An extended car-following model considering multi-anticipative average velocity effect under V2V environment
Vehicle-to-vehicle (for short, V2V) communication technology is regarded as a promising technology to improve traffic efficiency and safety. In this paper, an extended car-following model is proposed to simulate traffic flow by considering multi-anticipative average velocity effect (including the av...
Saved in:
Published in | Physica A Vol. 527; p. 121268 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.08.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Vehicle-to-vehicle (for short, V2V) communication technology is regarded as a promising technology to improve traffic efficiency and safety. In this paper, an extended car-following model is proposed to simulate traffic flow by considering multi-anticipative average velocity effect (including the average velocity and the mean expected velocity field effect of preceding vehicles group) under V2V environment. The stability condition of this model is obtained by applying the linear stability theory. The phase diagram comparison and analysis shows that the multi-anticipative average velocity effect can effectively enhance the stabilization of traffic system. In particular, the average velocity effect plays a more important role than that of the mean expected velocity field effect in improving the stability of traffic flow. The mKdV equation is derived to describe the evolution characteristics of traffic density waves by using the reductive perturbation method. Furthermore, the numerical simulation is carried out to validate the theoretical results, and indicates that the traffic jam can be suppressed efficiently via taking into account multi-anticipative average velocity effect.
•A new car-following model considering multi-anticipative average velocity effect is presented.•Linear analysis is carried out to study the stability of traffic flow.•The mKdV equation is derived from nonlinear analysis to describe the density wave of traffic jam.•The effect of multi-anticipative average velocity can effectively improve the stability of traffic flow. |
---|---|
AbstractList | Vehicle-to-vehicle (for short, V2V) communication technology is regarded as a promising technology to improve traffic efficiency and safety. In this paper, an extended car-following model is proposed to simulate traffic flow by considering multi-anticipative average velocity effect (including the average velocity and the mean expected velocity field effect of preceding vehicles group) under V2V environment. The stability condition of this model is obtained by applying the linear stability theory. The phase diagram comparison and analysis shows that the multi-anticipative average velocity effect can effectively enhance the stabilization of traffic system. In particular, the average velocity effect plays a more important role than that of the mean expected velocity field effect in improving the stability of traffic flow. The mKdV equation is derived to describe the evolution characteristics of traffic density waves by using the reductive perturbation method. Furthermore, the numerical simulation is carried out to validate the theoretical results, and indicates that the traffic jam can be suppressed efficiently via taking into account multi-anticipative average velocity effect.
•A new car-following model considering multi-anticipative average velocity effect is presented.•Linear analysis is carried out to study the stability of traffic flow.•The mKdV equation is derived from nonlinear analysis to describe the density wave of traffic jam.•The effect of multi-anticipative average velocity can effectively improve the stability of traffic flow. |
ArticleNumber | 121268 |
Author | Wang, Mei-Ting Kuang, Hua Li, Xing-Li Lu, Fang-Hua Bai, Ke-Zhao |
Author_xml | – sequence: 1 givenname: Hua surname: Kuang fullname: Kuang, Hua email: khphy@gxnu.edu.cn organization: College of Physical Science and Technology, Guangxi Normal University, Guilin, 541004, China – sequence: 2 givenname: Mei-Ting surname: Wang fullname: Wang, Mei-Ting organization: College of Physical Science and Technology, Guangxi Normal University, Guilin, 541004, China – sequence: 3 givenname: Fang-Hua surname: Lu fullname: Lu, Fang-Hua organization: College of Physical Science and Technology, Guangxi Normal University, Guilin, 541004, China – sequence: 4 givenname: Ke-Zhao surname: Bai fullname: Bai, Ke-Zhao organization: College of Physical Science and Technology, Guangxi Normal University, Guilin, 541004, China – sequence: 5 givenname: Xing-Li surname: Li fullname: Li, Xing-Li organization: School of Applied Science, Taiyuan University of Science and Technology, Taiyuan, 030024, China |
BookMark | eNqFkM1OAjEUhRuDiYA-gZu-wGDbO3RmFi4I8S8hcaNsm9LewZKhJZ0yyts7gCsXujrJSb6TnG9EBj54JOSWswlnXN5tJruPQ6sngvFqwgUXsrwgQ14WkAnOqwEZMijKLIeCX5FR224YY7wAMSTNzFP8SugtWmp0zOrQNOHT-TXdBosNNcG3zmI8NfsmuUz75Izb6eQ6pLrDqNdIO2yCcelAsa7RJLrvByNdiiVF37kY_BZ9uiaXtW5avPnJMXl_fHibP2eL16eX-WyRGWCQsqlkoiqlzrlcgWR5xa1ZaYl5JfJSghCQFwAwrVaCAxiJYiWssNbUeQV9A2MC510TQ9tGrNUuuq2OB8WZOgpTG3USpo7C1FlYT1W_qP5Q_zL4FLVr_mHvzyz2tzqHUbXGoTdoXex1KBvcn_w3CU2LKw |
