A comprehensive report on convective flow of fractional (ABC) and (CF) MHD viscous fluid subject to generalized boundary conditions

•Boundary layer flow of viscous fluid is developed with the help Caputo–Fabrizio (CF) and (ABC) fractional derivatives.•Solutions for temperature, concentration and velocity fields are obtained by Laplace transform method.•As a result, we have observed that both the fractional models (CF) and (AB) a...

Full description

Saved in:
Bibliographic Details
Published inChaos, solitons and fractals Vol. 118; pp. 274 - 289
Main Authors Imran, M.A., Aleem, Maryam, Riaz, M.B., Ali, Rizwan, Khan, Ilyas
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Boundary layer flow of viscous fluid is developed with the help Caputo–Fabrizio (CF) and (ABC) fractional derivatives.•Solutions for temperature, concentration and velocity fields are obtained by Laplace transform method.•As a result, we have observed that both the fractional models (CF) and (AB) are better in describing the memory effect of the physical problem.•(ABC) model is comparatively good in telling the history of the temperature, concentration and velocity fields. We have analyzed the magnetohydrodynaimcs (MHD) unsteady free convection flow of incompressible Newtonian fluid passing over an inclined plate through porous medium with variable temperature and concentration at the boundary. Additionally, we have also seen the effects of heat sink and chemical reaction. We have solved dimensionless equations governing the physical problem by Laplace transform method. Firstly, we have found the analytical results for concentration, temperature and velocity fields of classical model. After that we have extended the classical model to some fractional models specifically Caputo–Fabrizio (CF) and Atangana–Baleanu (ABC). Semi analytical results are attained for concentration, temperature and velocity fields for both models and then compared with solutions of classical one. Influence of Fembedded parameters on concentration, temperature and velocity domains can be perceived through MathCad software. As a result, we have observed that both the fractional models (CF) and (ABC) are better in describing the history of the physical problem. Further it is noted that, (ABC) model is well-suited in stimulating the history functions of temperature, concentration and velocity fields.
AbstractList •Boundary layer flow of viscous fluid is developed with the help Caputo–Fabrizio (CF) and (ABC) fractional derivatives.•Solutions for temperature, concentration and velocity fields are obtained by Laplace transform method.•As a result, we have observed that both the fractional models (CF) and (AB) are better in describing the memory effect of the physical problem.•(ABC) model is comparatively good in telling the history of the temperature, concentration and velocity fields. We have analyzed the magnetohydrodynaimcs (MHD) unsteady free convection flow of incompressible Newtonian fluid passing over an inclined plate through porous medium with variable temperature and concentration at the boundary. Additionally, we have also seen the effects of heat sink and chemical reaction. We have solved dimensionless equations governing the physical problem by Laplace transform method. Firstly, we have found the analytical results for concentration, temperature and velocity fields of classical model. After that we have extended the classical model to some fractional models specifically Caputo–Fabrizio (CF) and Atangana–Baleanu (ABC). Semi analytical results are attained for concentration, temperature and velocity fields for both models and then compared with solutions of classical one. Influence of Fembedded parameters on concentration, temperature and velocity domains can be perceived through MathCad software. As a result, we have observed that both the fractional models (CF) and (ABC) are better in describing the history of the physical problem. Further it is noted that, (ABC) model is well-suited in stimulating the history functions of temperature, concentration and velocity fields.
Author Khan, Ilyas
Ali, Rizwan
Riaz, M.B.
Imran, M.A.
Aleem, Maryam
Author_xml – sequence: 1
  givenname: M.A.
  surname: Imran
  fullname: Imran, M.A.
  email: imran.asjad@umt.edu.pk
  organization: Department of Mathematics, University of Management and Technology Lahore, C-II Johar Town, Lahore 54770, Pakistan
– sequence: 2
  givenname: Maryam
  surname: Aleem
  fullname: Aleem, Maryam
  organization: Department of Mathematics, University of Management and Technology Lahore, C-II Johar Town, Lahore 54770, Pakistan
– sequence: 3
  givenname: M.B.
  surname: Riaz
  fullname: Riaz, M.B.
