An extended car-following model considering multi-anticipative average velocity effect under V2V environment

Vehicle-to-vehicle (for short, V2V) communication technology is regarded as a promising technology to improve traffic efficiency and safety. In this paper, an extended car-following model is proposed to simulate traffic flow by considering multi-anticipative average velocity effect (including the av...

Full description

Saved in:
Bibliographic Details
Published inPhysica A Vol. 527; p. 121268
Main Authors Kuang, Hua, Wang, Mei-Ting, Lu, Fang-Hua, Bai, Ke-Zhao, Li, Xing-Li
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Vehicle-to-vehicle (for short, V2V) communication technology is regarded as a promising technology to improve traffic efficiency and safety. In this paper, an extended car-following model is proposed to simulate traffic flow by considering multi-anticipative average velocity effect (including the average velocity and the mean expected velocity field effect of preceding vehicles group) under V2V environment. The stability condition of this model is obtained by applying the linear stability theory. The phase diagram comparison and analysis shows that the multi-anticipative average velocity effect can effectively enhance the stabilization of traffic system. In particular, the average velocity effect plays a more important role than that of the mean expected velocity field effect in improving the stability of traffic flow. The mKdV equation is derived to describe the evolution characteristics of traffic density waves by using the reductive perturbation method. Furthermore, the numerical simulation is carried out to validate the theoretical results, and indicates that the traffic jam can be suppressed efficiently via taking into account multi-anticipative average velocity effect. •A new car-following model considering multi-anticipative average velocity effect is presented.•Linear analysis is carried out to study the stability of traffic flow.•The mKdV equation is derived from nonlinear analysis to describe the density wave of traffic jam.•The effect of multi-anticipative average velocity can effectively improve the stability of traffic flow.
AbstractList Vehicle-to-vehicle (for short, V2V) communication technology is regarded as a promising technology to improve traffic efficiency and safety. In this paper, an extended car-following model is proposed to simulate traffic flow by considering multi-anticipative average velocity effect (including the average velocity and the mean expected velocity field effect of preceding vehicles group) under V2V environment. The stability condition of this model is obtained by applying the linear stability theory. The phase diagram comparison and analysis shows that the multi-anticipative average velocity effect can effectively enhance the stabilization of traffic system. In particular, the average velocity effect plays a more important role than that of the mean expected velocity field effect in improving the stability of traffic flow. The mKdV equation is derived to describe the evolution characteristics of traffic density waves by using the reductive perturbation method. Furthermore, the numerical simulation is carried out to validate the theoretical results, and indicates that the traffic jam can be suppressed efficiently via taking into account multi-anticipative average velocity effect. •A new car-following model considering multi-anticipative average velocity effect is presented.•Linear analysis is carried out to study the stability of traffic flow.•The mKdV equation is derived from nonlinear analysis to describe the density wave of traffic jam.•The effect of multi-anticipative average velocity can effectively improve the stability of traffic flow.
ArticleNumber 121268
Author Wang, Mei-Ting
Kuang, Hua
Li, Xing-Li
Lu, Fang-Hua
Bai, Ke-Zhao
Author_xml – sequence: 1
  givenname: Hua
  surname: Kuang
  fullname: Kuang, Hua
  email: khphy@gxnu.edu.cn
  organization: College of Physical Science and Technology, Guangxi Normal University, Guilin, 541004, China
– sequence: 2
  givenname: Mei-Ting
  surname: Wang
  fullname: Wang, Mei-Ting
  organization: College of Physical Science and Technology, Guangxi Normal University, Guilin, 541004, China
– sequence: 3
  givenname: Fang-Hua
  surname: Lu
  fullname: Lu, Fang-Hua
  organization: College of Physical Science and Technology, Guangxi Normal University, Guilin, 541004, China
– sequence: 4
  givenname: Ke-Zhao
  surname: Bai
  fullname: Bai, Ke-Zhao
  organization: College of Physical Science and Technology, Guangxi Normal University, Guilin, 541004, China
– sequence: 5
  givenname: Xing-Li
  surname: Li
  fullname: Li, Xing-Li
  organization: School of Applied Science, Taiyuan University of Science and Technology, Taiyuan, 030024, China