CitedBy_id | crossref_primary_10_1016_j_apm_2021_01_002 crossref_primary_10_1142_S0129183121500959 crossref_primary_10_1016_j_future_2024_107544 crossref_primary_10_1142_S0129183120501673 crossref_primary_10_1016_j_ijnonlinmec_2025_105040 crossref_primary_10_1038_s41598_023_49365_x crossref_primary_10_1007_s11071_023_08377_y crossref_primary_10_1109_ACCESS_2021_3060080 crossref_primary_10_1142_S0129183122501145 crossref_primary_10_1155_2022_8281919 crossref_primary_10_3390_wevj15060233 crossref_primary_10_1142_S0217984921503358 crossref_primary_10_1142_S0217984922502219 crossref_primary_10_1061_JTEPBS_TEENG_7836 crossref_primary_10_1177_09544070241275724 crossref_primary_10_4236_jamp_2020_83028 crossref_primary_10_1016_j_physa_2024_130051 crossref_primary_10_1140_epjp_s13360_024_05365_y crossref_primary_10_1016_j_physa_2024_129747 crossref_primary_10_1016_j_ifacol_2025_01_126 crossref_primary_10_1016_j_physa_2020_125665 crossref_primary_10_1109_TITS_2024_3362732 crossref_primary_10_1016_j_physa_2021_126372 crossref_primary_10_1016_j_physa_2024_130207 crossref_primary_10_3390_fi12120216 crossref_primary_10_1007_s11071_022_08032_y crossref_primary_10_1016_j_physa_2023_129259 crossref_primary_10_1016_j_isci_2024_111361 crossref_primary_10_1061_JTEPBS_TEENG_7430 crossref_primary_10_3390_fi14010014 crossref_primary_10_1007_s11071_024_10660_5 crossref_primary_10_1016_j_physa_2021_126022 crossref_primary_10_1177_09544070221145478 crossref_primary_10_1016_j_apm_2023_03_029 crossref_primary_10_1016_j_physa_2025_130438 crossref_primary_10_1142_S0217984921502572 crossref_primary_10_1155_2022_3488597 crossref_primary_10_1016_j_apm_2024_115765 crossref_primary_10_1142_S021798492150562X crossref_primary_10_1088_1674_1056_ac2b18 crossref_primary_10_3390_su13105602 crossref_primary_10_1016_j_physa_2020_124829 crossref_primary_10_3390_fi13040088 crossref_primary_10_1007_s11071_021_06970_7 crossref_primary_10_1007_s11071_023_08548_x crossref_primary_10_3390_su16145983 crossref_primary_10_1016_j_physa_2020_125446 crossref_primary_10_1016_j_apm_2022_04_010 crossref_primary_10_1016_j_chaos_2024_115200 crossref_primary_10_1007_s11071_021_06999_8 crossref_primary_10_1109_ACCESS_2023_3291806 crossref_primary_10_1049_iet_its_2019_0606 crossref_primary_10_1007_s40305_023_00508_x crossref_primary_10_1016_j_physa_2022_128196 |
Cites_doi | 10.1103/PhysRevE.61.3564 10.1103/PhysRevE.83.047101 10.1007/s100510050618 10.1049/iet-its.2017.0191 10.1016/j.physa.2016.12.022 10.1007/s11071-014-1265-9 10.1016/j.physa.2015.09.045 10.1103/PhysRevE.81.011132 10.1016/j.physa.2014.07.035 10.1140/epjb/e2006-00449-5 10.1051/jp1:1992277 10.1007/s11071-016-2856-4 10.1016/j.measurement.2014.08.051 10.1007/s11071-017-3999-7 10.1007/s11071-015-2307-7 10.1103/PhysRevE.58.133 10.1287/opre.7.1.86 10.1016/j.physa.2017.11.152 10.1103/PhysRevE.64.017101 10.1016/j.cnsns.2014.02.006 10.1016/j.physa.2017.12.100 10.1088/0253-6102/58/4/24 10.1016/j.physa.2017.08.015 10.1016/j.physa.2018.01.005 10.1007/s11071-017-3953-8 10.1016/j.physa.2014.03.044 10.1103/PhysRevE.70.066134 10.1016/j.physleta.2017.12.006 10.1103/PhysRevE.60.6395 10.1088/0034-4885/65/9/203 10.1103/PhysRevE.64.066128 10.1016/j.physa.2018.02.179 10.1016/j.physa.2018.09.098 10.1016/j.cnsns.2014.08.019 10.1103/PhysRevE.95.012311 10.1016/j.physa.2018.09.012 10.1016/j.physa.2017.11.133 10.1007/s11071-011-0143-y 10.1103/RevModPhys.73.1067 10.1103/PhysRevE.58.4271 10.1016/j.physa.2017.11.100 10.1016/j.physa.2015.04.028 10.1103/PhysRevE.51.1035 10.1103/PhysRevE.71.056704 10.1016/j.physrep.2004.12.001 10.1016/j.physa.2019.01.038 10.1016/j.physa.2018.02.044 10.1103/PhysRevE.77.036108 10.1016/j.cnsns.2017.11.026 10.1016/j.physa.2016.10.092 10.1016/S0191-2615(01)00043-1 10.1016/j.physa.2018.03.072 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. |
Copyright_xml | – notice: 2019 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.physa.2019.121268 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1873-2119 |
ExternalDocumentID | 10_1016_j_physa_2019_121268 S0378437119307344 |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 7-5 71M 8P~ 9JN 9JO AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAPFB AAXUO ABAOU ABMAC ABNEU ABYKQ ACAZW ACDAQ ACFVG ACGFS ACNCT ACRLP ADBBV ADEZE ADFHU ADGUI AEBSH AEKER AEYQN AFFNX AFKWA AFTJW AGHFR AGTHC AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIIAU AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR AXJTR AXLSJ BKOJK BLXMC EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IXIXF J1W K-O KOM M38 M41 MHUIS MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSB SSF SSQ SSW SSZ T5K TN5 TWZ WH7 XPP YNT ZMT ~02 ~G- 29O 5VS 6TJ AAFFL AAQFI AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABJNI ABWVN ABXDB ACNNM ACROA ACRPL ADMUD ADNMO ADVLN AEIPS AFJKZ AFODL AFXIZ AGCQF AGQPQ AGRNS AIIUN AJWLA ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BEHZQ BEZPJ BGSCR BNPGV BNTGB BPUDD BULVW BZJEE CITATION FEDTE FGOYB HMV HVGLF HZ~ MVM NDZJH R2- SEW SPG SSH VOH WUQ XJT XOL YYP ZY4 |