  organization: Department of Mathematics, University of Management and Technology Lahore, C-II Johar Town, Lahore 54770, Pakistan
– sequence: 4
  givenname: Rizwan
  surname: Ali
  fullname: Ali, Rizwan
  organization: Department of Mathematics, University of Management and Technology Lahore, C-II Johar Town, Lahore 54770, Pakistan
– sequence: 5
  givenname: Ilyas
  surname: Khan
  fullname: Khan, Ilyas
  email: ilyaskhan@tdt.edu.vn
  organization: Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City, Vietnam
BookMark eNqFkD1PwzAQhi0EEuXjF7B4hCHhnKSJMzCUQgEJxAKz5dhncBXsyk6LYOWP4wATA0wnvbrn1d2zR7add0jIEYOcAatPl7l6lj7mBTCesyIHYFtkwnhTZgXnzTaZQFtDBk3T7pK9GJeQNqAuJuRjRpV_WQV8RhftBmnAlQ8D9S7lboNqGEPT-1fqDTVBpsA72dPj2fn8hEqn6fF8cULvri_oxkbl1zFtr62mcd0tE04HT5_QYZC9fUdNO792Woa3sV7bsSwekB0j-4iHP3OfPC4uH-bX2e391c18dpupEsohq1AXvJFa16xrO9mywkxVDQaqcpriSvEaWmNkyQ3Hrua8LqspVBK0VJ1uTblP2u9eFXyMAY1QdpDjCUOQthcMxGhTLMWXTTHaFKwQyVViy1_sKtiX9Mc_1Nk3hemtjcUgorLoFGobkhuhvf2T_wTV-JPW
CitedBy_id crossref_primary_10_3390_app112311477
crossref_primary_10_1177_09544089211053561
crossref_primary_10_1155_2024_9306915
crossref_primary_10_1016_j_physa_2019_123516
crossref_primary_10_3389_fphy_2020_00275
crossref_primary_10_1016_j_aej_2019_12_028
crossref_primary_10_1016_j_chaos_2022_112090
crossref_primary_10_1142_S0218348X21500602
crossref_primary_10_1186_s13662_021_03658_5
crossref_primary_10_1002_htj_22332
crossref_primary_10_1002_htj_22179
crossref_primary_10_1007_s10973_023_11953_4
crossref_primary_10_3934_math_2019_6_1684
crossref_primary_10_1016_j_aej_2020_06_007
crossref_primary_10_1155_2022_9240772
crossref_primary_10_3390_sym11101295
crossref_primary_10_1016_j_chaos_2021_110792
crossref_primary_10_2174_1386207324666210412122544
crossref_primary_10_1140_epjp_i2019_12873_9
crossref_primary_10_1080_10407790_2024_2393271
crossref_primary_10_3389_fphy_2020_00087
crossref_primary_10_1016_j_aej_2021_01_054
crossref_primary_10_1002_mma_9264
crossref_primary_10_3934_math_2021142
crossref_primary_10_1007_s10973_021_10692_8
crossref_primary_10_1080_13873954_2024_2311392
crossref_primary_10_1002_htj_21699
crossref_primary_10_32604_iasc_2021_015982
crossref_primary_10_1016_j_aej_2023_08_065
crossref_primary_10_1155_2020_4565036
crossref_primary_10_1016_j_chaos_2021_110757
crossref_primary_10_1016_j_chaos_2019_109437
crossref_primary_10_1177_16878132241272170
crossref_primary_10_1016_j_rinp_2021_104367
crossref_primary_10_3390_fractalfract5040248
crossref_primary_10_1142_S0218348X22400102
crossref_primary_10_1108_AEAT_12_2019_0257
crossref_primary_10_1155_2021_6052437
crossref_primary_10_1016_j_rinp_2020_103621
crossref_primary_10_1007_s40819_022_01486_z
crossref_primary_10_1186_s13662_021_03657_6
crossref_primary_10_1016_j_matcom_2019_06_015
crossref_primary_10_1002_num_22688
crossref_primary_10_3390_fractalfract5030124
crossref_primary_10_1186_s13662_020_02934_0
crossref_primary_10_1007_s11043_019_09442_z
crossref_primary_10_1016_j_cjph_2020_05_026
crossref_primary_10_1016_j_padiff_2022_100474
crossref_primary_10_1002_mma_7461
crossref_primary_10_3934_dcdss_2021017
crossref_primary_10_1016_j_chaos_2019_06_001
crossref_primary_10_1002_mma_7332
crossref_primary_10_1155_2022_5468696
crossref_primary_10_1080_16583655_2021_2016162
crossref_primary_10_1002_mma_6568
crossref_primary_10_1016_j_aej_2020_02_012
crossref_primary_10_1016_j_chaos_2024_114636
crossref_primary_10_1109_ACCESS_2020_3013701
crossref_primary_10_32604_cmes_2021_012529
Cites_doi 10.1016/j.aej.2016.07.022
10.1007/BF01807322
10.1016/j.camwa.2008.09.052
10.26634/jfet.8.3.2220
10.2298/TSCI15S1S85V
10.1140/epjp/i2016-16310-5
10.1140/epjp/i2016-16181-8
10.1016/j.molliq.2016.11.095
10.1016/0017-9310(86)90061-X
10.1140/epjc/s10052-016-4209-3
10.1007/s002310000131
10.1109/8.489308
10.2298/TSCI160229115H
10.1016/j.ijheatmasstransfer.2011.12.015
10.1016/j.chaos.2016.03.026
10.1080/00986445.2011.651184
10.1145/361953.361969
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright_xml – notice: 2018 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.chaos.2018.12.001
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1873-2887
EndPage 289
