The competitive heavy metal removal by hydroxyethyl cellulose-g-poly(acrylic acid) copolymer and its sodium salt : The effect of copper content on the adsorption capacity

SummaryCrosslinked hydroxyethyl cellulose-g-poly(acrylic acid) (HEC-g-pAA) graft copolymer was prepared by grafting of acrylic acid (AA) onto hydroxyethyl cellulose (HEC) using [Ce(NH4)2(NO3)6]/HNO3 initiator system in the presence of poly(ethyleneglycol diacrylate) (PEGDA) crosslinking agent in 1:1...

Full description

Saved in:
Bibliographic Details
Published inPolymer bulletin (Berlin, Germany) Vol. 57; no. 4; pp. 445 - 456
Main Authors CAVUS, Selva, GÜRDAG, Gülten, YASAR, Muzaffer, GÜCLÜ, Kubilay, GÜRKAYNAK, Mehmet Ali
Format Journal Article
LanguageEnglish
Published Heidelberg Springer 01.08.2006
Berlin Springer Nature B.V
New York, NY
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:SummaryCrosslinked hydroxyethyl cellulose-g-poly(acrylic acid) (HEC-g-pAA) graft copolymer was prepared by grafting of acrylic acid (AA) onto hydroxyethyl cellulose (HEC) using [Ce(NH4)2(NO3)6]/HNO3 initiator system in the presence of poly(ethyleneglycol diacrylate) (PEGDA) crosslinking agent in 1:1 (v/v) mixture of methanol and water at 30 °C. Carboxyl content of copolymer was determined by neutralization of –COOH groups with NaOH solution and sodium salt of copolymer (HEC-g-pAANa) was swelled in distilled water in order to determine the equilibrium swelling value of copolymer. Both dry HEC-g-pAA and swollen HEC-g-pAANa copolymers were used in the heavy metal ion removal from three different aqueous ion solutions as follows: a binary ion solution with equal molar contents of Pb2+and Cd2+, a triple ion solution with equal molar contents of Pb2+, Cu2+ and Cd2+, and a triple ion solution with twice Cu2+molar contents of Pb2+and Cd2+. Higher removal values on swollen HEC-g-pAANa were observed in comparison to those on dry polymer. The presence of Cu2+decreased the adsorption values for Pb2+ and Cd2+ ions on both types of HEC copolymer. However, with further increase in Cu2+ content both dry and swollen copolymers became apparently selective to Cu2+ removal and Cu2+ removal values exceeded the sum of adsorption values for Pb2+ and Cd2+. Maximum metal ion removal capacities were 1.79 and 0.85 mmol Me2+/gpolymer on swollen HEC-g-pAANa and dry HEC-g-pAA, respectively.
ISSN:0170-0839
1436-2449
DOI:10.1007/s00289-006-0583-6