ID | FETCH-LOGICAL-c303t-5602986a416b360491dcba6e49248632234733359b2133c6e2b2d2ddcf4931333 |
IEDL.DBID | .~1 |
ISSN | 0378-4371 |
IngestDate | Tue Jul 01 01:32:12 EDT 2025 Thu Apr 24 22:54:41 EDT 2025 Fri Feb 23 02:33:06 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Multi-anticipative average velocity effect Traffic flow V2V environment Car-following model |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c303t-5602986a416b360491dcba6e49248632234733359b2133c6e2b2d2ddcf4931333 |
ParticipantIDs | crossref_primary_10_1016_j_physa_2019_121268 crossref_citationtrail_10_1016_j_physa_2019_121268 elsevier_sciencedirect_doi_10_1016_j_physa_2019_121268 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-08-01 2019-08-00 |
PublicationDateYYYYMMDD | 2019-08-01 |
PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Physica A |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Nagatani (b26) 2000; 61 Bette, Habel, Emig, Schreckenberg (b21) 2017; 95 Nagatani (b37) 1999; 60 Lenz, Wagner, Sollacher (b38) 1999; 7 Zhang, Liu, Wong (b4) 2005; 71 Tang, Yi, Zhang, Wang, Leng (b28) 2018; 496 Sun, Chen, Zhao, Liu, Zheng (b45) 2018; 501 Zhu, Zhang (b52) 2018; 492 Yu, Tang, Xin (b43) 2018; 91 Tang, Yi, Zhang, Zheng (b49) 2017; 11 Ge, Dai, Dong, Xue (b39) 2004; 70 Helbing (b1) 2001; 73 Shi, Lu, Xue, He (b14) 2016; 443 Ding, Jiang, Wang (b19) 2011; 83 Jiang, Hu, Jia, Wang, Wu (b17) 2006; 54 Tang, Wang, Yu, Huang (b7) 2012; 58 Hu, Ma, Chen (b40) 2014; 19 Tang, Shi, Shang, Wang (b46) 2014; 76 Nagatani (b25) 1998; 58 Bando, Hasebe, Nakayama, Shibata, Sugiyama (b33) 1995; 51 Guo, Xue, Shi, Wei, ., He (b44) 2018; 59 Tang, Shi, Huang, Wu, Song (b11) 2019; 514 Zhang, Xue, Zhang, Fan, He (b31) 2019; 514 Tang, Shi, Shang, Wang (b47) 2014; 58 Tang, Huang, Shang (b8) 2017; 468 Zhang, Tang, Yu (b30) 2018; 492 Khallouk, Echab, Ez-Zahraouy, Lakouari (b22) 2018; 382 Sun, Kang, Yang (b50) 2015; 436 Liu, Cheng, Zhu, Ge (b5) 2015; 83 Ou, Tang, Zhang, Zhou (b29) 2018; 505 Nagatani (b2) 2002; 65 Helbing, Tilch (b34) 1998; 58 Tang, He, Yang, Shang (b27) 2014; 413 Ngoduy (b41) 2015; 22 Herman, Montroll, Potts, Rothery (b36) 1959; 7 Li, Wu, Jiang (b16) 2001; 64 Jiang, Wu, Zhu (b35) 2001; 64 Chmura, Herz, Knorr, Pitz, Schreckenberg (b20) 2014; 405 Meng, Qian, Li, Dai (b13) 2008; 77 Tang, Li, Huang, Shang (b6) 2012; 67 Kuang, Xu, Li, Lo (b51) 2017; 471 Liu, Wang, Ge, Cheng (b9) 2018; 91 Ou, Tang (b10) 2018; 500 Zhao, Liu, Chen, Lu (b23) 2018; 494 Wang, Tang, Chen, Huang (b32) 2019; 521 Chen, Liu, Ngoduy, Shi (b42) 2016; 85 Zhang, memory (b3) 2003; 37 Mahnke, Kaupuzs, Lubashevsky (b12) 2005; 408 Mhirech, Ez-Zahraouy, Ismaili (b18) 2010; 81 Ye, Yamamoto (b24) 2018; 490 Ou, Tang (b48) 2018; 495 Nagel, Schreckenberg (b15) 1992; 2 Jiang (10.1016/j.physa.2019.121268_b35) 2001; 64 Guo (10.1016/j.physa.2019.121268_b44) 2018; 59 Tang (10.1016/j.physa.2019.121268_b8) 2017; 468 Jiang (10.1016/j.physa.2019.121268_b17) 2006; 54 Tang (10.1016/j.physa.2019.121268_b7) 2012; 58 Ou (10.1016/j.physa.2019.121268_b29) 2018; 505 Mahnke (10.1016/j.physa.2019.121268_b12) 2005; 408 Lenz (10.1016/j.physa.2019.121268_b38) 1999; 7 Ge (10.1016/j.physa.2019.121268_b39) 2004; 70 Sun (10.1016/j.physa.2019.121268_b50) 2015; 436 Zhang (10.1016/j.physa.2019.121268_b4) 2005; 71 Mhirech (10.1016/j.physa.2019.121268_b18) 2010; 81 Hu (10.1016/j.physa.2019.121268_b40) 2014; 19 Tang (10.1016/j.physa.2019.121268_b49) 2017; 11 Nagatani (10.1016/j.physa.2019.121268_b26) 2000; 61 Meng (10.1016/j.physa.2019.121268_b13) 2008; 77 Ngoduy (10.1016/j.physa.2019.121268_b41) 2015; 22 Tang (10.1016/j.physa.2019.121268_b47) 2014; 58 Yu (10.1016/j.physa.2019.121268_b43) 2018; 91 Bando (10.1016/j.physa.2019.121268_b33) 1995; 51 Wang (10.1016/j.physa.2019.121268_b32) 2019; 521 Shi (10.1016/j.physa.2019.121268_b14) 2016; 443 Zhu (10.1016/j.physa.2019.121268_b52) 2018; 492 Tang (10.1016/j.physa.2019.121268_b6) 2012; 67 Liu (10.1016/j.physa.2019.121268_b9) 2018; 91 Tang (10.1016/j.physa.2019.121268_b46) 2014; 76 Helbing (10.1016/j.physa.2019.121268_b34) 1998; 58 Kuang (10.1016/j.physa.2019.121268_b51) 2017; 471 Nagatani (10.1016/j.physa.2019.121268_b2) 2002; 65 Zhao (10.1016/j.physa.2019.121268_b23) 2018; 494 Liu (10.1016/j.physa.2019.121268_b5) 2015; 83 Zhang (10.1016/j.physa.2019.121268_b3) 2003; 37 Khallouk (10.1016/j.physa.2019.121268_b22) 2018; 382 Herman (10.1016/j.physa.2019.121268_b36) 1959; 7 Li (10.1016/j.physa.2019.121268_b16) 2001; 64 Nagel (10.1016/j.physa.2019.121268_b15) 1992; 2 Zhang (10.1016/j.physa.2019.121268_b30) 2018; 492 Bette (10.1016/j.physa.2019.121268_b21) 2017; 95 Nagatani (10.1016/j.physa.2019.121268_b37) 1999; 60 Zhang (10.1016/j.physa.2019.121268_b31) 2019; 514 Ye (10.1016/j.physa.2019.121268_b24) 2018; 490 Tang (10.1016/j.physa.2019.121268_b28) 2018; 496 Sun (10.1016/j.physa.2019.121268_b45) 2018; 501 Tang (10.1016/j.physa.2019.121268_b11) 2019; 514 Ou (10.1016/j.physa.2019.121268_b10) 2018; 500 Chmura (10.1016/j.physa.2019.121268_b20) 2014; 405 Tang (10.1016/j.physa.2019.121268_b27) 2014; 413 Helbing (10.1016/j.physa.2019.121268_b1) 2001; 73 Ding (10.1016/j.physa.2019.121268_b19) 2011; 83 Chen (10.1016/j.physa.2019.121268_b42) 2016; 85 Nagatani (10.1016/j.physa.2019.121268_b25) 1998; 58 Ou (10.1016/j.physa.2019.121268_b48) 2018; 495 |
