346
crossref_primary_10_1016_j_rinp_2020_103716
crossref_primary_10_1063_1_5117285
crossref_primary_10_1088_1402_4896_acb591
crossref_primary_10_1016_j_chaos_2019_109552
Cites_doi 10.2298/TSCI160111018A
10.1007/s11071-012-0475-2
10.1016/j.chaos.2018.09.001
10.1140/epjp/i2017-11293-3
10.1016/j.physa.2009.07.024
10.1016/j.cam.2018.07.023
10.1002/num.22236
10.1016/j.camwa.2016.11.032
10.1515/phys-2016-0010
10.1016/j.jcp.2014.09.034
10.1016/j.jksus.2012.01.003
10.1016/j.chaos.2017.03.022
10.1007/s00521-014-1586-0
10.1002/cta.2348
10.1007/s00521-016-2484-4
10.1016/j.cam.2015.12.005
10.1016/j.chaos.2018.06.009
10.1108/HFF-07-2016-0278
10.1002/mma.5530
10.1007/s11075-015-0081-8
10.1016/j.chaos.2016.02.012
10.1016/0898-1221(96)00129-0
10.1063/1.4868847
10.1002/num.22209
10.1016/j.chaos.2018.09.002
10.1016/j.physa.2017.02.016
10.1016/j.apm.2016.05.041
10.1016/0378-4371(94)90064-7
10.3390/e17096289
10.1016/j.chaos.2019.03.020
10.1016/j.jcp.2014.08.004
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.physa.2019.122496
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1873-2119
ExternalDocumentID 10_1016_j_physa_2019_122496
S0378437119314311
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
7-5
71M
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAPFB
AAXUO
ABAOU
ABMAC
ABNEU
ABYKQ
ACAZW
ACDAQ
ACFVG
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADFHU
ADGUI
AEBSH
AEKER
AEYQN
AFFNX
AFKWA
AFTJW
AGHFR
AGTHC
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIIAU
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
AXLSJ
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IXIXF
J1W
K-O
KOM
M38
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSB
SSF
SSQ
SSW
SSZ
T5K
TN5
TWZ
WH7
XPP
YNT
ZMT
~02
~G-
29O
5VS
6TJ
AAFFL
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABJNI
ABWVN
ABXDB
ACNNM
ACROA
ACRPL
ADMUD
ADNMO
ADVLN
AEIPS
AFJKZ
AFODL
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
AJWLA
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BEHZQ
BEZPJ
BGSCR
BNPGV
BNTGB
BPUDD
BULVW
BZJEE
CITATION
FEDTE
FGOYB
HMV
HVGLF
HZ~
MVM
NDZJH
R2-
SEW
SPG
SSH
VOH
WUQ
XJT
XOL
YYP
ZY4
ID FETCH-LOGICAL-c303t-5688c26a6c961b200fc8860225fdbbc43b48155243a91d3734f0a753f56cbddc3
IEDL.DBID .~1
ISSN 0378-4371
IngestDate Tue Jul 01 01:32:15 EDT 2025
Thu Apr 24 23:10:46 EDT 2025
Fri Feb 23 02:47:17 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Numerical simulations
Index law
Power law
Epidemiology
Caputo
Boundedness
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c303t-5688c26a6c961b200fc8860225fdbbc43b48155243a91d3734f0a753f56cbddc3
ParticipantIDs crossref_primary_10_1016_j_physa_2019_122496
crossref_citationtrail_10_1016_j_physa_2019_122496
elsevier_sciencedirect_doi_10_1016_j_physa_2019_122496
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-12-01
2019-12-00
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-01
  day: 01
PublicationDecade 2010
PublicationTitle Physica A
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Sania, Yusuf (b6) 2019; 122
Gómez-Aguilar, Atangana (b31) 2017; 132
Arqub, Maayah (b20) 2018; 29
Jajarmi, Baleanu (b49) 2018; 113
Yépez-Martínez, Gómez-Aguilar (b35) 2019; 346
Higinio (b46) 2016; 72
Abu Arqub, AlSmadi (b18) 2018; 34
Abdon (b17) 2014; 25
Xia, Chen, Chen (b43) 1996; 32
Jagdev (b16) 2018; 316
Cuahutenango-Barro, Taneco-Hernández, Gómez-Aguilar (b36) 2018; 115
José (b27) 2015; 17
Diarrhoeal disease (2017, May 2). Retrived from
El-Ajou, Arqub, Momani (b28) 2015; 293
Igor (b38) 1998
Ralf, Glöckle, Nonnenmacher (b10) 1994; 211
Atangana, Baleanu (b40) 2016; 20
Abdon, Alabaraoye (b19) 2013; 1
KashifAli, Yıldırım (b24) 2019
.