ExternalDocumentID 10_1016_j_chaos_2018_12_001
S096007791830746X
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABMAC
ABNEU
ABTAH
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLZ
HMV
HVGLF
HZ~
IHE
J1W
KOM
LG9
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SPG
SSQ
SSZ
T5K
WUQ
XPP
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c303t-4ed287add61b9ba912f5c60f04357ad4c8609ffa38f8eb688634504a0dacbd9f3
IEDL.DBID .~1
ISSN 0960-0779
IngestDate Tue Jul 01 00:41:29 EDT 2025
Thu Apr 24 23:11:06 EDT 2025
Fri Feb 23 02:18:24 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Chemical reaction
MHD
Newtonian fluid
Inclined plat
Heat sink
Comparison study
CF and ABC fractional model
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c303t-4ed287add61b9ba912f5c60f04357ad4c8609ffa38f8eb688634504a0dacbd9f3
PageCount 16
ParticipantIDs crossref_citationtrail_10_1016_j_chaos_2018_12_001
crossref_primary_10_1016_j_chaos_2018_12_001
elsevier_sciencedirect_doi_10_1016_j_chaos_2018_12_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2019
2019-01-00
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: January 2019
PublicationDecade 2010
PublicationTitle Chaos, solitons and fractals
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Raju, Varma, Rao (bib0018) 2013; 8
Palani (bib0007) 2008; 6
Shah, Mahsud, Zafar (bib0038) 2017; 132
Chamkha, Khaled (bib0006) 2001; 37
Joseph, Daniel, Joseph (bib0012) 2014; 2
Stehfest's (bib0036) 1970; 13
Ali, Jan, Khan, Gohar, Sheikh (bib0031) 2016; 131
Tzou (bib0037) 1997
Vieru, Fetecau, Fetecau (bib0027) 2015; 19
Shah, Khan (bib0029) 2016; 76
Chen, Tien, Armaly (bib0002) 1986; 29
Ziyauddin (bib0013) 2010; 3
Bansal (bib0004) 1994
Singh, Makinde (bib0010) 2012; 199
Raju, Varma, Reddy, Suman (bib0017) 2008; 39
Singh (bib0015) 2012; 3
Schlichting, Gersten (bib0005) 1999
Engheta (bib0020) 1996; 44
Zafar, Fetecau (bib0028) 2016; 55
Beg (bib0008) 2009; 5
Fetecau, Athar, Fetecau (bib0026) 2009; 57
Rich (bib0001) 1953; 75
Noor, Abbasbandy Hashim (bib0016) 2012; 55
J. Hristov, Steady state heat conduction in a medium with spatial non-singular fading memory: derivation of Caputo–Fabrizio space fractional derivative with Jeffreys kernel and analytical solutions, (2017).
Atangana, Baleanu (bib0023) 2016
Abdon, Baleanu (bib0034) 2016; 20
Masthanrao, Balamurugan, Varma (bib0011) 2013; 3
Khan, Shah, Vieru (bib0030) 2016; 131
Imran, Khan, Ahmad, Shah, Nazar (bib0032) 2017; 229
Yu, Lin (bib0003) 1988; 23
Ravikumar, Raju, Raju, Chamkha (bib0019) 2013; 5
Imran, Shah, Khan, Aleem (bib0033) 2017
Bhuvaneswari, Sivasankaran, Kim (bib0014) 2010; 10
Algahtani (bib0025) 2016; 89
Atangana, Koca (bib0024) 2016
Arshad, Abro, Tassaddiq, Khan (bib0035) 2017; 19
Fetecau (10.1016/j.chaos.2018.12.001_bib0026) 2009; 57
Imran (10.1016/j.chaos.2018.12.001_bib0032) 2017; 229
Imran (10.1016/j.chaos.2018.12.001_bib0033) 2017
Vieru (10.1016/j.chaos.2018.12.001_bib0027) 2015; 19
Stehfest's (10.1016/j.chaos.2018.12.001_bib0036) 1970; 13
Bansal (10.1016/j.chaos.2018.12.001_bib0004) 1994
Shah (10.1016/j.chaos.2018.12.001_bib0029) 2016; 76
Zafar (10.1016/j.chaos.2018.12.001_bib0028) 2016; 55
Engheta (10.1016/j.chaos.2018.12.001_bib0020) 1996; 44
Yu (10.1016/j.chaos.2018.12.001_bib0003) 1988; 23
Masthanrao (10.1016/j.chaos.2018.12.001_bib0011) 2013; 3
Ravikumar (10.1016/j.chaos.2018.12.001_bib0019) 2013; 5
Noor (10.1016/j.chaos.2018.12.001_bib0016) 2012; 55
10.1016/j.chaos.2018.12.001_bib0022
Atangana (10.1016/j.chaos.2018.12.001_bib0024) 2016
Shah (10.1016/j.chaos.2018.12.001_bib0038) 2017; 132
Abdon (10.1016/j.chaos.2018.12.001_bib0034) 2016; 20
Bhuvaneswari (10.1016/j.chaos.2018.12.001_bib0014) 2010; 10
Raju (10.1016/j.chaos.2018.12.001_bib0018) 2013; 8
Tzou (10.1016/j.chaos.2018.12.001_bib0037) 1997
Joseph (10.1016/j.chaos.2018.12.001_bib0012) 2014; 2
Raju (10.1016/j.chaos.2018.12.001_bib0017) 2008; 39
Chen (10.1016/j.chaos.2018.12.001_bib0002) 1986; 29
Ali (10.1016/j.chaos.2018.12.001_bib0031) 2016; 131
Chamkha (10.1016/j.chaos.2018.12.001_bib0006) 2001; 37
Palani (10.1016/j.chaos.2018.12.001_bib0007) 2008; 6
Beg (10.1016/j.chaos.2018.12.001_bib0008) 2009; 5
Atangana (10.1016/j.chaos.2018.12.001_bib0023) 2016