References_xml | – volume: 58 start-page: 286 year: 2014 end-page: 293 ident: b47 article-title: An extended car-following model with consideration of the reliability of inter-vehicle communication publication-title: Measurement – volume: 501 start-page: 293 year: 2018 end-page: 307 ident: b45 article-title: Linear stability and nonlinear analyses of traffic waves for the general nonlinear car-following model with multi-time delays publication-title: Physica A – volume: 59 start-page: 553 year: 2018 end-page: 564 ident: b44 article-title: Mean-field velocity difference model considering the average effect of multi-vehicle interaction publication-title: Commun. Nonlinear Sci. Numer. Simul. – volume: 382 start-page: 566 year: 2018 end-page: 573 ident: b22 article-title: Traffic flow behavior at un-signalized intersection with crossings pedestrians publication-title: Phys. Lett. A – volume: 490 start-page: 269 year: 2018 end-page: 277 ident: b24 article-title: Modeling connected and autonomous vehicles in heterogeneous traffic flow publication-title: Physica A – volume: 70 year: 2004 ident: b39 article-title: Stabilization effect of traffic flow in an extended car-following model based on an intelligent transportation system application publication-title: Phys. Rev. E – volume: 81 year: 2010 ident: b18 article-title: Effect of damaged vehicle evacuation on traffic flow with open boundaries publication-title: Phys. Rev. E – volume: 7 start-page: 86 year: 1959 end-page: 106 ident: b36 article-title: Traffic dynamics: Analysis of stability in Car following publication-title: Oper. Res. – volume: 65 start-page: 1331 year: 2002 end-page: 1386 ident: b2 article-title: The physics of traffic jams publication-title: Rep. Progr. Phys. – volume: 22 start-page: 420 year: 2015 end-page: 426 ident: b41 article-title: Linear stability of a generalized multi-anticipative car following model with time delays publication-title: Commun. Nonlinear Sci. Numer. Simul. – volume: 413 start-page: 583 year: 2014 end-page: 591 ident: b27 article-title: A car-following model accounting for the driver’s attribution publication-title: Physica A – volume: 521 start-page: 387 year: 2019 end-page: 398 ident: b32 article-title: Analysis of trip cost allowing late arrival in a traffic corridor with one entry and one exit under car-following model publication-title: Physica A – volume: 83 year: 2011 ident: b19 article-title: Traffic flow in the Biham-Middleton-Levine model with random update rule publication-title: Phys. Rev. E – volume: 58 start-page: 133 year: 1998 end-page: 138 ident: b34 article-title: Generalized force model of traffic dynamics publication-title: Phys. Rev. E – volume: 495 start-page: 260 year: 2018 end-page: 268 ident: b48 article-title: An extended two-lane car-following model accounting for inter-vehicle communication publication-title: Physica A – volume: 514 start-page: 767 year: 2019 end-page: 785 ident: b11 article-title: A route-based traffic flow model accounting for interruption factors publication-title: Physica A – volume: 91 start-page: 2007 year: 2018 end-page: 2017 ident: b9 article-title: Kdv-Burgers equation in the modified continuum model considering the backward looking effect publication-title: Nonlinear Dynam. – volume: 492 start-page: 2154 year: 2018 end-page: 2165 ident: b52 article-title: A new car-following model for autonomous vehicles flow with mean expected velocity field publication-title: Physica A – volume: 67 start-page: 2255 year: 2012 end-page: 2265 ident: b6 article-title: A new fundamental diagram theory with the individual difference of the driver’s perception ability publication-title: Nonlinear Dynam. – volume: 2 start-page: 2221 year: 1992 end-page: 2229 ident: b15 article-title: A cellular automaton model for freeway traffic publication-title: J.Phys. France – volume: 496 start-page: 399 year: 2018 end-page: 409 ident: b28 article-title: A speed guidance strategy for multiple signalized intersections based on car-following model publication-title: Physica A – volume: 494 start-page: 40 year: 2018 end-page: 51 ident: b23 article-title: Cellular automata model for traffic flow at intersections in internet of vehicles publication-title: Physica A – volume: 71 year: 2005 ident: b4 article-title: High-resolution numerical approximation of traffic flow problems with variable lanes and free-flow velocities publication-title: Phys. Rev. E – volume: 436 start-page: 103 year: 2015 end-page: 109 ident: b50 article-title: A novel car following model considering average speed of preceding vehicles group publication-title: Physica A – volume: 443 start-page: 22 year: 2016 end-page: 31 ident: b14 article-title: Revised lattice Boltzmann model for traffic flow with equilibrium traffic pressure publication-title: Physica A – volume: 405 start-page: 332 year: 2014 end-page: 337 ident: b20 article-title: A simple stochastic cellular automaton for synchronized traffic flow publication-title: Physica A – volume: 76 start-page: 2017 year: 2014 end-page: 2023 ident: b46 article-title: A new car-following model with consideration of inter-vehicle communication publication-title: Nonlinear Dynam. – volume: 60 start-page: 6395 year: 1999 end-page: 6401 ident: b37 article-title: Stabilization and enhancement of traffic flow by the next-nearest-neighbor interaction publication-title: Phys. Rev. E – volume: 514 start-page: 133 year: 2019 end-page: 140 ident: b31 article-title: Bifurcation analysis of traffic flow through an improved car-following model considering the time-delayed velocity difference publication-title: Physica A – volume: 51 start-page: 1035 year: 1995 end-page: 1042 ident: b33 article-title: Dynamical model of traffic congestion and numerical simulation publication-title: Phys. Rev. E – volume: 61 start-page: 3564 year: 2000 end-page: 3570 ident: b26 article-title: Density waves in traffic flow publication-title: Phys. Rev. E – volume: 64 year: 2001 ident: b16 article-title: Cellular automaton model considering the velocity effect of a car on the successive car publication-title: Phys. Rev. E – volume: 11 start-page: 596 year: 2017 end-page: 603 ident: b49 article-title: Modelling the driving behaviour at a signalised intersection with the information of remaining green time publication-title: IET Intell. Transp. Syst. – volume: 95 year: 2017 ident: b21 article-title: Mechanisms of jamming in the nagel–schreckenberg model for traffic flow publication-title: Phys. Rev. E – volume: 77 year: 2008 ident: b13 article-title: Lattice Boltzmann model for traffic flow publication-title: Phys. Rev. E – volume: 505 start-page: 105 year: 2018 end-page: 113 ident: b29 article-title: A car-following model accounting for probability distribution publication-title: Physica A – volume: 468 start-page: 322 year: 2017 end-page: 333 ident: b8 article-title: An extended macro traffic flow model accounting for the driver’s bounded rationality and numerical tests publication-title: Physica A – volume: 73 start-page: 1067 year: 2001 end-page: 1141 ident: b1 article-title: Traffic and related self-driven many-particle systems publication-title: Rev. Modern Phys. – volume: 408 start-page: 1 year: 2005 end-page: 130 ident: b12 article-title: Probabilistic description of traffic flow publication-title: Phys. Rep. – volume: 64 year: 2001 ident: b35 article-title: Full velocity difference model for a car-following theory publication-title: Phys. Rev. E – volume: 500 start-page: 131 year: 2018 end-page: 138 ident: b10 article-title: Impacts of moving bottlenecks on traffic flow publication-title: Physica A – volume: 58 start-page: 583 year: 2012 end-page: 589 ident: b7 article-title: A stochastic LWR model with consideration of the driver’s individual property publication-title: Commun. Theor. Phys. – volume: 37 start-page: 27 year: 2003 end-page: 41 ident: b3 article-title: Driver memory traffic viscosity and a viscous vehicular traffic flow model publication-title: Transp. Res. B – volume: 83 start-page: 57 year: 2015 end-page: 64 ident: b5 article-title: The study for continuum model considering traffic jerk effect publication-title: Nonlinear Dynam. – volume: 54 start-page: 267 year: 2006 end-page: 273 ident: b17 article-title: The effects of reaction delay in the nagel–schreckenberg traffic flow model publication-title: Eur. Phys. J. B – volume: 58 start-page: 4271 year: 1998 end-page: 4276 ident: b25 article-title: Thermodynamic theory for the jamming transition in traffic flow publication-title: Phys. Rev. E – volume: 492 start-page: 1831 year: 2018 end-page: 1837 ident: b30 article-title: An improved car-following model accounting for the preceding car’s taillight publication-title: Physica A – volume: 471 start-page: 778 year: 2017 end-page: 787 ident: b51 article-title: An extended car-following model accounting for the average headway effect in intelligent transportation system publication-title: Physica A – volume: 91 start-page: 1415 year: 2018 end-page: 1428 ident: b43 article-title: Relative velocity difference model for the car-following theory publication-title: Nonlinear Dynam. – volume: 7 start-page: 331 year: 1999 end-page: 335 ident: b38 article-title: Multi-anticipative car-following model publication-title: Eur. Phys. J. B – volume: 85 start-page: 2705 year: 2016 end-page: 2717 ident: b42 article-title: A new multi-anticipative