Caputo, Fabrizio (b39) 2015; 1
Erwina, Aldila, Soewono (b2) 2014; 1589
Kai (b5) 2013; 71
Abu Arqub, Shawagfeh (b30) 2019
Baleanu, Jajarmi, Hajipour (b50) 2018
Abdon, Baleanu, Alsaedi (b22) 2016; 14
Abdullahi (b8) 2018; 28
Atangana, Gómez-Aguilar (b33) 2017; 102
Arqub (b23) 2017; 73
Badr, Atangana, Koca (b12) 2016; 8
Gómez-Aguilar, Yépez-Martínez, Escobar-Jiménez, Astorga-Zaragoza, Reyes-Reyes (b32) 2016; 40
Abdon, Koca (b14) 2016; 89
Jesús, Ramos, Clavero (b47) 2017; 318
Bonyah, Afutu, Khan, Nyabadza (b44) 2018; 33
Li, Zeng (b48) 2015
Arqub, El-Ajou (b26) 2013; 25
Gómez Aguilar, Atangana, Morales Delgado (b34) 2017; 45
Diethelm (b41) 2010
Sania (b7) 2019; 29
Sania, Ramos (b45) 2018; 19
Abdon, Gómez-Aguilar (b13) 2017; 476
Kashif Ali, Memon, Memon (b29) 2018
HongGuang, Chen, Chen (b15) 2009; 388
Saif, Khan, Farooq (b9) 2018; 116
Abu Arqub (b21) 2018; 34
Yépez-Martínez, Gómez-Aguilar, Sosa, Reyes, Torres-Jiménez (b37) 2016; 62
Bonyah, Afutu, Khan, Nyabadza (b3) 2018; 33
Shakoor, Rodrigues, Torres (b4) 2011; 1389
Arqub, El-Ajou, Momani (b11) 2015; 293
Abu Arqub (b25) 2018; 28
Zeidler (b42) 1986
Sania (10.1016/j.physa.2019.122496_b7) 2019; 29
Jajarmi (10.1016/j.physa.2019.122496_b49) 2018; 113
Kai (10.1016/j.physa.2019.122496_b5) 2013; 71
Zeidler (10.1016/j.physa.2019.122496_b42) 1986
Gómez-Aguilar (10.1016/j.physa.2019.122496_b31) 2017; 132
Arqub (10.1016/j.physa.2019.122496_b20) 2018; 29
Abdon (10.1016/j.physa.2019.122496_b22) 2016; 14
KashifAli (10.1016/j.physa.2019.122496_b24) 2019
Abdon (10.1016/j.physa.2019.122496_b19) 2013; 1
Arqub (10.1016/j.physa.2019.122496_b11) 2015; 293
Cuahutenango-Barro (10.1016/j.physa.2019.122496_b36) 2018; 115
Abu Arqub (10.1016/j.physa.2019.122496_b25) 2018; 28
Jesús (10.1016/j.physa.2019.122496_b47) 2017; 318
Abu Arqub (10.1016/j.physa.2019.122496_b18) 2018; 34
Abu Arqub (10.1016/j.physa.2019.122496_b30) 2019
Igor (10.1016/j.physa.2019.122496_b38) 1998
El-Ajou (10.1016/j.physa.2019.122496_b28) 2015; 293
Li (10.1016/j.physa.2019.122496_b48) 2015
Atangana (10.1016/j.physa.2019.122496_b33) 2017; 102
Atangana (10.1016/j.physa.2019.122496_b40) 2016; 20
Shakoor (10.1016/j.physa.2019.122496_b4) 2011; 1389
Xia (10.1016/j.physa.2019.122496_b43) 1996; 32
Saif (10.1016/j.physa.2019.122496_b9) 2018; 116
Yépez-Martínez (10.1016/j.physa.2019.122496_b37) 2016; 62
Higinio (10.1016/j.physa.2019.122496_b46) 2016; 72
Abu Arqub (10.1016/j.physa.2019.122496_b21) 2018; 34
Badr (10.1016/j.physa.2019.122496_b12) 2016; 8
Abdon (10.1016/j.physa.2019.122496_b13) 2017; 476
José (10.1016/j.physa.2019.122496_b27) 2015; 17
Yépez-Martínez (10.1016/j.physa.2019.122496_b35) 2019; 346
Diethelm (10.1016/j.physa.2019.122496_b41) 2010
Gómez-Aguilar (10.1016/j.physa.2019.122496_b32) 2016; 40
Bonyah (10.1016/j.physa.2019.122496_b44) 2018; 33
Gómez Aguilar (10.1016/j.physa.2019.122496_b34) 2017; 45
Abdullahi (10.1016/j.physa.2019.122496_b8) 2018; 28
Arqub (10.1016/j.physa.2019.122496_b23) 2017; 73
Kashif Ali (10.1016/j.physa.2019.122496_b29) 2018
Sania (10.1016/j.physa.2019.122496_b6) 2019; 122
Bonyah (10.1016/j.physa.2019.122496_b3) 2018; 33
10.1016/j.physa.2019.122496_b1
Ralf (10.1016/j.physa.2019.122496_b10) 1994; 211
Baleanu (10.1016/j.physa.2019.122496_b50) 2018
Abdon (10.1016/j.physa.2019.122496_b14) 2016; 89
HongGuang (10.1016/j.physa.2019.122496_b15) 2009; 388
Caputo (10.1016/j.physa.2019.122496_b39) 2015; 1
Jagdev (10.1016/j.physa.2019.122496_b16) 2018; 316
Erwina (10.1016/j.physa.2019.122496_b2) 2014; 1589
Abdon (10.1016/j.physa.2019.122496_b17) 2014; 25
Arqub (10.1016/j.physa.2019.122496_b26) 2013; 25