Algahtani (10.1016/j.chaos.2018.12.001_bib0025) 2016; 89
Arshad (10.1016/j.chaos.2018.12.001_bib0035) 2017; 19
Singh (10.1016/j.chaos.2018.12.001_bib0010) 2012; 199
Singh (10.1016/j.chaos.2018.12.001_bib0015) 2012; 3
Khan (10.1016/j.chaos.2018.12.001_bib0030) 2016; 131
Ziyauddin (10.1016/j.chaos.2018.12.001_bib0013) 2010; 3
Rich (10.1016/j.chaos.2018.12.001_bib0001) 1953; 75
Schlichting (10.1016/j.chaos.2018.12.001_bib0005) 1999
References_xml – volume: 199
  start-page: 1144
  year: 2012
  end-page: 1154
  ident: bib0010
  article-title: Computational dynamics of MHD free convection flow along an inclined plate with Newtonian heating in the presence of volumetric heat generation
  publication-title: Chem Eng Commun
– volume: 57
  start-page: 596
  year: 2009
  end-page: 603
  ident: bib0026
  article-title: Unsteady flow of a generalized Maxwell fluid with fractional derivative due to a constantly accelerating plate
  publication-title: Comput Math Appl
– volume: 2
  start-page: 103
  year: 2014
  end-page: 110
  ident: bib0012
  article-title: Unsteady MHD Couette flow between two infinite parallel porous plates in an inclined magnetic field with heat transfer
  publication-title: Int J Math Stat Invent
– volume: 37
  start-page: 117
  year: 2001
  end-page: 123
  ident: bib0006
  article-title: Similarity solutions for hydro magnetic simultaneous heat and mass transfer by natural convection from an inclined plate with internal heat generation or absorption
  publication-title: Heat Mass Transfer
– volume: 23
  start-page: 203
  year: 1988
  end-page: 211
  ident: bib0003
  article-title: Free convection heat transfer from an isothermal plate with arbitrary inclination
  publication-title: Warmeund Stoffubertragung
– reference: J. Hristov, Steady state heat conduction in a medium with spatial non-singular fading memory: derivation of Caputo–Fabrizio space fractional derivative with Jeffreys kernel and analytical solutions, (2017).
– volume: 5
  start-page: 1
  year: 2013
  end-page: 8
  ident: bib0019
  article-title: MHD double diffusive and chemically reactive flow through porous medium bounded by two vertical plates
  publication-title: Int J Energy Technol Policy
– volume: 29
  start-page: 1465
  year: 1986
  end-page: 1478
  ident: bib0002
  article-title: Natural convection on horizontal, inclined, and vertical plates with variable surface temperature or heat flux
  publication-title: Int J Heat Mass Transfer
– volume: 19
  start-page: 1
  year: 2017
  end-page: 12
  ident: bib0035
  article-title: Atangana–Baleanu and Caputo–Fabrizio analysis of fractional derivatives for heat and mass transfer of second grade fluids over a vertical plate
  publication-title: Comput Study, Entropy
– year: 2016
  ident: bib0023
  article-title: Caputo–Fabrizio derivative applied to groundwater flow within confined aquifer
  publication-title: J Eng Mech
– volume: 55
  start-page: 2789
  year: 2016
  end-page: 2796
  ident: bib0028
  article-title: Flow over an infinite plate of a viscous fluid with non-integer order derivative without singular kernel
  publication-title: Alexandria Eng J
– volume: 39
  start-page: 43
  year: 2008
  end-page: 48
  ident: bib0017
  article-title: Soret effects due to natural convection between heated inclined plates with magnetic field
  publication-title: J Mech Eng Sci
– year: 1997
  ident: bib0037
  article-title: Macro to micro scale heat transfer: the lagging behavior
– year: 1999
  ident: bib0005
  article-title: Boundary layer theory
– volume: 8
  start-page: 35
  year: 2013
  end-page: 40
  ident: bib0018
  article-title: Unsteady MHD free convection and chemically reactive flow past an infinite vertical porous plate
  publication-title: i-manager's J Future Eng Technol
– volume: 13
  start-page: 47
  year: 1970
  ident: bib0036
  publication-title: Commun ACM
– volume: 5
  start-page: 39
  year: 2009
  end-page: 57
  ident: bib0008
  article-title: Chemically reacting mixed convective heat and mass transfer along inclined and vertical plates with soret and dufour effects - Numerical Solutions
  publication-title: Int. J. Appl. Math. Mech.