BookMark eNqFkM1OAjEUhRuDiYA-gZu-wGDbO3RmFi4I8S8hcaNsm9LewZKhJZ0yyts7gCsXujrJSb6TnG9EBj54JOSWswlnXN5tJruPQ6sngvFqwgUXsrwgQ14WkAnOqwEZMijKLIeCX5FR224YY7wAMSTNzFP8SugtWmp0zOrQNOHT-TXdBosNNcG3zmI8NfsmuUz75Izb6eQ6pLrDqNdIO2yCcelAsa7RJLrvByNdiiVF37kY_BZ9uiaXtW5avPnJMXl_fHibP2eL16eX-WyRGWCQsqlkoiqlzrlcgWR5xa1ZaYl5JfJSghCQFwAwrVaCAxiJYiWssNbUeQV9A2MC510TQ9tGrNUuuq2OB8WZOgpTG3USpo7C1FlYT1W_qP5Q_zL4FLVr_mHvzyz2tzqHUbXGoTdoXex1KBvcn_w3CU2LKw
CitedBy_id crossref_primary_10_1016_j_apm_2021_01_002
crossref_primary_10_1142_S0129183121500959
crossref_primary_10_1016_j_future_2024_107544
crossref_primary_10_1142_S0129183120501673
crossref_primary_10_1016_j_ijnonlinmec_2025_105040
crossref_primary_10_1038_s41598_023_49365_x
crossref_primary_10_1007_s11071_023_08377_y
crossref_primary_10_1109_ACCESS_2021_3060080
crossref_primary_10_1142_S0129183122501145
crossref_primary_10_1155_2022_8281919
crossref_primary_10_3390_wevj15060233
crossref_primary_10_1142_S0217984921503358
crossref_primary_10_1142_S0217984922502219
crossref_primary_10_1061_JTEPBS_TEENG_7836
crossref_primary_10_1177_09544070241275724
crossref_primary_10_4236_jamp_2020_83028
crossref_primary_10_1016_j_physa_2024_130051
crossref_primary_10_1140_epjp_s13360_024_05365_y
crossref_primary_10_1016_j_physa_2024_129747
crossref_primary_10_1016_j_ifacol_2025_01_126
crossref_primary_10_1016_j_physa_2020_125665
crossref_primary_10_1109_TITS_2024_3362732
crossref_primary_10_1016_j_physa_2021_126372
crossref_primary_10_1016_j_physa_2024_130207
crossref_primary_10_3390_fi12120216
crossref_primary_10_1007_s11071_022_08032_y
crossref_primary_10_1016_j_physa_2023_129259
crossref_primary_10_1016_j_isci_2024_111361
crossref_primary_10_1061_JTEPBS_TEENG_7430
crossref_primary_10_3390_fi14010014
crossref_primary_10_1007_s11071_024_10660_5
crossref_primary_10_1016_j_physa_2021_126022
crossref_primary_10_1177_09544070221145478
crossref_primary_10_1016_j_apm_2023_03_029
crossref_primary_10_1016_j_physa_2025_130438
crossref_primary_10_1142_S0217984921502572
crossref_primary_10_1155_2022_3488597
crossref_primary_10_1016_j_apm_2024_115765
crossref_primary_10_1142_S021798492150562X
crossref_primary_10_1088_1674_1056_ac2b18
crossref_primary_10_3390_su13105602
crossref_primary_10_1016_j_physa_2020_124829
crossref_primary_10_3390_fi13040088
crossref_primary_10_1007_s11071_021_06970_7
crossref_primary_10_1007_s11071_023_08548_x
crossref_primary_10_3390_su16145983
crossref_primary_10_1016_j_physa_2020_125446
crossref_primary_10_1016_j_apm_2022_04_010
crossref_primary_10_1016_j_chaos_2024_115200
crossref_primary_10_1007_s11071_021_06999_8
crossref_primary_10_1109_ACCESS_2023_3291806
crossref_primary_10_1049_iet_its_2019_0606
crossref_primary_10_1007_s40305_023_00508_x
crossref_primary_10_1016_j_physa_2022_128196
Cites_doi 10.1103/PhysRevE.61.3564
10.1103/PhysRevE.83.047101
10.1007/s100510050618
10.1049/iet-its.2017.0191
10.1016/j.physa.2016.12.022
10.1007/s11071-014-1265-9
10.1016/j.physa.2015.09.045
10.1103/PhysRevE.81.011132
10.1016/j.physa.2014.07.035
10.1140/epjb/e2006-00449-5
10.1051/jp1:1992277
10.1007/s11071-016-2856-4
10.1016/j.measurement.2014.08.051
10.1007/s11071-017-3999-7
10.1007/s11071-015-2307-7
10.1103/PhysRevE.58.133
10.1287/opre.7.1.86
10.1016/j.physa.2017.11.152
10.1103/PhysRevE.64.017101
10.1016/j.cnsns.2014.02.006
10.1016/j.physa.2017.12.100
10.1088/0253-6102/58/4/24
10.1016/j.physa.2017.08.015
10.1016/j.physa.2018.01.005
10.1007/s11071-017-3953-8
10.1016/j.physa.2014.03.044
10.1103/PhysRevE.70.066134
10.1016/j.physleta.2017.12.006
10.1103/PhysRevE.60.6395
10.1088/0034-4885/65/9/203
10.1103/PhysRevE.64.066128
10.1016/j.physa.2018.02.179
10.1016/j.physa.2018.09.098
10.1016/j.cnsns.2014.08.019
10.1103/PhysRevE.95.012311
10.1016/j.physa.2018.09.012
10.1016/j.physa.2017.11.133
10.1007/s11071-011-0143-y
10.1103/RevModPhys.73.1067
10.1103/PhysRevE.58.4271
10.1016/j.physa.2017.11.100
10.1016/j.physa.2015.04.028
10.1103/PhysRevE.51.1035
10.1103/PhysRevE.71.056704
10.1016/j.physrep.2004.12.001
10.1016/j.physa.2019.01.038
10.1016/j.physa.2018.02.044
10.1103/PhysRevE.77.036108
10.1016/j.cnsns.2017.11.026
10.1016/j.physa.2016.10.092
10.1016/S0191-2615(01)00043-1
10.1016/j.physa.2018.03.072
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.physa.2019.121268
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1873-2119
ExternalDocumentID 10_1016_j_physa_2019_121268
S0378437119307344
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
7-5
71M
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAPFB
AAXUO
ABAOU
ABMAC
ABNEU
ABYKQ
ACAZW
ACDAQ
ACFVG
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADFHU
ADGUI
AEBSH
AEKER
AEYQN
AFFNX
AFKWA
AFTJW
AGHFR
AGTHC
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIIAU
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
AXLSJ
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IXIXF