Sania (10.1016/j.physa.2019.122496_b45) 2018; 19
References_xml – year: 2010
  ident: b41
  article-title: The Analysis of Fractional Differential Equation
– volume: 73
  start-page: 1243
  year: 2017
  end-page: 1261
  ident: b23
  article-title: Fitted reproducing kernel Hilbert space method for the solutions of some certain classes of time-fractional partial differential equations subject to initial and Neumann boundary conditions
  publication-title: Comput. Math. Appl.
– volume: 33
  year: 2018
  ident: b3
  article-title: Mathematical model for diarrhea infection
  publication-title: Int. J. Ecol. Dev.
– volume: 388
  start-page: 4586
  year: 2009
  end-page: 4592
  ident: b15
  article-title: Variable-order fractional differential operators in anomalous diffusion modeling
  publication-title: Physica A
– volume: 29
  start-page: 1465
  year: 2018
  end-page: 1479
  ident: b20
  article-title: Solutions of Bagley–Torvik and Painlevé equations of fractional order using iterative reproducing kernel algorithm with error estimates
  publication-title: Neural Comput. Appl.
– volume: 29
  year: 2019
  ident: b7
  article-title: Fractional modeling of blood ethanol concentration system with real data application
  publication-title: Chaos
– year: 2015
  ident: b48
  article-title: Numerical Methods for Fractional Calculus
– start-page: 1
  year: 2019
  end-page: 8
  ident: b24
  article-title: Fractional treatment of vibration equation through modern analogy of fractional differentiations using integral transforms
  publication-title: Iran. J. Sci. Technol. Trans. A Sci.
– volume: 122
  start-page: 111
  year: 2019
  end-page: 118
  ident: b6
  article-title: Modeling chickenpox disease with fractional derivatives: From caputo to atangana-baleanu
  publication-title: Chaos Solitons Fractals
– volume: 62
  start-page: 310
  year: 2016
  end-page: 316
  ident: b37
  article-title: The Feng’s first integral method applied to the nonlinear mKdV space–time fractional partial differential equation
  publication-title: Rev. Mexicana Fs.
– volume: 28
  year: 2018
  ident: b8
  article-title: Two-strain epidemic model involving fractional derivative with Mittag-Leffler kernel
  publication-title: Chaos
– volume: 28
  start-page: 828
  year: 2018
  end-page: 856
  ident: b25
  article-title: Numerical solutions for the Robin time-fractional partial differential equations of heat and fluid flows based on the reproducing kernel algorithm
  publication-title: Internat. J. Numer. Methods Heat Fluid Flow
– volume: 211
  start-page: 13
  year: 1994
  end-page: 24
  ident: b10
  article-title: Fractional model equation for anomalous diffusion
  publication-title: Physica A
– volume: 34
  start-page: 1759
  year: 2018
  end-page: 1780
  ident: b21
  article-title: Solutions of time fractional Tricomi and Keldysh equations of Dirichlet functions types in Hilbert space
  publication-title: Numer. Methods Partial Differential Equations
– volume: 25
  start-page: 73
  year: 2013
  end-page: 81
  ident: b26
  article-title: Solution of the fractional epidemic model by homotopy analysis method
  publication-title: J. King Saud Univ.-Sci.
– volume: 1589
  year: 2014
  ident: b2
  article-title: Optimal control of diarrhea transmission in a flood evacuation zone
  publication-title: AIP Conf. Proc.
– volume: 32
  start-page: 109
  year: 1996
  end-page: 116
  ident: b43
  article-title: Permanence and positive periodic solution for the single-species nonautonomous delay diffusive models
  publication-title: Comput. Math. Appl.