– volume: 229
  start-page: 67
  year: 2017
  end-page: 75
  ident: bib0032
  article-title: Heat and mass transport of differential type fluid with non-integer order time-fractional Caputo derivatives
  publication-title: J Mol Liq
– volume: 132
  year: 2017
  ident: bib0038
  article-title: Unsteady free convection flow of viscous fluids with analytical results by employing time-fractional Caputo–Fabrizio derivative (without singular kernel)
  publication-title: Eur Phys J plus
– volume: 3
  start-page: 2229
  year: 2012
  end-page: 5518
  ident: bib0015
  article-title: Heat and mass transfer in MHD boundary layer flow past an inclined plate with viscous dissipation in porous medium
  publication-title: Int J Sci Eng Res
– volume: 19
  start-page: S85
  year: 2015
  end-page: S98
  ident: bib0027
  article-title: Time fractional free convection flow near a vertical plate with Newtonian heating and mass diffussion
  publication-title: Therm Sci
– volume: 3
  start-page: 13
  year: 2013
  end-page: 22
  ident: bib0011
  article-title: Chemical reaction effects on MHD free convection flow through a porous medium bounded by an inclined surface
  publication-title: Int J Math
– volume: 55
  start-page: 2122
  year: 2012
  end-page: 2128
  ident: bib0016
  article-title: Heat and mass transfer of thermophoretic MHD flow over an inclined radiate isothermal permeable surface in the presence of heat source/sink
  publication-title: Int J Heat Mass Transf
– volume: 76
  start-page: 1
  year: 2016
  end-page: 11
  ident: bib0029
  article-title: Heat transfer analysis in a second grade fluid over and oscillating vertical plate using fractional Caputo–Fabrizio derivatives
  publication-title: Eur Phys J C
– year: 2017
  ident: bib0033
  article-title: Applications of non-integer Caputo time fractional derivatives to natural convection flow subject to arbitrary velocity and Newtonian heating
  publication-title: Neural Comput Appl
– volume: 131
  year: 2016
  ident: bib0030
  article-title: Unsteady flow of generalized Casson fluid with fractional derivative due to an infinite plate
  publication-title: Eur Phys J Plus
– volume: 131
  start-page: 310
  year: 2016
  ident: bib0031
  article-title: Solutions with special functions for time fractional free convection flow of Brinkman-type fluid
  publication-title: Eur Phys J Plus
– year: 1994
  ident: bib0004
  article-title: Magneto fluid dynamics of viscous fluids
– volume: 6
  start-page: 75
  year: 2008
  end-page: 82
  ident: bib0007
  article-title: Convection effects on flow past an inclined plate with variable surface temperatures in water at 4°C
  publication-title: J Eng Ann faculty Eng Hunedoara
– volume: 75
  start-page: 489
  year: 1953
  end-page: 499
  ident: bib0001
  article-title: An investigation of heat transfer from an inclined flat plate in free convection
  publication-title: Trans ASME
– volume: 10
  start-page: 774
  year: 2010
  end-page: 778
  ident: bib0014
  article-title: Exact analysis of radiation convective flow heat and mass transfer over an inclined plate in a porous medium
  publication-title: World Appl Sci J
– volume: 20
  year: 2016
  ident: bib0034
  article-title: New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model
  publication-title: Therm Sci
– volume: 89
  start-page: 552
  year: 2016
  end-page: 559
  ident: bib0025
  article-title: Comparing the Atangana–Baleanu and Caputo–Fabrizio derivative with fractional order: Allen Cahn model
  publication-title: Chaos Solitons Fractals
– volume: 3
  start-page: 155
  year: 2010
  end-page: 163
  ident: bib0013
  article-title: Radiation effect on unsteady MHD heat and mass transfer flow on a moving inclined porous heated plate in the presence of chemical reaction
  publication-title: Int J Model, Simul Appl
– volume: 44
  start-page: 554
  year: 1996
  end-page: 566
  ident: bib0020
  article-title: On fractional calculus and fractional multi poles in electromagnetism
  publication-title: IEEE Trans
– start-page: 1
  year: 2016
  end-page: 8
  ident: bib0024