J1W
K-O
KOM
M38
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSB
SSF
SSQ
SSW
SSZ
T5K
TN5
TWZ
WH7
XPP
YNT
ZMT
~02
~G-
29O
5VS
6TJ
AAFFL
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABJNI
ABWVN
ABXDB
ACNNM
ACROA
ACRPL
ADMUD
ADNMO
ADVLN
AEIPS
AFJKZ
AFODL
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
AJWLA
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BEHZQ
BEZPJ
BGSCR
BNPGV
BNTGB
BPUDD
BULVW
BZJEE
CITATION
FEDTE
FGOYB
HMV
HVGLF
HZ~
MVM
NDZJH
R2-
SEW
SPG
SSH
VOH
WUQ
XJT
XOL
YYP
ZY4
ID FETCH-LOGICAL-c303t-5602986a416b360491dcba6e49248632234733359b2133c6e2b2d2ddcf4931333
IEDL.DBID .~1
ISSN 0378-4371
IngestDate Tue Jul 01 01:32:12 EDT 2025
Thu Apr 24 22:54:41 EDT 2025
Fri Feb 23 02:33:06 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Multi-anticipative average velocity effect
Traffic flow
V2V environment
Car-following model
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c303t-5602986a416b360491dcba6e49248632234733359b2133c6e2b2d2ddcf4931333
ParticipantIDs crossref_primary_10_1016_j_physa_2019_121268
crossref_citationtrail_10_1016_j_physa_2019_121268
elsevier_sciencedirect_doi_10_1016_j_physa_2019_121268
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-08-01
2019-08-00
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-01
  day: 01
PublicationDecade 2010
PublicationTitle Physica A
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Nagatani (b26) 2000; 61
Bette, Habel, Emig, Schreckenberg (b21) 2017; 95
Nagatani (b37) 1999; 60
Lenz, Wagner, Sollacher (b38) 1999; 7
Zhang, Liu, Wong (b4) 2005; 71
Tang, Yi, Zhang, Wang, Leng (b28) 2018; 496
Sun, Chen, Zhao, Liu, Zheng (b45) 2018; 501
Zhu, Zhang (b52) 2018; 492
Yu, Tang, Xin (b43) 2018; 91
Tang, Yi, Zhang, Zheng (b49) 2017; 11
Ge, Dai, Dong, Xue (b39) 2004; 70
Helbing (b1) 2001; 73
Shi, Lu, Xue, He (b14) 2016; 443
Ding, Jiang, Wang (b19) 2011; 83
Jiang, Hu, Jia, Wang, Wu (b17) 2006; 54
Tang, Wang, Yu, Huang (b7) 2012; 58
Hu, Ma, Chen (b40) 2014; 19
Tang, Shi, Shang, Wang (b46) 2014; 76
Nagatani (b25) 1998; 58
Bando, Hasebe, Nakayama, Shibata, Sugiyama (b33) 1995; 51
Guo, Xue, Shi, Wei, ., He (b44) 2018; 59
Tang, Shi, Huang, Wu, Song (b11) 2019; 514
Zhang, Xue, Zhang, Fan, He (b31) 2019; 514
Tang, Shi, Shang, Wang (b47) 2014; 58
Tang, Huang, Shang (b8) 2017; 468
Zhang, Tang, Yu (b30) 2018; 492
Khallouk, Echab, Ez-Zahraouy, Lakouari (b22) 2018; 382
Sun, Kang, Yang (b50) 2015; 436
Liu, Cheng, Zhu, Ge (b5) 2015; 83
Ou, Tang, Zhang, Zhou (b29) 2018; 505
Nagatani (b2) 2002; 65
Helbing, Tilch (b34) 1998; 58
Tang, He, Yang, Shang (b27) 2014; 413
Ngoduy (b41) 2015; 22
Herman, Montroll, Potts, Rothery (b36) 1959; 7
Li, Wu, Jiang (b16) 2001; 64
Jiang, Wu, Zhu (b35) 2001; 64
Chmura, Herz, Knorr, Pitz, Schreckenberg (b20) 2014; 405
Meng, Qian, Li, Dai (b13) 2008; 77
Tang, Li, Huang, Shang (b6) 2012; 67
Kuang, Xu, Li, Lo (b51) 2017; 471
Liu, Wang, Ge, Cheng (b9) 2018; 91
Ou, Tang (b10) 2018; 500
Zhao, Liu, Chen, Lu (b23) 2018; 494
Wang, Tang, Chen, Huang (b32) 2019; 521
Chen, Liu, Ngoduy, Shi (b42) 2016; 85
Zhang, memory (b3) 2003; 37
Mahnke, Kaupuzs, Lubashevsky (b12) 2005; 408
Mhirech, Ez-Zahraouy, Ismaili (b18) 2010; 81
Ye, Yamamoto (b24) 2018; 490
Ou, Tang (b48) 2018; 495
Nagel, Schreckenberg (b15) 1992; 2
Jiang (10.1016/j.physa.2019.121268_b35) 2001; 64
Guo (10.1016/j.physa.2019.121268_b44) 2018; 59
Tang (10.1016/j.physa.2019.121268_b8) 2017; 468
Jiang (10.1016/j.physa.2019.121268_b17) 2006; 54
Tang (10.1016/j.physa.2019.121268_b7) 2012; 58
Ou (10.1016/j.physa.2019.121268_b29) 2018; 505
Mahnke (10.1016/j.physa.2019.121268_b12) 2005; 408
Lenz (10.1016/j.physa.2019.121268_b38) 1999; 7
Ge (10.1016/j.physa.2019.121268_b39) 2004; 70
Sun (10.1016/j.physa.2019.121268_b50) 2015; 436
Zhang (10.1016/j.physa.2019.121268_b4) 2005; 71
Mhirech (10.1016/j.physa.2019.121268_b18) 2010; 81
Hu (10.1016/j.physa.2019.121268_b40) 2014; 19
Tang (10.1016/j.physa.2019.121268_b49) 2017; 11
Nagatani (10.1016/j.physa.2019.121268_b26) 2000; 61
Meng (10.1016/j.physa.2019.121268_b13) 2008; 77
Ngoduy (10.1016/j.physa.2019.121268_b41) 2015; 22
Tang (10.1016/j.physa.2019.121268_b47) 2014; 58
Yu (10.1016/j.physa.2019.121268_b43) 2018; 91
Bando (10.1016/j.physa.2019.121268_b33) 1995; 51
Wang (10.1016/j.physa.2019.121268_b32) 2019; 521
Shi (10.1016/j.physa.2019.121268_b14) 2016; 443
Zhu (10.1016/j.physa.2019.121268_b52) 2018; 492
Tang (10.1016/j.physa.2019.121268_b6) 2012; 67
Liu (10.1016/j.physa.2019.121268_b9) 2018; 91
Tang (10.1016/j.physa.2019.121268_b46) 2014; 76
Helbing (10.1016/j.physa.2019.121268_b34) 1998; 58
Kuang (10.1016/j.physa.2019.121268_b51) 2017; 471
Nagatani (10.1016/j.physa.2019.121268_b2) 2002; 65
Zhao (10.1016/j.physa.2019.121268_b23) 2018; 494
Liu (10.1016/j.physa.2019.121268_b5) 2015; 83
Zhang (10.1016/j.physa.2019.121268_b3) 2003; 37
Khallouk (10.1016/j.physa.2019.121268_b22) 2018; 382