– volume: 72
  start-page: 1089
  year: 2016
  end-page: 1102
  ident: b46
  article-title: An optimized two-step hybrid block method for solving general second order initial-value problems
  publication-title: Numer. Algorithms
– volume: 25
  start-page: 1021
  year: 2014
  end-page: 1030
  ident: b17
  article-title: Convergence and stability analysis of a novel iteration method for fractional biological population equation
  publication-title: Neural Comput. Appl.
– volume: 40
  start-page: 9079
  year: 2016
  end-page: 9094
  ident: b32
  article-title: Analytical and numerical solutions of electrical circuits described by fractional derivatives
  publication-title: Appl. Math. Model.
– reference: Diarrhoeal disease (2017, May 2). Retrived from
– volume: 89
  start-page: 447
  year: 2016
  end-page: 454
  ident: b14
  article-title: Chaos in a simple nonlinear system with Atangana–Baleanu derivatives with fractional order
  publication-title: Chaos Solitons Fractals
– start-page: 1
  year: 2018
  end-page: 18
  ident: b50
  article-title: On the nonlinear dynamical systems within the generalized fractional derivatives with Mittag–Leffler kernel
  publication-title: Nonlinear Dynam.
– volume: 1389
  year: 2011
  ident: b4
  article-title: Fractional derivatives in dengue epidemics
  publication-title: AIP Conf. Proc.
– volume: 45
  start-page: 1514
  year: 2017
  end-page: 1533
  ident: b34
  article-title: Electrical circuits RC, LC, and RL described by Atangana–Baleanu fractional derivatives
  publication-title: Int. J. Circuit Theory Appl.
– volume: 113
  start-page: 221
  year: 2018
  end-page: 229
  ident: b49
  article-title: A new fractional analysis on the interaction of HIV with CD4+ T-cells
  publication-title: Chaos Solitons Fractals
– volume: 115
  start-page: 283
  year: 2018
  end-page: 299
  ident: b36
  article-title: On the solutions of fractional-time wave equation with memory effect involving operators with regular kernel
  publication-title: Chaos Solitons Fractals
– volume: 14
  start-page: 145
  year: 2016
  end-page: 149
  ident: b22
  article-title: Analysis of time-fractional Hunter-Saxton equation: a model of neumatic liquid crystal
  publication-title: Open Phys.
– volume: 1
  start-page: 94
  year: 2013
  ident: b19
  article-title: Solving a system of fractional partial differential equations arising in the model of HIV infection of CD4+ cells and attractor one-dimensional Keller–Segel equations
  publication-title: Adv. Difference Equ.
– volume: 71
  start-page: 613
  year: 2013
  end-page: 619
  ident: b5
  article-title: A fractional calculus based model for the simulation of an outbreak of dengue fever
  publication-title: Nonlinear Dynam.
– volume: 476
  start-page: 1
  year: 2017
  end-page: 14
  ident: b13
  article-title: A new derivative with normal distribution kernel: Theory, methods and applications
  publication-title: Phys. A
– year: 1986
  ident: b42
  article-title: Non-Linear Functional Analysis and its Application
– start-page: 1
  year: 2018
  end-page: 11
  ident: b29
  article-title: Functionality of circuit via modern fractional differentiations
  publication-title: Analog Integr. Circuits Signal Process.
– volume: 346
  start-page: 247
  year: 2019
  end-page: 260
  ident: b35
  article-title: A new modified definition of Caputo–Fabrizio fractional-order derivative and their applications to the Multi Step Homotopy Analysis Method (MHAM)
  publication-title: J. Comput. Appl. Math.
– year: 2019
  ident: b30
  article-title: Solving optimal control problems of fredholm constraint optimality via the reproducing kernel Hilbert space method with error estimates and convergence analysis
  publication-title: Math. Methods Appl. Sci.
– volume: 293
  start-page: 81
  year: 2015
  end-page: 95
  ident: b28
  article-title: Approximate analytical solution of the nonlinear fractional KdV–Burgers equation: a new iterative algorithm
  publication-title: J. Comput. Phys.
– volume: 132
  start-page: 13
  year: 2017
  ident: b31
  article-title: New insight in fractional differentiation: power, exponential decay and Mittag-Leffler laws and applications
  publication-title: Eur. Phys. J. Plus
– volume: 33
  start-page: 45
  year: 2018
  end-page: 62
  ident: b44
  article-title: Mathematical model for diarrhea infection
  publication-title: Int. J. Ecol. Dev.