car-following model with consideration of the desired following distance publication-title: Nonlinear Dynam. – volume: 19 start-page: 3128 year: 2014 end-page: 3135 ident: b40 article-title: An extended multi-anticipative delay model of traffic flow publication-title: Commun. Nonlinear Sci. Numer. Simul. – volume: 61 start-page: 3564 year: 2000 ident: 10.1016/j.physa.2019.121268_b26 article-title: Density waves in traffic flow publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.61.3564 – volume: 83 year: 2011 ident: 10.1016/j.physa.2019.121268_b19 article-title: Traffic flow in the Biham-Middleton-Levine model with random update rule publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.83.047101 – volume: 7 start-page: 331 year: 1999 ident: 10.1016/j.physa.2019.121268_b38 article-title: Multi-anticipative car-following model publication-title: Eur. Phys. J. B doi: 10.1007/s100510050618 – volume: 11 start-page: 596 year: 2017 ident: 10.1016/j.physa.2019.121268_b49 article-title: Modelling the driving behaviour at a signalised intersection with the information of remaining green time publication-title: IET Intell. Transp. Syst. doi: 10.1049/iet-its.2017.0191 – volume: 471 start-page: 778 year: 2017 ident: 10.1016/j.physa.2019.121268_b51 article-title: An extended car-following model accounting for the average headway effect in intelligent transportation system publication-title: Physica A doi: 10.1016/j.physa.2016.12.022 – volume: 76 start-page: 2017 year: 2014 ident: 10.1016/j.physa.2019.121268_b46 article-title: A new car-following model with consideration of inter-vehicle communication publication-title: Nonlinear Dynam. doi: 10.1007/s11071-014-1265-9 – volume: 443 start-page: 22 year: 2016 ident: 10.1016/j.physa.2019.121268_b14 article-title: Revised lattice Boltzmann model for traffic flow with equilibrium traffic pressure publication-title: Physica A doi: 10.1016/j.physa.2015.09.045 – volume: 81 year: 2010 ident: 10.1016/j.physa.2019.121268_b18 article-title: Effect of damaged vehicle evacuation on traffic flow with open boundaries publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.81.011132 – volume: 413 start-page: 583 year: 2014 ident: 10.1016/j.physa.2019.121268_b27 article-title: A car-following model accounting for the driver’s attribution publication-title: Physica A doi: 10.1016/j.physa.2014.07.035 – volume: 54 start-page: 267 year: 2006 ident: 10.1016/j.physa.2019.121268_b17 article-title: The effects of reaction delay in the nagel–schreckenberg traffic flow model publication-title: Eur. Phys. J. B doi: 10.1140/epjb/e2006-00449-5 – volume: 2 start-page: 2221 year: 1992 ident: 10.1016/j.physa.2019.121268_b15 article-title: A cellular automaton model for freeway traffic publication-title: J.Phys. France doi: 10.1051/jp1:1992277 – volume: 85 start-page: 2705 year: 2016 ident: 10.1016/j.physa.2019.121268_b42 article-title: A new multi-anticipative car-following model with consideration of the desired following distance publication-title: Nonlinear Dynam. doi: 10.1007/s11071-016-2856-4 – volume: 58 start-page: 286 year: 2014 ident: 10.1016/j.physa.2019.121268_b47 article-title: An extended car-following model with consideration of the reliability of inter-vehicle communication publication-title: Measurement doi: 10.1016/j.measurement.2014.08.051 – volume: 91 start-page: 2007 year: 2018 ident: 10.1016/j.physa.2019.121268_b9 article-title: Kdv-Burgers equation in the modified continuum model considering the backward looking effect publication-title: Nonlinear Dynam. doi: 10.1007/s11071-017-3999-7 – volume: 83 start-page: 57 year: 2015 ident: 10.1016/j.physa.2019.121268_b5 article-title: The study for continuum model considering traffic jerk effect publication-title: Nonlinear Dynam. doi: 10.1007/s11071-015-2307-7 – volume: 58 start-page: 133 year: 1998 ident: 10.1016/j.physa.2019.121268_b34 article-title: Generalized force model of traffic dynamics publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.58.133 – volume: 7 start-page: 86 year: 1959 ident: 10.1016/j.physa.2019.121268_b36 article-title: Traffic dynamics: Analysis of stability in Car following publication-title: Oper. Res. doi: 10.1287/opre.7.1.86 – volume: 494 start-page: 40 year: 2018 ident: 10.1016/j.physa.2019.121268_b23 article-title: Cellular automata model for traffic flow at intersections in internet of vehicles publication-title: Physica A doi: 10.1016/j.physa.2017.11.152 – volume: 64 year: 2001 ident: 10.1016/j.physa.2019.121268_b35 article-title: Full velocity difference model for a car-following theory publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.64.017101 – volume: 19 start-page: 3128 year: 2014 ident: 10.1016/j.physa.2019.121268_b40 article-title: An extended multi-anticipative delay model of traffic flow publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2014.02.006 – volume: 495 start-page: 260 year: 2018 ident: 10.1016/j.physa.2019.121268_b48 article-title: An