  article-title: Chaos in a simple nonlinear system with Atangana–Baleanu derivatives of fractional order
  publication-title: Chaos Solitons Fractals
– volume: 19
  start-page: 1
  year: 2017
  ident: 10.1016/j.chaos.2018.12.001_bib0035
  article-title: Atangana–Baleanu and Caputo–Fabrizio analysis of fractional derivatives for heat and mass transfer of second grade fluids over a vertical plate
  publication-title: Comput Study, Entropy
– volume: 20
  year: 2016
  ident: 10.1016/j.chaos.2018.12.001_bib0034
  article-title: New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model
  publication-title: Therm Sci
– volume: 55
  start-page: 2789
  year: 2016
  ident: 10.1016/j.chaos.2018.12.001_bib0028
  article-title: Flow over an infinite plate of a viscous fluid with non-integer order derivative without singular kernel
  publication-title: Alexandria Eng J
  doi: 10.1016/j.aej.2016.07.022
– volume: 3
  start-page: 13
  issue: 3
  year: 2013
  ident: 10.1016/j.chaos.2018.12.001_bib0011
  article-title: Chemical reaction effects on MHD free convection flow through a porous medium bounded by an inclined surface
  publication-title: Int J Math
– volume: 39
  start-page: 43
  year: 2008
  ident: 10.1016/j.chaos.2018.12.001_bib0017
  article-title: Soret effects due to natural convection between heated inclined plates with magnetic field
  publication-title: J Mech Eng Sci
– year: 1999
  ident: 10.1016/j.chaos.2018.12.001_bib0005
– volume: 75
  start-page: 489
  year: 1953
  ident: 10.1016/j.chaos.2018.12.001_bib0001
  article-title: An investigation of heat transfer from an inclined flat plate in free convection
  publication-title: Trans ASME
– volume: 23
  start-page: 203
  issue: 4
  year: 1988
  ident: 10.1016/j.chaos.2018.12.001_bib0003
  article-title: Free convection heat transfer from an isothermal plate with arbitrary inclination
  publication-title: Warmeund Stoffubertragung
  doi: 10.1007/BF01807322
– volume: 57
  start-page: 596
  year: 2009
  ident: 10.1016/j.chaos.2018.12.001_bib0026
  article-title: Unsteady flow of a generalized Maxwell fluid with fractional derivative due to a constantly accelerating plate
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2008.09.052
– volume: 8
  start-page: 35
  year: 2013
  ident: 10.1016/j.chaos.2018.12.001_bib0018
  article-title: Unsteady MHD free convection and chemically reactive flow past an infinite vertical porous plate
  publication-title: i-manager's J Future Eng Technol
  doi: 10.26634/jfet.8.3.2220
– volume: 19
  start-page: S85
  year: 2015
  ident: 10.1016/j.chaos.2018.12.001_bib0027
  article-title: Time fractional free convection flow near a vertical plate with Newtonian heating and mass diffussion
  publication-title: Therm Sci
  doi: 10.2298/TSCI15S1S85V
– year: 2017
  ident: 10.1016/j.chaos.2018.12.001_bib0033
  article-title: Applications of non-integer Caputo time fractional derivatives to natural convection flow subject to arbitrary velocity and Newtonian heating
  publication-title: Neural Comput Appl
– volume: 5
  start-page: 1
  year: 2013
  ident: 10.1016/j.chaos.2018.12.001_bib0019
  article-title: MHD double diffusive and chemically reactive flow through porous medium bounded by two vertical plates
  publication-title: Int J Energy Technol Policy
– volume: 131
  start-page: 310
  issue: 9
  year: 2016
  ident: 10.1016/j.chaos.2018.12.001_bib0031
  article-title: Solutions with special functions for time fractional free convection flow of Brinkman-type fluid
  publication-title: Eur Phys J Plus
  doi: 10.1140/epjp/i2016-16310-5
– volume: 2
  start-page: 103
  issue: 3
  year: 2014
  ident: 10.1016/j.chaos.2018.12.001_bib0012
  article-title: Unsteady MHD Couette flow between two infinite parallel porous plates in an inclined magnetic field with heat transfer
  publication-title: Int J Math Stat Invent
– volume: 10
  start-page: 774
  year: 2010
  ident: 10.1016/j.chaos.2018.12.001_bib0014
  article-title: Exact analysis of radiation convective flow heat and mass transfer over an inclined plate in a porous medium