– volume: 102
  start-page: 285
  year: 2017
  end-page: 294
  ident: b33
  article-title: Hyperchaotic behaviour obtained via a nonlocal operator with exponential decay and Mittag-Leffler laws
  publication-title: Chaos Solitons Fractals
– volume: 20
  start-page: 763
  year: 2016
  end-page: 769
  ident: b40
  article-title: New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model
  publication-title: Therm. Sci.
– reference: .
– volume: 318
  start-page: 599
  year: 2017
  end-page: 603
  ident: b47
  article-title: A first approach in solving initial-value problems in ODEs by elliptic fitting methods
  publication-title: J. Comput. Appl. Math.
– volume: 293
  start-page: 385
  year: 2015
  end-page: 399
  ident: b11
  article-title: Constructing and predicting solitary pattern solutions for nonlinear time-fractional dispersive partial differential equations
  publication-title: J. Comput. Phys.
– volume: 8
  year: 2016
  ident: b12
  article-title: A new nonlinear triadic model of predator–prey based on derivative with non-local and non-singular kernel
  publication-title: Adv. Mech. Eng.
– volume: 34
  start-page: 1577
  year: 2018
  end-page: 1597
  ident: b18
  article-title: Numerical algorithm for solving time fractional partial integrodifferential equations subject to initial and Dirichlet boundary conditions
  publication-title: Numer. Methods Partial Differential Equations
– volume: 1
  start-page: 73
  year: 2015
  end-page: 85
  ident: b39
  article-title: A new definition of fractional derivative without singular kernel
  publication-title: Progr. Fract. Differential Appl.
– volume: 116
  start-page: 63
  year: 2018
  end-page: 71
  ident: b9
  article-title: A fractional model for the dynamics of TB virus
  publication-title: Chaos Solitons Fractals
– volume: 17
  start-page: 6289
  year: 2015
  end-page: 6303
  ident: b27
  article-title: Modeling of a mass–spring-damper system by fractional derivatives with and without a singular kernel
  publication-title: Entropy
– volume: 19
  start-page: 741
  year: 2018
  end-page: 751
  ident: b45
  article-title: L-stable explicit nonlinear method with constant and variable step-size formulation for solving initial value problems
  publication-title: Int. J. Nonlinear Sci. Numer. Simul.
– volume: 316
  start-page: 504
  year: 2018
  end-page: 515
  ident: b16
  article-title: A fractional epidemiological model for computer viruses pertaining to a new fractional derivative
  publication-title: Appl. Math. Comput.
– year: 1998
  ident: b38
  article-title: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and Some of their Applications. Vol. 198
– volume: 20
  start-page: 763
  issue: 2
  year: 2016
  ident: 10.1016/j.physa.2019.122496_b40
  article-title: New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model
  publication-title: Therm. Sci.
  doi: 10.2298/TSCI160111018A
– volume: 71
  start-page: 613
  issue: 4
  year: 2013
  ident: 10.1016/j.physa.2019.122496_b5
  article-title: A fractional calculus based model for the simulation of an outbreak of dengue fever
  publication-title: Nonlinear Dynam.
  doi: 10.1007/s11071-012-0475-2
– volume: 116
  start-page: 63
  year: 2018
  ident: 10.1016/j.physa.2019.122496_b9
  article-title: A fractional model for the dynamics of TB virus
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2018.09.001
– start-page: 1
  year: 2019
  ident: 10.1016/j.physa.2019.122496_b24
  article-title: Fractional treatment of vibration equation through modern analogy of fractional differentiations using integral transforms
  publication-title: Iran. J. Sci. Technol. Trans. A Sci.
– volume: 132
  start-page: 13
  issue: 1
  year: 2017
  ident: 10.1016/j.physa.2019.122496_b31
  article-title: New insight in fractional differentiation: power, exponential decay and Mittag-Leffler laws and applications
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/i2017-11293-3
– volume: 388
  start-page: 4586
  issue: 21
  year: 2009
  ident: 10.1016/j.physa.2019.122496_b15
  article-title: Variable-order fractional differential operators in anomalous diffusion modeling
  publication-title: Physica A
  doi: 10.1016/j.physa.2009.07.024
– year: 1998
  ident: 10.1016/j.physa.2019.122496_b38
– volume: 29
  issue: 1
  year: 2019
  ident: 10.1016/j.physa.2019.122496_b7
  article-title: Fractional modeling of blood ethanol concentration system with real data application
  publication-title: Chaos
– volume: 346
  start-page: 247
  year: 2019
  ident: 10.1016/j.physa.2019.122496_b35
  article-title: A new modified definition of Caputo–Fabrizio fractional-order derivative and their applications to the Multi Step Homotopy Analysis Method (MHAM)
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2018.07.023
– year: 2015
  ident: 10.1016/j.physa.2019.122496_b48
– volume: 34
  start-page: 1759
  issue: 5
  year: 2018
  ident: 10.1016/j.physa.2019.122496_b21
  article-title: Solutions of time fractional Tricomi and Keldysh equations of Dirichlet functions types in Hilbert space
  publication-title: Numer. Methods Partial Differential Equations
  doi: 10.1002/num.22236
– volume: 73
  start-page: 1243
  issue: 6
  year: 2017
  ident: 10.1016/j.physa.2019.122496_b23
  article-title: Fitted reproducing kernel Hilbert space method for the solutions of some certain classes of time-fractional partial differential equations subject to initial and Neumann boundary conditions
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2016.11.032
– volume: 14
  start-page: 145
  issue: 1
  year: 2016
  ident: 10.1016/j.physa.2019.122496_b22
  article-title: Analysis of time-fractional Hunter-Saxton equation: a model of neumatic liquid crystal
  publication-title: Open Phys.