extended two-lane car-following model accounting for inter-vehicle communication publication-title: Physica A doi: 10.1016/j.physa.2017.12.100 – volume: 58 start-page: 583 year: 2012 ident: 10.1016/j.physa.2019.121268_b7 article-title: A stochastic LWR model with consideration of the driver’s individual property publication-title: Commun. Theor. Phys. doi: 10.1088/0253-6102/58/4/24 – volume: 490 start-page: 269 year: 2018 ident: 10.1016/j.physa.2019.121268_b24 article-title: Modeling connected and autonomous vehicles in heterogeneous traffic flow publication-title: Physica A doi: 10.1016/j.physa.2017.08.015 – volume: 496 start-page: 399 year: 2018 ident: 10.1016/j.physa.2019.121268_b28 article-title: A speed guidance strategy for multiple signalized intersections based on car-following model publication-title: Physica A doi: 10.1016/j.physa.2018.01.005 – volume: 91 start-page: 1415 year: 2018 ident: 10.1016/j.physa.2019.121268_b43 article-title: Relative velocity difference model for the car-following theory publication-title: Nonlinear Dynam. doi: 10.1007/s11071-017-3953-8 – volume: 405 start-page: 332 year: 2014 ident: 10.1016/j.physa.2019.121268_b20 article-title: A simple stochastic cellular automaton for synchronized traffic flow publication-title: Physica A doi: 10.1016/j.physa.2014.03.044 – volume: 70 year: 2004 ident: 10.1016/j.physa.2019.121268_b39 article-title: Stabilization effect of traffic flow in an extended car-following model based on an intelligent transportation system application publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.70.066134 – volume: 382 start-page: 566 year: 2018 ident: 10.1016/j.physa.2019.121268_b22 article-title: Traffic flow behavior at un-signalized intersection with crossings pedestrians publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2017.12.006 – volume: 60 start-page: 6395 year: 1999 ident: 10.1016/j.physa.2019.121268_b37 article-title: Stabilization and enhancement of traffic flow by the next-nearest-neighbor interaction publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.60.6395 – volume: 65 start-page: 1331 year: 2002 ident: 10.1016/j.physa.2019.121268_b2 article-title: The physics of traffic jams publication-title: Rep. Progr. Phys. doi: 10.1088/0034-4885/65/9/203 – volume: 64 year: 2001 ident: 10.1016/j.physa.2019.121268_b16 article-title: Cellular automaton model considering the velocity effect of a car on the successive car publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.64.066128 – volume: 501 start-page: 293 year: 2018 ident: 10.1016/j.physa.2019.121268_b45 article-title: Linear stability and nonlinear analyses of traffic waves for the general nonlinear car-following model with multi-time delays publication-title: Physica A doi: 10.1016/j.physa.2018.02.179 – volume: 514 start-page: 767 year: 2019 ident: 10.1016/j.physa.2019.121268_b11 article-title: A route-based traffic flow model accounting for interruption factors publication-title: Physica A doi: 10.1016/j.physa.2018.09.098 – volume: 22 start-page: 420 year: 2015 ident: 10.1016/j.physa.2019.121268_b41 article-title: Linear stability of a generalized multi-anticipative car following model with time delays publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2014.08.019 – volume: 95 year: 2017 ident: 10.1016/j.physa.2019.121268_b21 article-title: Mechanisms of jamming in the nagel–schreckenberg model for traffic flow publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.95.012311 – volume: 514 start-page: 133 year: 2019 ident: 10.1016/j.physa.2019.121268_b31 article-title: Bifurcation analysis of traffic flow through an improved car-following model considering the time-delayed velocity difference publication-title: Physica A doi: 10.1016/j.physa.2018.09.012 – volume: 492 start-page: 2154 year: 2018 ident: 10.1016/j.physa.2019.121268_b52 article-title: A new car-following model for autonomous vehicles flow with mean expected velocity field publication-title: Physica A doi: 10.1016/j.physa.2017.11.133 – volume: 67 start-page: 2255 year: 2012 ident: 10.1016/j.physa.2019.121268_b6 article-title: A new fundamental diagram theory with the individual difference of the driver’s perception ability publication-title: Nonlinear Dynam. doi: 10.1007/s11071-011-0143-y – volume: 73 start-page: 1067 year: 2001 ident: 10.1016/j.physa.2019.121268_b1 article-title: Traffic and related self-driven many-particle systems publication-title: Rev. Modern Phys. doi: 10.1103/RevModPhys.73.1067 – volume: 58 start-page: 4271 year: 1998 ident: 10.1016/j.physa.2019.121268_b25 article-title: Thermodynamic theory for the jamming transition in traffic flow publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.58.4271 – volume: 492 start-page: 1831 year: 2018 ident: 10.1016/j.physa.2019.121268_b30 article-title: An improved car-following model accounting for the preceding car’s taillight publication-title: Physica A doi: 10.1016/j.physa.2017.11.100 – volume: 436 start-page: 