Herman (10.1016/j.physa.2019.121268_b36) 1959; 7
Li (10.1016/j.physa.2019.121268_b16) 2001; 64
Nagel (10.1016/j.physa.2019.121268_b15) 1992; 2
Zhang (10.1016/j.physa.2019.121268_b30) 2018; 492
Bette (10.1016/j.physa.2019.121268_b21) 2017; 95
Nagatani (10.1016/j.physa.2019.121268_b37) 1999; 60
Zhang (10.1016/j.physa.2019.121268_b31) 2019; 514
Ye (10.1016/j.physa.2019.121268_b24) 2018; 490
Tang (10.1016/j.physa.2019.121268_b28) 2018; 496
Sun (10.1016/j.physa.2019.121268_b45) 2018; 501
Tang (10.1016/j.physa.2019.121268_b11) 2019; 514
Ou (10.1016/j.physa.2019.121268_b10) 2018; 500
Chmura (10.1016/j.physa.2019.121268_b20) 2014; 405
Tang (10.1016/j.physa.2019.121268_b27) 2014; 413
Helbing (10.1016/j.physa.2019.121268_b1) 2001; 73
Ding (10.1016/j.physa.2019.121268_b19) 2011; 83
Chen (10.1016/j.physa.2019.121268_b42) 2016; 85
Nagatani (10.1016/j.physa.2019.121268_b25) 1998; 58
Ou (10.1016/j.physa.2019.121268_b48) 2018; 495
References_xml – volume: 58
  start-page: 286
  year: 2014
  end-page: 293
  ident: b47
  article-title: An extended car-following model with consideration of the reliability of inter-vehicle communication
  publication-title: Measurement
– volume: 501
  start-page: 293
  year: 2018
  end-page: 307
  ident: b45
  article-title: Linear stability and nonlinear analyses of traffic waves for the general nonlinear car-following model with multi-time delays
  publication-title: Physica A
– volume: 59
  start-page: 553
  year: 2018
  end-page: 564
  ident: b44
  article-title: Mean-field velocity difference model considering the average effect of multi-vehicle interaction
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– volume: 382
  start-page: 566
  year: 2018
  end-page: 573
  ident: b22
  article-title: Traffic flow behavior at un-signalized intersection with crossings pedestrians
  publication-title: Phys. Lett. A
– volume: 490
  start-page: 269
  year: 2018
  end-page: 277
  ident: b24
  article-title: Modeling connected and autonomous vehicles in heterogeneous traffic flow
  publication-title: Physica A
– volume: 70
  year: 2004
  ident: b39
  article-title: Stabilization effect of traffic flow in an extended car-following model based on an intelligent transportation system application
  publication-title: Phys. Rev. E
– volume: 81
  year: 2010
  ident: b18
  article-title: Effect of damaged vehicle evacuation on traffic flow with open boundaries
  publication-title: Phys. Rev. E
– volume: 7
  start-page: 86
  year: 1959
  end-page: 106
  ident: b36
  article-title: Traffic dynamics: Analysis of stability in Car following
  publication-title: Oper. Res.
– volume: 65
  start-page: 1331
  year: 2002
  end-page: 1386
  ident: b2
  article-title: The physics of traffic jams
  publication-title: Rep. Progr. Phys.
– volume: 22
  start-page: 420
  year: 2015
  end-page: 426
  ident: b41
  article-title: Linear stability of a generalized multi-anticipative car following model with time delays
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– volume: 413
  start-page: 583
  year: 2014
  end-page: 591
  ident: b27
  article-title: A car-following model accounting for the driver’s attribution
  publication-title: Physica A
– volume: 521
  start-page: 387
  year: 2019
  end-page: 398
  ident: b32
  article-title: Analysis of trip cost allowing late arrival in a traffic corridor with one entry and one exit under car-following model
  publication-title: Physica A
– volume: 83
  year: 2011
  ident: b19
  article-title: Traffic flow in the Biham-Middleton-Levine model with random update rule
  publication-title: Phys. Rev. E
– volume: 58
  start-page: 133
  year: 1998
  end-page: 138
  ident: b34
  article-title: Generalized force model of traffic dynamics
  publication-title: Phys. Rev. E
– volume: 495
  start-page: 260
  year: 2018
  end-page: 268
  ident: b48
  article-title: An extended two-lane car-following model accounting for inter-vehicle communication
  publication-title: Physica A
– volume: 514
  start-page: 767
  year: 2019
  end-page: 785
  ident: b11
  article-title: A route-based traffic flow model accounting for interruption factors
  publication-title: Physica A
– volume: 91
  start-page: 2007
  year: 2018
  end-page: 2017
  ident: b9
  article-title: Kdv-Burgers equation in the modified continuum model considering the backward looking effect
  publication-title: Nonlinear Dynam.
– volume: 492
  start-page: 2154
  year: 2018
  end-page: 2165
  ident: b52
  article-title: A new car-following model for autonomous vehicles flow with mean expected velocity field
  publication-title: Physica A
– volume: 67
  start-page: 2255
  year: 2012
  end-page: 2265
  ident: b6
  article-title: A new fundamental diagram theory with the individual difference of the driver’s perception ability
  publication-title: Nonlinear Dynam.