  doi: 10.1515/phys-2016-0010
– volume: 293
  start-page: 385
  year: 2015
  ident: 10.1016/j.physa.2019.122496_b11
  article-title: Constructing and predicting solitary pattern solutions for nonlinear time-fractional dispersive partial differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2014.09.034
– volume: 25
  start-page: 73
  issue: 1
  year: 2013
  ident: 10.1016/j.physa.2019.122496_b26
  article-title: Solution of the fractional epidemic model by homotopy analysis method
  publication-title: J. King Saud Univ.-Sci.
  doi: 10.1016/j.jksus.2012.01.003
– start-page: 1
  year: 2018
  ident: 10.1016/j.physa.2019.122496_b29
  article-title: Functionality of circuit via modern fractional differentiations
  publication-title: Analog Integr. Circuits Signal Process.
– volume: 102
  start-page: 285
  year: 2017
  ident: 10.1016/j.physa.2019.122496_b33
  article-title: Hyperchaotic behaviour obtained via a nonlocal operator with exponential decay and Mittag-Leffler laws
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2017.03.022
– volume: 25
  start-page: 1021
  issue: 5
  year: 2014
  ident: 10.1016/j.physa.2019.122496_b17
  article-title: Convergence and stability analysis of a novel iteration method for fractional biological population equation
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-014-1586-0
– volume: 33
  issue: 4
  year: 2018
  ident: 10.1016/j.physa.2019.122496_b3
  article-title: Mathematical model for diarrhea infection
  publication-title: Int. J. Ecol. Dev.
– ident: 10.1016/j.physa.2019.122496_b1
– volume: 45
  start-page: 1514
  issue: 11
  year: 2017
  ident: 10.1016/j.physa.2019.122496_b34
  article-title: Electrical circuits RC, LC, and RL described by Atangana–Baleanu fractional derivatives
  publication-title: Int. J. Circuit Theory Appl.
  doi: 10.1002/cta.2348
– volume: 29
  start-page: 1465
  issue: 5
  year: 2018
  ident: 10.1016/j.physa.2019.122496_b20
  article-title: Solutions of Bagley–Torvik and Painlevé equations of fractional order using iterative reproducing kernel algorithm with error estimates
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-016-2484-4
– volume: 318
  start-page: 599
  year: 2017
  ident: 10.1016/j.physa.2019.122496_b47
  article-title: A first approach in solving initial-value problems in ODEs by elliptic fitting methods
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2015.12.005
– volume: 113
  start-page: 221
  year: 2018
  ident: 10.1016/j.physa.2019.122496_b49
  article-title: A new fractional analysis on the interaction of HIV with CD4+ T-cells
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2018.06.009
– volume: 28
  start-page: 828
  issue: 4
  year: 2018
  ident: 10.1016/j.physa.2019.122496_b25
  article-title: Numerical solutions for the Robin time-fractional partial differential equations of heat and fluid flows based on the reproducing kernel algorithm
  publication-title: Internat. J. Numer. Methods Heat Fluid Flow
  doi: 10.1108/HFF-07-2016-0278
– year: 2019
  ident: 10.1016/j.physa.2019.122496_b30
  article-title: Solving optimal control problems of fredholm constraint optimality via the reproducing kernel Hilbert space method with error estimates and convergence analysis
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.5530
– year: 1986
  ident: 10.1016/j.physa.2019.122496_b42
– volume: 72
  start-page: 1089
  issue: 4
  year: 2016
  ident: 10.1016/j.physa.2019.122496_b46
  article-title: An optimized two-step hybrid block method for solving general second order initial-value problems
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-015-0081-8
– start-page: 1
  year: 2018
  ident: 10.1016/j.physa.2019.122496_b50
  article-title: On the nonlinear dynamical systems within the generalized fractional derivatives with Mittag–Leffler kernel
  publication-title: Nonlinear Dynam.