  publication-title: World Appl Sci J
– volume: 6
  start-page: 75
  year: 2008
  ident: 10.1016/j.chaos.2018.12.001_bib0007
  article-title: Convection effects on flow past an inclined plate with variable surface temperatures in water at 4°C
  publication-title: J Eng Ann faculty Eng Hunedoara
– volume: 131
  issue: 6
  year: 2016
  ident: 10.1016/j.chaos.2018.12.001_bib0030
  article-title: Unsteady flow of generalized Casson fluid with fractional derivative due to an infinite plate
  publication-title: Eur Phys J Plus
  doi: 10.1140/epjp/i2016-16181-8
– volume: 229
  start-page: 67
  year: 2017
  ident: 10.1016/j.chaos.2018.12.001_bib0032
  article-title: Heat and mass transport of differential type fluid with non-integer order time-fractional Caputo derivatives
  publication-title: J Mol Liq
  doi: 10.1016/j.molliq.2016.11.095
– volume: 29
  start-page: 1465
  issue: 10
  year: 1986
  ident: 10.1016/j.chaos.2018.12.001_bib0002
  article-title: Natural convection on horizontal, inclined, and vertical plates with variable surface temperature or heat flux
  publication-title: Int J Heat Mass Transfer
  doi: 10.1016/0017-9310(86)90061-X
– volume: 76
  start-page: 1
  issue: 7
  year: 2016
  ident: 10.1016/j.chaos.2018.12.001_bib0029
  article-title: Heat transfer analysis in a second grade fluid over and oscillating vertical plate using fractional Caputo–Fabrizio derivatives
  publication-title: Eur Phys J C
  doi: 10.1140/epjc/s10052-016-4209-3
– volume: 37
  start-page: 117
  year: 2001
  ident: 10.1016/j.chaos.2018.12.001_bib0006
  article-title: Similarity solutions for hydro magnetic simultaneous heat and mass transfer by natural convection from an inclined plate with internal heat generation or absorption
  publication-title: Heat Mass Transfer
  doi: 10.1007/s002310000131
– year: 1997
  ident: 10.1016/j.chaos.2018.12.001_bib0037
– volume: 3
  start-page: 155
  year: 2010
  ident: 10.1016/j.chaos.2018.12.001_bib0013
  article-title: Radiation effect on unsteady MHD heat and mass transfer flow on a moving inclined porous heated plate in the presence of chemical reaction
  publication-title: Int J Model, Simul Appl
– volume: 44
  start-page: 554
  year: 1996
  ident: 10.1016/j.chaos.2018.12.001_bib0020
  article-title: On fractional calculus and fractional multi poles in electromagnetism
  publication-title: IEEE Trans
  doi: 10.1109/8.489308
– ident: 10.1016/j.chaos.2018.12.001_bib0022
  doi: 10.2298/TSCI160229115H
– volume: 55
  start-page: 2122
  year: 2012
  ident: 10.1016/j.chaos.2018.12.001_bib0016
  article-title: Heat and mass transfer of thermophoretic MHD flow over an inclined radiate isothermal permeable surface in the presence of heat source/sink
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2011.12.015
– start-page: 1
  year: 2016
  ident: 10.1016/j.chaos.2018.12.001_bib0024
  article-title: Chaos in a simple nonlinear system with Atangana–Baleanu derivatives of fractional order
  publication-title: Chaos Solitons Fractals
– year: 2016
  ident: 10.1016/j.chaos.2018.12.001_bib0023
  article-title: Caputo–Fabrizio derivative applied to groundwater flow within confined aquifer
  publication-title: J Eng Mech
– volume: 3
  start-page: 2229
  year: 2012
  ident: 10.1016/j.chaos.2018.12.001_bib0015
  article-title: Heat and mass transfer in MHD boundary layer flow past an inclined plate with viscous dissipation in porous medium
  publication-title: Int J Sci Eng Res
– volume: 89
  start-page: 552
  year: 2016
  ident: 10.1016/j.chaos.2018.12.001_bib0025
  article-title: Comparing the Atangana–Baleanu and Caputo–Fabrizio derivative with fractional order: Allen Cahn model
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2016.03.026
– year: 1994
  ident: 10.1016/j.chaos.2018.12.001_bib0004
– volume: 5
  start-page: 39
  year: 2009
  ident: 10.1016/j.chaos.2018.12.001_bib0008
  article-title: Chemically reacting mixed convective heat and mass transfer along inclined and vertical plates with soret and dufour effects - Numerical Solutions
  publication-title: Int. J. Appl. Math. Mech.