– volume: 2
  start-page: 2221
  year: 1992
  end-page: 2229
  ident: b15
  article-title: A cellular automaton model for freeway traffic
  publication-title: J.Phys. France
– volume: 496
  start-page: 399
  year: 2018
  end-page: 409
  ident: b28
  article-title: A speed guidance strategy for multiple signalized intersections based on car-following model
  publication-title: Physica A
– volume: 494
  start-page: 40
  year: 2018
  end-page: 51
  ident: b23
  article-title: Cellular automata model for traffic flow at intersections in internet of vehicles
  publication-title: Physica A
– volume: 71
  year: 2005
  ident: b4
  article-title: High-resolution numerical approximation of traffic flow problems with variable lanes and free-flow velocities
  publication-title: Phys. Rev. E
– volume: 436
  start-page: 103
  year: 2015
  end-page: 109
  ident: b50
  article-title: A novel car following model considering average speed of preceding vehicles group
  publication-title: Physica A
– volume: 443
  start-page: 22
  year: 2016
  end-page: 31
  ident: b14
  article-title: Revised lattice Boltzmann model for traffic flow with equilibrium traffic pressure
  publication-title: Physica A
– volume: 405
  start-page: 332
  year: 2014
  end-page: 337
  ident: b20
  article-title: A simple stochastic cellular automaton for synchronized traffic flow
  publication-title: Physica A
– volume: 76
  start-page: 2017
  year: 2014
  end-page: 2023
  ident: b46
  article-title: A new car-following model with consideration of inter-vehicle communication
  publication-title: Nonlinear Dynam.
– volume: 60
  start-page: 6395
  year: 1999
  end-page: 6401
  ident: b37
  article-title: Stabilization and enhancement of traffic flow by the next-nearest-neighbor interaction
  publication-title: Phys. Rev. E
– volume: 514
  start-page: 133
  year: 2019
  end-page: 140
  ident: b31
  article-title: Bifurcation analysis of traffic flow through an improved car-following model considering the time-delayed velocity difference
  publication-title: Physica A
– volume: 51
  start-page: 1035
  year: 1995
  end-page: 1042
  ident: b33
  article-title: Dynamical model of traffic congestion and numerical simulation
  publication-title: Phys. Rev. E
– volume: 61
  start-page: 3564
  year: 2000
  end-page: 3570
  ident: b26
  article-title: Density waves in traffic flow
  publication-title: Phys. Rev. E
– volume: 64
  year: 2001
  ident: b16
  article-title: Cellular automaton model considering the velocity effect of a car on the successive car
  publication-title: Phys. Rev. E
– volume: 11
  start-page: 596
  year: 2017
  end-page: 603
  ident: b49
  article-title: Modelling the driving behaviour at a signalised intersection with the information of remaining green time
  publication-title: IET Intell. Transp. Syst.
– volume: 95
  year: 2017
  ident: b21
  article-title: Mechanisms of jamming in the nagel–schreckenberg model for traffic flow
  publication-title: Phys. Rev. E
– volume: 77
  year: 2008
  ident: b13
  article-title: Lattice Boltzmann model for traffic flow
  publication-title: Phys. Rev. E
– volume: 505
  start-page: 105
  year: 2018
  end-page: 113
  ident: b29
  article-title: A car-following model accounting for probability distribution
  publication-title: Physica A
– volume: 468
  start-page: 322
  year: 2017
  end-page: 333
  ident: b8
  article-title: An extended macro traffic flow model accounting for the driver’s bounded rationality and numerical tests
  publication-title: Physica A
– volume: 73
  start-page: 1067
  year: 2001
  end-page: 1141
  ident: b1
  article-title: Traffic and related self-driven many-particle systems
  publication-title: Rev. Modern Phys.
– volume: 408
  start-page: 1
  year: 2005
  end-page: 130
  ident: b12
  article-title: Probabilistic description of traffic flow
  publication-title: Phys. Rep.
– volume: 64
  year: 2001
  ident: b35
  article-title: Full velocity difference model for a car-following theory
  publication-title: Phys. Rev. E
– volume: 500
  start-page: 131
  year: 2018
  end-page: 138
  ident: b10
  article-title: Impacts of moving bottlenecks on traffic flow
  publication-title: Physica A
– volume: 58
  start-page: 583
  year: 2012
  end-page: 589
  ident: b7
  article-title: A stochastic LWR model with consideration of the driver’s individual property
  publication-title: Commun. Theor. Phys.
– volume: 37
  start-page: 27
  year: 2003
  end-page: 41
  ident: b3
  article-title: Driver memory traffic viscosity and a viscous vehicular traffic flow model
  publication-title: Transp. Res. B
– volume: 83
  start-page: 57
  year: 2015
  end-page: 64
  ident: b5
  article-title: The study for continuum model considering traffic jerk effect
  publication-title: Nonlinear Dynam.
– volume: 54
  start-page: 267
  year: 2006
  end-page: 273
  ident: b17
  article-title: The effects of reaction delay in the nagel–schreckenberg traffic flow model
  publication-title: Eur. Phys. J. B
– volume: 58
  start-page: 4271
  year: 1998
  end-page: 4276
  ident: b25
  article-title: Thermodynamic theory for the jamming transition in traffic flow
  publication-title: Phys. Rev. E
– volume: 492
  start-page: 1831
  year: 2018
  end-page: 1837
  ident: b30
  article-title: An improved car-following model accounting for the preceding car’s taillight
  publication-title: Physica A
– volume: 471
  start-page: 778
  year: 2017
  end-page: 787
  ident: b51
  article-title: An extended car-following model accounting for the average headway effect in intelligent transportation system
  publication-title: Physica A
– volume: 91
  start-page: 1415
  year: 2018
  end-page: 1428
  ident: b43
  article-title: Relative velocity difference model for the car-following theory
  publication-title: Nonlinear Dynam.