– year: 2010
  ident: 10.1016/j.physa.2019.122496_b41
– volume: 89
  start-page: 447
  year: 2016
  ident: 10.1016/j.physa.2019.122496_b14
  article-title: Chaos in a simple nonlinear system with Atangana–Baleanu derivatives with fractional order
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2016.02.012
– volume: 32
  start-page: 109
  issue: 4
  year: 1996
  ident: 10.1016/j.physa.2019.122496_b43
  article-title: Permanence and positive periodic solution for the single-species nonautonomous delay diffusive models
  publication-title: Comput. Math. Appl.
  doi: 10.1016/0898-1221(96)00129-0
– volume: 1
  start-page: 73
  issue: 2
  year: 2015
  ident: 10.1016/j.physa.2019.122496_b39
  article-title: A new definition of fractional derivative without singular kernel
  publication-title: Progr. Fract. Differential Appl.
– volume: 1589
  issue: 1
  year: 2014
  ident: 10.1016/j.physa.2019.122496_b2
  article-title: Optimal control of diarrhea transmission in a flood evacuation zone
  publication-title: AIP Conf. Proc.
  doi: 10.1063/1.4868847
– volume: 8
  issue: 11
  year: 2016
  ident: 10.1016/j.physa.2019.122496_b12
  article-title: A new nonlinear triadic model of predator–prey based on derivative with non-local and non-singular kernel
  publication-title: Adv. Mech. Eng.
– volume: 34
  start-page: 1577
  issue: 5
  year: 2018
  ident: 10.1016/j.physa.2019.122496_b18
  article-title: Numerical algorithm for solving time fractional partial integrodifferential equations subject to initial and Dirichlet boundary conditions
  publication-title: Numer. Methods Partial Differential Equations
  doi: 10.1002/num.22209
– volume: 1389
  issue: 1
  year: 2011
  ident: 10.1016/j.physa.2019.122496_b4
  article-title: Fractional derivatives in dengue epidemics
  publication-title: AIP Conf. Proc.
– volume: 316
  start-page: 504
  year: 2018
  ident: 10.1016/j.physa.2019.122496_b16
  article-title: A fractional epidemiological model for computer viruses pertaining to a new fractional derivative
  publication-title: Appl. Math. Comput.
– volume: 1
  start-page: 94
  issue: 2013
  year: 2013
  ident: 10.1016/j.physa.2019.122496_b19
  article-title: Solving a system of fractional partial differential equations arising in the model of HIV infection of CD4+ cells and attractor one-dimensional Keller–Segel equations
  publication-title: Adv. Difference Equ.
– volume: 115
  start-page: 283
  year: 2018
  ident: 10.1016/j.physa.2019.122496_b36
  article-title: On the solutions of fractional-time wave equation with memory effect involving operators with regular kernel
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2018.09.002
– volume: 33
  start-page: 45
  issue: 4
  year: 2018
  ident: 10.1016/j.physa.2019.122496_b44
  article-title: Mathematical model for diarrhea infection
  publication-title: Int. J. Ecol. Dev.
– volume: 19
  start-page: 741
  issue: 7–8
  year: 2018
  ident: 10.1016/j.physa.2019.122496_b45
  article-title: L-stable explicit nonlinear method with constant and variable step-size formulation for solving initial value problems
  publication-title: Int. J. Nonlinear Sci. Numer. Simul.
– volume: 476
  start-page: 1
  year: 2017
  ident: 10.1016/j.physa.2019.122496_b13
  article-title: A new derivative with normal distribution kernel: Theory, methods and applications
  publication-title: Phys. A
  doi: 10.1016/j.physa.2017.02.016
– volume: 40
  start-page: 9079
  issue: 21–22
  year: 2016
  ident: 10.1016/j.physa.2019.122496_b32
  article-title: Analytical and numerical solutions of electrical circuits described by fractional derivatives
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2016.05.041
– volume: 211
  start-page: 13
  issue: 1
  year: 1994
  ident: 10.1016/j.physa.2019.122496_b10
  article-title: Fractional model equation for anomalous diffusion
  publication-title: Physica A
  doi: 10.1016/0378-4371(94)90064-7
– volume: 17
  start-page: 6289
  issue: 9
  year: 2015
  ident: 10.1016/j.physa.2019.122496_b27
  article-title: Modeling of a mass–spring-damper system by fractional derivatives with and without a singular kernel
  publication-title: Entropy
  doi: 10.3390/e17096289
– volume: 122
  start-page: 111
  year: 2019
  ident: 10.1016/j.physa.2019.122496_b6
  article-title: Modeling chickenpox disease with fractional derivatives: From caputo to atangana-baleanu
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2019.03.020
– volume: 28
  issue: 12
  year: 2018
  ident: 10.1016/j.physa.2019.122496_b8
  article-title: Two-strain epidemic model involving fractional derivative with Mittag-Leffler kernel
  publication-title: Chaos
– volume: 293
  start-page: 81
  year: 2015
  ident: 10.1016/j.physa.2019.122496_b28
  article-title: Approximate analytical solution of the nonlinear fractional KdV–Burgers equation: a new iterative algorithm
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2014.08.004
– volume: 62
  start-page: 310
  issue: 4
  year: 2016
  ident: 10.1016/j.physa.2019.122496_b37
  article-title: The Feng’s first integral method applied to the nonlinear mKdV space–time fractional partial differential equation
  publication-title: Rev. Mexicana Fs.