103 year: 2015 ident: 10.1016/j.physa.2019.121268_b50 article-title: A novel car following model considering average speed of preceding vehicles group publication-title: Physica A doi: 10.1016/j.physa.2015.04.028 – volume: 51 start-page: 1035 year: 1995 ident: 10.1016/j.physa.2019.121268_b33 article-title: Dynamical model of traffic congestion and numerical simulation publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.51.1035 – volume: 71 year: 2005 ident: 10.1016/j.physa.2019.121268_b4 article-title: High-resolution numerical approximation of traffic flow problems with variable lanes and free-flow velocities publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.71.056704 – volume: 408 start-page: 1 year: 2005 ident: 10.1016/j.physa.2019.121268_b12 article-title: Probabilistic description of traffic flow publication-title: Phys. Rep. doi: 10.1016/j.physrep.2004.12.001 – volume: 521 start-page: 387 year: 2019 ident: 10.1016/j.physa.2019.121268_b32 article-title: Analysis of trip cost allowing late arrival in a traffic corridor with one entry and one exit under car-following model publication-title: Physica A doi: 10.1016/j.physa.2019.01.038 – volume: 500 start-page: 131 year: 2018 ident: 10.1016/j.physa.2019.121268_b10 article-title: Impacts of moving bottlenecks on traffic flow publication-title: Physica A doi: 10.1016/j.physa.2018.02.044 – volume: 77 year: 2008 ident: 10.1016/j.physa.2019.121268_b13 article-title: Lattice Boltzmann model for traffic flow publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.77.036108 – volume: 59 start-page: 553 year: 2018 ident: 10.1016/j.physa.2019.121268_b44 article-title: Mean-field velocity difference model considering the average effect of multi-vehicle interaction publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2017.11.026 – volume: 468 start-page: 322 year: 2017 ident: 10.1016/j.physa.2019.121268_b8 article-title: An extended macro traffic flow model accounting for the driver’s bounded rationality and numerical tests publication-title: Physica A doi: 10.1016/j.physa.2016.10.092 – volume: 37 start-page: 27 year: 2003 ident: 10.1016/j.physa.2019.121268_b3 article-title: Driver memory traffic viscosity and a viscous vehicular traffic flow model publication-title: Transp. Res. B doi: 10.1016/S0191-2615(01)00043-1 – volume: 505 start-page: 105 year: 2018 ident: 10.1016/j.physa.2019.121268_b29 article-title: A car-following model accounting for probability distribution publication-title: Physica A doi: 10.1016/j.physa.2018.03.072 |
SSID | ssj0001732 |
Score | 2.5010154 |
Snippet | Vehicle-to-vehicle (for short, V2V) communication technology is regarded as a promising technology to improve traffic efficiency and safety. In this paper, an... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 121268 |
SubjectTerms | Car-following model Multi-anticipative average velocity effect Traffic flow V2V environment |
Title | An extended car-following model considering multi-anticipative average velocity effect under V2V environment |
URI | https://dx.doi.org/10.1016/j.physa.2019.121268 |
Volume | 527 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8MwGA5jIngRP3F-jBw8GtcmWdocx3BMhV10Y7fQpClMRjfm1Ju_3TdpqhNkB48NSSlP3r4f7ZPnReg6sbllWlvCu2lBuOaM6AJsOYuMkTbRItKebTESwzF_mHanDdSvz8I4WmXw_ZVP9946jHQCmp3lbNZ5iliScpbEkIKAnXKnCcp54qz89vOH5hEnrPqTANWSm10rD3mOl_t64MSHYulUFqjTW_0rOm1EnMEB2g-pIu5VT3OIGrY8Qruesmlej9G8V-L6EzY22YoUsKWLDwhF2Le3wSb04vQjjjdIAMXAoX63OAMjBmeCHWnIQC6OK2oHdqfKVnhCJ3jjENwJGg_unvtDEnonEANBaU0gkaEyFRnkW5oJKAPi3OhMWA71VirgLWY8YYx1paZQpRphqaY5zXNTcMlghJ2iZrko7RnCUnMDhWxcuNpJRhpANxJgLyyHe-q0hWiNmTJBWNz1t5irmkH2ojzQygGtKqBb6OZ70bLS1dg-XdSboX6ZhwLPv23h-X8XXqA9d1Vx_S5Rc716s1eQf6x12xtYG-307h-Hoy81lNrG |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4gxOjF-Iz43INHG9ru9rFHQiQgyEUg3Dbd7TbBkEIQ9e87224JJsaD122nab6dzmP7zQzAQ6RTTaXUDgvizGGSUUdmqMuJqxTXkQxdWbAtRmFvwp5nwawGnaoWxtAqre0vbXphre1Ky6LZWs3nrVeXRjGjkYchCOopY3vQMN2pgjo02v1Bb7Q1yF5Ey58JmDAZgar5UEHzMgcIpv-Qx02jBd-0XP3NQe04ne4xHNlokbTLFzqBms5PYb9gbar3M1i0c1KdYhOVrJ0Md3X5hd6IFBNuiLLjOIsVQx10EEhLo_7UJEE9RntCDG9IYThOSnYHMYVlazL1p2SnDu4cJt2ncafn2PEJjkK_tHEwlvF5HCYYckkaYibgpUomoWaYcsUhfsiURZTSgEsfE1UVal_6qZ-mKmOc4gq9gHq-zPUlEC6ZwlzWy0z6xF2JuCuOyGea4TNl3AS_wkwo21vcjLhYiIpE9iYKoIUBWpRAN-FxK7QqW2v8fXtYbYb4oSECjf9fglf_FbyHg974ZSiG_dHgGg7NlZL6dwP1zfpD32I4spF3Vt2-AcFj3Xc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+extended+car-following+model+considering+multi-anticipative+average+velocity+effect+under+V2V+environment&rft.jtitle=Physica+A&rft.au=Kuang%2C+Hua&rft.au=Wang%2C+Mei-Ting&rft.au=Lu%2C+Fang-Hua&rft.au=Bai%2C+Ke-Zhao&rft.date=2019-08-01&rft.pub=Elsevier+B.V&rft.issn=0378-4371&rft.eissn=1873-2119&rft.volume=527&rft_id=info:doi/10.1016%2Fj.physa.2019.121268&rft.externalDocID=S0378437119307344 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4371&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4371&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4371&client=summon |