– volume: 7
  start-page: 331
  year: 1999
  end-page: 335
  ident: b38
  article-title: Multi-anticipative car-following model
  publication-title: Eur. Phys. J. B
– volume: 85
  start-page: 2705
  year: 2016
  end-page: 2717
  ident: b42
  article-title: A new multi-anticipative car-following model with consideration of the desired following distance
  publication-title: Nonlinear Dynam.
– volume: 19
  start-page: 3128
  year: 2014
  end-page: 3135
  ident: b40
  article-title: An extended multi-anticipative delay model of traffic flow
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– volume: 61
  start-page: 3564
  year: 2000
  ident: 10.1016/j.physa.2019.121268_b26
  article-title: Density waves in traffic flow
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.61.3564
– volume: 83
  year: 2011
  ident: 10.1016/j.physa.2019.121268_b19
  article-title: Traffic flow in the Biham-Middleton-Levine model with random update rule
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.83.047101
– volume: 7
  start-page: 331
  year: 1999
  ident: 10.1016/j.physa.2019.121268_b38
  article-title: Multi-anticipative car-following model
  publication-title: Eur. Phys. J. B
  doi: 10.1007/s100510050618
– volume: 11
  start-page: 596
  year: 2017
  ident: 10.1016/j.physa.2019.121268_b49
  article-title: Modelling the driving behaviour at a signalised intersection with the information of remaining green time
  publication-title: IET Intell. Transp. Syst.
  doi: 10.1049/iet-its.2017.0191
– volume: 471
  start-page: 778
  year: 2017
  ident: 10.1016/j.physa.2019.121268_b51
  article-title: An extended car-following model accounting for the average headway effect in intelligent transportation system
  publication-title: Physica A
  doi: 10.1016/j.physa.2016.12.022
– volume: 76
  start-page: 2017
  year: 2014
  ident: 10.1016/j.physa.2019.121268_b46
  article-title: A new car-following model with consideration of inter-vehicle communication
  publication-title: Nonlinear Dynam.
  doi: 10.1007/s11071-014-1265-9
– volume: 443
  start-page: 22
  year: 2016
  ident: 10.1016/j.physa.2019.121268_b14
  article-title: Revised lattice Boltzmann model for traffic flow with equilibrium traffic pressure
  publication-title: Physica A
  doi: 10.1016/j.physa.2015.09.045
– volume: 81
  year: 2010
  ident: 10.1016/j.physa.2019.121268_b18
  article-title: Effect of damaged vehicle evacuation on traffic flow with open boundaries
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.81.011132
– volume: 413
  start-page: 583
  year: 2014
  ident: 10.1016/j.physa.2019.121268_b27
  article-title: A car-following model accounting for the driver’s attribution
  publication-title: Physica A
  doi: 10.1016/j.physa.2014.07.035
– volume: 54
  start-page: 267
  year: 2006
  ident: 10.1016/j.physa.2019.121268_b17
  article-title: The effects of reaction delay in the nagel–schreckenberg traffic flow model
  publication-title: Eur. Phys. J. B
  doi: 10.1140/epjb/e2006-00449-5
– volume: 2
  start-page: 2221
  year: 1992
  ident: 10.1016/j.physa.2019.121268_b15
  article-title: A cellular automaton model for freeway traffic
  publication-title: J.Phys. France
  doi: 10.1051/jp1:1992277
– volume: 85
  start-page: 2705
  year: 2016
  ident: 10.1016/j.physa.2019.121268_b42
  article-title: A new multi-anticipative car-following model with consideration of the desired following distance
  publication-title: Nonlinear Dynam.
  doi: 10.1007/s11071-016-2856-4
– volume: 58
  start-page: 286
  year: 2014
  ident: 10.1016/j.physa.2019.121268_b47
  article-title: An extended car-following model with consideration of the reliability of inter-vehicle communication
  publication-title: Measurement
  doi: 10.1016/j.measurement.2014.08.051
– volume: 91
  start-page: 2007
  year: 2018
  ident: 10.1016/j.physa.2019.121268_b9
  article-title: Kdv-Burgers equation in the modified continuum model considering the backward looking effect
  publication-title: Nonlinear Dynam.
  doi: 10.1007/s11071-017-3999-7
– volume: 83
  start-page: 57
  year: 2015
  ident: 10.1016/j.physa.2019.121268_b5
  article-title: The study for continuum model considering traffic jerk effect
  publication-title: Nonlinear Dynam.
  doi: 10.1007/s11071-015-2307-7
– volume: 58
  start-page: 133
  year: 1998
  ident: 10.1016/j.physa.2019.121268_b34
  article-title: Generalized force model of traffic dynamics
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.58.133
– volume: 7
  start-page: 86
  year: 1959
  ident: 10.1016/j.physa.2019.121268_b36
  article-title: Traffic dynamics: Analysis of stability in Car following
  publication-title: Oper. Res.
  doi: 10.1287/opre.7.1.86
– volume: 494
  start-page: 40
  year: 2018
  ident: 10.1016/j.physa.2019.121268_b23
  article-title: Cellular automata model for traffic flow at intersections in internet of vehicles
  publication-title: Physica A
  doi: 10.1016/j.physa.2017.11.152
– volume: 64
  year: 2001
  ident: 10.1016/j.physa.2019.121268_b35
  article-title: Full velocity difference model for a car-following theory
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.64.017101
– volume: 19
  start-page: 3128
  year: 2014
  ident: 10.1016/j.physa.2019.121268_b40
  article-title: An extended multi-anticipative delay model of traffic flow
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2014.02.006
– volume: 495
  start-page: 260
  year: 2018
  ident: 10.1016/j.physa.2019.121268_b48
  article-title: An extended two-lane car-following model accounting for inter-vehicle communication
  publication-title: Physica A
  doi: 10.1016/j.physa.2017.12.100
– volume: 58
  start-page: 583
  year: 2012
  ident: 10.1016/j.physa.2019.121268_b7
  article-title: A stochastic LWR model with consideration of the driver’s individual property
  publication-title: Commun. Theor. Phys.