SSID ssj0001732
Score 2.44482
Snippet This paper is all about the development and analysis of an epidemiological model related to the disease of diarrhea that occurred in Ghana during 2008–2015....
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 122496
SubjectTerms Boundedness
Caputo
Epidemiology
Index law
Numerical simulations
Power law
Title Classical and contemporary fractional operators for modeling diarrhea transmission dynamics under real statistical data
URI https://dx.doi.org/10.1016/j.physa.2019.122496
Volume 535
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KRfAiPrE-yh48mjbJbnaTYymWqtiLFnoL2UegUtqSRrz5253ZJFpBevCWxy6E2ck8dr_5hpDbxIrMaqM9qxT3eG4DL7PYQwOCeT_IpZRua-B5IsZT_jiLZi0ybGphEFZZ2_7KpjtrXT_p19Lsr-fz_ovPZMyZDCAEAafv6ns5l6jlvc8fmEcgWXWSANkSjm6YhxzGC3cPkHwoSHp4woTM_X95py2PMzoih3WoSAfV1xyTll2ekH0H2dSbU_Lh-lmijGm2NFRv0UzRvKjqFeDdam3dSfqGQnhKXeMb8FYU1KIowBDTEp0VLDbumlFT9affUCwtKygElAuKJUeOzRmuEU96Rqaj-9fh2KvbKHga_FPpRSKOdSgyoRMRKPgrch1j56kwyo1SmjOFhC1RyFmWBIZJxnM_gywmj4RWxmh2TtrL1dJeEKoyyIC48TPBDIdUUCVRHvpW-ngH1qJDwkZ8qa45xrHVxSJtwGRvqZN5ijJPK5l3yN33pHVFsbF7uGjWJf2lKSk4gV0TL_878Yoc4F0FYrkm7bJ4tzcQipSq63StS_YGD0_jyRdZreAA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RUFUuCCiINz6UW8PGseNsDhwQDy3PCyBxS_2KBIKwym6FuPRP9Q92xkkoSIgDErckjq1kPJqH_Xk-gB-5V9pbZyNvjIxk6XmkPXFoYDAf8zLLsrA0cHauBlfy-Dq9noC_3VkYglW2tr-x6cFat096rTR7w5ub3kUssr4UGccQBJ0-5y2y8sQ_PWLeNto52sdJ3kqSw4PLvUHUUgtEFm32OEpVv28TpZXNFTeoKaXtExtTkpbOGCuFoSImaSKFzrkTmZBlrDGyL1NljXNW4LhfYEqiuSDahO0__3ElPBPN1gWmZ_R5XamjACqj5QqqdsTzbdrSIqqAt9zhCxd3OAszbWzKdpvfn4MJX83D14ARtaPv8BgINGlSma4csy_qWrGybg5IYNvD0Iet-xHDeJgFph10jwz1sK7R8rMxeUfULlqmY-6p0vc4OqOzbDXDCPaO0RmnUD4arwnAugBXnyLcRZisHiq_BMxoTLmki7USTmLuafK0TGKfxXSH5mkZkk58hW2LmhO3xl3RodduiyDzgmReNDJfhp_PnYZNTY_3X1fdvBSvVLNAr_Nex5WPdtyEb4PLs9Pi9Oj8ZBWmqaVB0KzB5Lj-7dcxDhqbjaB3DH59tqL_A6TfGpk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classical+and+contemporary+fractional+operators+for+modeling+diarrhea+transmission+dynamics+under+real+statistical+data&rft.jtitle=Physica+A&rft.au=Qureshi%2C+Sania&rft.au=Bonyah%2C+Ebenezer&rft.au=Shaikh%2C+Asif+Ali&rft.date=2019-12-01&rft.issn=0378-4371&rft.volume=535&rft.spage=122496&rft_id=info:doi/10.1016%2Fj.physa.2019.122496&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_physa_2019_122496
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4371&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4371&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4371&client=summon