– volume: 199
  start-page: 1144
  year: 2012
  ident: 10.1016/j.chaos.2018.12.001_bib0010
  article-title: Computational dynamics of MHD free convection flow along an inclined plate with Newtonian heating in the presence of volumetric heat generation
  publication-title: Chem Eng Commun
  doi: 10.1080/00986445.2011.651184
– volume: 132
  year: 2017
  ident: 10.1016/j.chaos.2018.12.001_bib0038
  article-title: Unsteady free convection flow of viscous fluids with analytical results by employing time-fractional Caputo–Fabrizio derivative (without singular kernel)
  publication-title: Eur Phys J plus
– volume: 13
  start-page: 47
  issue: 1
  year: 1970
  ident: 10.1016/j.chaos.2018.12.001_bib0036
  publication-title: Commun ACM
  doi: 10.1145/361953.361969
SSID ssj0001062
Score 2.495757
Snippet •Boundary layer flow of viscous fluid is developed with the help Caputo–Fabrizio (CF) and (ABC) fractional derivatives.•Solutions for temperature,...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 274
SubjectTerms CF and ABC fractional model
Chemical reaction
Comparison study
Heat sink
Inclined plat
MHD
Newtonian fluid
Title A comprehensive report on convective flow of fractional (ABC) and (CF) MHD viscous fluid subject to generalized boundary conditions
URI https://dx.doi.org/10.1016/j.chaos.2018.12.001
Volume 118
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECYMd2mHoHZaNG1i3NDBBqpakimaGl03hpvCWVID3gTxlagIJMOyEyRDlvzx8qUkRQEPHUUcRYE83X08frxD6HNsGEyE84CnmAWYSx5o3GwSAqg4lhFJJDdxyMU5mS_x2SpZtdC0uQtjaJXe9jubbq21bxn62Ryui2J4YcB3OB6nWilN0YyVucGOx0bLvz480zz0lseeJGjhwEg3mYcsx4tf5ZXJ2R1RGxP0lWH-8U4vPM7sLTrwUBEm7ms6qCXLLnqzeMqzWndRx_-aNfR9_ujBIXqcgCGKb-SVI6eDOxeAqgTLMbcWDtR1dQuVArVxVxv0SP3Jt-kA8lJAfzobwGL-HW6Kmle7WkvvCgH1jpmwDWwruHTDFfdSALOlmTZ35vXCUcDeoeXs9Nd0HvhaCwHXTmwbYCn03kkbOxKxlOVpFKuEk1CFGk7pZswpCVOl8hFVVDJCKRnhJMR5KHLORKpG71G7rEr5AcGIY0FomLAkFThPFGMapOWSKq7REKXJEYqbOc64T0Ru6mFcZw3j7HdmFyYzC5NFseHdHaEvT53WLg_HfnHSLF72lzpl2lPs6_jxfzt-Qq_1U-qiM8eovd3s5InGK1vWswrZQ68mP37Oz_8A5X3rjw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFH8a3QE4IDZAjM934NBKRE1S23OOpVBlbO2FTeotir-2oCmZmnYTXPnHsWOnAiHtwNXxiyM_573n559_D-BD6hBMTMpIZkRERGoZ2bjZEQKYNNUJo1q6PORiyfIL8nVFV3sw6-_COFhlsP3epnfWOrSMw2yOb6pq_M0F3_HxcWYXpSuasXoA-46dig5gf3pymi93BtnuerrDBNs_cgI9-VAH85JXZeNouxPepQVDcZh_HNQfTmf-FJ6EaBGn_oMOYE_Xh_B4saNabQ_hIPydLQ4DhfToGfyaosOKr_WVx6ejPxrApsYOZt4ZOTTXzR02Bs3a326wIw2nn2YjLGuFw9l8hIv8M95WrWy2re29rRS2W-EyN7hp8NIPV_3UCkVXnWn9w71eeRTYc7iYfzmf5VEotxBJ68c2EdHKbp-svWOJyESZJamhksUmthGVbSaSszgzppxww7VgnLMJoTEpY1VKoTIzeQGDuqn1S8CJJIrxmAqaKVJSI4SN00rNjbQBEef0CNJ-jgsZuMhdSYzrogedfS86xRROMUWSOujdEXzcCd14Ko77u7NeecVfK6qwzuI-wVf_K_geHubni7Pi7GR5-hoe2SeZT9a8gcFmvdVvbfiyEe_C8vwN-sXuQA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comprehensive+report+on+convective+flow+of+fractional+%28ABC%29+and+%28CF%29+MHD+viscous+fluid+subject+to+generalized+boundary+conditions&rft.jtitle=Chaos%2C+solitons+and+fractals&rft.au=Imran%2C+M.A.&rft.au=Aleem%2C+Maryam&rft.au=Riaz%2C+M.B.&rft.au=Ali%2C+Rizwan&rft.date=2019-01-01&rft.pub=Elsevier+Ltd&rft.issn=0960-0779&rft.eissn=1873-2887&rft.volume=118&rft.spage=274&rft.epage=289&rft_id=info:doi/10.1016%2Fj.chaos.2018.12.001&rft.externalDocID=S096007791830746X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-0779&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-0779&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-0779&client=summon