  doi: 10.1088/0253-6102/58/4/24
– volume: 490
  start-page: 269
  year: 2018
  ident: 10.1016/j.physa.2019.121268_b24
  article-title: Modeling connected and autonomous vehicles in heterogeneous traffic flow
  publication-title: Physica A
  doi: 10.1016/j.physa.2017.08.015
– volume: 496
  start-page: 399
  year: 2018
  ident: 10.1016/j.physa.2019.121268_b28
  article-title: A speed guidance strategy for multiple signalized intersections based on car-following model
  publication-title: Physica A
  doi: 10.1016/j.physa.2018.01.005
– volume: 91
  start-page: 1415
  year: 2018
  ident: 10.1016/j.physa.2019.121268_b43
  article-title: Relative velocity difference model for the car-following theory
  publication-title: Nonlinear Dynam.
  doi: 10.1007/s11071-017-3953-8
– volume: 405
  start-page: 332
  year: 2014
  ident: 10.1016/j.physa.2019.121268_b20
  article-title: A simple stochastic cellular automaton for synchronized traffic flow
  publication-title: Physica A
  doi: 10.1016/j.physa.2014.03.044
– volume: 70
  year: 2004
  ident: 10.1016/j.physa.2019.121268_b39
  article-title: Stabilization effect of traffic flow in an extended car-following model based on an intelligent transportation system application
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.70.066134
– volume: 382
  start-page: 566
  year: 2018
  ident: 10.1016/j.physa.2019.121268_b22
  article-title: Traffic flow behavior at un-signalized intersection with crossings pedestrians
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2017.12.006
– volume: 60
  start-page: 6395
  year: 1999
  ident: 10.1016/j.physa.2019.121268_b37
  article-title: Stabilization and enhancement of traffic flow by the next-nearest-neighbor interaction
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.60.6395
– volume: 65
  start-page: 1331
  year: 2002
  ident: 10.1016/j.physa.2019.121268_b2
  article-title: The physics of traffic jams
  publication-title: Rep. Progr. Phys.
  doi: 10.1088/0034-4885/65/9/203
– volume: 64
  year: 2001
  ident: 10.1016/j.physa.2019.121268_b16
  article-title: Cellular automaton model considering the velocity effect of a car on the successive car
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.64.066128
– volume: 501
  start-page: 293
  year: 2018
  ident: 10.1016/j.physa.2019.121268_b45
  article-title: Linear stability and nonlinear analyses of traffic waves for the general nonlinear car-following model with multi-time delays
  publication-title: Physica A
  doi: 10.1016/j.physa.2018.02.179
– volume: 514
  start-page: 767
  year: 2019
  ident: 10.1016/j.physa.2019.121268_b11
  article-title: A route-based traffic flow model accounting for interruption factors
  publication-title: Physica A
  doi: 10.1016/j.physa.2018.09.098
– volume: 22
  start-page: 420
  year: 2015
  ident: 10.1016/j.physa.2019.121268_b41
  article-title: Linear stability of a generalized multi-anticipative car following model with time delays
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2014.08.019
– volume: 95
  year: 2017
  ident: 10.1016/j.physa.2019.121268_b21
  article-title: Mechanisms of jamming in the nagel–schreckenberg model for traffic flow
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.95.012311
– volume: 514
  start-page: 133
  year: 2019
  ident: 10.1016/j.physa.2019.121268_b31
  article-title: Bifurcation analysis of traffic flow through an improved car-following model considering the time-delayed velocity difference
  publication-title: Physica A
  doi: 10.1016/j.physa.2018.09.012
– volume: 492
  start-page: 2154
  year: 2018
  ident: 10.1016/j.physa.2019.121268_b52
  article-title: A new car-following model for autonomous vehicles flow with mean expected velocity field
  publication-title: Physica A
  doi: 10.1016/j.physa.2017.11.133
– volume: 67
  start-page: 2255
  year: 2012
  ident: 10.1016/j.physa.2019.121268_b6
  article-title: A new fundamental diagram theory with the individual difference of the driver’s perception ability
  publication-title: Nonlinear Dynam.
  doi: 10.1007/s11071-011-0143-y
– volume: 73
  start-page: 1067
  year: 2001
  ident: 10.1016/j.physa.2019.121268_b1
  article-title: Traffic and related self-driven many-particle systems
  publication-title: Rev. Modern Phys.
  doi: 10.1103/RevModPhys.73.1067
– volume: 58
  start-page: 4271
  year: 1998
  ident: 10.1016/j.physa.2019.121268_b25
  article-title: Thermodynamic theory for the jamming transition in traffic flow
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.58.4271
– volume: 492
  start-page: 1831
  year: 2018
  ident: 10.1016/j.physa.2019.121268_b30
  article-title: An improved car-following model accounting for the preceding car’s taillight
  publication-title: Physica A
  doi: 10.1016/j.physa.2017.11.100
– volume: 436
  start-page: 103
  year: 2015
  ident: 10.1016/j.physa.2019.121268_b50
  article-title: A novel car following model considering average speed of preceding vehicles group
  publication-title: Physica A
  doi: 10.1016/j.physa.2015.04.028
– volume: 51
  start-page: 1035
  year: 1995
  ident: 10.1016/j.physa.2019.121268_b33
  article-title: Dynamical model of traffic congestion and numerical simulation
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.51.1035
– volume: 71
  year: 2005
  ident: 10.1016/j.physa.2019.121268_b4
  article-title: High-resolution numerical approximation of traffic flow problems with variable lanes and free-flow velocities
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.71.056704
– volume: 408
  start-page: 1
  year: 2005
  ident: 10.1016/j.physa.2019.121268_b12
  article-title: Probabilistic description of traffic flow
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2004.12.001
– volume: 521
  start-page: 387
  year: 2019
  ident: 10.1016/j.physa.2019.121268_b32
  article-title: Analysis of trip cost allowing late arrival in a traffic corridor with one entry and one exit under car-following model
  publication-title: Physica A
  doi: 10.1016/j.physa.2019.01.038
– volume: 500
  start-page: 131
  year: 2018
  ident: 10.1016/j.physa.2019.121268_b10
  article-title: Impacts of moving bottlenecks on traffic flow
  publication-title: Physica A
  doi: 10.1016/j.physa.2018.02.044
– volume: 77
  year: 2008
  ident: 10.1016/j.physa.2019.121268_b13
  article-title: Lattice Boltzmann model for traffic flow
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.77.036108
– volume: 59
  start-page: 553
  year: 2018
  ident: 10.1016/j.physa.2019.121268_b44
  article-title: Mean-field velocity difference model considering the average effect of multi-vehicle interaction
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2017.11.026
– volume: 468
  start-page: 322
  year: 2017
  ident: 10.1016/j.physa.2019.121268_b8
  article-title: An extended macro traffic flow model accounting for the driver’s bounded rationality and numerical tests
  publication-title: Physica A
  doi: 10.1016/j.physa.2016.10.092
– volume: 37
  start-page: 27
  year: 2003
  ident: 10.1016/j.physa.2019.121268_b3
  article-title: Driver memory traffic viscosity and a viscous vehicular traffic flow model
  publication-title: Transp. Res. B
  doi: 10.1016/S0191-2615(01)00043-1
– volume: 505
  start-page: 105
  year: 2018
  ident: 10.1016/j.physa.2019.121268_b29
  article-title: A car-following model accounting for probability distribution
  publication-title: Physica A
  doi: 10.1016/j.physa.2018.03.072
SSID ssj0001732
Score 2.5010154
Snippet Vehicle-to-vehicle (for short, V2V) communication technology is regarded as a promising technology to improve traffic efficiency and safety. In this paper, an...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 121268
SubjectTerms Car-following model
Multi-anticipative average velocity effect
Traffic flow
V2V environment
Title An extended car-following model considering multi-anticipative average velocity effect under V2V environment
URI https://dx.doi.org/10.1016/j.physa.2019.121268
Volume 527
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8MwGA5jIngRP3F-jBw8GtcmWdocx3BMhV10Y7fQpClMRjfm1Ju_3TdpqhNkB48NSSlP3r4f7ZPnReg6sbllWlvCu2lBuOaM6AJsOYuMkTbRItKebTESwzF_mHanDdSvz8I4WmXw_ZVP9946jHQCmp3lbNZ5iliScpbEkIKAnXKnCcp54qz89vOH5hEnrPqTANWSm10rD3mOl_t64MSHYulUFqjTW_0rOm1EnMEB2g-pIu5VT3OIGrY8Qruesmlej9G8V-L6EzY22YoUsKWLDwhF2Le3wSb04vQjjjdIAMXAoX63OAMjBmeCHWnIQC6OK2oHdqfKVnhCJ3jjENwJGg_unvtDEnonEANBaU0gkaEyFRnkW5oJKAPi3OhMWA71VirgLWY8YYx1paZQpRphqaY5zXNTcMlghJ2iZrko7RnCUnMDhWxcuNpJRhpANxJgLyyHe-q0hWiNmTJBWNz1t5irmkH2ojzQygGtKqBb6OZ70bLS1dg-XdSboX6ZhwLPv23h-X8XXqA9d1Vx_S5Rc716s1eQf6x12xtYG-307h-Hoy81lNrG
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4gxOjF-Iz43INHG9ru9rFHQiQgyEUg3Dbd7TbBkEIQ9e87224JJsaD122nab6dzmP7zQzAQ6RTTaXUDgvizGGSUUdmqMuJqxTXkQxdWbAtRmFvwp5nwawGnaoWxtAqre0vbXphre1Ky6LZWs3nrVeXRjGjkYchCOopY3vQMN2pgjo02v1Bb7Q1yF5Ey58JmDAZgar5UEHzMgcIpv-Qx02jBd-0XP3NQe04ne4xHNlokbTLFzqBms5PYb9gbar3M1i0c1KdYhOVrJ0Md3X5hd6IFBNuiLLjOIsVQx10EEhLo_7UJEE9RntCDG9IYThOSnYHMYVlazL1p2SnDu4cJt2ncafn2PEJjkK_tHEwlvF5HCYYckkaYibgpUomoWaYcsUhfsiURZTSgEsfE1UVal_6qZ-mKmOc4gq9gHq-zPUlEC6ZwlzWy0z6xF2JuCuOyGea4TNl3AS_wkwo21vcjLhYiIpE9iYKoIUBWpRAN-FxK7QqW2v8fXtYbYb4oSECjf9fglf_FbyHg974ZSiG_dHgGg7NlZL6dwP1zfpD32I4spF3Vt2-AcFj3Xc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+extended+car-following+model+considering+multi-anticipative+average+velocity+effect+under+V2V+environment&rft.jtitle=Physica+A&rft.au=Kuang%2C+Hua&rft.au=Wang%2C+Mei-Ting&rft.au=Lu%2C+Fang-Hua&rft.au=Bai%2C+Ke-Zhao&rft.date=2019-08-01&rft.pub=Elsevier+B.V&rft.issn=0378-4371&rft.eissn=1873-2119&rft.volume=527&rft_id=info:doi/10.1016%2Fj.physa.2019.121268&rft.externalDocID=S0378437119307344
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4371&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4371&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4371&client=summon